
Managing Failures in Task-based Parallel
Workflows in Distributed Computing

Environments

Jorge Ejarque[0000−0003−4725−5097], Marta Bertran[0000−0001−9723−1291], Javier
Álvarez Cid-Fuentes[0000−0001−7153−4649], Javier Conejero[0000−0001−6401−6229],

and Rosa M. Badia[0000−0003−2941−5499]

Barcelona Supercomputing Center, Barcelona, Spain
{jorge.ejarque, javier.alvarez, francisco.conejero, rosa.m.badia}@bsc.es

Abstract. Current scientific workflows are large and complex. They
normally perform thousands of simulations whose results combined with
searching and data analytics algorithms, in order to infer new knowledge,
generate a very large amount of data. To this end, workflows comprise
many tasks and some of them may fail. Most of the work done about
failure management in workflow managers and runtimes focuses on re-
covering from failures caused by resources (retrying or resubmitting the
failed computation in other resources, etc.) However, some of these fail-
ures can be caused by the application itself (corrupted data, algorithms
which are not converging for certain conditions, etc.), and these fault
tolerance mechanisms are not sufficient to perform a successful workflow
execution. In these cases, developers have to add some code in their ap-
plications to prevent and manage the possible failures. In this paper, we
propose a simple interface and a set of transparent runtime mechanisms
to simplify how scientists deal with application-based failures in task-
based parallel workflows. We have validated our proposal with use-cases
from e-science and machine learning to show the benefits of the pro-
posed interface and mechanisms in terms of programming productivity
and performance.

Keywords: Failure management · Scientific Workflows · Parallel Pro-
gramming · Distributed computing

1 Introduction

E-science has evolved very fast during last few decades. At the beginning, small
computations were performed in a single machine, while nowadays, large complex
scientific workflows are executed in large distributed computing platforms. These
workflows combine the execution of thousands of simulations with searching and
data analytic algorithms to infer new knowledge from a large amount of data.
Due to the nature of the infrastructure and the algorithms used on the workflow,
some components of the computation can fail or become blocked. This can be
due to resource failures, data corruption, or just because the initial conditions of

The final authenticated version is
available online at https://doi.org/10.1007/978-3-030-57675-2_26



2 J. Ejarque et al.

a simulation do not converge into a valid solution. These failures can make the
whole workflow execution fail or hang without generating the expected results.

Most workflow managers, such as Galaxy [1] or Pegasus [5], have some fault
tolerance mechanisms, but they are mainly focused on resource failures, and they
do not deal with application failures or exceptions. In these cases, the responsi-
ble to deal with failures is the developer, who has to include some code in the
application in order to implement custom mechanisms to make the whole work-
flow reliable. In a sequential application, this customized management inside
the code requires additional software development efforts which can be man-
aged with traditional error handling mechanisms provided by the programming
languages, such as managing exceptions or inspecting the return values to de-
cide how to adapt the code in case of failure. However, tasks in parallel and
distributed workflows are asynchronously executed in remote resources, so im-
plementing similar defensive codes for these workflows are more complex and
can produce performance losses due to the unnecessary synchronizations and
transfers to inspect task results.

This paper proposes a simple user interface to allow developers to easily
indicate how to manage application failures. This interface extends the task def-
inition in order to allow developers to provide hints about how the runtime has
to react in case of a failure occurs during the task execution. Based on this
developer hint, the runtime transparently implements a set of mechanisms to
efficiently handle these failures, reducing the development efforts because de-
velopers do not need to add defensive code as explained above, and without
affecting application performance, because the failure management is concur-
rently performed with the application execution.

A prototype of this proposal has been implemented in COMPSs [3], a task-
based parallel programming model to easily implement parallel workflows for
distributed computing environments, and it has been validated through two real
applications from e-Science and Machine Learning areas. We have evaluated
the productivity and performance of this solution compared to a user-developed
alternative. The results of this evaluation demonstrate that the proposed solu-
tion reduces the code complexity and achieves better performance than a user-
managed approach.

The rest of the paper is organized as follows: Section 2 presents the related
work; Section 3 introduces the proposed mechanisms and Section 4 describes
how they have been implemented in COMPSs. Then, Section 5 presents the
evaluation; Finally, Section 6 draws the conclusions.

2 Related work

Failures in the execution of workflows are frequent, especially when executed in
distributed computing platforms. For this reason, several workflow management
systems provide some way of tolerating failures and its management.

For example, Galaxy [1] provides automatic job re-submission (e.g., on job
failure due to a temporary cluster error). Also, in order to make Galaxy more ro-



Managing Failures in Task-based Workflows 3

bust in a production environment, technologies to enhance Galaxy’s portability,
security, reliability, and scalability have been adopted. Galaxy utilizes uWSGI1

as its default web application server. It has several advantages, including im-
proved fault tolerance, and the possibility of restarting Galaxy uninterruptedly.
The mechanisms supported by Taverna [14] are similar, with retries at service
and workflow level. Several retry types are supported, such as exponential back-
off of retry times.

Kepler [11] proposes three complementary mechanisms for fault tolerance: a)
a forward recovery mechanism that offers retries and alternative versions at the
workflow level; b) a checkpointing mechanism, also at the workflow layer, that
resumes the execution in case of a failure at the last saved good state; and c) an
error-state and failure handling mechanism to address issues that occur outside
the scope of the workflow layer.

Cylc [12] is a workflow management system proposed by the Earth Science
community. It provides checkpointing, which keeps a list of completed tasks, and
if the scheduler does not respond properly, the user can restart the experiment,
from the last checkpoint. Users can also define retries for the different experiment
jobs.

Pegasus [5] provides some failure management features as well. In case of
transient infrastructure failures, such as a node being temporarily down in a
cluster, Pegasus will automatically retry jobs. After a given number of retries
(usually once), a hard failure occurs, because of which the workflow will even-
tually fail. In most of the cases, these errors are correctable (either the resource
comes back online or application errors are fixed). Once the errors are fixed, the
Pegasus workflow can be restarted from the point of failure. While executing a
workflow, Pegasus creates the rescue workflow, which contains the description
of the work that remains to be done.

Nextflow [6] provides several failure management mechanisms. First, it pro-
vides continuous checkpointing: all the intermediate results produced during the
pipeline execution are automatically tracked. This allows to resume the execu-
tion from the last successfully executed step. Nextflow also provides a mechanism
that allows tasks to be automatically re-executed when a command terminates
with an error exit status. In Nextflow, it is also possible to define the errorStrat-
egy directive in a dynamic manner for a given task. This is useful to re-execute
failed jobs only if a certain condition is verified.

What is presented in this paper differs from previous approaches since what
we propose is an individual and tailored management policy for each task type.
The last approach described above (Nextflow) is the one closer to what it is
presented in this paper, but it differs since it does not support all the possible
policies for task failure management proposed in this paper. The proposed er-
rorStrategy does not allow to indicate what to do with the non generated data
or what to do with tasks which depend on the failed tasks. Moreover, Nextflow
provides their own scripting language, and they do not offer the possibility of
managing task exceptions as well as managing tasks which enter a hang state.

1 ttp://projects.unbit.it/uwsgi



4 J. Ejarque et al.

3 Application Failure Management

As raised in the introduction, developers are responsible to make applications
reliable, predicting what could be the possible failures in each part of the ap-
plication and implementing a code to recover the execution from these failures.
In sequential programming, developers use return values, which are inspected in
the main code to decide what to do in case the function returns a problem. How-
ever, in distributed parallel workflows, this management is not efficient because
workflow tasks are executed in an asynchronous remote way, so waiting for a re-
sult to decide what to do next, requires unnecessary synchronization points and
data movements to transfer results back and inspect them. The next subsections
present common workflow task failures, their implications and the mechanisms
that we propose to easily and efficiently manage them.

3.1 Common workflow task failures and implications

Workflow failures can be classified in the types enumerated below. Each of these
types has different implications, which are described in the next paragraphs.

– Tasks which stop their execution before completion. They can be
produced by an invalid input or errors returned by simulators. The main
consequence of these failures is that task results are not completely generated
and all the successor tasks could also fail or their results be invalid.

– Task execution blocked or lasting more than expected. These failures
can be produced by tasks which are running algorithms that, depending on
the input, can enter in a deadlock or never converge.

– Tasks throwing exceptions. These failures are similar to the first type
but they can affect not only the dependent tasks but also others which are
in the group or block.

3.2 Failure Management Mechanisms

To allow workflow developers to easily manage the different type of failures, we
propose to extend the task definition and the runtime mechanism to implement
the following features:

– Failure reaction policy: It allows developers to indicate to the runtime
what to do when a task fails. This policy is described in the task definition
interface and it is applied by the runtime to decide what to do with the
successor tasks and what to do with the expected task results.

– Automatic cancellation after timeout: This feature is also activated
by including the timeout property in the tasks definition. It allows users to
define a maximum duration per task to avoid tasks running forever. Tasks
cancelled because of exceeding the timeout are considered failures. Therefore,
this feature can be combined with the failure reaction policy to decide what
to do with the rest of the workflow.



Managing Failures in Task-based Workflows 5

1 @task()
2 def word_count(block):
3 ...
4 return res
5

6 @task(f_res=INOUT)
7 def merge_count(f_res, p_res):
8 ...

(a) Task annotation example

1 for block in data:
2 p_result = word_count(block)
3 reduce_count(result, p_result)
4 result = compss_wait_on(result)

(b) Main code example

Fig. 1: PyCOMPSs application example.

– Parallel distributed exception: It allows developers to create ”try/catch”
blocks in task-based parallel workflows for distributed environments. With
this functionality, the developer can implement a try code block using the
programming model syntax, where tasks invoked inside this block will belong
to the same task group. If one of these remote tasks throws an exception the
runtime will catch it and the current and pending tasks of this group will be
cancelled as it is done in try/catch blocks provided by some programming
languages.

4 Implementation

This section provides more details about how the proposed mechanisms are
implemented in COMPSs, by extending the COMPSs syntax to allow developers
to specify a failure reaction policy, a timeout per task type and to define a
try/catch block in parallel workflows, and by implementing the management of
these extensions in the COMPSs runtime.

4.1 COMPSs overview

COMP Superscalar (COMPSs) is a task-based parallel programming for dis-
tributed computing. Based on sequential programming, application developers,
by means of code annotations, select a set of methods whose invocations are
considered tasks and indicate the direction of their parameters.

COMPSs runtime [9] orchestrates the execution of applications and its tasks
on the underlying infrastructure. For this purpose, for each invocation to a task
it analyses the data dependencies with previous ones according to the parameter
annotations. With this information, COMPSs runtime builds a Directed Acyclic
Graph (DAG) where nodes represent tasks and edges represent data dependen-
cies between them. COMPSs runtime is able to infer the task-level parallelism
from this graph, and schedules and submits tasks for execution. The runtime
also takes care of all required data transfers. If a partial failure raises during a
task execution, the master node handles it with job resubmission and reschedule
techniques. However, after a maximum number of retries, the whole workflow is
considered as failed and the whole execution is stopped.



6 J. Ejarque et al.

1 @task(output_file={type:FILE, direction=OUT, default_value="EMPTY"}, on_failure="IGNORE")
2 def task_example(output_file):
3 ...

Fig. 2: Task definition with failure reaction policy and default value.

COMPSs provides Java as native programming language and it also provides
bindings for Python (PyCOMPSs [2]) and C/C++ [7]. Figure 1 shows an exam-
ple of a task annotation and COMPSs main program. The first line contains the
task annotation in the form of a Python decorator, while the rest of the code is
a regular Python method. The parameter f_res is of type INOUT (the data is
read and written by the method), and the parameter p_res is set to the default
type IN (the data is only read by the method). These directionality clauses are
used at execution time to derive the data dependencies between tasks and are
applied at object level, taking into account its references to identify when two
tasks access the same object, and can also be applied at file level when parame-
ters are files. A tiny synchronisation API completes the PyCOMPSs syntax. For
instance, as shown in Listing 1.b, the compss_wait_on waits until all the tasks
modifying the result’s value have finished and brings the value to the node
which executes the main program (line 4). Once the value is retrieved, the exe-
cution of the main program code is resumed. Given that PyCOMPSs is mostly
used in distributed environments, synchronising may imply a data transfer from
remote storage or memory space to the node executing the main program.

4.2 Failure Reaction Policy

As introduced above, the failure reaction action policy provides a hint to the
runtime about what to do if a task fails. This hint is provided in the task defi-
nition as indicated in Figure 2 and it will apply to all the instances of this type
of task. It consist of adding the on failure property to the task decorator, and
the default value property to the task parameter description. For the first case,
the user can choose one of the following options:

– FAIL: If a task with this option fails, the whole application is stopped
recovering the computed data until the moment of the failure.

– RETRY (Default): If a task with this option fails, the runtime re-executes
it in the same node and, if the failure persists, resubmits it to a different
one. If the task after these retries still fails, it applies the FAIL procedure.

– IGNORE: If a task with this option fails, the failure is ignored, the data
not generated (return or with direction OUT) is set as indicated in the
default value property, and successor tasks are executed using these values.

– CANCEL SUCCESSORS: If a task with this option fails, the runtime
ignores the failure, recursively cancels its successors, and deletes all the data
and versions which are not going to be generated by the failed task and its
successors in order to keep the data coherence of the rest of the workflow.



Managing Failures in Task-based Workflows 7

Fig. 3: Task failure management at runtime.

– IGNORE AFTER RETRY: If a task with this option fails, the runtime
first applies the RETRY procedure to try to recover from temporary resource
failures. If the failure persists, it applies the IGNORE procedure.

– CANCEL SUCCESSORS AFTER RETRY: As in the previous op-
tion, if a task with this option fails, the runtime applies the RETRY pro-
cedure and, if the failure persists, it applies the CANCEL SUCCESSORS
procedure.

As we have seen before, an important issue when ignoring a failure is the
value of data that has not been generated by the failed task. This value can be
indicated by setting one of the following options in the default value property:

– EMPTY (Default): The runtime will create an empty file or an empty
object (an object created with the default constructor) depending on the
parameter type.

– NONE: It will set the object or the file path as None (null in Java).
– [Path/to/file]: The parameter will be set as the content of a file indicated

by a path (it can also be a serialized object).

The diagram depicted in Figure 3, summarises how the COMPSs runtime
manages task failures. First, it captures task failures at worker processes. These
failures are notified to the master, which applies the procedures defined in the
policies, resubmitting or cancelling tasks, as well as doing the proper data man-
agement (e.g.setting default values, version rollback, data deletion) to keep the
application execution consistency.

4.3 Timeout Task cancellation

Sometimes, the execution of a task may freeze due to a resource failure or it
may never end (e.g., an optimization algorithm not converging to a solution).
In these situations, workflow engines require a mechanism to avoid that the
whole application gets blocked due to a single task. In our case, we propose to
use a timeout mechanism combined with the failure reaction policies described



8 J. Ejarque et al.

1 @task(time_out=50, on_failure="CANCEL_SUCCESSORS")
2 def task_timeout_example():
3 ...

Fig. 4: Task definition with timeout.

above. As in the previous case, this mechanism will be also indicated in the
task definition with the time out property as shown in Figure 4. The time out
property indicates the maximum duration (in seconds) for a task before being
considered failed.

The defined timeout for a task is passed to the runtime worker when it is sub-
mitted. The worker sets up a timer according to the specified timeout duration
which will send a signal when the timeout is reached. To manage the timeout,
a custom signal handler is defined which will throw an exception interrupting
the task execution and producing a failure in the task execution. The failure is
managed according to the failure reaction policy as indicated above.

4.4 Exceptions in Parallel Distributed Workflows

Another mechanism to treat application failures is the exception. This is sup-
ported by most modern programming languages, however supporting this mech-
anism on parallel workflows executed in distributed environments is not trivial.
In the next paragraphs, we will describe how the exception mechanism is im-
plemented in COMPSs. Typically, exceptions are used in the following way: a
user defines a try code block where some of the statements in the block can
throw an exception; if an exception is thrown, the rest of the block execution is
cancelled; and if a catch or except block (depending on the language) is defined,
it is executed after catching the exception.

We propose to apply the same concept in parallel distributed workflows as
shown in Figure 5a. In this case, we create a task group block (line 9) where
some of the tasks invoked in this block can throw a COMPSsException dur-
ing its remote asynchronous execution; this special exception type is defined to
differentiate from other exceptions which just produce a task failure. At run-
time, during the task group execution, the worker detects when a task throws
a COMPSsException and sends it back to the master, which cancels the rest of
the non-finished tasks of the group and continues the application execution by
running the except block. Note that the task group definition has an implicit bar-
rier at the end of the code block in order to wait until all the tasks of this block
are finished. However, this implicit barrier could limit the maximum parallelism
achieved by the application. For instance, if we want to run two independent
task groups in a loop, the COMPSs runtime will execute the group of the first
iteration and once all the tasks of this group are finished, it will execute the
group of the second iteration.

To allow both blocks to run concurrently, developers can follow the approach
described in Figure 5b. The implicit barrier can be disabled when defining the



Managing Failures in Task-based Workflows 9

1 @task()
2 def task_exception():
3 ...
4 raise COMPSsException()
5 ...
6 if __name__ == '__main__':
7 ...
8 try:
9 with TaskGroup("group_name"):

10 task_A()
11 task_exception()
12 task_B()
13 except COMPSsException:
14 task_C()
15 ...

(a) Exception management with implicit
synchronization

1 @task()
2 def task_exception():
3 ...
4 raise COMPSsException()
5 ...
6 if __name__ == '__main__':
7 ...
8 with TaskGroup("group_name", false):
9 task_A()

10 task_exception()
11 task_B()
12 ...
13 try:
14 compss_barrier_group("group_name")
15 except COMPSsException:
16 task_C()
17 ...

(b) Exception management with explicit
synchronization

Fig. 5: Code examples for remote exception management in parallel workflows.

task group block (line 8), and an explicit barrier can be set by adding a call of
the compss barrier group (line 14). In both cases, tasks of the group will be can-
celed once the exception is thrown. However, the code area where the exception
is thrown to the main code differs depending on the case. For the implicit syn-
chronization case, the try/except block is set after the task group block, while
in the explicit case, the exception is thrown in the compss barrier group, so the
try/except block must be set at this point of the code.

5 Evaluation

To validate our proposal, we have applied the failure management mechanism in
the following use cases where we have performed several experiments to evaluate
the benefits of our approach in terms of productivity and performance.

5.1 BioExcel biobb: Model Protein Mutants workflow

BioExcel2 is the European Centre of Excellence for provisioning support to
academic and industrial researchers in the use of high-performance comput-
ing (HPC) and high-throughput computing (HTC) in biomolecular research.
The BioExcel was established to provide the necessary solutions for long-term
support of the biomolecular research communities: fast and scalable software,
user-friendly automation workflows and a support base of expert core devel-
opers. In the framework of this project, BSC is developing together with the
Institute for Research in Biomedicine (IRB) the biobb. The biobb is a library of
Python wrappers offering a layer of compatibility and interoperability over the

2 https://bioexcel.eu



10 J. Ejarque et al.

BioExcel computational biomolecular tools, such as GROMACS [13]. The biobb
is enabled by PyCOMPSs for its executions in large scale systems. The Model
Protein Mutants workflow has been developed on top of the biobb (and runs on
top of PyCOMPSs). This workflow can be described as an automated protocol to
generate structures for protein variants detected from genomics data. The work-
flow combines multiple data transformations with invocations to GROMACS.

The first experiment to validate our failure management approach consists
of making the protein mutants workflow reliable to application failures. In this
experiment, we evaluate the productivity comparing the implementation using
our proposed approach with the alternative of coding this feature directly in the
application code. Figure 6 shows the main code of the protein mutants workflow
and the task dependency graph generated when executing it with two mutations.
As we can see, this application is composed of different independent chains of
tasks. Therefore, a failure in one of the tasks of the chain invalidates the results
of the whole chain. So, the most suitable mechanism for this application pattern
is setting the on failure property to CANCEL SUCCESSORS in all tasks. In
contrast to this, if we want to observe the same behaviour in this application
when it is not supported by COMPSs, developers should modify the application
in the way shown in Figure 7, where we have to capture the failure in the
task code, and return this as well as modify the main workflow to continue the
workflow execution depending on its result. This implementation required to add
87 lines of code and the cyclomatic complexity [10] of the code increased from 2
to 41 (measured with Radon3) due to the split of the main loop and the different
if paths.

3 https://pypi.org/project/radon/

1 @task(structure=FILE_OUT)
2 def fix_side_chain(structure):
3 # task code
4 if __name__ == '__main__':
5 fix_side_chain("init_struct.pdb")
6 for n in range(num_mut):
7 mutate(n, "init_struct.pdb", "mutate.pdb")
8 pdb2gmx(n, "mutate.pdb", "pdb2gmx.gro", "pdb2gmx.zip")
9 editconf(n, "pdb2gmx.gro", "editconf.gro")

10 solvate(n, "editconf.gro","pdb2gmx.zip", "solvate.gro",
"solvate.zip")↪→

11 grompp(n, "solvate.gro", "solvate.zip", "gppion.tpr")
12 genion(n, "gppion.tpr", "pdb2gmx.zip", "genion.gro", "genion.zip")
13 grompp(n, "genion.gro", "genion.zip", "gppmin.tpr")
14 mdrun(n, "gppmin.tpr", "min.gro")
15 grompp(n, "min.gro", "genion_top.zip", "gppnvt.tpr")
16 mdrun_cpt(n, "gppnvt.tpr", "nvt.gro", "nvt.cpt")
17 grompp_cpt(n, "nvt.gro", "nvt.cpt", "genion.zip", "gppnpt.tpr")
18 mdrun_cpt(n, "gppnpt.tpr", "npt.gro", "npt.cpt")
19 grompp_cpt(n, "npt.gro", "npt.cpt", "genion.zip", "gppmd.tpr")
20 mdrun_cpt(n, "gppmd.tpr", "md"+str(n)+".gro", "md"+str(n)+".cpt")

1

2

d1v2

16

d1v2

3

d2v2

4

d3v2

5

d4v2

7

d4v2

d5v2

6

d6v2 d7v2

d8v2

8

d9v2 d10v2

10

d10v2

12

d10v2

14

d10v2

9

d11v2

d12v2

11

d13v2

d14v2 d15v2

13

d16v2

d17v2 d18v2

15

d19v2

17

d2v3

18

d3v3

19

d4v3

21

d4v3

d5v3

20

d6v3 d7v3

d8v3

22

d9v3 d10v3

24

d10v3

26

d10v3

28

d10v3

23

d11v3

d12v3

25

d13v3

d14v3 d15v3

27

d16v3

d17v3 d18v3

29

d19v3

fix_side_chain  
mutate  

pdb2gmx  
editconf  

solvate  
grompp  
genion  
mdrun  

mdrun_cpt  
grompp_cpt  

Fig. 6: Protein Mutants workflow code and generated DAG for 2 mutations



Managing Failures in Task-based Workflows 11

1 #task code
2 @task(input_file=FILE_IN, output_file=FILE_OUT)
3 def mutate_pc(input_file, out_file):
4 try:
5 # original task_code where a failure generated an exception
6 return 0
7 except :
8 return 1
9 #main workflow

10 if __name__ == '__main__':
11 ...
12 for n in range(num_mut):
13 result[n] = mutate_pc(n, "init_struct.pdb", "mutate.pdb")
14 #The folowing pattern is repeated for invoking next tasks
15 for n in range(num_mut):
16 result[n] = compss_wait_on(result[n])
17 if (result[n] == 0 ):
18 result[n] == pdb2gmx_pc(n, "mutate.pdb", "pdb2gmx.gro")
19 ...

Fig. 7: Cancel successor code alternative.

Apart from the failure reaction policy, some of the GROMACS calls imple-
ment optimization algorithms which, depending on the input, might not con-
verge. So, we have set the time out property in mdrun and mdrun cpt task
definitions. Implementing the same feature in the task codes can be done as
shown in Figure 8b and required adding 18 lines of code.

1 @task
2 def task_example(out_file):
3 try:
4 #original task_code
5 except :
6 import os
7 if not os.path.exists(out_file):
8 with open('/tmp/test', 'w'):
9 pass

(a) Failure Ignore code alternative

1 #Timeout exception
2 class TimeOutError(BaseException):
3 pass
4 #SIGALRM handler
5 def task_timed_out(signum, frame):
6 raise TimeOutError
7 #task implementation
8 @task(...)
9 def task_example(..., time_out):

10 import signal
11 signal.signal(signal.SIGALRM,

task_timed_out)↪→
12 signal.alarm(time_out)
13 try:
14 #original_code
15 signal.alarm(0)
16 except TimeOutError :
17 ...

(b) Time out code alternative

Fig. 8: Failure detection code alternatives.

Another variant of this workflow is done by adding a final task which merges
the results in a single graph. In this variant, the CANCEL SUCCESSORS policy
is not suitable since a failure will also cancel the merge task. To avoid this, we
can change the on failure policy to IGNORE, which by default will generate an



12 J. Ejarque et al.

Fig. 9: Mutations workflow execution trace comparison. Each trace shows a time-
line of task executions in the different computing resources. Horizontal color lines
indicate the different tasks executions (Colors are the same as in Figure 6b). Ver-
tical yellow lines indicate transfers between computing nodes.

empty file per failed result which can be ignored by the merge task. In case the
developers have to code this feature in the application, they have to add the
code of the figure for each output parameter. In the case of study, it required
adding 108 lines of code.

Besides the productivity aspects, the proposed contribution also has a per-
formance impact. Figure 9 shows the execution traces of the protein mutants
workflow evaluating 30 mutations, where three of them produce failures. One
failure is due to an incorrect mutation, another is due to an incorrect GRO-
MACS configuration, and the last one produces a long execution time in the
simulation. The upper trace shows the execution with the proposed failure man-
agement implemented in COMPSs and the lower traces show the execution with
the coding alternative as explained above. The light blue dots show the points
in time where the failures have occurred and we can observe that the succes-
sors of these tasks have not been executed. Yellow lines in the traces show data
transfers. We can see that the execution with the new approach performs better
since it does not require synchronizations and requires less data transfers.

5.2 Machine learning algorithms

Another area of application of the new features presented in this paper has
been the dislib library4 [4], a distributed computing machine learning library

4 https://dislib.bsc.es



Managing Failures in Task-based Workflows 13

parallelized with PyCOMPSs. Some machine learning algorithms are iterative,
where convergence is checked at every iteration step to decide whether the next
iteration is necessary. Examples of this iterative behaviour are the K-means and
Gaussian Mixture clustering algorithms, and Cascade Support Vector Machines
(C-SVM) classification algorithm [8].

When implementing these algorithms in PyCOMPSs, it required a data syn-
chronization in the main code to evaluate its convergence criterion and decide if
a new iteration is required. Adding this data synchronization in the main loop
implies a task barrier, where the main code waits for all tasks to finish. When
running a single algorithm individually, this is not that critical, but when run-
ning several at the same time, this synchronization serializes all the executions.
Cases where we would like to run multiple algorithms at a time occur in hyper-
parameter optimization algorithms, like Grid Search or Randomized Search.

In this paper, we have modified dislib’s Cascade Support Vector Machine
algorithm (C-SVM) in such a way that the evaluation of the convergence crite-
rion is performed in a task. This task raises a COMPSsException whenever the
convergence criterion is met. This has been combined with the Grid Search al-
gorithm, that fits multiple models with multiple parameters. The objective is to
be able to run the multiple models in parallel, which before was not possible due
to the synchronization required to check the convergence criterion. Grid Search
has been also modified to cancel non executed tasks when a COMPSsException
is raised during the fitting process of one of the models.

Except. Synch. Max it.
0

200

400

600

Ti
m

e 
(s

)

86.17

621.14

230.38

Fig. 10: Execution time of Grid Search with C-SVM using the exceptions mecha-
nism (Except.), without the exceptions mechanism (Synch.), and without check-
ing the convergence (Max it.).

Figure 10 shows the execution time of Grid Search in three scenarios. The
first scenario (Except.) corresponds to using the exception mechanism presented
in this paper to avoid synchronizations in the fitting of C-SVM. The second
scenario (Synch.) corresponds to not using exceptions and synchronizing after
every iteration. The third scenario (Max it.) corresponds to running C-SVM for
a fixed number of iterations (10) instead of checking the convergence criteria. In
all cases, the Grid Search algorithm fits 10 models in total.

We see that although the number of fitted models is low, Grid Search greatly
benefits from avoiding convergence checks. Using the exception mechanism achieves



14 J. Ejarque et al.

7x speedup over the scenario with synchronizations, and 2.7x speedup over run-
ning the models for a fixed number of iterations. In the first case, the improve-
ment is because Grid Search can overlap the fitting of the different models. In
the second case, the improvement is due to some models converging in less than
10 iterations. We expect this improvement in execution time to increase further
if more than 10 models are trained simultaneously.

6 Conclusion

This paper presents a set of mechanisms to easily manage common applica-
tion failures in task-based parallel workflows executed in distributed computing
environments. We have proposed an extension to the task definition to enable
developers to define how the runtime should react if a task of this type is failing
or lasting a certain duration (timeout). We have also proposed different policies
that are suitable for different types of failures and application patterns. Finally,
we have also proposed mechanisms to support the exceptions management in
parallel workflows where tasks are asynchronously executed in remote resources.

The proposed mechanisms have been validated with a bioinformatic workflow
and a machine learning application where we have seen how the different policies
are applied to real workflows and we have compared them with the alternative
of coding these features inside the application code. We have observed that these
features allow users to add failure management mechanisms without requiring to
increase the amount of lines and complexity of the application codes. Moreover,
as these mechanisms are automatically managed at runtime concurrently with
the application execution, they avoid unnecessary synchronizations and transfers
with their corresponding gain in performance.

Acknowledgment

This work has been supported by the Spanish Government (contracts SEV2015-
0493 and TIN2015-65316-P), by the Generalitat de Catalunya (contract 2014-
SGR-1051), and by the European Commission’s Horizon 2020 Framework pro-
gram through BioExcel Center of Excellence (contracts 823830, and 675728).The
research leading to these results has received funding from the collaboration be-
tween Fujitsu and BSC (Script Language Platform).

References

1. Afgan, E., Baker, D., Batut, B., Van Den Beek, M., Bouvier, D., Čech, M., Chilton,
J., Clements, D., Coraor, N., Grüning, B.A., et al.: The galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic
acids research 46(1), 537–544 (2018). https://doi.org/10.1093/nar/gky379

2. Amela, R., Ramon-Cortes, C., Ejarque, J., Conejero, J., Badia, R.M.: En-
abling Python to Execute Efficiently in Heterogeneous Distributed Infrastructures



Managing Failures in Task-based Workflows 15

with PyCOMPSs. In: Proceedings of the 7th Workshop on Python for High-
Performance and Scientific Computing. pp. 1–10. ACM, New York, NY, USA
(2017). https://doi.org/10.1145/3149869.3149870

3. Badia, R.M., Conejero, J., Diaz, C., Ejarque, J., Lezzi, D., Lordan,
F., Ramon-Cortes, C., Sirvent, R.: COMP superscalar, an interoper-
able programming framework. SoftwareX 3, 32–36 (December 2015).
https://doi.org/10.1016/j.softx.2015.10.004

4. Álvarez Cid-Fuentes, J., Solà, S., Álvarez, P., Castro-Ginard, A., Badia, R.M.:
dislib: Large Scale High Performance Machine Learning in Python. In: Pro-
ceedings of the 15th International Conference on eScience. pp. 96–105 (2019).
https://doi.org/10.1109/eScience.2019.00018

5. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J.,
Mayani, R., Chen, W., et al.: Pegasus, a workflow management system for
science automation. Future Generation Computer Systems 46, 17–35 (2015).
https://doi.org/10.1016/j.future.2014.10.008

6. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., Notredame,
C.: Nextflow enables reproducible computational workflows. Nature biotechnology
35(4), 316–319 (2017). https://doi.org/10.1038/nbt.3820

7. Ejarque, J., Domı́nguez, M., Badia, R.M.: A hierarchic task-based program-
ming model for distributed heterogeneous computing. The International Jour-
nal of High Performance Computing Applications 33(5), 987–997 (2019).
https://doi.org/10.1177/1094342019845438

8. Graf, H.P., Cosatto, E., Bottou, L., Durdanovic, I., Vapnik, V.: Parallel Support
Vector Machines: The Cascade SVM. In: Proceedings of the 17th International
Conference on Neural Information Processing Systems. pp. 521–528 (2004)

9. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Álvarez, J., Marozzo, F., Lezzi,
D., Sirvent, R., Talia, D., Badia, R.M.: ServiceSs: an interoperable programming
framework for the Cloud. Journal of Grid Computing 12(1), 67–91 (March 2014).
https://doi.org/10.1007/s10723-013-9272-5

10. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering
2(4), 308–320 (1976). https://doi.org/10.1109/TSE.1976.233837

11. Mouallem, P., Crawl, D., Altintas, I., Vouk, M., Yildiz, U.: A fault-tolerance ar-
chitecture for kepler-based distributed scientific workflows. In: Int. Conference on
Scientific and Statistical Database Management. pp. 452–460. Springer (2010).
https://doi.org/10.1007/978-3-642-13818-8 31

12. Oliver, H.J.: Cylc (the cylc suite engine). Tech. rep. (2016),
http://cylc.github.io/cylc/

13. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts,
M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., et al.: Gromacs 4.5: a high-
throughput and highly parallel open source molecular simulation toolkit. Bioinfor-
matics 29(7), 845–854 (2013). https://doi.org/10.1093/bioinformatics/btt055

14. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen,
S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The taverna
workflow suite: designing and executing workflows of web services on the desk-
top, web or in the cloud. Nucleic acids research 41(W1), W557–W561 (2013).
https://doi.org/10.1093/nar/gkt328




