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We provide some spatial estimates for the nonlinear partial differential equation govern-

ing anti-plane motions in a nonlinear viscoelastic theory of Kelvin-Voigt type when the

viscosity is a function of the strain rate. The spatial estimates we prove are an alter-
native of Phragmen-Lindelöf type. These estimates are possible when a precise balance

between the elastic and viscoelastic nonlinearities holds.
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1. Introduction

One of the simplest models of nonlinear viscoelasticity is based on the classical

Kelvin-Voigt model. This model is obtained considering that the Cauchy Stress, T,

can be additively split in a hyperelastic part Tela and a viscous part Tvisco. As

usual for the elastic part, in the incompressible case, we have

Tela = −pI + 2
∂W
∂I1

B− 2
∂W
∂I2

B−1, (1.1)

where I is the identity tensor, p is the Lagrange multiplier associated with the

incompressibility constraint [2], B = FFT is the left Cauchy-Green strain tensor, F

∗Adjunct professor at the School of Mathematics, Statistics and Applied Mathematics, NUI Gal-
way, University Road Galway, Ireland.
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is the gradient of deformation, I1 = traceB and I2 = traceB−1, andW =W(I1, I2)

is the strain-energy density function. The viscous part is given by

Tvisco = νD, (1.2)

where D is the symmetric part of the stretching tensor ḞF−1 and ν ≥ 0 is the vis-

cosity. The viscosity may be a constant, as in the classical Navier-Stokes equations,

or a function of the invariants of B and D as for example I1, I2 and:

trace(D2), trace(BD), trace(B2D), trace(BD2), trace(D2B2). (1.3)

The model introduced here has been considered in many papers. For example,

in the quasi-static case general results have been obtained in [3] and in [21] and

both contributions are in the case when ν is constant or is a function of the various

invariants in (1.3). In the full dynamical case an application of our model has

been used in the framework of the propagation of shear waves [5,30]. In nonlinear

acoustics a Kelvin-Voigt viscous term with constant viscosity is always introduced

to prevent the blow-up of shear waves in computational studies [6].

From a mathematical point of view the case of a viscosity function (i.e. non

constant viscosity) is still an open problem. Local existence of solutions has been

established in [15,34], but a global existence result is possible only when the viscosity

function is bounded from above and below.

In the present paper we restrict our attention to a special subclass of the general

nonlinear Kelvin-Voigt constitutive equation. First of all, we consider only gener-

alized neo-Hookean material such that W = W(I1). Second, we consider viscous

functions which depend only on the invariant trace(D2). The reason of this choice

is to simplify as much as possible the mathematical presentation, remaining in a

framework of interest for applications. Indeed, there are many real materials with a

non constant viscosity function as for example wheat-flour dough [20], brain matter

[31] or hydrogels [4]. A modern overview on the mechanics and rheology viscoelastic

materials is provided by [16].

Moreover we consider a shear motion

x1 = X1, x2 = X2, x3 = X3 + u(X1; t),

or an anti-plane shear motiona

x1 = X1, x2 = X2, x3 = X3 + u(X1, X2; t),

the balance equations reduce to a single scalar equation in the unknown u. This

equation reads

ρ0u,tt = (Qu,i + νu,it),i , (1.4)

aIt is well known that for generalized neo-Hookean materials this motion may be sustained [23].
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where i = 1 for a shear motion, and i = 1, 2 for an anti-plane shear motion. Here, we

assume a null gradient of pressure along x3, and we point out that the generalized

shear modulus is a function

Q = Q(|∇u|2),

whereas the viscosity ν may be a constant or a function of any combination of the

invariants I1, I2 and (1.3). As usual ρ0 is the constant density.

If the viscosity is constant and the function Q is convex, then equation (1.4) is

well posed and this globally in time. This is a classical result obtained in [11] for a

one dimensional shear wave and in [8] for the anti-plane shear case. This result can

be extended to the case of a non-convex generalized shear modulus [1].

When the viscosity is a function of the invariants, the situation is much more

complex and, as we have already pointed out, the finite time blow-up cannot be

avoided. A situation that seems to be paradoxical. For a recent up to date and new

significant results on such a problem we refer to [33]. Some explicit examples of

blow-up in time can be found in [22]

In this framework, it is interesting to understand if the same problem we have

time occurs in space. Spatial estimates are important tools to investigate qualita-

tive properties of partial differential equations. For example, these estimates are

necessary to ensure that end effects are under control: an important mathematical

information for a rigorous design of experimental tests [12]. Clearly if a problem

does not enjoy of a global existence in time these estimates are of limited mechanical

significance, but a formal theory is possible in any case.

The aim of the present paper is to extend to a non constant viscosity frame-

work the results obtained in [27,26,7] for constant viscosity Kelvin-Voigt nonlinear

materials. Our findings are quite interesting because we find that the spatial es-

timates are possible but only when there is a certain balance among the elastic

and the viscoelastic nonlinearities. The nonlinearity of the dissipative part and the

nonlinearity of the purely elastic part of the constitutive equations must be in a

certain balance. This is another counter-intuitive result in the framework of the

nonlinear theory of viscoelasticity: a major challenge in the mathematical theory

of continuum mechanics.

2. Setting of the problem

The aim of this paper is to give some spatial estimates for the following problem

ρ0û,t̂t̂ =
[
Q̂(|∇û|2)û,i + ν̂(|∇ût̂|

2)û,it̂

]
,i
, (2.1)

in a semi-infinite strip R = [0,∞)× [0, l] with the boundary conditions

û(X̂1, 0, t̂) = û(X̂1, l, t̂) = 0, X̂1 ≥ 0, t̂ > 0 (2.2)

û(0, X̂2, t̂) = f̂(X̂2, t̂), X̂2 ∈ (0, l), t̂ > 0, (2.3)
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and the initial conditions

û(X̂, 0) = ût̂(X̂, 0) = 0, X̂ ∈ R. (2.4)

In this model the strain-energy density is function only of I1 and the viscosity

ν is function of the strain rate, i.e. of the invariant traceD2.

The first step is to introduce a set of dimensionless variables:

X̂i = Xil, û = ul, t̂ = $t, Q̂ = µ0Q, ν̂ = ν0ν.

Therefore

%u,tt =
[
υQ
(
|∇u|2

)
u,i + ν

(
$−2|∇ut|2

)
u,it
]
,i
, (2.5)

and

% =
ρ0l

2

$ν0
, υ =

$µ0

ν0
.

Clearly % is the Reynolds number and υ is an analogue for solid mechanics of the

Weissenberg number.

Abusing the notation the domain is the strip R = [0,∞) × [0, 1] and the

boundary-initial conditions are

u(X1, 0, t) = u(X1, 1, t) = 0, X1 ≥ 0, t > 0,

u(0, X2, t) = f(X2, t), X2 ∈ (0, 1), t > 0, (2.6)

u(X, 0) = u̇(X, 0) = 0, X ∈ R.

The following hypotheses are imposed on the functions Q(s2) and ν(ṡ2):

(i) There exist three positive constants A,B and p > 1 such that

|sQ(s2)| ≤ AW (s2)1/2 +BW (s2)1/p. (2.7)

where ∂W/∂s = 2Q(s) and W (0) = 0.

(ii) There exist five positive constants D1, D2, C1, C2 and q such that

D1ṡ
2 + C1ṡ

q ≤ ν(ṡ2)ṡ2 ≤ D2ṡ
2 + C2ṡ

q. (2.8)

It is important to point out that

• The constants A,B,C1, C2, D1 and D2 are independent of p and q.

• The number p and q must be related in the sense that q∗ = p/(p − 1)

therefore the relationship

q∗ ≤ q < 2q∗. (2.9)

must be satisfied.
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Condition (2.9) links the growth condition for the generalised shear modulus with

the viscosity function.

An example of functions satisfying the conditions (i) and (ii) is obtained con-

sidering power-law materials

W(I1) =
µ

k(n+ 1)
{[1 + k(I1 − 3)]n+1 − 1},

where µ is the infinitesimal shear modulus and k and n are two constitutive parame-

ters. This is a well known strain-energy density function describing strain hardening

materials if n > 0 and stress softening materials if 0 > n > −1, for n = 0 we recover

the neo-Hookean material.

Because we consider the dimensionless versionb of the strain energy density we

have Q(s2) = (1 + ks2)n. In the Appendix we give the detailed proof that this

material model satisfies conditions (i). The function W should not confused with

the dimensionless strain-energy density.

As typical viscosity function let us consider

ν(ṡ2) = (1 + k̂ṡ2)m

where k̂ > 0 and m are positive constants. The condition (ii) is clearly satisfied

with q = 2(m+ 1).

Condition (2.9) is satisfied when

n ≤ m ≤ 2n+ 1.

Without assumptions (i) and (ii) we are not able to prove the asymptotic be-

haviour of our solutions but these assumptions are not only a mathematical caprice.

The mechanical information that these mathematical condition are conveying is

that the viscosity has to be not too weak and not too strong with respect the

elastic strain strength of the material. This is clear if we are considering a strain-

hardening material. In the case of stress softening materials the viscosity in any

case must be very mild. Just to have an idea for a neo-Hookean material, which in

rectilinear and anti-plane shear acts as a linear material [19], it must be m < 2.

Therefore, the interplay between the strength of the elastic part and the viscous

part of the material must be adequately balanced.

We end up warning the reader that to derive our estimates we need to study a

nonlinear ordinary differential inequality of the form

∂G

∂z
+ Φ(|G|) ≤ 0, (2.10)

for a function of the solutions G(z, t), where Φ(|G|) is a suitable function. This kind

of differential inequalities has been considered by several authors [13,17,18,26].

bFor this reason in Q = Q(s2) and ν = ν(ṡ2) the infinitesimal shear modulus and the infinitesimal
viscosity are always normalized to 1.
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3. Phragmen-Lindelöf Alternatives

In this section we obtain our main results concerning the initial-boundary value

problem determined by equation (2.5) with null initial conditions and boundary

conditions (2.6) whenever we assume (2.7) and (2.8). These results consists on a

Phragmen-Lindelöf alternative for the case 2 < q∗ < ∞ (i.e. 1 < p < 2) and a

similar alternative for the case 1 < q∗ < 2 (and therefore p > 2). For the special

case q = q∗ it is again possible to obtain an exponential alternative.

3.1. Case 2 < q∗ < ∞

The analysis starts by considering the function

G(z, t) = −
∫ t

0

∫ 1

0

exp(−ωτ)(Qu,1 + νu,1τ )u,τdx2dτ. (3.1)

If we apply the divergence theorem and make use of the null initial conditions and

the homogeneous boundary conditions on the lateral sides of the strip we obtain

that the equality

G(z, t) = G(z0, t)−
∫ t

0

∫ z

z0

∫ 1

0

exp(−ωτ)

(
%ωu2,τ

2
+ ωW + ν|∇u,τ |2

)
dadτ

− 1

2

∫ z

z0

∫ 1

0

exp(−ωt)(%u2,t + 2W )da,

is satisfied, where da = dx1dx2.

Computing

∂G

∂z
= −

∫ t

0

∫ 1

0

exp(−ωτ)

(
%ωu2,τ

2
+ ωW + ν|∇u,τ |2

)
dx2dτ

− 1

2

∫ 1

0

exp(−ωt)(%u2,t + 2W )dx2,



August 9, 2020 13:32 WSPC/INSTRUCTION FILE
quinta˙sacco˙visco˙referee˙bis

Spatial Estimates for Nonlinear Viscosity 7

the estimate of the absolute value of the function G(z, t) in terms of the spatial

derivative gives

|G(z, t)| ≤
∫ t

0

∫ 1

0

exp(−ωτ)(AW 1/2 +BW 1/p + ν|∇u,τ |)|u,τ |dx2dτ

≤ A
(∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

)1/2(∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ
)1/2

+B

(∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

)1/p(∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |q
∗
dx2dτ

)1/q∗

+ C2

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ
)1/2(∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ
)1/2

+D2

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)1/p∗ (∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |qdx2dτ
)1/q

.

Here we use Hölder’s inequality and the estimates (2.7) and (2.8) where p∗ =

q/(q − 1).

Poincaré’s inequality implies that

|G(z, t)| ≤ A
(∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

)1/2(∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ
)1/2

+B1

(∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

)1/p(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |q
∗
dx2dτ

)1/q∗

(3.2)

+D3

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ
)1/2(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ
)1/2

+ C3

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)1/p∗ (∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)1/q

.

Here B1, D3 and C3 can be easily calculated in terms of the parameters B,C1 and

the Poincaré constant.

If we take into account the inequality

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |q
∗
dx2dτ

)1/q∗

≤ F (t)

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)1/q

,
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where

F (t) =
(
ω−1[1− exp(−ωt)]

)(q−q∗)/qq∗
, (3.3)

we obtain

|G(z, t)| ≤ A
(∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

)1/2(∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ
)1/2

+B1F (t)

(∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

)1/p(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)1/q

(3.4)

+D3

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ
)1/2(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ
)1/2

+ C3

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)1/p∗ (∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)1/q

.

When q = q∗ we see that F (t) ≡ 1 for every t > 0 and

|G(z, t)| ≤
(
Aε1
2

+
B1ε

p
2

p

)∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

+D3

∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ

+
A

2ε1

∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ + (
B1

qεq2
+ C3)

∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ.

This means that

|G(z, t)| ≤ −λω
∂G(z, t)

∂z
, (3.5)

wherec

λω = max

{
ω−1

(
Aε1
2

+
B1ε

p
2

p

)
,
A

ε1ω%
,C−11

(
B1

qεq2
+ C3

)
, D−11 D3

}
.

From (3.5) we obtain that

G(z, t) ≤ λω
∂G(z, t)

∂z
, −G(z, t) ≤ λω

∂G(z, t)

∂z
.

cAn optimization of the value of λω can be obtained by considering the involved nonlinear equa-
tions and selecting the best values for εi.
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The first inequality implies that if there exists a point z0 such that G(z0, t) > 0, we

have

G(z, t) ≥ G(z0, t) exp[λ−1ω (z − z0)].

On the other hand if such a z0 does not exists we have G(z, t) ≤ 0, for every z ≥ 0,

and

−G(z, t) ≤ −G(0, t) exp(−λ−1ω z), z ≥ 0.

This implies that G(z, t) tends to zero as z →∞
We have established a Phragmen-Lindelöf alternative of exponential type: either

the function G(z, t) growths exponentially for z sufficiently large or the solutions

decay exponentially in the form

E(z, t) ≤ E(0, t) exp(−λ−1ω z), z ≥ 0, (3.6)

where

E(z, t) =

∫ t

0

∫
R(z)

exp(−ωτ)

(
%ωu2,τ

2
+ ωW + ν|∇u,τ |2

)
dadτ

(3.7)

+
1

2

∫
R(z)

exp(−ωt)(%u2,t + 2W )da,

being R(z) = {x ∈ R, x1 ≥ z}.
Therefore we have proved the following

Theorem 3.1. Let us assume that q = q∗ and 1 < p < 2. Let u(x, t) be a solution

of the initial-boundary problem . Then either the solution growths exponentially with

z or the estimate is satisfied for the function E(z, t) defined by (3.7).

Let us consider the case that q 6= q∗, but q < 2q∗. In this situation we cannot use

the previous argument, however we can adapt a variation of this argument which

allows us to obtain several estimates. From the estimate (3.4) we obtain that

|G(z, t)| ≤
(
Aε1
2

+
B1F (t)εp2

p

)∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

+
A

2ε1

∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ +
B1F (t)

q∗εq
∗

2

(∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ
)q∗/q

+D3

∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ + C3

∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ.
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This inequality can be written as

|G(z, t)| ≤ N1

(
−∂G(z, t)

∂z

)
+N2

(
−∂G(z, t)

∂z

)δ
, (3.8)

where δ = q∗/q and Ni are two positive constants which can be obtained in terms

of the parameters.

It is worth remarking that 1/2 < δ < 1. This last inequality has been studied

previously by Horgan and Payne [13]. Again, if there exists a point z0 such that

G(z0, t) < 0, then G(z, t) remains negative for all z ≥ z0. Following [13], (p. 134),

we obtain the inequality

−G(z, t) ≤ D∗1
[
−∂G(z, t)

∂z

]
+D∗2

[
−∂G(z, t)

∂z

]1/2
, (3.9)

where

D∗1 = N1 +N2(2− δ)δ−1σ1, D∗2 = 2N2(δ−1 − 1)δσ
−(2−δ−1)/(2(δ−1−1))
1 , (3.10)

and σ1 is an arbitrary positive constant. We have (see [13], p. 135),

−G(z, t) ≥ D∗1Q1(z0, t) exp

(
z − z0
D∗1

)
, z ≥ z0. (3.11)

Here Q1(z0, t) is an easily computable quantity in terms of the data of the problem.

When G(z, t) does not satisfy the previous estimate, then G(z, t) must be non

negative for all z ≥ 0. It then follows that (see [13], p. 135),

G(z, t) ≤ D∗3
[
−∂G(z, t)

∂z

]2δ
+D∗4

[
−G(z, t)

∂z

]δ
, (3.12)

where

D∗3 = N1δ
−1σ2, D

∗
4 = N1(2− δ−1)σ

−(δ−1−1)/(2−δ−1)
2 +N2, (3.13)

and σ2 is an arbitrary positive constant. If z ≥ 0 we obtain (see [13], pp. 135-136)

E(z, t) ≤ D∗4
(

1− δ
2D∗3δ

[z +Q2(0, t)]

)−2δ/(1−δ)
+D∗3

(
1− δ
2D∗3δ

[z +Q2(0, t)]

)−4δ/(1−δ)
,

(3.14)

where

Q2(0, t) =
4δD∗3
2δ − 1

[E(0, t)
1

D∗3
+

(
D∗4
2D∗3

)2
]1/2

− D∗4
2D∗3

(δ−1)/δ

− 2δD∗3
2δ − 1

[E(0, t)
1

D∗3
+

(
D∗4
2D∗3

)2
]1/2

− D∗4
2D∗3

(2δ−1)/δ

.

It is worth noting that Q2(0, t) may be positive or negative, but regardless of the

sign, G(z, t) decays at least as fast as z−2δ/(1−δ).
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Theorem 3.2. Assume that u is a solution of the initial-boundary-value problem.

Then, the function G(z, t) satisfies either the asymptotic condition (3.11) or the

energy function E(z, t) satisfies the polynomial spatial decay estimate (3.14).

3.2. Case 1 < q∗ < 2

The analysis starts as in the previous subsection, by defining the function G(z, t)

as in as in the previous section. We can obtain the estimate (3.8). Now, we have

that q∗ < 2. Thus, the following estimate:(∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |q
∗
dx2dτ

)1/q∗

≤ F∗(t)
(∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ
)1/2

(3.15)

holds, where

F∗(t) =
(
γ−1[1− exp(−ωt)]

)(2−q∗)/2q∗
. (3.16)

We obtain

|G(z, t)| ≤
(
Aε1
2

+
BF∗(t)ε

p
2

p

)∫ t

0

∫ 1

0

exp(−ωτ)Wdx2dτ

+
A

2ε1

∫ t

0

∫ 1

0

exp(−ωτ)|u,τ |2dx2dτ +
BF∗(t)

q∗εq
∗

2

(∫ t

0

∫ 1

0

exp(−ωτ)|u,τs|2dx2dτ
)q∗/2

+D3

∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |2dx2dτ + C3

∫ t

0

∫ 1

0

exp(−ωτ)|∇u,τ |qdx2dτ.

An estimate can be obtained where 1
2 < δ = q∗/2 < 1. We can use the arguments

used previously to obtain estimates as (3.11) and (3.14) which give the Phragmen-

Lindelöf alternative in this case.

4. The Wave Equation

The method used in the previous Section works also when ν(ṡ2) ≡ 0, i.e., when we

consider the wave equation

ρu,tt =
(
Q(|∇u|2)u,i

)
,i
, (4.1)

in the particular case that the assumption (i) holds with B = 0d. This wave equation

has been deeply studied by several authors and we refer to [14] for a review. To the

dWe note that this assumption and the further arguments are strongly inspired by the results in

[9]. However, we here have proposed a family of examples for this kind of assumption and on the
other side, in Section 2, new conclusions different from the ones proposed in the cited paper are
provided.
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equation (4.1) we append the initial conditions (2.6) and the boundary conditions

u(X, 0) = u0(X), u̇(X, 0) = v0(X), X ∈ R. (4.2)

The analysis in this case starts by considering the function

H(z, t) = −
∫ t

0

∫ 1

0

Qu,1u,τdx2dτ. (4.3)

We have that

H(z, t)−H(z0, t) = −1

2

∫ z

z0

∫ 1

0

(2W + ρu2,t)da+
1

2

∫ z

z0

∫ 1

0

(2W (|∇u0|2) + ρv20)da,

(4.4)

∀z ≥ z0. Direct differentiation in the previous equalities gives

∂H(z, t)

∂z
= −1

2

∫ 1

0

(2W + ρu2,t)dx2 +
1

2

∫ 1

0

(2W (|∇u0|2) + ρv20)dx2, (4.5)

and

∂H(z, t)

∂t
= −

∫ 1

0

Qu,1u,τdx2. (4.6)

The arithmetic-geometric mean inequality implies that∣∣∣∣∂H(z, t)

∂t

∣∣∣∣ ≤ 1

2

∫ 1

0

(
ερu2,t + 2

A2

ερ
W

)
dx2 + E1(z), (4.7)

where ε is an arbitrary positive constant

E1(z) =
1

2

∫ 1

0

(
2W (|∇u0|2) + ρv20

)
dx2. (4.8)

If we select ε = Aρ−1/2 we obtain that

c−1
∂H(z, t)

∂t
+
∂H(z, t)

∂z
≤ E1(z) (4.9)

and

−c−1 ∂H(z, t)

∂t
+
∂H(z, t)

∂z
≤ E1(z) (4.10)

where c = Aρ−1/2.

Now the inequality (4.9) implies that

H(z, c−1(z − z∗)) ≤
∫ z

z∗
E1(ξ)dξ, (4.11)

where z ≥ z∗. In a similar way from (4.10) we see that

H(z, c−1(z∗∗ − z)) ≥ −
∫ z∗∗

z

E1(ξ)dξ, (4.12)
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when z ≤ z∗∗. From the previous inequalities and assuming that the total initial

energy is finite, i.e.,

E∗(0, 0) =
1

2

∫
R

(2W (|∇u0|2) + ρv20)da <∞, (4.13)

we conclude that

lim
z→∞

H(z, t) = 0, (4.14)

for every t ≥ 0. Therefore we may write

H(z, t) =
1

2

∫ ∞
z

∫ 1

0

(2W + ρu2t )da−
1

2

∫ ∞
z

∫ 1

0

(2W (|∇u0|2) + %v20)da. (4.15)

Inequality (4.11) implies that

E∗(z, t) ≤ E∗(z∗, 0), (4.16)

where

E∗(z, t) =
1

2

∫
R

(2W + ρu2t )da, (4.17)

and where z, z∗ and t are related by t = c−1(z − z∗). Now, from (4.12) we see that

E∗(z, t) ≥ E∗(z∗∗, 0), (4.18)

whenever t = c−1(z∗∗ − z).
From the estimates (4.16) and (4.17) we conclude that

E∗(z, t) ≤ E∗(z∗, t∗), (4.19)

where |t− t∗| ≤ c−1|z − z∗|. We have proved:

Theorem 4.1. Assume that u is a solution of the initial-boundary-value problem

determined by equation (4.1) the initial condition (4.2) and the boundary conditions

(2.6). Then, the solutions of this problem satisfy the estimate (4.19).

It is also usual to work with the function

E(z, t) =

∫ t

0

E∗(z, s)ds. (4.20)

When ct ≤ z, we have the estimate

E(z, t) =

∫ t

0

E∗(z − cs, 0)ds = c−1
∫ z

z−ct
E∗(η, 0)dη. (4.21)

Otherwise, when ct ≥ z, we have that

E(z, t) =

∫ c−1z

0

E∗(z, s)ds+

∫ t

c−1z

E∗(z, s)ds. (4.22)

The first integral can be bounded in the following way
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∫ c−1z

0

E∗(z, s)ds ≤ c−1
∫ z

0

E∗(η, 0)dη, (4.23)

and the second integral in (4.22) can be estimated as∫ t

c−1z

E∗(z, s)ds ≤
(

1− z

ct

)
E(0, t). (4.24)

Therefore, we obtain that

E(z, t) ≤ c−1
∫ z

0

E∗(η, 0)dη,+
(

1− z

ct

)
E(0, t). (4.25)

Hence the following result holds:

Theorem 4.2. Let u be a solution of the initial-boundary-value problem determined

by equation (4.1), the initial condition (4.2) and the boundary conditions (2.6).

Then, the function E(z, t) defined at (4.20) satisfies the estimate (4.21) when ct ≤ z
and the estimate (4.25) when ct ≥ z.

If we assume that the initial conditions are zero, we obtain that E∗(z, 0) = 0

for every z. In this case the estimate (4.21) implies that

E(z, t) = 0, (4.26)

whenever ct ≤ z and we conclude that u(x, t) = 0 in this region, which is a result

of the type of domain of influence. When ct ≥ z we obtain that

E(z, t) ≤
(

1− z

ct

)
E(0, t), (4.27)

which is a very fast rate of decay for the solutions. Therefore, we have obtained

that

Theorem 4.3. Let u be a solution of the initial-boundary-value problem determined

by equation (4.1), with null initial condition and the boundary conditions (2.6).

Then, the function E(z, t) vanishes when ct ≤ z and the estimate (4.27) holds when

ct ≥ z.

5. Concluding Remarks

In the Introduction we have discussed details that for materials with non constant

viscosity the time-evolution of a BVP may be not well-posed and the lack of global

existence in time may be a major problem. On the other hand our results are about

spatial estimates and they show that to have good estimates we need a certain

balance among the elastic and the viscous nonlinearities. The strange fact is that

the elastic nonlinearity bounds the viscous nonlinearity (see conditions (i) and (ii)

in the setting of the problem). This fact seems to be not in accordance with our

experience. Indeed, it is natural to expect that for any nonlinear generalized shear
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modulus a sufficient strong viscosity function is enough to control the time and

spatial behaviour of the solutions but this is not the case.

This status of affair opens an interesting problem from the modelling point

of view. The counter-intuitive situations we have pointed out may be, in some

sense, a byproduct of a wrong model. In amorphous elastomeric materials it is clear

that internal dissipation is strongly connected with the mesoscopic structure of the

polymeric network. Therefore it is hard to split dissipative and dispersive effects.

This situation suggests that a good model of viscoelasticity must take into account

the internal structure of the material. This approach may help to overcome the

various mathematical problem.

In this process the crucial point is the quasi-static limit. In this approximation

dispersive effects seems to be not relevant at all [16] and therefore we must be

able to introduce mesoscopic information in such a way that dispersive effects will

disappear for large times. Clearly, the real challenge is to obtain such a model in

the framework of a rigorous axiomatic theory of continuum mechanics and not just

adding ”ad-hoc” regularising terms.

The situation is also challenging from a mathematical point of view as it is

possible to appreciate from [28] and [29], but it seems the only way to produce

effective models of dissipative effects in materials subject to large deformations.
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Appendix A. Power-law materials

Lemma Appendix A.1. Let us consider the function Q(s2) = (1 + ks2)n where

k and n are two positive real numbers. There exist two positive constants α, β such

that

Q(s2) ≥ α+ βs2n. (A.1)

Proof. We start with the case 1 < n <∞. Being

(1 + ks2)n − 1− (ks2)n ≥ 0

the lemma is proved with α = 1 and β = kn.

When 0 < n < 1 we consider 0 < α < 1 such that kn > α.
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When s2 ≤ 1 we see that

1− α− (1− α)s2n ≥ 0

meanwhile when s2 > 1 we have

kns2n − α− (kn − α)s2n ≥ 0.

Therefore (1 + ks2)n ≥ α+ βs2n where β = max(1− α, kn − α).

Lemma Appendix A.2. For the function

W (s2) =
1

2(n+ 1)k

(
(1 + ks2)n+1 − 1

)
(A.2)

it is

W (s2) ≥ 1

2

(
αs2 + βs2(n+1)

)
, (A.3)

where α and β are given in the previous lemma (Appendix A.1).

Proof. To prove this assertion we note that the function

Ω(s2) = W (s2)− 1

2

(
αs2 +

β

n+ 1
s2(n+1)

)
(A.4)

satisfies that Ω(0) = 0 and

2
dΩ

ds2
(s2) = (1 + ks2)n − α− βs2n ≥ 0. (A.5)

Therefore the assertion is proved.

Now, we see that

|sQ(s2)| ≤ α∗|s|+ β∗s2n. (A.6)

Here α∗, β∗ are two positive constants which can be easily calculated. We see that

condition (i) is clearly satisfied for suitable constants A,B. In this case we have

that q∗ = 2n+ 2.

When Q(s2) = (1 + ks2)n with −1 < n ≤ 0 the condition (i) is satisfied with

B = 0. Indeed, let us introduce

R(s2) =
s(1 + ks2)n

W (s2)1/2
. (A.7)

Because n < 0 we have that

lim
s→0

R(s) =
√

2, and lim
s→∞

R(s) = 0.

Therefore we have

sQ(s2) ≤ A1W (s2)1/2
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(here A1 positive constant) near s = 0 and for s large enough. We need to prove a

similar estimate in [a, b] ⊂ [0,∞]. Because the numerator and the never vanishing

denominator of (A.7) are two continuous functions defined in a domain which is

closed and compact it is always possible to choose a number A2 > 0 such that

sQ(s2) ≤ A2W (s2)1/2,∀s ∈ [a, b].

The maximum among A1 and A2 is the number we where searching for.

Appendix B. Estimates in terms of the boundary conditions

The aim of this appendix is to give an upper bound for the amplitude term E(0, t)

in terms of the boundary conditions, but assuming that (2.7) and (2.8) hold. To

find this bound we pick ξ(x1, x2, t) = f(x2, t) exp(−αx1) with α > 0. In so doing

we clearly have, with uniform convergence,

lim
x1→0

ξ(x1, x2, t) = f(x2, t), lim
x1→∞

ξ(x1, x2, t) = 0.

Since

E(0, t) = −
∫ t

0

∫ 1

0

exp(−ωτ)(Qu,1 + νu,1τ )f,τdx2dτ,

it is possible to compute the following bound

E(0, t) =

∫ t

0

∫
R

exp(−ωτ)(%u,ττξ,τ +Qu,iξ,iτ + νu,iτ )ξ,iτdadτ.

By using some cumbersome computations based on the arithmetic-geometric in-

equality it is possible to obtain

E(0, t) ≤ %

2αε1
exp(−ωt)

∫ 1

0

|f,t|2dx2 +
%

2αε2

∫ t

0

∫ 1

0

exp(−ωτ)|f,τ |2dx2dτ

+
%

2αε3

∫ t

0

∫ 1

0

exp(−ωτ)|f,ττ |2dx2dτ +
A

αε4

∫ t

0

∫ 1

0

exp(−ωτ)
[
α2|f,τ |2 + |f,2τ |2

]
dx2dτ

+
2B(p− 1)2

pαε
p/(p−1)
5

∫ t

0

∫ 1

0

exp(−ωτ)
[
αp/(p−1)|f,τ |p/(p−1) + |f,2τ |p/(p−1)

]
dx2dτ

+
D2

αε6

∫ t

0

∫ 1

0

exp(−ωτ)
[
α2|f,τ |2 + |f,2τ |2

]
dx2dτ

+
2C2

αq2εq7

∫ t

0

∫ 1

0

exp(−ωτ) [αq|f,τ |q + |f,2τ |q] dx2dτ
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Here εi (i = 1, . . . , 7) are positive constants such that

ε1 ≤
1

2
, ωε2 + ε3 ≤

ω

2
, A

ε2
2

+B
εp5
p
≤ ω

2
, D2

ε6
2
D1 + C2

(q − 1)ε
q/(q−1)
7

C1q
≤ 1

2
.
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