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Abstract—An important step towards improving the flight
performance within Terminal Maneuvering Area (TMA) is the
identification of the factors causing inefficiencies. Without know-
ing which exact factors have high impact on which perfor-
mance indicators, it is difficult to identify which areas could
be improved. In this work, we quantify the flight efficiency
using average additional time in TMA, average time flown level
and additional fuel consumption associated with the inefficient
flight profiles. We apply statistical learning methods to assess
the impact of different weather phenomena on the arrival
flight efficiency, taking into account the current traffic situation.
We utilize multiple data sources for obtaining both historical
flight trajectories and historical weather measurements, which
facilitates a comprehensive analysis of the variety of factors
influencing TMA performance. We demonstrate our approach
by identifying that wind gust and snow had the most significant
impact on Stockholm Arlanda airport arrivals in 2018.

Keywords—TMA Performance; Arrival Flight Efficiency;
Continuous Descent Operations; Fuel Consumption; Key Per-
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I. INTRODUCTION

TMAs are known to be the spots of high congestion. Due
to the lower maneuverability that can be afforded in a TMA,
the same number of movements creates higher complexity in
TMA in comparison with the en-route. Airport capacity can
be reduced considerably by low visibility, strong winds, thun-
derstorms in the terminal area and runway closures, especially
during the high traffic hours of airport operation. The effects
of aircraft noise, fuel burn and related pollutant emissions can
impact the quality of life in populated areas near the airports.

In this paper, we apply statistical learning tools to analyze
the impact of various weather phenomena on several perfor-
mance metrics, taking into account the current traffic situation
in TMA. In particular, we explore the influence of adverse
weather on environmental footprint of arrivals to Stockholm
Arlanda airport by estimating the additional fuel burn due to
weather-induced inefficiencies. In addition to the coarse flight
data (like DDR [1]) and weather data measured on a grid
with large spacing (like NOAA [2]), typically used in analysis
of enroute flights, we employ frequently-sampled traffic data
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from OpenSky Network [3] and higher-accuracy weather data
from ECMWF ERA5 [4]. The use of multiple sources of traffic
and weather data enables a comprehensive data analysis within
a single framework. Our framework may be used to predict
arrival inefficiencies as well as to analyse and implement
reliable mitigation strategies.

Roadmap: The rest of the paper is organized as follows.
In Section II we review related work on the topic. Section III
describes the methodology we use for analysis of the factors
influencing performance of Stockholm Arlanda airport arrivals.
We present the results of the data analysis in Section IV.
Section V concludes the paper and outlines the future work.

II. RELATED WORK

Quantification of the impact of different weather phenomena
on airport operation is reflected in many recent research
activities. According to the European Commission Network
Manager [5], in 2019 airport Air Traffic Flow Management
(ATFM) delays (19,704 min/daily) have increased by 6,5%
compared to May 2018 which had high delays due to weather
and Air Traffic Control (ATC) industrial action. Several re-
cent SESAR projects addressed one of the objectives of the
SESAR 2020 Exploratory Research program with the fol-
lowing meteorology-related task: “to enhance meteorological
capabilities and their integration into ATM planning processes
for improving ATM efficiency”. TBO-MET project [6] ad-
dresses the problem of analysing and quantifying the effects of
meteorological uncertainty in Trajectory Based Operations [7],
[8]. The authors considered two types of meteorological un-
certainty: wind uncertainty and convective zones (including
individual storm cells). Another weather-related project within
SESAR, PNOWWA [9] developed methods to support the
ATM challenged by winter weather.

Impact of deep convection and thunderstorms is also subject
to ongoing research, e.g. Steiner et al. [10], [11] and Song
et al. [12] investigated its implication both on the en-route
flow management and for terminal area applications. Klein
et al. [13] used a high-level airport model to quantify the
impact of weather forecast uncertainty on delay costs. Steiner
et al. [14] discuss the crucial effect of accurate forecasts of
high-impact winter weather for efficient management of airport
and airline capacity and highlight the need of data sharing
and integrated decision making between stakeholders. Recent
works [15], [16] confirmed the relevance and emphasized the
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importance of quantification of the weather impact on airport
operation.

Schults et al. [17] used the ATMAP algorithm, published
by Eurocontrol’s Performance Review Unit (PRU), which
transforms the METAR data into the aggregated weather score
weighting the different weather factors. They analysed the
correlation of the on-time performance of flight operations
with the ATMAP score at major European airports. We apply
similar approach in combining several weather metrics and
the current traffic intensity into one unified impact factor,
to analyse its correlation with different TMA performance
indicators.

Dalmau et al. [18] considered weather conditions as features
of the machine learning models for predicting take-off time
for individual flights. They were able to improve by 30% the
Estimated Take-Off Time (ETOT) of each individual flight
relative to the one provided by the Enhanced Tactical Flow
Management System (ETFMS) Flight Data (EFD).

International Civil Aviation Organization (ICAO) proposed
a set of Key Performance Indicators (KPIs) to enable analysis
of TMA performance [19]: Additional time in TMA and
Level-off during descent. EUROCONTROL developed the
methodology used by its Performance Review Unit (PRU) for
the analysis of VFE during climb and descent [20].

Performance Review Commission of EUROCONTROL
made an assessment of ATM in Europe for the year 2018,
where among other indicators reviewed air traffic punctuality
and vertical flight inefficiency at the top 30 European airports,
including Stockholm airport Arlanda [21]. In addition, EU-
ROCONTOL PRU continues working on the development and
maintenance of the open access cloud-based data repositories
to enable stakeholders to reproduce the performance review
results [22], [23]. EUROCONTROL Experimental Center also
develops new performance indicators targeting to capture
different aspects of flight inefficiencies in TMA [24], [25].

In [26] fuel consumption is evaluated for terminal areas
with a Terminal Inefficiency metric based on the variation in
terminal area fuel consumed across flights, reported by a major
U.S. airline. Using this metric they quantify the additional
fuel burn caused by ATM delay and terminal inefficiencies.
Furthermore, in [27] and [28], an analysis of fuel savings
of the Continuous Descent Operations (CDO) with respect
to conventional procedures is analyzed. A reduction in fuel
consumption of around 25-40% by flying CDO was reported.

Estimation of the flight inefficiencies in terms of extra fuel
burn calculated based on the algorithm proposed in [29] was
considered in the scope of APACHE project (a SESAR 2020
exploratory research project) [30], but mostly for en-route
flight phase. Later Prats et al. [31] proposed a family of
performance indicators to measure fuel inefficiencies. In this
work, we apply similar techniques to fuel estimation during
the descent phase within TMA.

III. METHODOLOGY

This section provides the description of the impact factors
and flight performance indicators we use in this study, as well

as the statistical learning methods for analysis of the impact
of different factors on TMA performance.

A. Impact Factors

In this work we examine the influence of several impact
factors, such as traffic intensity, snow, wind gust and other
weather phenomena (detailed below) on the arrival flight
performance within TMA.

1) Traffic Intensity: Traffic congestion is known to have a
significant influence on the flight performance, and we choose
to include this factor into the investigation of the sources
of performance inefficiencies within TMA. We calculate the
number of arriving aircraft during the chosen time period (one
day or one hour), normalize, and call it Traffic Intensity for
the given period. Note that in this work we consider only
arrival traffic, and only the arrival traffic intensity is taken
into account.

2) Snow: Flight diversions are common during significant
snow events. Snowy weather causes major disturbances in air-
port operation, resulting in reduced visibility, slippery runway
conditions and the necessity to free runway for snow cleaning.
We use the number of snow observations per day as a snow
metric, as well as snow density measured in kg ×m−3.

3) Wind Speed, Wind Gust: A gust or wind is a brief
increase in the speed of the wind. Gusts of wind that change
direction quickly and abruptly, are the most dangerous wind
conditions on takeoff and landing. Difficult wind conditions
can influence the ability of the aircraft to keep up CDO.
Wind speed can be calculated from zonal and meridional
wind components (u and v components). Historical weather
databases usually provide the zonal and meridional wind
components and wind gust as separate variables, all measured
in m× s−1.

4) Visibility: Depending on cloud ceiling and runway visual
range the spacing of aircraft on final approach must be
increased. Low visibility reduces the runway capacity for
landing aircraft. If this happens during a traffic peak hour, it
causes major disruptions. We use surface level measurements
of visibility expressed in meters.

5) Convective Available Potential Energy (CAPE): CAPE
is the energy a parcel of air has for upward motion, measured
in joules per kilogram of air (J × kg−1). The higher the
CAPE, the faster and higher the air parcel can rise. Most
thunderstorms form in moderately unstable conditions (CAPE
up to 1000 J × kg−1) but any value greater than 0 J × kg−1

indicates instability and an increasing possibility of thunder-
storms and severe straight line winds. Convective weather
poses a significant risk to the safe conduct of an aircraft.
The operating procedures for most airlines specify to avoid
convective areas whenever possible.

6) Total Cloud Cover: Total cloud cover is the fraction of
the sky covered by all the visible clouds. The usual unit of
measurement of the cloud cover is okta, which is a number of
eighths of the sky covered in cloud. Ceilings and cloud cover
impact both visual (VFR) and instrument flight rules (IFR).
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7) Aggregated Impact Factor: We introduce the aggregated
impact factor (AIF), a unified condition metric, representing
the current weather and traffic situation. We calculate it using
the following algorithm. First, we normalize traffic intensity
and all the weather metrics calculated with the granularity
of one hour (snow depth, wind speed, CAPE, total cloud
cover), to fit into the range from 0 to 1, using the following
normalization formula x − xmin/xmax − xmin,∀ metric x.
Then we sum them up getting as the result values between 0
and 5. Next, we group numeric values into 25 bins, discretizing
the results to obtain the unified score. Note that getting the
maximum unified score of 25 is impossible because it would
mean the simultaneous weather events such are convective
weather and snow, for example. As a result, the observed
values of the AIF range between 0 and 15, reflecting the
combined weather and traffic statistics at Stockholm Arlanda
Airport in 2018.

B. Performance Indicators

In order to capture different aspects of the TMA perfor-
mance we choose the following key performance indicators.

1) ICAO KPIs: We use two KPIs proposed by ICAO [19]:
Additional time in terminal airspace and Level-off during
descent. The additional time in TMA (KPI08) is calculated
as the difference between the actual transit time and the time
according to the flight plan. As stated in [25], it represents
the extra time generated by the arrival management and “is
a proxy for the level of inefficiency (holding, sequencing) of
the inbound traffic flow".

Vertical inefficiencies during the descent phase result from
the inability of flights to keep up CDO. This type of operations
enables the execution of a flight profile optimized to the
operating capability of the aircraft, giving as a result optimal
continuous engine-idle descents (without using speed-breaks)
that reduce fuel consumption, gaseous emissions and noise
nuisance. If the aircraft levels at intermediate altitudes before
landing, this descent is considered as vertical inefficient.

For evaluation of VFE we consider KPI19.2, the average
time flown in level flight inside TMA, using the techniques
proposed by EUROCONTROL in [20] with small changes. We
identify the point of the trajectory in which the aircraft enters
the TMA and use it as a starting point for the calculations
(instead of the Top of Descent (ToD), which may lie outside
of TMA). A level segment is detected when the aircraft is
flying with the vertical speed below the certain threshold. We
use the value of 300 feet per minute for this threshold, the
minimum time duration of the level flight is considered 30
seconds, and these 30 seconds are subtracted from each level
duration as suggested in [20].

2) Fuel-Based PI: Fuel-based PIs capture inefficiencies on
tactical ATM layer in vertical domain as explained in [31].
The objective is to compare the fuel consumption of CDO
trajectories with the actual flown trajectories. Fuel-based per-
formance indicators are calculated using the 4.2 version of the
Base of a Aircraft Data (BADA) [32].

Fuel Consumption: The first expression used, known as
the Total-Energy Model, equates the rate of work done by
forces acting on the aircraft to the rate of increase in potential
and kinetic energy, that is:

(T −D)VTAS = mg
dh

dt
+mVTAS

dVTAS

dt
(1)

Here T is the thrust acting parallel to the aircraft velocity
vector, D is the aerodynamic drag, m is the aircraft mass, h
is the geodetic altitude, g is the gravitational acceleration and
VTAS is the true airspeed. D is computed as follows:

D =
1

2
· δ · p0 · κ · S ·M2 · CD (2)

Here δ is the pressure ratio, p0 is the standard atmospheric
pressure at mean sea level (MSL), κ is the adiabatic index
of air, S is the wing reference area, M is the Mach number
and CD is the drag coefficient. BADA proposes equations for
computing CD depending on the aircraft configuration, and
modelled as a polynomial of lift coefficient CL.

Three separate thrust models are proposed in BADA, de-
pending on the engine type: turbofan, turboprop or piston.
Each model includes the contribution from all engines and
provides the thrust as a function of airspeed, throttle setting
and atmospheric conditions. This is the general formula:

T = δ ·Wmref · CT (3)

Here δ is the pressure ratio, mref is the reference mass
(obtained from the Propulsive Forces Model (PFM)), Wmref

is the weight force at mref and CT is the thrust coefficient,
which is a function of Mach number.

For the three engine types, BADA proposes different equa-
tions to compute the thrust coefficient CT depending on the
engine rating: maximum climb, maximum cruise, idle and
no rating (direct throttle parameter input). For estimation of
the fuel consumption, BADA proposes once again a different
model depending on the engine type, and also depending on
the engine rating. Each model includes the contribution from
all engines and provides the fuel consumption as a function of
airspeed, throttle parameter and atmospheric conditions. The
general formula for the fuel consumption, F , is:

F = δ · θ 1
2 ·Wmref · a0 · L−1

HV · CF (4)

Here δ is the pressure ratio, θ is the temperature ratio, a0 is
the speed of sound at MSL in standard atmosphere, LHV is
the fuel lower heating value (obtained from the PFM) and CF

is the fuel coefficient, which depends on thrust for non-idle
ratings. For each aircraft model, BADA provides an xml file
with the corresponding aircraft performance data. For instance,
the coefficients used to compute the thrust coefficient CT of
the thrust equation (3) are in this file. With the equations stated
above, and the xml files for each aircraft, it is possible to
compute the fuel consumption of a trajectory. Firts, the thrust
is computed. If the aircraft is climbing, max climb rating is
chosen and the corresponding thrust formula (depending on



ICRAT 2020

the engine type) is applied. If the aircraft is descending, an
idle rating is assumed. In level-offs, the total-energy model
(equation (1)) is used in order to compute the corresponding
aircraft thrust (drag is computed previously with equation (2)).
Then, for non-idle ratings, the thrust computed in the previous
step is used to obtain the fuel coefficient CF used in equation
(4). In this way, fuel consumption is obtained. For descents,
idle rating is assumed.

Wind was obtained from historical weather data (detailed
in subsection IV-A). Furthermore, a 90% of the maximum
landing mass has been assumed at the destination airport for
all aircraft.

Generation of CDO trajectories: In order to generate the
CDO trajectories an optimal control problem has to be solved
as explained in details in [33]. First, a state vector with the
initial conditions is needed. In this paper, it has been chosen
as x = [v, h, s], where v is the true airspeed, h - the altitude
of the aircraft, and s - the distance to go. In order to obtain
environmentally friendly trajectories, idle thrust is assumed
and speed-brakes use is not allowed throughout the descent.
In such conditions, the flight path angle is the only control
variable in this problem (u = [γ]), which is used to manage
the energy of the aircraft and achieve different times of arrival
at the metering fix with minimum fuel consumption and noise
nuisance.

The dynamics of x are expressed by the following set
of ordinary differential equations, considering a point-mass
representation of the aircraft reduced to a "gamma-command"
model, where vertical equilibrium is assumed (lift balances
weight). In addition, the cross and vertical components of the
wind are neglected, and the aerodynamic flight path angle is
assumed to be small (i.e.,sin γ ' γ and cos γ ' 1):

f =

v̇ḣ
ṡ

 =

Tidle−D
m − gγ
vγ

v + w

 (5)

where Tidle : Rnx → R is the idle thrust; D : Rnx×nu → R
is the aerodynamic drag; g is the gravity acceleration; w is
the wind and m - the mass, which is assumed to be constant
because the fuel consumption during an idle descent is a small
fraction of the total m [34]. The longitudinal component of
the wind w : R→ R is modelled by a smoothing spline [35]:

w(h) =

nc∑
i=1

ciBi(h) (6)

Bi, i = 1, . . . , nc, are the B-spline basis functions and
c = [c1, . . . , cnc ] are control points of the smoothing spline. It
should be noted that the longitudinal wind has been modelled
as a function of the altitude only, as done in similar works [36].
The control points of the spline approximating the longitudinal
wind profile are obtained by fitting historical weather data
(detailed in section IV-A).

In this paper, the trajectory is divided in two phases: the lat-
ter part of the cruise phase prior the ToD, and the idle descent
down to the metering fix. Assuming that the original cruise

speed will not be modified after the optimization process, the
two-phases optimal control problem can be converted into a
single-phase optimal control problem as follows:

Ja =

∫ tf

t0

−
(
f + CI
vcr

)
(v + w) + fidle + CI dt (7)

where f : Rnx×nu → R and fidle : Rnx → R are the nominal
and idle fuel flow, respectively; and CI is the cost index, which
is a parameter chosen by the airspace user that reflects the
relative importance of the cost of time with respect to fuel
costs [37]. The CI is estimated by assuming that the aircraft
was flying at the optimal speed in the cruise phase, as shown
in [38].

To generate the optimum trajectories, five input parameters
are used: aircraft model, cruise altitude, distance to go (i.e.,
the distance remaining to the metering fix by following a given
route), speed (i.e., the true airspeed of the aircraft in cruise),
and the cost index.

C. Backward Selection Method

We aim at identifying the factors with high influence on the
chosen PIs. We study this problem using statistical analysis,
and the problem is an inference task.

When inference is the goal, there are clear advantages
of using simple and relatively inflexible statistical learning
methods, such as linear regression. We use multiple linear
regression and the method of Backward Selection to determine
the statistically significant metrics [39]. The R2 value for
inference tasks can be relatively small, especially when the
dependent variable might be greatly affected by other factors
(departure traffic intensity, not considered whether phenomena,
human factors).

More important than the R2 value for inference regression
analysis is the calculation of t-statistics and associated p-
values. We test whether the discovered dependence could be
just a random artefact, i.e., we perform the statistical test on
the null-hypothesis H0 "There is no dependence (regression
coefficient is equal to 0), between the PI and the impact factor
and the observed value of the regression coefficient can be
attributed to pure noise". The small value of associated p-
value (the probability of obtaining the regression coefficient
larger than ours, assuming the true value is 0), that is the
probability of H0 being true, indicates that we can reject the
hypothesis and justifies the statistical significance of our claim
that PI depends on the corresponding impact factor.

On each step of the Backward Selection algorithm we
also check F -statistic (the hypothesis test for the the null-
hypothesis H0 "All regression coefficients are equal to 0") and
p-value associated with it. If there is no relationship between
the PI and impact factors, we would expect the F -statistic
to take on a value close to 1 [39]. As a cutoff for p-value we
take a typically used 0.05 value. To remove outliers we cap
the data at 95-percentile and 5-percentile for the considered
PI.
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IV. EXPERIMENTAL RESULTS

This section describes the data used in this work and
presents the results of the comprehensive analysis of weather
on arrival flight performance for the Stockholm Arlanda airport
in the year 2018.

A. Data

In this work we use multiple sources of historical data
related to the Stockholm Arlanda airport performance.

1) Historical Flight Trajectories: Flight plans are obtained
from the Demand Data Repository (DDR2 [1], m1 file format)
hosted by EUROCONTROL. For the historical flight trajecto-
ries we use DDR2 (m3 file format) and the Historical Database
of the OpenSky Network [3], [40].

2) Aircraft Performance Data: Aircraft performance pa-
rameters for CDO trajectory generation and fuel consumption
calculation are inputed from BADA 4.2 [32]. In the case
the aircraft model does not correspond to any of the BADA
models, a comparable aircraft in terms of performance and
dimensions is used.

3) Historical Weather: Current weather conditions are usu-
ally recorded at each airport in the form of METARs. Current
and historical METAR data is accessible at different publicly
available web sources, e.g. [41]. In addition to information
about the location, the day of the month and the UTC time, the
METAR contains information about wind, visibility, precipita-
tion, clouding, temperature, and pressure that are relevant for
the air traffic, especially for the airport operations. Besides this
general weather information, some additional measurements
were available related to adverse weather situations, such as
information about wind gusts, runway conditions (e.g., ice
layer) and thunderstorm related clouds, as well as calculated
values of the Runway Visual Range (RVR).

We use snow observation values from the METAR data and
calculate how many times per day we observed snow. The
observations are conducted every half an hour (48 times per
day), so the resulting snow metric can take values from 0 to 48.

Another source of the historical weather data is NOAA [2].
Gridded binary (GRIB) formatted files with 0.5◦ granularity
provided by the global forecast system (GFS) of NOAA are
used in order to generate the longitudinal wind profiles as a
function of the altitude (needed for the trajectory optimiza-
tion). We also take surface level measurements of visibility,
wind gust and CAPE average per day as weather metrics
within TMA from the NOAA database to perform regression
analysis on daily base.

The ECMWF ERA5 reanalysis dataset provided via the C3S
Data Store in form of NetCDF files [4] has an hour time
granularity and the data cover the Earth on a 0.25◦ grid. From
ECMWF ERA5 dataset we take snow density, u-component
and v-component of wind, CAPE and total cloud cover metrics
for hourly analysis.

While using various data sources within one framework,
we compare and evaluate their applicability for different
calculations inside TMA. For example, better data granularity
of Opensky Network data makes it a better option to estimate

fuel consumption and vertical efficiency inside TMA. While
DDR usually provides only 10 to 15 waypoints inside TMA, in
Opensky states there are about 800-1000 points, which provide
accurate aircraft positions reported every second. However,
there are also some errors in the Opensky data, obtained
from the transponders. In some trajectories there are repeated
waypoints and infeasible time stamps, even with the time
advancing (which would mean the aircraft remains still, which
is not possible). There are other situations where the latitude
and longitude do not seem to correspond to the trajectory
we are dealing with, and some of the speed values that
could be extracted from Opensky data are wrong too. Another
drawback of the OpenSky data is the lack of flight identifier,
and aircraft type information, needed for the calculation of
fuel consumption. We resolved this problem by merging the
data with DDR flight plans (SO6 m1 files).

A more detailed comparison of the data sources was re-
ported in [42]. In general, we recommend Opensky states
vectors as a valuable data source for research with high accu-
racy demand, which however requires sufficient computational
resources. On the other hand, due to incompleteness of the
Opensky data, DDR2 is better suitable for delay statistics and
calculation of the average additional time in TMA.

B. Implementation
We developed a flexible interactive web-based tool to facil-

itate comprehensive data analysis using different data sources
combined into a single framework. The interface implemen-
tation is based on the web framework Flask using Python.
The data from Opensky network is preliminarily downloaded
with the separate Python scripts using OpenSky REST API
and SSH agent to access Opensky Impala Shell.

Fig. 1. Average fuel consumption over the flights per day (in kg) for actual
flown trajectories and CDO within TMA for arrival flights in Stockholm
Arlanda during the month of February 2018.

C. PIs Calculation
1) Additional Time in TMA: For calculation of this PI we

compare the flight plans obtained from DDR2 repository (m1
format) against the actual trajectories reported in DDR2 (m3
format) and evaluate the difference in time aircraft spend
inside TMA. We use different granularity for calculation of
this PI: per hour and per day for the whole year 2018.
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Fig. 2. Weather metrics (snow and wind gust) and PIs (average additinal time in TMA and average time flown level) for the month of February 2018.

Fig. 3. Weather metrics (snow and wind gust) and the Fuel PI for the month of February 2018.

Fig. 4. Regression of flights additional time in TMA and time flown level median values onto the AIF (R2 = 0.83 and R2 = 0.97).

2) Average Time Flown Level: For evaluation of the vertical
inefficiency we use OpenSky states data, which provides very
accurate levels in aircraft descent. We average the time on
levels over one hour and over one day for the whole year
2018.

3) Fuel-based PI: We evaluate the fuel efficiency during
the month of February 2018. For calculation of the additional
fuel burn inside TMA we compare the fuel consumption
of CDO trajectories with the actual flown trajectories. For
actual trajectories we use OpenSky Network states data, which

provides very accurate aircraft positions with the updates for
each second. For CDO calculation the distance to go was also
obtained from Opensky Network data.

Absolute values for the fuel consumption are shown in
Figure 1, representing the average fuel consumption over the
flights per day in February 2018. CDO provide a reduction in
fuel consumption, from around a 5% up to a 30% depending
on the day, which constitutes a significant fuel inefficiency. It
is important to recall that we calculate the fuel inside TMA
only; if the whole descent was compared, the difference would
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have been lower, as level-offs at lower altitudes are more
detrimental for efficiency than those at higher altitudes.

Calculation of the fuel consumption requires the data of high
granularity and is a computationally expensive task (for one
trajectory the computation takes about 2 minutes of computer
time, which for the typical traffic of 300 flights per day,
results in about 2 weeks of computation for calculating the
fuel for one month.) This was the reason why we calculated
this PI only for one month in 2018 (the motivation of choosing
February was that there were observed strong winds and
several snow events during this month, which is important for
evaluation of the impact of weather on fuel consumption pre-
sented later in this paper). In future work we consider utilizing
more powerful computer resources to continue investigations
of the most significant factors influencing fuel efficiency.

D. Analysis of the Influence of Weather and Flight Intensity
on TMA Performance

First, to examine the dependency between our performance
indicators and different weather phenomena we plot the PI–
weather pairs for all days of the year 2018. We observe that
not always but often the increase in the weather metric is
accompanied by the increase in the corresponding PI (e.g.
February 12 and 26 in Figure 2, February 1, 12 and 26 in
Figure 3). This supports the assumptions that there is some
correlation between weather conditions and flight efficiency
within TMA, which we will study using statistical learning
methods further on.

1) PIs vs AIF: Next, we analyse the influence of our impact
factors aggregated into the AIF (described in Section III-A7)
on our PIs inside TMA. The resulting AIF values are calcu-
lated per hour. After discretization each AIF value falls into
the corresponding bin ranging from 0 to 15. For each flight we
calculate additional time in TMA, time flown level and assign
an AIF value (AIF of the closest to arrival time hour). We
perform the regression of the additional time in TMA and the
time flown level medians per bin onto AIF values. The mean
values can not be taken here because of the high deviations
of PIs inside bins. We got the strong correlation between the
PIs medians and the AIF with R2 = 0.83 for additional time
in TMA and R2 = 0.97 for time flown level, illustrated in
Figures 4.

Unfortunately, similar analysis for the fuel-based PI is not
possible here due to the absence of fuel calculations for the
whole year. Future work aims to fill in this gap.

2) Additional Time in TMA vs Individual Impact Factors:
After proving the combination of the chosen impact factors has
a noticeable impact on the chosen PIs, we identify which of the
individual factors have higher influence on each PI separately.

We apply Backward Selection method for regressing the
average additional time in TMA onto normalized weather
metrics and traffic intensity. Three steps of the Backward
Selection are summarized in Table I. We identify traffic
intensity, snow and wind gust as the most significant factors
for average additional time in TMA.

3) Average Time Flown Level vs Individual Impact Factors:
Next, we perform regression analysis of the average time flown
level on individual impact factors. Here the average PI values
are calculated per hour and weather data is taken from an
alternative data source, i.e. the ECMWF ERA5 [4] with the
hourly granularity. The weather metrics considered are snow
density, wind speed, CAPE and total cloud cover. We also take
the traffic intensity into account. Two steps of the Backward
Selection algorithm are presented in Table II. We identify only
CAPE as an insignificant metric (with the p− value = 0.93).
The other individual factors have significant influence on the
vertical efficiency PI, and together with the traffic intensity,
snow and wind speed reveal strong influence, and hence, can
be identified as the most important.

4) Fuel PI vs Individual Impact Factors: Similarly, we
regress the average per day additional fuel consumption for
the month of February, 2018 onto the weather data from
NOAA [2] for the same month. The steps of the Backward
Selection algorithm are presented in Table III. Only wind
gust is identified as a significant factor influencing additional
fuel consumption within TMA. All the other factors with the
corresponding higher p−values were disregarded on the four
steps of the algorithm.

V. CONCLUSIONS AND FUTURE WORK

This work is a step towards understanding the causes of
flight inefficiencies inside TMA and the impact of weather on
different aspects of TMA performance. Our results show that
wind gust and snow are the factors with the most significant
impact on the majority of our KPIs. Since convective weather
is relatively rare event in our study area, our conclusion that
CAPE alone does not fully reveal the influence of convective
weather on inefficiencies within TMA may be of limited
applicability. Future work may explore better descriptors of
convective weather intensity which include more environmen-
tal variables, as well as cloud ceiling metrics for evaluation of
visibility. In particular, we target integration of the advanced
weather prediction methodologies, developed within the re-
lated SESAR projects (e.g. [6], [9]), into the evaluation and
subsequent optimization of route planning within TMA.

REFERENCES

[1] EUROCONTROL, DDR2 Ref. Manual for General Users 2.9.4, 2017.
[2] “National Oceanic and Atmospheric Administration (NOAA),”

https://www.ncdc.noaa.gov/data-access/model-data/model-
datasets/global-forcast-system-gfs, last accessed 20.01.2020.

[3] “OpenSky Network,” https://opensky-network.org, accessed 20.01.2020.
[4] “European Centre for Medium-Range Weather Forecasts (ECMWF)

provided via Copernicus Climate Change Service (C3S) Data Store,”
https://cds.climate.copernicus.eu, last accessed 20.01.2020.

[5] “European Commision Network Manager. Monthly Network Operations
Report,” May 2019.

[6] “Meteorological Uncertainty Management for Trajectory Based Opera-
tions,” https://tbomet-h2020.com/, last accessed 29.09.2019.

[7] E. Hernández, A. Valenzuela, and D. Rivas, “Probabilistic aircraft
conflict detection considering ensemble weather forecast,” SID’16.

[8] D. Rivas, R. Vazquez, and A. Franco, “Probabilistic analysis of aircraft
fuel consumption using ensemble weather forecasts,” in ICRAT’16.

[9] “Probabilistic Nowcasting of Winter Weather for Airports Horizon 2020
SESAR project, 2016-2018,” http://pnowwa.fmi.fi, accessed 05.22.20.



ICRAT 2020

TABLE I
BACKWARD SELECTION ALGORITHM RESULTS FOR MULTIPLE LINEAR REGRESSION OF THE AVERAGE ADDITIONAL TIME IN TMA VERSUS IMPACT

FACTORS

R2
adj F -stat. Prob (F -stat.) Traffic Intensity Snow Visibility Wind gust CAPE

coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value
0.18 18.71 7.58e-15 0.9746 0.0 0.9356 0.0 -0.0961 0.551 1.0680 0.0 0.3570 0.347
0.18 20.84 1.83e-15 0.9838 0.0 0.9926 0.0 1.0850 0.0 0.4363 0.22
0.18 27.24 6.65e-16 0.9629 0.0 0.9657 0.0 1.0758 0.0

TABLE II
BACKWARD SELECTION ALGORITHM RESULTS FOR MULTIPLE LINEAR REGRESSION OF THE AVERAGE TIME FLOWN LEVEL VERSUS IMPACT FACTORS

R2
adj F -stat. Prob (F -stat.) Traffic Intensity Snow density Total cloud cover Wind speed CAPE

coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value
0.16 335.1 0.0 0.9049 0.0 0.1988 0.0 0.0861 0.0 0.4379 0.0 0.0120 0.903
0.16 418.9 0.0 0.9049 0.0 0.1982 0.0 0.0862 0.0 0.4376 0.0

TABLE III
BACKWARD SELECTION ALGORITHM RESULTS FOR MULTIPLE LINEAR REGRESSION OF THE AVERAGE ADDITIONAL FUEL CONSUMPTION VERSUS

IMPACT FACTORS

R2
adj F -stat. Prob (F -stat.) Traffic Intensity Snow Visibility Wind gust CAPE

coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value
0.12 1.720 0.172 6.1601 0.802 25.7167 0.206 13.3889 0.357 61.3318 0.044 -448.104 0.761
0.15 2.225 0.0978 25.1084 0.203 13.0228 0.358 61.4745 0.039 -398.98 0.780
0.18 3.057 0.0477 25.2038 0.192 14.1696 0.287 60.2592 0.037
0.18 3.963 0.0320 15.4873 0.360 58.7683 0.042
0.18 7.092 0.0131 67.8743 0.013

[10] M. Steiner, R. Bateman, D. Megenhardt, Y. Liu, M. Xu, M. Pocernich,
and J. Krozel, “Translation of ensemble weather forecasts into proba-
bilistic air traffic capacity impact,” Air Traffic Control Quarterly, vol. 18,
no. 3, pp. 229–254, 2010.

[11] M. Steiner, W. Deierling, K. Ikeda, E. Nelson, and R. Bass, “Airline
and airport operations under lightning threats-safety risks, impacts,
uncertainties, and how to deal with them all,” in 6th AIAA Atmospheric
and Space Environments Conference, 2014, p. 2900.

[12] L. Song, D. Greenbaum, and C. Wanke, “The impact of severe weather
on sector capacity,” in ATM Seminar, 2009.

[13] A. Klein, S. Kavoussi, and R. S. Lee, “Weather forecast accuracy: Study
of impact on airport capacity and estimation of avoidable costs,” in ATM
Seminar, 2009.

[14] M. Steiner, “Coping with adverse winter weather: emerging capabilities
in support of airport and airline operations,” Journal of Air Traffic
Control, 2015.

[15] S. Reitmann, S. Alam, and M. Schultz, “Advanced quantification of
weather impact on air traffic management,” in ATM Seminar, 2019.

[16] M. Steinheimer, C. Kern, and M. Kerschbaum, “Quantification of
weather impact on air arrival management,” in ATM Seminar, 2019.

[17] M. Schultz, S. Lorenz, R. Schmitz, and L. Delgado, “Weather impact
on airport performance,” Aerospace, vol. 5, no. 4, p. 109, 2018.

[18] R. Dalmau, F. Ballerini, H. Naessens, S. Belkoura, and S. Wangnick,
“Improving the predictability of take-off times with machine learning.”

[19] “KPI Overview,” https://www4.icao.int/ganpportal/ASBU/KPI, last ac-
cessed 20.01.2020.

[20] EUROCONTROL, “Analysis of vertical flight efficiency during climb
and descent,” 2017.

[21] “EUROCONTROL, Performance Review Report: An Assessment of Air
Traffic Management in Europe during the Calendar Year 2018.”

[22] E. Spinielli, R. Koelle, M. Zanin, and S. Belkoura, “Initial Implementa-
tion of Reference Trajectories for Performance Review,” in SIDs, 2017.

[23] E. Spinielli, R. Koelle, K. Barker, and N. Korbey, “Open Flight Trajec-
tories for Reproducible ANS Performance Review,” in SIDs, 2018.

[24] R. Christien, E. Hoffman, and K. Zeghal, “Spacing and pressure to
characterise arrival sequencing,” in ATM Seminar, 2019.

[25] P. Pasutto, E. Hoffman, and K. Zeghal, “Vertical efficiency in descent
compared to best local practices,” in ATM Seminar, 2019.

[26] M. S. Ryerson, M. Hansen, and J. Bonn, “Time to burn: Flight
delay, terminal efficiency, and fuel consumption in the national airspace
system,” Transportation Research Part A: Policy and Practice, vol. 69,
pp. 286–298, 2014.

[27] H. Fricke, C. Seiss, and R. Herrmann, “Fuel and energy benchmark
analysis of continuous descent operations,” in ATM Seminar, 2015.

[28] F. Wubben and J. Busink, “Environmental Benefits of continuous descent
approaches at Schiphol airport compared with conventional approach
procedures,” National Aerospace Laboratory, Tech. Rep., 2000.

[29] G. B. Chatterji, “Fuel burn estimation using real track data,” in ATIO’11,
2011, p. 6881.

[30] X. Prats, I. Agüi, F. Netjasov, G. Pavlovic, and A. Vidosavljevic,
“APACHE-Final project results report,” 2018.

[31] X. Prats, R. Dalmau, and C. Barrado, “Identifying the sources of flight
inefficiency from historical aircraft trajectories,” in ATM Seminar, 2019.

[32] EUROCONTROL, “User Manual for the Base of Aricraft Data (BADA)
Family 4,” 2014.

[33] R. Sáez, X. Prats, T. Polishchuk, V. Polishchuk, and C. Schmidt, “Au-
tomation for Separation with CDOs: Dynamic Aircraft Arrival Routes,”
in ATM Seminar, 2019.

[34] J. P. Clarke, N. T. Ho, L. Ren, J. Brown, K. Elmer, K. F. Zou, C. Hunting,
D. McGregor, B. Shivashankara, K. Tong, A. W. Warren, and J. Wat,
“Continuous descent approach: Design and flight test for Louisville
international airport,” J. of Aircraft, vol. 41, no. 5, pp. 1054–1066, 2004.

[35] C. de Boor, “On calculating with B-splines,” Journal of Approximation
Theory, vol. 6, no. 1, pp. 50–62, 1972.

[36] P. M. A. de Jong, J. J. van der Laan, A. C. Veld, M. M. van Paassen, and
M. Mulder, “Wind-Profile Estimation Using Airborne Sensors,” Journal
of Aircraft, vol. 51, no. 6, pp. 1852–1863, 2014.

[37] Airbus, “Getting to grips with the cost index - Issue II,” Tech. Rep. 2,
1998.

[38] R. Sáez, R. Dalmau, and X. Prats, “Optimal assignment of 4D close-loop
instructions to enable CDOs in dense TMAs,” in DASC, 2018.

[39] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning: with Applications in R. Springer, 2017.

[40] M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm,
“Bringing Up OpenSky: A Large-scale ADS-B Sensor Network for
Research,” in IPSN’14, 2014.

[41] “Meteorological Aviation Routine Weather Reports (METAR),”
https://mesonet.agron.iastate.edu/, last accessed 20.01.2020.

[42] T. Polishchuk, A. Lemetti, and R. Saez, “Evaluation of Flight Efficiency
for Stockholm Arlanda Airport using OpenSky Network Data,” in
OpenSky Workshop 2019, ser. EPiC Series in Computing, vol. 67,
pp. 13–24. [Online]. Available: https://easychair.org/publications/paper/
hk2Q


