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by Dagnachew Azene Temesgene

Due to the rapid growth of mobile data traffic, future mobile networks are expected

to support at least 1000 times more capacity than 4G systems. This trend leads to

an increasing energy demand from mobile networks which raises both economic and

environmental concerns. Energy costs are becoming an important part of OPEX by

Mobile Network Operators (MNOs). As a result, the shift towards energy-oriented

design and operation of 5G and beyond systems has been emphasized by academia,

industries as well as standard bodies. In particular, Radio Access Network (RAN) is

the major energy consuming part of cellular networks. To increase the RAN efficiency,

Cloud Radio Access Network (CRAN) has been proposed to enable centralized cloud

processing of baseband functions while Base Stations (BSs) are reduced to simple Radio

Remote Heads (RRHs). The connection between the RRHs and central cloud is provided

by high capacity and very low latency fronthaul. Flexible functional splits between

local BS sites and a central cloud are then proposed to relax the CRAN fronthaul

requirements via partial processing of baseband functions at the local BS sites. Moreover,

Network Function Virtualization (NFV) and Software Defined Networking (SDN) enable

flexibility in placement and control of network functions. Relying on SDN/NFV with

flexible functional splits, network functions of small BSs can be virtualized and placed at

different sites of the network. These small BSs are known as virtual Small Cells (vSCs).

More recently, Multi-access Edge Computing (MEC) has been introduced where BSs

can leverage cloud computing capabilities and offer computational resources on demand

basis.

On the other hand, Energy Harvesting (EH) is a promising technology ensuring both

cost effectiveness and carbon footprint reduction. However, EH comes with challenges

mainly due to intermittent and unreliable energy sources. In EH Base Stations (EHBSs),

it is important to intelligently manage the harvested energy as well as to ensure energy

storage provision. Consequently, MEC enabled EHBSs can open a new frontier in energy-

aware processing and sharing of processing units according to flexible functional split
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options. The goal of this PhD thesis is to propose energy-aware control algorithms in EH

powered vSCs for efficient utilization of harvested energy and lowering the grid energy

consumption of RAN, which is the most power consuming part of the network. We

leverage on virtualization and MEC technologies for dynamic provision of computational

resources according to functional split options employed by the vSCs.

After describing the state-of-the-art, the first part of the thesis focuses on offline opti-

mization for efficient harvested energy utilization via dynamic functional split control in

vSCs powered by EH. For this purpose, dynamic programming is applied to determine

the performance bound and comparison is drawn against static configurations. The sec-

ond part of the thesis focuses on online control methods where reinforcement learning

based controllers are designed and evaluated. In particular, more focus is given towards

the design of multi-agent reinforcement learning to overcome the limitations of central-

ized approaches due to complexity and scalability. Both tabular and deep reinforcement

learning algorithms are tailored in a distributed architecture with emphasis on enabling

coordination among the agents. Policy comparison among the online controllers and

against the offline bound as well as energy and cost saving benefits are also analyzed.
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Chapter 1

Introduction

1.1 Scenario and Motivation

Mobile data traffic is growing exponentially. It is estimated that overall mobile data will

grow to 77 exabytes by 2022, a seven fold increase from 2017 [10]. In order to meet the

growing demand from various end-devices, e.g., smartphones, tablets and IoT devices,

future mobile networks are expected to support at least 1000 times more capacity than

LTE systems [11]. This, in turn, leads to an increasing energy demand from mobile

networks which raises both environmental and economic concerns. A study by Digital

Power Group [12] estimated that the global ICT system consumed about 1500 TWh of

electricity annually, which is approximately 10% of annual global electricity generation.

In addition, ICT represents about 2 − 4% of carbon footprint from human activity,

which is equivalent to the emission from aviation industry. Moreover, fueled by the

growing mobile traffic demand, the energy consumption of ICT will reach about 51%

of worldwide electricity consumption in 2030 [13]. As a result, energy consumption

expenditure is becoming an important portion of OPerational EXpenditures (OPEX)

by Mobile Network Operators (MNOs). This trend leads to about 6% annual reduction

in MNOs’ average revenue per unit [14]. Hence, sustainable design and operation of

mobile networks is included in the road map towards future mobile networks, known as

5G and beyond. The shift towards energy-oriented 5G and beyond systems has been

emphasized by academia, industries as well as standardization bodies [15, 16].

Radio Access Network (RAN) is the major energy consuming part of cellular network

[17]. Recently, to increase the RAN energy and radio resources’ efficiency, an architecture

known as Cloud Radio Access Network (CRAN) [18–20] has been proposed. CRAN,

leveraging on advances in cloud computing, aims to process the mobile network Base

Band (BB) functions by a centralized pool of Base Band Units (BBUs) while Base

Stations (BSs) are reduced to Remote Radio Heads (RRHs). The connection between

1
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the RRHs and the BBU pool is provided by high capacity and low latency fronthaul.

The centralized processing proposed in CRAN ensures simplified BSs at cell sites and

more efficient resource utilization. However, the high capacity and very low latency

fronthaul requirements are challenges in CRAN. To relax these fronthaul requirements,

flexible functional splits between local BS sites and a central BBU pool [1, 21] have

been proposed. Hence, part of the BB processes are executed at the local BS sites,

while maintaining many of the centralization advantages of CRAN. Flexible functional

splits enable the feasibility of other cost efficient and flexible fronthaul technologies,

e.g., mmWave and microwave [22]. Moreover, Network Function Virtualization (NFV)

enables softwarized implementation of traditional network functions on general purpose

computing hardware as virtual functions and Software Defined Networking (SDN) can

be used for the management of these functions [23]. Leveraging on SDN/NFV with

flexible functional splits, network functions of small BSs (e.g., BB functions) can be

virtualized and placed at different sites of the network. These small BSs are known as

virtual Small Cells (vSCs). More recently, Multi-access Edge Computing (MEC) has

been introduced to enable the convergence of IT and telecommunication [24]. Thanks

to MEC, BSs can leverage cloud computing capabilities and offer their computational

resources on demand basis.

Energy Harvesting (EH) is a promising technology ensuring both cost effectiveness and

carbon footprint reduction [25]. EH involves powering mobile network constituent ele-

ments, e.g., BSs, with renewable energy supplies. However, EH has challenges due to

intermittent and unreliable energy sources. Energy arrival process is random, and hence,

energy storage and intelligent energy allocation scheme are required to ensure uninter-

rupted operation. Hence, in a network of Energy Harvesting Base Stations (EHBSs),

it is important to intelligently manage the harvested energy and to ensure energy stor-

age provision. Consequently, MEC enabled EHBSs can open a new frontier in energy-

aware processing and sharing of BB processing units according to flexible functional

split options. The vSCs that solely rely on EH sources can opportunistically use the

BB processing units available at the MEC server. This is particularly important since

the power consumption due to BB processing has a significant share in the total power

consumption breakdown of small BSs. As a result, MEC-enabled energy-aware place-

ment of BB processes according to functional split options is a promising technique to

enable energy efficient operation of EH powered vSCs. This thesis focuses on the study

of control algorithms for efficient utilization of harvested energy in vSCs with EH capa-

bilities. The work presented in this thesis has been carried out with in project number

4 of SCAVENGE Innovative Training Network funded by the European Union in the

framework of the H2020 Marie Skodowska Curie Action [26].
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Figure 1.1: Network Scenario

1.2 Problem Statement

We consider a two-tier network scenario that is composed of a Macro BS (MBS) with

co-located BBU pool and vSCs as shown in Fig. 1.1. The MBS with BBU pool is re-

sponsible for providing baseline coverage, mobility support and BB processing resources.

The MBS site is fully supplied by the grid, thus assuring reliable communication and

computing. The vSCs are deployed in hot-spots for capacity enhancement without over-

lapping coverage [27]. They are completely powered by solar panel and equipped with

rechargeable batteries. The vSCs are fully or partially dependent on the MBS for their

BB processing. Different functional split options are targeted where BB functions of the

vSCs can be executed locally at the vSC or remotely using the resources of the MBS.

In addition, MEC enables BSs to leverage cloud computing capabilities. In MEC deploy-

ments, multi-tier MEC servers are co-located at BSs that have different computational

and transmission capabilities (i.e., MBSs are high-power and high-computing nodes)

[28]. In our scenario, we are interested in the case that the MBS hosts a MEC server

to support the vSCs via computational offloading of some of their network functions.

Hence, the vSCs opportunistically use the central BBU pool at the MBS, acting as the
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Figure 1.2: Reference architecture

MEC server, for full or partial BB processing requirements. For doing so, a standard-

ized interface (e.g., Openflow [29]), can be used to implement the interactions between

the MBS and vSCs. The proposed MEC-enabled architecture is shown in Fig. 1.2.

This architecture jointly with SDN and NFV paradigms [30] enables automated net-

work management, flexibility and cost reductions. It allows the vSCs’ BB functions to

be decoupled from proprietary hardware-dependent implementations and to be executed

in different hardware resource of the network. In this regard, 3GPP has defined different

functional splits between the distributed and the centralized unit [31], i.e., the vSCs and

the MBS respectively. These split options along with a conventional eNodeB architec-

ture are shown in Fig 1.3. The network functions without virtualized implementation

are known as Physical Network Functions (PNF). The baseline macro or the standard

CRAN split is also known as PHY-RF split.
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Figure 1.3: LTE functional split options [1]

The vSCs are solely powered by EH and batteries. Hence, it is importance to intelligently

control the utilization of the harvested energy due to the randomness of energy arrival

process. A dynamic control decision involves consideration of many factors including

energy reserves, energy arrival forecast, traffic demand and system drop rate constraints.

Hence, at each time-granularity of operation, the vSC can be controlled to operate in

one of the possible operation modes, i.e., the functional split options. These operation

modes can range from the execution of all the BB functions locally at vSCs or offloading

part of the BB functions to the central BBU pool/ MEC server to switching off the

vSCs.

1.3 Objectives

The objective of the thesis is to study the energy savings that can be achieved by

dynamic control of BS modes of operation in softwarized RANs supplied by EH sources.

This involves dynamic decision scheme for the placement of BB processes of EHBSs,

either locally using their resources or remotely on a cloud/MEC resource. Dynamic

configuration decisions have to take into account the traffic demand, energy arrival and

available energy reserve while minimizing grid energy consumption and traffic drop rate.

As mentioned in Section 1.1, we rely on SDN/NFV tools as enablers for the movement

of virtual network functions.

To achieve the above goal, the following objectives have been studied in the thesis:
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1. Identifying Research Gaps (O1): It involves the study of state-of-the-art to

identify the research gaps in different softwarized RAN architectures, the issue of

integrating EH in these architectures as well as the control methods. This objective

also involves identification of BS power consumption models, traffic models and

EH source models which are the building blocks for the realization of the other

objectives.

2. Performance Bound Assessment (O2): It involves performance bound study

of dynamic selection of functional split options in EH vSCs that rely on centralized

BBU pool for part of their BB processing. The bound should ensure the constraints

on the system drop rate and must consider the traffic request, energy arrival and

energy reserve information.

3. Online Algorithms (O3): It involves studying online algorithms for dynamic

functional split control. This implies removing some assumption made in O2 and

modeling more realistic network scenarios. The algorithms are designed taking into

account the partial observable information on the traffic demand, energy arrival

and battery states guaranteeing constraints on the system drop rate. Various

online distributed control methods are explored with special emphasis on temporal

difference and deep reinforcement learning approaches.

4. Policies Comparison (O4): This objective involves the comparison among the

policies obtained by online distributed controllers in terms of their characteristics

as well as network performance. Moreover, the online controller policies are eval-

uated with respect to the performance bound in O2. In addition, the energy and

cost savings obtained by different online control policies are estimated.

1.4 Methodology

For the completion of O1, we begin with a literature review to identify the gaps in

the state-of-the-art including the issues of embedding EH in softwarized RAN architec-

tures, available power consumption, traffic and EH sources models. We identified traffic

and EH models that can be incorporated to our study. In addition, we have made an

adaptation to flexible power consumption model of BSs in order to estimate the power

consumption required by each BB functions / power consumption requirement per func-

tional split options. The review of the state-of-the-art including the system models

adopted are described in detail in Chapter 2.

To realize O2, we have applied an offline optimization using Dynamic Programming

(DP), in particular shortest path search, to determine performance bound of dynamic
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functional split control. The bound assessment study is described in detail in Chapter

4. The results of this offline optimization are used as performance bounds against which

other online control policies can be compared with.

Regarding both O3 and O4, our focus is on online optimization approaches for dynamic

functional split control in a vSCs solely powered by EH. As opposed to O2, here we rely

on only partial information for a dynamic selection of functional split options considering

the traffic request, energy reserve and energy arrivals. Hence, approximate DP methods,

in particular Reinforcement Learning (RL) methods, will be suitable tools to derive

these polices. In this regard, a study of the application of RL methods, in particular

Q-Learning (QL) and SARSA algorithms in a single EH vSC scenario is described in

Chapter 5. Extending the online optimization approach described in Chapter 5 to a

scenario involving multiple vSCs is explained in Chapter 6. In this case, multi-agent

temporal difference RL methods are applied with different levels of coordination among

agents to derive control policies of efficient harvested energy utilization. To cope with

the limitations of temporal difference RL for applications involving continuous states,

Fuzzy Q-Learning (FQL) based controller has also been proposed. Moreover, due to the

limitations of multi-agent tabular RL methods, i.e., QL, SARSA, FQL, when working

with large state-action spaces, the more recent deep RL method is applied as an approach

to coordinate the policies of agents via local state information exchange without facing

practically infeasible state-action tables. The deep RL based controller design and its

performance are presented in Chapter 7.

1.5 Outline of the thesis

This section gives a brief summary of the contents of the following chapters.

Chapter 2

This chapter presents the state-of-the-art of softwarized RAN with EH capabil-

ities spanning the different RAN architecture proposals and the application of

optimization tools in these architectures. Moreover, research gaps are identified

regarding the integration of EH in softwarized RAN architectures. In addition, BS

power consumption models, traffic demand models as well as EH sources models,

which are the building blocks for realizing the thesis objectives, are described.

The contents of this chapter are published in the following paper:

D. A. Temesgene, J. Nunez-Martnez and P. Dini, ”Softwarization and Optimiza-

tion for Sustainable Future Mobile Networks: A Survey,” in IEEE Access, 2017
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Chapter 3

This chapter provides a brief background on the optimization tools used in the

thesis. Hence, a brief explanation on DP, temporal difference RL, multi-agent RL

as well as deep RL are given.

Chapter 4

In this chapter, the study of performance bound for optimal placement of func-

tional split options for vSCs with EH capabilities is presented. The chapter de-

scribes the optimization problem and the optimal solution with comparison against

static policies. In addition, modification of the optimization objective to include

energy sharing between vSCs and MBS is also explained with policy characteriza-

tion.

The contents of this chapter are published in the following papers:

D.A. Temesgene, N. Piovesan, M. Miozzo and P.Dini, ”Optimal Placement of

Baseband Functions for Energy Harvesting Virtual Small Cells,” in Proc. IEEE

VTC2018-Fall

N. Piovesan, D.A. Temesgene, M. Miozzo, and P. Dini. ”Joint Load Control

and Energy Sharing for Autonomous Operation of 5G Mobile Networks in Micro-

Grids.” in IEEE Access, 2019

Chapter 5

This chapter includes the study of temporal difference RL methods for the dynamic

selection of functional split options without relying on a-priori knowledge. The

case of singe vSC agent control via QL and SARSA is explained with training

analysis and network performance evaluation.

The contents of this chapter are published in the following paper:

D.A. Temesgene, M. Miozzo and P.Dini, ”Dynamic Functional Split Selection in

Energy Harvesting Virtual Small Cells Using Temporal Difference Learning”, in

Proc. IEEE PIMRC 2018

Chapter 6

This section extends the temporal difference learning methods to a multi-agent

optimization scenario, i.e., a network of multi-vSCs. Hence, distributed QL and

FQL methods are tailored to the network scenario. Moreover, the training analysis,

the benefit of fuzzification with respect to QL and network performance evaluations
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of these distributed controllers are explained. Finally, the policy characteristics of

these distributed online methods are evaluated against the offline bounds and the

validation of the proposed polices are provided.

The contents of these chapter are published in the following paper:

D.A. Temesgene, M. Miozzo and P.Dini, ” Dynamic Control of Functional Splits

for Energy Harvesting Virtual Small Cells: a Distributed Reinforcement Learning

Approach”, in Elsevier Computer Communications, 2019

Chapter 7

In this chapter, distributed deep RL based controller design for dynamic functional

split is explained. The architecture of deep RL based controller, the training anal-

ysis as well as its policy characteristics are included. Moreover, the performance

of the deep RL based policies are evaluated against the distributed temporal dif-

ference online controller policies described in Chapter 6.

The contents of this chapter are included in the following paper:

D.A. Temesgene, M. Miozzo, D. Gündüz and P.Dini, ”Distributed Deep Rein-

forcement Learning for Functional Split Control in Energy Harvesting Virtualized

Small Cells”, submitted to IEEE Transactions on Sustainable Computing, 2020

Chapter 8

In this chapter, a brief summary of the thesis results in form of conclusions is

given. Moreover, future research directions are also highlighted.



Chapter 2

State of the Art and Beyond

2.1 Introduction

In order to cope with the growing mobile data traffic, a new generation of cellular

network known as 5G is envisioned. A closer look at the requirements of 5G

reveals that the successful deployment of 5G will require architectural evolution in

cellular networks and specifically in the RAN segment. The main 5G requirements,

as compared with 4G, are [11, 32, 33]:

� 1000 times more mobile data volume;

� 100 times more user data rate;

� 1000 times more number of connected devices;

� 1/10 reduction in energy consumption;

� 1/5 reduction in end to end latency;

� 1/5 lower cost of network management;

� 10 times longer battery life and

� 1/1000 reduction in service deployment times.

Hence, satisfying these diverse requirements calls for a paradigm shift in the de-

sign of cellular networks, RAN in particular. To this end, cellular networks are

including new paradigms, technologies and tools. We have identified that soft-

warization and densification paradigms, EH and optimization tools are three key

pillars to meet the main 5G goals. Softwarization and densification paradigms are

10
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needed to meet the demands of high capacity, cost reduction, improved agility,

lower latency and service deployment times. Furthermore, EH ensures sustain-

able and cost effective operation of cellular networks. The specific advantages of

softwarization, densification and EH should be combined in timely and optimal

way according the system requirements. For this reason, the applications of net-

work optimization tools are crucial for lowering network management costs and to

enable network wide intelligence and automation.

In the following, we give a brief introduction to the three pillars, namely soft-

warization, EH and optimization tools in the context of RAN in Section 2.2. Then

a more detailed survey of RAN architectures is given in Section 2.3. In addition,

the application of EH in RAN as well as the role of optimization tools are presented

in Sections 2.4 and 2.5, respectively.

2.2 The Three Pillars

This section gives a brief introduction to the three pillars of sustainable mobile

networks design and operation namely softwarization, EH and optimization tools.

2.2.1 Softwarization and Densification in RAN

Softwarization of mobile networks is mainly facilitated by the adoption of cloud

computing, SDN, and NFV technologies. Cloud computing is a model for de-

livering computing services on demand basis over the Internet [34, 35]. In cloud

computing, resources such as processing, data storage and networking are provided

to end-users on demand basis. SDN, on the other hand, advocates for separation

of the control and data planes [36–38]. Canonically, SDN comprises of a central

controller that manages the data plane switching elements to activate the desired

switching policies. Therefore, the switching elements apply the rules stated by the

centralized controller and the interface between the controller and such forwarding

elements can be, for instance, a standardized interface e.g., Openflow [38]. SDN

through separating control and data planes and by adopting centralized control

enables many advantages such as programmability, automation, and significant

cost reductions due to lower complexity in the switching elements. On the other

hand, NFV enables softwarized implementation of network functions on a general

purpose hardware [37, 39]. Therefore, NFV decouples the network functions from
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proprietary hardware-dependent implementations and enables the use of a hard-

ware resource for many network functions. NFV has many advantages ranging

from improved scalability and flexibility to significant cost reduction via sharing

of a hardware resource for many network functions. It is important to note that

SDN and NFV are independent but complementary technologies and the adoption

of both in a network architecture will maximize their advantages in terms of im-

proved flexibility, scalability, and cost reduction. Moreover, cellular networks are

increasingly becoming dense due to the deployment of multi-tier BSs in the same

coverage area. Densification significantly increases the offered capacity to end-

users through frequency reuse. Such multi-tier BSs are already being deployed

by MNOs to meet the growth in demand and more deployment is expected in

the coming years. Dense deployment requires the management of a large number

of resources. As a result, softwarization is required in dense deployments than

legacy ones as an enabler for automated network management, flexibility and cost

reductions.

2.2.2 EH in RAN

While densification is important to meet high capacity demand, it poses challenges

in the energy consumption of the network. These challenges come from three

directions. These are:

� Densification results in high demand of electrical power to ensure uninter-

rupted operations. Such high demand for energy increases the cost of oper-

ation of a network.

� Dense deployment of BSs also increases CO2 emissions from mobile networks

operation. Environmental footprints need to be reduced to limit the impact

on climate change.

� Most of the BSs, also known as Small Cells (SCs), are expected to be deployed

in hot spots. This makes grid power supply access to these BSs difficult

sometimes. Moreover, RAN accounts for around 80% of energy demand

from cellular networks [17].

These reasons drive the adoption of EH in RAN. EH is a solution to power com-

munication nodes from natural or man-made activities by scavenging energy phys-

ically or chemically [40]. The use of EHBSs is multi-fold. Its potential advantages

are:
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� Significant reduction of operational costs, since the only incurred cost is due

to EH hardware and site access. Once installed, the energy obtained is free.

� It minimizes the carbon footprint from the operation of network infrastruc-

ture. This enables MNOs to be aligned with sustainability goals, regulations

and directions.

� EHBSs are independent of grid power access, which can improve MNOs net-

work planning. As a result, MNOs need to consider only network perfor-

mance related parameters prior to installation.

These factors lead to EHBSs deployment and massive usage of them is expected

in the future 5G networks. With EH, energy is a intermittent resource and it

is interesting to study the interaction and harmonization of EH with other RAN

architecture paradigms, namely softwarization and densification.

2.2.3 Optimization tools in RAN

The vision of future mobile network, sketched in the above, correspond to a highly

heterogeneous and complex system, including several types of end-devices with

diverse QoS requirements, multiple cell layers working in different radio technolo-

gies and spectrum bands, and dynamic reconfiguration and placement of network

functions. A general 5G network architecture platform that incorporates multi-

ple technologies including massive MIMO, cognitive radio, device-to-device (D2D)

communication, small cell networks, cloud, NFV and SDN is proposed in [41].

The proposed architecture gives insight into the complexity of the 5G. Such a

complexity needs an intelligent, timely and automated control to balance many,

often conflicting goals, and to ensure efficient deployment and utilization of the

available spectrum, energy and computational resources. Hence optimization tools

such as Machine Learning (ML) and DP are required in order to analyze the en-

vironment and take the appropriate decisions. In fact, ML and DP may include

an end-to-end knowledge of the system to achieve a proactive optimization, able

to exploit the huge amount of data available and to even incorporate additional

dimensions, such as the characterization of end-user experience and behavior, the

energy consumed and harvested. ML is a technique of detecting patterns in data-

sets automatically [42]. ML is applied to those kinds of problems where writing an

explicit computer program is impossible or extremely challenging due to the com-

plexity of patterns that need to be detected. One of such systems with complex
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datasets is the cellular network. Because of the diverse nature of cellular net-

work systems, which results in diverse sets of data, applying analytical modeling

and performance prediction is challenging. Besides, DP (or RL as its approxima-

tion) algorithms help to solve complex sequential decision making processes by

minimizing a certain cost function.

2.3 RAN Architectures

This section gives a more detailed explanation of the recent RAN architectures

and paradigms namely network densification and softwarized RAN architectures.

2.3.1 Network Densification

Heterogeneous Networks (HetNets) is a paradigm that supports the co-existence

of several BS types in the cellular network architecture each having their own

parameters such as transmission power and coverage area [25]. HetNets were

primary adopted as a means to enhance the capacity of cellular networks in areas

of high traffic loads, such as indoor and areas of coverage holes around cell edges.

Multi-tier cellular networks encompassing multiple types of BSs that co-exist in

the coverage area of a HetNet deployment.

The BSs in a HetNet can be classified as MBSs and low power BSs, i.e., SCs.

The low power BSs are usually further classified as pico, femto and relay cells [2],

as shown in Fig. 2.1. Pico cells are typically deployed in hotspots to enhance

the performance of the network in the selected areas. They are deployed in a

planned manner by operators and they are open to all users in their coverage

area. Hence, pico cells are similar to regular BSs with the only difference being

lower transmission power, and hence, coverage area. On the other hand, femto

cells are deployed for indoor environments in unplanned manner (i.e., deployed

by customers) [2, 43]. Depending on whether femtocells allow access to all User

Equipments (UEs) or restrict some UEs from access, they are classified as open

or closed respectively. Femto cells can also be configured in a hybrid mode by

granting access to some terminals with lower priority. Femto cells typically utilize

end-users backhaul, such as cables or Digital Subscriber Lines (DSL). Relay cells,

on the other hand, are used to boost the signal from BS to users in selected loca-

tions. Hence, they are deployed mainly for throughput improvement and coverage

extension in areas of coverage holes. HetNets may also include multi Radio Access
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Technology (RAT) deployments, where other RATs such as Wi-Fi are used for

offloading traffic [43]. Inter-tier interference and coverage holes created by closed

femto cells are identified as the main challenges in HetNets [2, 43].

Conventional HetNets are evolving into the notion of ultra-dense HetNets. Ultra-

dense deployment trend is characterized by having many number of over-lapping

BSs. Some authors even claim that in ultra-dense HetNets, the number of cells

exceeds the number of active UEs [44, 45]. In such deployments, due to the

high density of SCs, idle mode of operations, when there are no active users,

proper propagation models and mobility management mechanisms are necessary.

In ultra-dense HetNets, SCs can be deployed either in co-channel mode or non-co-

channel mode [44]. In co-channel deployment, SCs and macro cells share the same

frequency band whereas in non-co-channel deployment, a different frequency band

is used for SCs. Moreover, the authors in [44] show that, typically macro cells use

around 1 - 2 GHz licensed spectrum, whereas SCs can use unlicensed 5GHz band.

Such deployments help to reduce the interference between macro and SC tiers and

improve planning of cellular networks. This is due to very large number of SCs in

ultra-dense deployments and co-channel existence with the baseline macro cells will

be extremely challenging due to severe interference. The European METIS project

identify ultra-dense networks as one of 5G architecture enablers. The project also

identifies that the utilization of higher frequency spectrum, use of multi-RATs and

switch on/off scheduling of SCs are essential techniques in ultra-dense deployments

[33].

Figure 2.1: HetNet architecture [2]
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2.3.2 CRAN

CRAN is an architecture that integrates cloud computing technology into the RAN

of cellular networks. In CRAN, the BB functions are processed in a centralized

BBU pool or central cloud [18–20]. Therefore, the BSs at the cell sites are reduced

to simple RRHs. The various RRHs and the central cloud are connected via

fronthaul links. The connectivity between central cloud and core of the network

is provided by transport network. In its original proposal of CRAN, the RRH

and central cloud connectivity is defined to be optical fiber fronthaul [18]. CRAN

has a lot of advantages ranging from simplified BSs at cell sites to centralized

processing at the cloud. Cloud operation also leads to a more efficient utilization of

available resources. CRAN also enables decoupling of processing and transmission

and opens a room to apply data plane cooperation techniques, such as CoMP

[18, 46, 47].

Some of the challenges in CRAN arise from the fronthaul connectivity between

RRH and central cloud. Optical fiber fronthaul provides the required high capac-

ity and very low latency connectivity between RRH and central cloud. However,

using optical fiber fronthaul for every RRH is not scalable and flexible due to

high cost and unavailability [36]. Heterogenous CRANs (HCRANs) are extension

of CRAN architectures to include the presence of High-Power Nodes (HPNs) for

control plane functions and coverage [21]. Data transmission is handled by RRHs.

HCRANs are similar in many aspects to CRAN, but they are slightly different

since HPNs are interfaced to the central cloud for mitigation of cross-tier interfer-

ence by cooperative techniques at the cloud [21]. HCRANs partially alleviate the

fronthaul problem in CRANs by decoupling the control signaling from data. All

the control signaling is delivered via HPNs and the fronthaul only carries data.

In addition to reduced fronthaul requirements, HCRANs also open a room for

multi-tier cooperation advantages [48].

Based on the ETSI NFV use case for mobile BSs [49], the authors in [1] propose

flexible functional splits between RRH and central BBU pool and identify the

requirements of fronthaul capacity at various functional split options. In flexible

functional split architecture, part of the BB processing of SCs is done locally at

SCs and the remaining BB processing takes place at the central BBU pool. Flex-

ible functional splits enable the relaxation of the fronthaul capacity and latency

constraints without sacrificing the centralization gains offered by the CRAN. The

functional split between RRH and central cloud can occur at various layers ranging

from PHY to PDCP-RLC, as shown in Fig. 1.3.
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2.3.3 Fog Radio Access Networks (FRANs)

FRANs are proposed to embed the advantages of fog computing to alleviate the

aforementioned limitations of CRAN, such as capacity constrained fronthaul, la-

tency and heavy burden at central cloud [50]. In FRAN, shown in Fig. 2.2,

in addition to the central cloud of CRAN, edge devices such as RRHs and UEs

can be used for local signal processing, cooperative radio resource management

and content storage [46, 50]. Such paradigm of using edge devices for comput-

ing and storage is called fog computing [10, 51–53] and it helps to partly address

the fronthaul and central cloud heavy burdens in CRAN. Fog computing is gain-

ing increasing interest recently as a complementary technology to alleviate cloud

computing drawbacks. This is evidenced by initiatives such as OpenFog [54] and

ETSI-MEC [55] to define an architecture of fog/MEC as a complement to cloud

computing technology. One major functionality in FRANs is edge caching. Edge

devices, such as RRHs and UEs, can be used as local storage of certain contents

to reduce the latency arising from accessing the contents from far servers. Various

edge caching strategies in FRANs are presented in [50].

Figure 2.2: FRAN architecture [3]

2.3.4 SDN/NFV/Network Slicing based RAN architectures

Here, we classify RAN proposals in three categories. The first category deals with

proposals that apply SDN to RAN. These works mainly focus on decoupling the

RAN control from the RAN data plane with the aim of centralizing the RAN

control plane functions. In the second category, namely NFV applied to RAN,

we included novel proposals that primarily focus on virtualizing RAN control

and data plane functions and increasing the flexibility in allocating RAN network
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functions among different mobile network segments. Finally, the third category

summarizes the work conducted on end-to-end slicing, that is, the allocation of

logical networks including network and IT resources. It is important to note that

the three categories can potentially include both SDN and NFV technologies, but

they are categorized under SDN or NFV or slicing based on their main proposed

novelties.

2.3.4.1 SDN applied to RAN

One of the pioneers in this category is SoftRAN [4], shown in Fig. 2.3. SoftRAN

proposes a centralized Radio Resource Management (RRM) control plane function

of many BSs by abstracting them as virtual big BS in a central SDN controller.

In SoftRAN, all the radio resources belonging to a region are abstracted in a

3D resource grid with time-frequency-location indices. SoftRAN also proposes

to distribute part of RRM control functions that can be efficiently implemented

locally by individual BSs. SoftMobile [56] identifies the need for principle based

evolution of the control plane in heterogeneous wireless networks and the need

for abstraction in the control plane to achieve optimal performance. The authors

in [57] propose a software defined RAN platform called FlexRAN. In FlexRAN,

south and northbound Application Programming Interfaces (APIs) with master-

agent controller architecture are proposed. Moreover, FlexRAN is designed to be

used as an implementation platform to evaluate SDN applications in RAN. Various

use cases and practical evaluations show the feasibility of the platform for RAN.

Improvement of CRAN by applying SDN is proposed in [58]. The work identi-

fies the limitation in CRAN due to its one-to-one mapping of RRH and BBU in

central cloud and introduces a SDN based flexible mapping architecture called

Software Defined Fronthaul (SDF). SDF improves flexibility and also guarantees

seamless mobility and improved resource utilization. The CONCERT architec-

ture in [59] defines a converged edge infrastructure for future cellular networks.

In CONCERT, SDN is applied to improve the CRAN architecture by ensuring

flexibility and dynamic reconfiguration of radio resources to meet the traffic re-

quirements. This architecture consists of a data plane of all physical resources

that are interconnected via software defined switches and a control plane that is

implemented by a conductor that orchestrates and virtualizes the resources in the

data plane. The proposal enables a convergence of both cloud computing and

mobile communications through software defined abstraction and management of

the RAN resources.
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Figure 2.3: SoftRAN architecture [4]

2.3.4.2 NFV applied to RAN

On the other hand, some of the existing works on 5G RAN architecture focus

mainly on the application of NFV principles. The ETSI NFV use case for virtu-

alization of mobile base station [49] is one example. The authors in [49] propose

RAN virtualization use case in a CRAN architecture, where the BBU functions

can be executed in a Network Function Virtualization Infrastructure (NFVI) en-

vironment such as a data center. Based on this ETSI use case, the authors in

[60] propose an architecture for LTE RAN virtualization. In this proposal, virtual

radio processing units are responsible for executing LTE data plane stacks and

a controller for interfacing virtual RAN to the core network and other RANs is

devised. Similarly, the authors in [61] devise a NFV architecture for HCRAN that

encompasses virtualization of radio and computing resources of both intra and

inter RAN infrastructures. They emphasize on the need for transparency among

virtual BSs of the same physical infrastructure. An architecture for virtualizing

both RAN and core network functions with NFV is proposed in [62]. Here RRHs

are directly connected to the core of the network and all BBU and core network

functions are executed on Virtual Machines (VMs) on demand basis. On the other

hand, the authors in [63] identify the key issues of NFV in the context of 5G and

propose a network overlay concept of decoupling physical address from virtual ad-

dresses as well as isolation of traffic in virtual networks. With SDN and network

overlay as enabling technologies for NFV implementation in 5G, the authors in
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[63] identify candidate network functions that can be executed as virtual network

functions.

In [64], a two layer architecture of radio and network cloud that also integrates

dense deployments with NFV is proposed. In this architecture, the edge infras-

tructure is designed to perform RAN lower layer (i.e. PHY& MAC) functions and

other higher level functions are defined in the cloud infrastructure. Cloud scala-

bility is achieved by NFV and the notion of separation of coverage and capacity

is emphasized in the proposal. A similar proposal called RAN as a Service or

RANaaS [36] is proposed to ensure flexible functional split between central cloud,

as in CRAN, and distributed operation, as in conventional mobile networks. The

proposal aims to take advantage of flexible implementation of virtualized RAN

functions where some functionalities remain to be executed at the BSs whereas,

less delay stringent functions are placed centrally.

2.3.4.3 Network Slicing

With the advent of vertical industries (i.e., eHealth, automotive, robotics), the

deployment of multiple end-to-end logical networks with different requirements on

top of the mobile physical infrastructure, including the RAN segment, becomes a

necessity. The management and orchestration of these virtualized (logical) net-

works encompassing network and IT resources is also referred to as network slicing.

Network slices are E2E logical networks running on top of a physical (or even vir-

tual) infrastructure [65]. The internals of each network slice are managed and

orchestrated in an independent way by each individual vertical sector, hence be-

ing flexible enough to accommodate the different technical and business demands

[66]. An important property to satisfy among network slices running in parallel is

isolation. Isolation is required:

� To meet the particular per-slice KPIs,

� To attain per-slice security in the sense that attacks in one slice should not

affect other slices, and

� To enable each vertical to manage each network slice in a self-contained

manner.

SDN/NFV are enabling technologies for network slicing. The authors in [66] pro-

pose network slicing as a service model for mapping various requirements to service
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models of operators, with the ultimate goal of enabling provision of customized

end-to-end networks as a service. For the case of Mobile Virtual Network Opera-

tors (MVNOs), authors in [67] devise a broker architecture for enabling infrastruc-

ture providers to dynamically allocate portion of their offered capacity to tenants,

e.g., MVNOs. The proposed broker architecture aims to allocate resources from in-

frastructure providers to enable demand driven allocation of their offered capacity.

Thus, it supports multi-tenancy on the same physical infrastructure. The authors

in [5] took a further step in slicing by proposing a network store for providing end

users with a slice, according to demands, via programs that allocate and deploy

necessary software and network elements. The network store architecture is shown

in Fig. 2.4. It works in the same analogy of Apple’s App Store and Google’s Play

Store, to motivate third parties to deploy network applications.

Two key challenges to enable resources sharing are resource allocation and iso-

lation among multiple slices [68, 69]. Resource allocation mechanisms decide on

how to embed a virtual wireless network onto the physical infrastructure, i.e.,

deciding on which resources, nodes and links to be picked and optimized based

on requirement constraints from service providers [68]. Unlike wired networks,

resource allocation mechanism in virtualized wireless environment is challenging

due to the inherent nature of wireless communication such as interference, mobil-

ity, radio channel variability and roaming. In addition, the authors in [68] show

that due to the variability in the number of end users and aggregate mobile traf-

fic in a certain area, resource allocation mechanisms should be dynamic to avoid

over and under provisioning and in some cases to ensure that the allocated virtual

resources do not exceed the underlying physical substrate capacity. Once proper

resource allocation is made, ensuring isolation among slices is necessary. Isolation

is preventing degradation in the performance of a slice due to changes in another

slice, addition of a new slice or removal of a slice [69]. Isolation in the context

of wireless networks is complex due to a shared and broadcast nature of wireless

medium and associated factors such as mobility, variation in RATs and interfer-

ence. Both challenges, i.e., resource allocation and isolation are coupled and in

some cases isolation can be translated as maintenance of the allocated resources.

If, for example, the allocation mechanism ensures that there is no resource overlap-

ping, then isolation among slices is implied. Softwarization technologies, namely

SDN and NFV, in addition to being enablers for slicing, can also be applicable to

alleviate the aforementioned challenges of slicing. These ideas are highlighted in

[69] where the potential of SDN through decoupling of hardware and control logic

can be exploited to enable per slice control plane and centralized management. In
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addition, NFV enables location independent implementation of network functions

according to specific scenarios. Hence, NFV helps to ease allocation and isolation

issues [69].

Figure 2.4: Creation of slices with network store [5]

2.4 EH in RAN

The common natural phenomena for scavenging energy from are sunlight and

wind, but other sources such as motion, vibration and electromagnetic radiation

can also be used as sources of energy to decrease the dependency of the network

from the power grid. Earlier works of adopting renewable energies for cellular

networks, e.g., [70], aim at regions where power supply from the grid is difficult

and unreliable. But recently EH is also studied to be feasible for urban scenarios.

This is mainly due to the trend of densification in RAN leading to many BSs

with low transmission power requirements. This, in turn, results in lower initial

investment for initial site access and harvesting hardware, that leads to low OPEX

in the long term [25]. Therefore, the interest to partially or completely power BSs

with energy harvesters is increasing [25]. The benefits of powering BSs with energy

harvesters is not only lower OPEX, but also reduction of CO2 emissions [25].

A system model for an EH cellular networks with local BS on/off strategy is

analyzed in [71]. In this model, each BS decides when to switch on/off regardless

of the state of other BSs. This model characterizes self-powered BSs by their

availability metrics and optimal regions where BSs exhibit similar performance,

as those with reliable energy sources. In addition to self-powering of BSs, hybrid

powered BS deployments are an alternative. Hybrid powered BSs are characterized
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by both grid and renewable energy supplies and the goal of system wide design is

to maximize the utilization of harvested energy when they are available in order

to decrease the total grid energy consumption [72].

The advances in renewable energy technologies, e.g., solar panels and wind tur-

bines, are also paving the way for increasing interests in EHBSs. Renewable energy

technologies, particularly solar panels and wind turbines are expected to enhance

in efficiency and their costs will continue to decline [73]. This trend is favorable

for MNOs to use EH and achieve both sustainable and cost efficient goals. Solar

panels and wind turbines are the two promising EH technologies due to sufficient

EH rates, longer life times with very low maintenance costs and mature industry

eco-systems producing them [74]. Moreover, solar and wind turbines are com-

plementary energy sources and hybrid supply of BSs with solar panels and wind

turbines is an interesting solution to balance the challenge due to energy arrival

dynamics. For instance, solar energy output is high in summer seasons, while, in

many areas, wind turbine power output peaks during winter months [74]. Due

to these reasons, BSs that are completely powered by renewables may combine

hybrid sources of wind and solar panels.

In order to deploy EHBSs, finding optimal trade-off among network performance,

density of BSs and grid power consumption is a challenge that requires careful

investigation [74]. Hence, network deployment guidelines are needed to balance

such trade-offs. For instance, the authors in [74] conclude that it is effective to

use a higher number of EHBSs than using BSs with high EH capacity, i.e, large

solar panel size and/or large diameter of wind turbine. Moreover, it is shown that

when the density of EHBSs is too large or too small, the battery capacity has little

impact on network performance and grid consumption reduction. The authors in

[75] propose FreeNet, a joint spectrum and EH network architecture. FreeNet is

promised to be useful for scenarios, such as emergency communications and rural

broadband provisions, but due to dynamic nature of both spectrum and energy

resources, their joint design is challenging.

Some literature also noted that EHBSs can also be part of smart grid architecture

as both consumers and producers of energy [76, 77]. These ideas will open a new

paradigm of integrating cellular and smart grid systems with dynamic and price

aware strategies. The joint integration provides additional revenues for MNOs and

performance gains for smart grid operators. The energy management concept in

traditional cellular networks, where its main goal was only the reduction of power
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consumption, is evolved with EH to include not only energy efficiency goals but

also sustainability and smart grid awareness objectives [77].

While many literature study the issues of EH in wireless networks, including the

challenge of having intelligent energy management by applying methods of ML

and optimization (will be described in Section 2.5), most of the works are based

on the HetNet architectures. Studies of EH applied to other architectures such

as CRAN and FRAN are not widely available. EH with CRAN is studied in

[78]. Here, the authors propose a green CRAN architecture where the RRHs of

CRAN are powered by renewable energies and algorithms for sustainable resource

management to ensure QoS and sustained operation of RRHs are proposed. In [79],

a virtual distributed load balancing scheme that balances the trade-off between

QoS and green energy availability is studied. The algorithm is designed to be

applied on the central controller of the SDN based RAN architecture and is shown

to sacrifice little QoS, such as increase in latency, for a higher proportion of energy

benefit. In addition, the energy fluctuation due to EH and the mechanism of energy

cooperation among RRHs in HCRAN is highlighted in [61]. However, it is a more

generic inclusion of EH in HCRAN without specific EH related details. On the

other hand, the authors in [80] define an architecture for EH with FRANs. They

identify two critical policies, which require careful design in EH MEC systems: (i)

offloading policy to determine how much work is offloaded to a central cloud and

(ii) an auto-scaling policy to determine how much server capacity is provisioned.

An inherent nature of EH communication is the intermittent and unreliable nature

of the energy sources. In order to cope with these challenges, EH communication

systems require new protocols, planning, cooperation schemes and possibly tech-

niques of using hybrid sources of energy and real-time interaction with smart grid.

2.5 Role of Optimization Tools

Future RANs will have to handle diverse QoS and QoE requirements of thousands

of heterogeneous devices, multiple slices/services on the same infrastructure, multi-

RATs, dynamic energy availability, possible interaction with the smart grid as well

as dynamic reconfiguration decisions where to perform certain network functions.

Handling these decisions optimally and automatically requires a control platform

with tools such as ML and DP. In what follows, we focus on three application

areas, namely, optimization in EHBSs, optimization in CRAN and general learning

frameworks.
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2.5.1 Optimization in EHBSs

As a result of dense deployment of BSs combined with the increasing significance

of energy sustainability, intelligent energy management in EHBSs has been the

focus of many studies in the research community. Most of these literature analyze

hierarchical multi-tier networks (HetNets), with an intelligent switching on/off

scheduling of BSs. The authors in [81] apply DP to determine the optimal switch

on/off policy in a two-tier HetNets with baseline MBS and hot-spot deployed SCs.

The solution shows the performance bound of an intelligent switch on/off policy

when all the system dynamics information are known a-priori. Minimizing the

grid energy consumption for hybrid powered BSs is also studied in [82]. Here,

the authors applied a two stage DP methods designed to achieve energy saving

gains while maintaining probability of blocking. The authors in [83] apply a ski-

rental framework based on-line algorithm for optimal switch on/off scheduling

for minimizing the operational costs of a network composed of self powered BSs.

The work in [84] gives a broad scope on RL based methods for energy efficient

management of mobile networks powered by renewables with characterization of

solar/PV sources. Moreover, the authors in [85] studied sleep mode coordination

between BSs powered by EH and grid energy using DP. However, the DP based

solution is shown to entail high computational complexity.

On the other hand, the authors in [86] apply RL, in particular QL algorithm, to

optimize the harvested energy utilization. The work is based on distributed QL

where each renewable powered BS takes autonomous decision whether to switch

on/off according to energy arrival, energy storage and traffic demand. In addition,

multi-armed bandit based distributed learning is studied in [87] to allow each SC

to learn its own energy-efficient policy. The authors in [88, 89] applied layered

learning for system wide harvested energy allocation through decomposition of

the problem into two layers. The first layer, based on RL, is in charge of local

control at each SCs and the second layer, based on artificial neural networks, en-

sures network wide coordination among the SCs. The authors in [90] applied deep

RL methods for minimization of energy consumption in HetNets through optimal

activation of subset of SCs while maintaining the desired QoS. In particular, they

have applied Actor-Critic RL methods where deep neural networks are used as

policy and value function approximators. Moreover, renewable energy allocation

in edge computing devices with EH is studied in [80]. Here, the authors propose

RL based on-line solutions for offloading and auto-scaling in edge computing de-

vices that are powered by EH. On the other hand, the authors in [91] proposed
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a RL based energy controller for a SC powered by EH, battery and smart grid

by considering battery aging effects. This work is based on FQL and is shown

to provide significant extension to the life time of a SC battery. However, this

work is limited to a single SC and a coordinated energy management among BSs

within a mobile network remains an open issue. Even though many literature ex-

ist for attaining intelligent energy management algorithm in RANs with EH, most

of them are on a single SC scenario and literature on multi-SCs scenario focus

only on switch on/off policies. Therefore, there is a need of more investigations to

integrate EH and flexible functional split options in MEC-enabled RAN. Here, we

claim that functional splits provide insights into considering more configuration

options of SCs, in addition to switch on/off and enable higher grid energy savings.

It is important to note that the application of optimization tools in EHBSs is

highly dependent on the underlying mobile traffic load and energy arrival models.

However, accurate representation of traffic load and energy arrival information

is not straightforward, since both entail spatial and temporal variations. Hence,

spatio-temporal analysis of both mobile traffic and energy arrival data are nec-

essary. To this end, the authors in [9] analyze aggregate mobile traffic data of

a number of operator owned BSs in an urban scenario to visualize and represent

the temporal variation of the mobile traffic load in specific geographical positions.

They have developed a model that combines both time and location information

for analyzing large scale cellular network data. They provide a spatial distribution

of cellular traffic in terms of geographical traffic density. The spatial distribution

shows the traffic generation at different times of the day in a certain geographical

area. The result reveals strong correlation between temporal and spatial charac-

teristics. Moreover, the temporal distribution analysis provides the traffic pattern

in different time scales such as hourly, daily and weekly basis. In addition, their

results show that such an urban coverage area exhibits five mobile traffic patterns,

namely residential, office, entertainment, transport and comprehensive, with a

model that also captures the daily mobile traffic variation in different hours both

in week days and weekends. However, cellular network data is of a large volume

with variety of information, which makes it big data. Nonetheless, an extensive

big-data analysis of cellular network data including their spatio-temporal distri-

bution is missing in the literature. One of the challenges for a lack of large-scale

mobile traffic data analytics is the lack of data that captures realistic traces of cel-

lular network activities, e.g, service based requests. Most of the data are operator

owned with limited availability for research.
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Moreover, energy arrival also exhibits spatio-temporal variation. Hence, accurate

models for representing harvested energy with a reasonable time granularity are re-

quired for successful application of optimization tools. For this reason, the authors

in [92] developed a model that can be used as a tool to determine the amount of

harvested solar power for small form-factor devices, including SBSs. The model is

based on extensive database of solar irradiation for many years and it gives a rea-

sonable estimate of expected energy arrival considering time of the day, month and

status of the day. In addition, the authors in [93] also propose a solar irradiance

model that can capture the small time-scale (in order of minutes) fluctuations.

However, both papers exploit only the temporal variation of solar energy arrival.

On the other hand, the authors in [94] develop a solar irradiance model considering

the spatio-temporal variation of solar energy arrival. The model, by exploiting the

spatio-temporal correlation, is proved to be of high accuracy. However, it is devel-

oped for large-scale power utility applications. In addition to solar, other ambient

energy sources, such as wind, also exhibit spatio-temporal variation. For instance,

the authors in [95] propose a model of wind energy forecasting by exploiting the

spatio-temporal correlation of large data set of wind speed and direction. However,

most of the literature focus on large-scale power system applications. Models of

EH sources that focus on EH communication devices such as SCs require further

investigation. A key input for developing such models is data. As a result, the Na-

tional Renewable Energy Laboratory (NREL) maintains national solar radiation

database [96] that provides solar radiation data of US territories for 30 or more

years. Such open database encourages further investigation in the field of energy

source modeling and forecasting and need to be adopted by other regions as well

as for other energy sources.

2.5.2 Optimization in CRAN

Optimization tools are necessary for CRAN planning and placement of virtual

network functions. The authors in [97] investigate the BBU pool placement prob-

lem in CRAN with the goal of minimizing deployment costs with constraints of

processing capacity, synchronization (latency) and traffic demands. The studied

cellular network is served by certain number of BBU pools and RRHs. The in-

vestigation leads to NP-hard integer programming problem and an algorithm base

on local search is proposed. A similar approach is also taken in [98], where vir-

tual network function placement and assignment problems are investigated. The

placement problem deals with which of the available network nodes can be used as
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BBU servers, whereas, the assignment problem deals with which subset of RRHs

are assigned to a specific BBU server. These problems are formally formulated as

binary integer linear programming problem. The ultimate goal here is minimizing

server cost, fronthaul costs and latency. In addition, an approximate and faster

algorithm is proposed in cases when the size of the network is large and many in-

stances of RRH and BBU servers are possible. The authors in [99] adopt a different

approach to tackle the problem of splitting BB functions between distributed units

and central units. A graph based model of BB transceiver structure is proposed

by assigning weights corresponding to computational and front-hauling costs. An

optimal splitting problem is then converted to graph clustering problem and the

work uses genetic algorithm to solve the problem imposing a path delay constraint.

Genetic algorithms are also applied for dynamic RRH to BBU mapping challenge

in CRAN [100]. The proposal aims to achieve dynamic BBU - RRH reconfigu-

ration according to traffic conditions. It is shown that such dynamic mapping

between RRHs and BBUs results in enhanced QoS.

Most of the literature focus on enabling dynamic RRH-BBU mapping in CRAN.

However, the application of optimization tools in CRAN is far beyond. With

the notion of flexible functional split and fog/edge nodes, not only the dynamic

mapping between RRH-BBU is necessary, but also where to place certain network

functions optimally, considering QoS demands and available resources including

energy. This involves network wide data collection, processing the collected data

and applying optimization tools to decide on, where and when to deploy certain

network functions as well as maintenance of their life cycles. In this regard, the

authors in [101] propose an optimal flexible functional split option selection scheme

for a CRAN architecture with Radio Remote Unites (RRUs) supplied by renew-

ables. They have shown that optimal functional split selection problem can be

formulated as a convex optimization and propose an online heuristic algorithm

that does not rely on future energy arrival information. However, the study in

[101] is focused only on throughput maximization and the case of multi-RRUs is

not explored. In conclusion, there is a gap in the literature in integrating EH and

flexible functional split options in MEC-enabled RAN.

2.5.3 General learning frameworks

Some proposals emphasize the importance of a general purpose learning framework

for multi-purpose optimization goals. Such platforms can be used to generate

single purpose RRM policy by learning on the collected network wide data. The
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learning platforms should account for noisy nature of data collection and ensure

prediction of what measurements are to be expected. An example of network-wide

ML based cognition platform is proposed in [102]. The authors identified how

Generative Deep Neural Networks (GDNNs) are suited for network wide cognition

and full self-organization capability. They also pointed out that the application

of un-supervised learning, using GDNN from input network wide measurements,

can result in high level abstraction representation of the input measurement data.

As a result, supervised and reinforcement learning applications for specific tasks

can be developed using such high level abstractions. The proposed framework

is called COgnition BAsed NETworkS (COBANETS) which involves cognitive

network nodes with an infrastructure for learning, modeling and optimization. The

framework is an example of the need for combination of ML and softwarization, in

particular SDN, as a re-configuration tool. COBANETS motivates its design on

three recent trends; (i) recent ML advances, particularly in the unsupervised deep

learning field, which is suitable for unlabeled data as the cellular network data

is massive and usually unlabeled, (ii) recent research advances in re-configuration

tools namely SDN and NFV and (iii) the advancement in the computational power

in todays state-of-the-art processors.

The authors in [103] also emphasize the need for a shift from single purpose RRM

algorithms to general purpose RRM framework that is capable of generating con-

trol policies automatically. In particular, they propose a general RL based RRM

framework, that can be applied to generate and update control policies for various

resource management objectives, based on experience, namely data gathered by

nodes in the network. Similarly a network wide intelligent architecture, which com-

bines the benefits of SDN and ML for self-automation is described in [104]. Their

design is based on the novel knowledge-plane idea proposed by [105] and applied to

SDN-enabled networks. Their proposal transforms the network-wide collected data

into knowledge by leveraging ML, hence resulting a knowledge-defined networking

paradigm. However, these general learning frameworks are faced with many ob-

stacles that hinders their practical application. These challenges range from data

collection, appropriate format of data representation, identifying domain specific

structures including spatio-temporal correlations and lack of real-time test-beds

for experimental evaluation.
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2.6 BS Power Consumption Model

In this section, we explain the power consumption model adopted for a scenario

described in Section 1.2. The BS power requirement is usually modeled as linearly

dependent on the load with an additional baseline load independent component

[106]. However, our scenario considers vSCs powered by EH which are relying on

the MBS resources for full or part of their BB processing requirements. Hence, the

power consumption requirement of each vSCs as well as the MBS are dependent on

the functional split options selected. As a result, a more flexible power model for es-

timating the relative power consumption requirements of BB functions is required.

A flexible BS power consumption model is proposed in [6, 7]. In these works, more

detailed power model of BS components and sub-components are proposed, relying

on the split of BSs into a number of components and sub-components as shown

in Fig. 2.5. According to the model, the main sub-components of a BS are the

digital BB, the analog RF, the Power Amplifier (PA) and the power system (power

conversion and cooling). The model in [6, 7] is a general flexible power model of

BSs and provides the power consumption in Giga Operation Per Second (GOPS).

Technology dependent GOPS to Watt conversion factor is applied to determine

the power consumption in Watts.

Figure 2.5: BS components in the power models of [6, 7]

It is important to have an estimation of power consumption requirements of dif-

ferent functional splits in our scenario. Moreover, based on the analysis in [6, 7]

regarding the BB tasks with significant energy requirements, we have consid-

ered three functional split options as targets. These are: PHY-RF, UpperPHY-

LowerPHY and MAC-PHY splits. Hence, based on the general model descriptions

in [6, 7], we have mapped the various BB processing tasks of the three functional

split options to their power requirement estimations. The main BB tasks associ-

ated with these functional split options are shown in Fig. 2.6.
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Figure 2.6: BB functions with the considered functional split options

The total BS power consumption is given by:

PBS = PBB + PRF + PPA + Poverhead (2.1)

where PBB is the power consumption due to baseband processing, PRF is the power

consumption due to RF, PPA is the power consumption by the power amplifier and

Poverhead is the overhead power consumption, e.g., cooling system.

The BB power consumption, PBB, is generally computed as:

PBB = PBB1 + PBB2 (2.2)

More in detail, PBB1 is given by:

PBB1 = [PCPU + POFDM + Pfilter] (2.3)

where PCPU is the idle mode power consumption, POFDM is the power consumption

due to OFDM processes and Pfilter is the power consumption due to filtering. In

addition, PBB2, is given by:

PBB2 = [PFD + PFEC] (2.4)
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where PFD is the frequency domain processing power consumption and PFEC is the

power consumption due to FEC processes. The power consumption values mainly

depends on bandwidth, number of antennas and the load fraction. In particular,

PFD and PFEC are dependent on the traffic load. The power dependence on these

factors can be both linear and exponential [6]. The BB power consumption of the

vSC depends on the adopted functional split option, in particular it is given as:

P vSC
BB =


0, if vSC is in PHY-RF

PBB1, if vSC is in UpperPHY-LowerPHY

PBB1 + PBB2, if vSC is in MAC-PHY

(2.5)

The power consumption of the MBS is determined by (2.1). The power consump-

tion of MBS includes two components: the power required for serving UEs attached

to the MBS and an additional power required by its MEC server for the BB pro-

cessing of vSCs in the same mobile cluster, which depends on the functional split

option selected by each vSC. For instance, when the vSCs are in PHY-RF split

mode, the vSC power consumption model does not include the corresponding PBB,

since the BB processing takes place at the MBS site. Instead, the corresponding

PBB term is added to the MBS. On the other hand, in MAC-PHY split mode, the

vSC power consumption includes the BB power consumption term and is given in

(2.1). Considering the aforementioned model description, the power consumed by

the MBS is computed as:

Pm = PMBS
BS +

∑
i∈G

P i
BB (2.6)

where PMBS
BS is the power consumption of the MBS computed as in (2.1), P i

BB is

the baseband power consumption of the i-th vSC and G is the set containing the

vSCs in PHY-RF or UpperPHY-LowerPHY split modes.
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Reinforcement Learning

3.1 Introduction

RL is a learning paradigm that relies on learning by interacting with the environ-

ment without an exemplary supervision [8]. It gives the ability to learn behaviors

online and adapting automatically to the temporal dynamics of the system. It is a

well known framework of solving a problem of learning from interactions to achieve

a goal, also known as a sequential decision making problem. In RL, the learning

agent senses the state of the environment, takes actions and transits in to a new

state. The environment returns a scalar feedback known as reward which repre-

sents the immediate impact of the particular action. Hence, RL is applied in creat-

ing autonomous systems that can improve themselves through agent-environment

interaction experience. In many applications of RL, the learning process is formu-

lated in a centralized fashion where a single entity takes actions, e.g. a robot in a

factory control, a base station in mobile networks. However, centralized formula-

tion of RL has its own challenges mainly due to large state-action spaces limiting

its scalability. An alternative approach is a decentralized/distributed formulation

of RL which is also known as multi-agent RL.

In what follows, we explain briefly a single-agent RL framework in Section 3.2.

DP and temporal difference algorithms including QL, SARSA and FQL are briefly

introduced in Sections 3.2.3 and 3.2.4 respectively. A more recent class of RL,

known as Deep Reinforcement Learning (DRL) is also presented in Section 3.3

and Section 3.4 gives a brief explanation about multi-agent RL.

33
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Figure 3.1: Agent-environment interaction in MDP [8]

3.2 Single-Agent RL

These classes of problems are formalized in terms of Markov Decision Processes

(MDPs). MDPs are classical formalization of sequential decision making, where

actions influence not just immediate rewards, but also subsequent situations or

states, and through those, future rewards. Thus MDPs involve the notion of de-

layed reward and the need to trade off between immediate and delayed reward.

In MDP frameworks, the learner /decision maker is usually called the agent. The

thing it interacts with, comprising everything outside the agent, is called the en-

vironment. These interactions happen continually, i.e. the agent selecting actions

and the environment responding to these actions and presenting new situations

to the agent. The environment also gives rise to rewards, special numerical val-

ues/feedback that the agent seeks to maximize over time through its choice of

actions. A diagram of agent-environment interactions is shown in Fig. 3.1. More

specifically, the agent and environment interact at each of a sequence of discrete

time steps, t = 0, 1, 2, 3, .... At each time step t, the agent receives some repre-

sentation of the environments state, St ∈ S, and on that basis selects an action,

At ∈ A(s). One time step later, in part as a consequence of its action, the agent

receives a numerical reward, Rt+1 ∈ R, and finds itself in a new state, St+1. The

MDP and agent together thereby give rise to a sequence or trajectory that begins

like this: S0, A0, R1, S1, A1, R2, S2, A2, R3, ....

In finite MDP, the sets of states S, actions A and reward R have finite number

of elements. As a result, both the immediate reward Rt and the state St have

well defined probability distributions dependent only on the preceding state and

actions, given in (3.1).

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (3.1)
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The function p defines the dynamics of the MDP, i.e. mapping states to prob-

abilities. In MDPs, the transition probabilities given by p in (3.1) completely

characterize the environment’s dynamics. That is, the probability of each state St

and reward Rt depends only on the immediately preceding state St−1 and action

At−1. Hence, the state must include information about all aspects of the past

agent-environment interaction. These states are said to have Markov property.

MDP framework provides a considerable abstraction of the problem of goal-directed

learning from interaction. It proposes that any problem of learning goal-directed

behavior can be reduced to three signals, which are:

� choices made by the agent (the actions),

� the basis on which the choices are made (the states), and

� a signal to define the agent’s goal (the rewards).

Consequently, RL problem is defined in terms of states, actions and rewards.

Through the RL learning process, according to the current state, the agent ex-

ecutes a certain action and receives an immediate reward and as a result of the

action, its environment will evolve to a new state. It is important to note that in

RL, the rewards can be delayed. Hence, it is a sequential decision making process

with the goal of maximizing cumulative reward.

3.2.1 Returns

The RL goal is to maximize the cumulative reward the agent receives in the long

run. This goal is defined formally as maximizing the expected return, where the

return, denoted Gt, is defined as some specific function of the reward sequence. In

the simplest case, the return is defined as the sum of the rewards (3.2).

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (3.2)

where T is a final time step. This definition is valid for application in which there

is a natural notion of final time step, i.e. when agent-environment interaction

breaks naturally into sub-sequences known as episodes and the last state is called

the terminal state. The tasks in these setup are known as episodic tasks. On

the other hand, in many cases the agent-environment interaction does not break
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naturally into identifiable episodes, but goes on continually. These are known as

continuing tasks. The return formulation in (3.2) is problematic for continuing

tasks since T = ∞ which makes the return be infinite. As a result, we need to

introduce the concept of discounting. Accordingly, the agent tries to select actions

so that the sum of the discounted rewards it receives over the future is maximized.

In particular, it chooses At to maximize the expected discounted return defined in

(3.3).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (3.3)

where γ is a parameter, 0 ≤ γ ≤ 1, is called the discount rate and controls how

strongly the agent takes future rewards into account. For instance, if γ approaches

1, the return objective takes future rewards into account more strongly, i.e. the

agent is more farsighted.

3.2.2 Policies and Value Functions

RL algorithms involve estimating value functions. Value functions are functions

of states (or state-action pairs) that estimate how good it is for the agent to be

in a given state or how good it is for the agent to perform a given action in a

given state. The level of how good is defined in terms of future rewards that can

be expected, i.e. expected return. The expected return depends on what actions

the agent will take. Hence, value functions are defined with respect to particular

ways of acting, known as policies. Formally, a policy is a mapping from state to

probabilities of selecting each possible action. If an agent is following policy π at

time t, then π(a|s) is the probability that At = a if St = s.

The value function of a state s under a policy π, denoted as vπ(s), is the expected

return when starting in s and following π thereafter. Value function can be defined

formally in (3.4).

vπ(s) = Eπ[Gt|St = s], for all s ∈ S (3.4)

where E[.] denotes the expected value of a random variable given that the agent

follows policy π, t is any time step and Gt is defined in (3.3). The function vπ

is known as state-value function for policy π. Another important formulation of

value function is to estimate the value of taking action a in state s under a policy
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π, denoted as qπ(s, a), as the expected return starting from s, taking the action

a and thereafter following policy π. The function qπ is known as the action-value

function for policy π and is formally defined in (3.5).

qπ(s, a) = Eπ[Gt|St = s, At = a] (3.5)

The value functions vπ and qπ can be estimated from experience. For instance, if

an agent following policy π maintains an average of the actual returns following

each state encountered, then the average will converge to the value of the state as

the number of times the state is encountered approaches infinity. These estimation

methods are known as Monte Carlo methods. However, if there are many states,

it may not be practical to keep separate averages for each state individually.

A fundamental property of value functions is that they satisfy recursive relation-

ships. For any policy π and any state s, the following consistency condition holds

between the value of s and the value of its possible successor states:

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)], for all s ∈ S (3.6)

The expression in (3.6) is a sum over all values of the three variables, a, s′ and

r. For each triple, we compute the probability, π(a|s)p(s′, r|s, a) and weight the

quantity in brackets by that probability and sum over to get an expected value.

Equation (3.6) is known as the Bellman equation for vπ and expresses the relation-

ship between the value of a state and the values of successor states. The Bellman

equation is the basis of a number of methods to compute, approximate and learn

the value of a policy vπ.

3.2.3 Dynamic Programming

DP is a collection of algorithms that can be applied to compute the optimal policies

given a perfect model of the environment as a MDP [8, 107]. DP algorithms have

only limited application in RL due to their assumption of a perfect model and

computational expenses. DP algorithms are obtained by turning the Bellman
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equation in (3.6) into update rules for improving approximations of the desired

value functions.

3.2.3.1 Policy Iteration

It is one of the most widely used method for estimating an optimal policy π∗ and

its corresponding value v∗. Starting from an arbitrarily policy π, policy iteration

method involves a series of policy evaluation to estimate vπ and improvement to

get a better policy π′. These sequence guarantees that each policy is a strict

improvement over the previous one unless it is already the optimal one. Since a

finite MDP has only a finite set of policies, this process converges to an optimal

policy and optimal value function in a finite number of iterations. The procedure

of policy iteration is shown in Algorithm 1.

Algorithm 1 Policy Iteration for estimating π∗

1. Initialize V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S
2. Policy Evaluation
for δ > θ (a small positive number) do:

δ ← 0
for each s ∈ S do:

v ← V (s)
V (s)←

∑
s′,r p(s

′, r|s, π(s))[r + γV (s′)]
δ ← max(δ, |v − V (S)|)

end for
end for
3. Policy Improvement
policy-stable← true
for each s ∈ S do:

old-action← π(s)
π(s)← argmaxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]
if old-action 6= π(s) then:

policy-stable← false
end if
if policy-stable then:

stop and return V and π
else

go to step 2
end if

end for

3.2.3.2 Value Iteration

The main drawback of policy iteration method is that it involves policy evalu-

ation, which is an iterative computation requiring multiple sweeps through the
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state set. As an improvement to policy iteration, policy evaluation steps can be

truncated without losing the convergence guarantees of policy iteration. When,

policy evaluation is truncated after just one sweep (one update for each state),

the algorithm is known as value iteration. Value iteration is simply the Bellman

equation in (3.6) turned to an update rule. The procedure for value iteration is

shown in Algorithm 2.

Algorithm 2 Value Iteration for estimating π∗

Algorithm parameter: a small threshold θ > 0 determining the accuracy of estimation
Initialize V (s) arbitrarily for all s ∈ S
for δ > θ do:

δ ← 0
for each s ∈ S do:

v ← V (s)
V (s)← maxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]
δ ← max(δ, |v − V (S)|)

end for
end for
Output a deterministic policy π such that
π(s) = argmaxa

∑
s′,r p(s

′, r|s, a)[r + γV (s′)]

Even though, we have seen the notion of optimal value functions and optimal

policies, in practice this rarely happens. In many applications, optimal policies

can be generated only with extreme computational cost. Even if we have an accu-

rate model of the environment’s dynamics, it is usually not possible to compute an

optimal policy due to computational power available to the agent. Moreover, in ad-

dition to computation, memory availability is another constraint. A large amount

of memory is required to build-up approximations of value functions, policies and

models. In cases of small, finite state sets, it is possible to form approximations

using tables with one entry for each state (or state-action pair). These methods

are called tabular methods. Hence, we are forced to settle for approximations in

RL problems. The online nature of RL makes it possible to approximate opti-

mal policies in ways that put more effort into learning to make good decisions

for frequently encountered states, at the expense of less effort for infrequently

encountered states. As such, RL is a way of approximately solving MDPs.

3.2.4 Temporal Difference RL

Temporal Difference (TD) learning is a combination of Monte Carlo ideas and DP

ideas. That means, TD learning involves learning directly from raw experience

without a model of the environment’s dynamics and updating estimates based
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in part on other learned estimates, without waiting for a final outcome. Hence,

TD methods involve estimating the values of state-action pairs by making an

update at each time-step without waiting for a final return [8]. TD learning

involves the balance between choosing a random action to discover new knowledge

(exploration) or choosing an action with maximum q value (exploitation). This is

controlled by the policy used during the learning phase. An example and widely

used exploration/exploitation policy is ε-greedy which chooses a random action

with probability ε or an action with maximum q value with probability 1 − ε,

where ε is known as exploration rate parameter. The algorithms in TD learning

can be an on-policy or off-policy methods. In on-policy algorithms, learning an

optimal policy is done using the current estimate of the optimal policy where as,

in an off-policy methods, learning to approximate the optimal behavior is done

independently of the current policy being followed. Here, we specifically describe

QL and SARSA algorithms which belong to TD off-policy and on-policy algorithm

classes, respectively.

3.2.4.1 QL: Off-Policy TD Control

QL is an off-policy RL algorithm that can learn the optimal values for each state-

action pairs, also known as Q values. As long as all state-action pairs are visited

and continued to be updated, QL guarantees an optimal behavior regardless of

the specific policy being followed throughout the learning phase. The equation for

updating the Q-values is given by (3.7). The procedure of QL algorithm is shown

in Algorithm 3.

Q(St, At) = Q(St, At) + α(Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)) (3.7)

where α is the learning rate, γ is the discount factor, At is the current action,

Rt+1 is the immediate reward, St and St+1 are the current and the next state

respectively. The policy still has an effect as it determines which state-action pairs

are visited and updated. However, all that is required for correct convergence is

that all values of state-action pairs continue to be updated. The QL algorithm is

shown in procedural form in Algorithm 3.
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Algorithm 3 QL Algorithm

Initialize Q(S,A)∀S ∈ S, A ∈ A arbitrarily
for each episode do:

Initialize St
for each step, t, of episode do:

Choose At from S using policy derived from Q (e.g., ε-greedy)
Take action At, get reward Rt+1 and next state St+1

update Q-value using (3.7)
St = St+1

end for
end for

3.2.4.2 SARSA: On-Policy TD Control

On-policy methods involve estimating the action value function qπ(s, a) for the

current behavior policy π and for all states s and actions a. In these methods, the

transitions from state-action pair to state-action pair are used to learn the values of

state-action pairs. Hence, every element of the transition, (St, At, Rt+1, St+1, At+1)

are used in updating the values of state-action pairs, shown in (3.8). This gives rise

to the name SARSA for the algorithm. In SARSA, the update of the state-action

pair values is done after observing a transition from one state-action pair to the

next state-action pair and this transition is dependent on the policy used to select

the actions at each time step. The procedure of SARSA algorithm is shown in

Algorithm 4.

Q(St, At) = Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At)) (3.8)

where α is the learning rate, γ is the discount factor, At and At+1 are the current

and next actions respectively, rt is the immediate reward, St and St+1 are the

current and the next state respectively.

Algorithm 4 SARSA Algorithm

Initialize Q(S,A)∀S ∈ S,A ∈ A arbitrarily
for each episode do:

Initialize St
Choose At from S using policy derived from Q
for each step, t, of episode do:

Take action At, get reward Rt+1 and next state St+1

Choose At+1 from St+1 using the policy derived from Q
update Q(St, At) using (3.8)
St = St+1

At = At+1

end for
end for
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3.2.4.3 Fuzzy Q-Learning

FQL involves the use of both Fuzzy Inference Systems (FISs) and QL. FIS is the

process of mapping a set of input control signals to a set of output actions through

fuzzy rules [108]. FIS are mainly applicable in systems that cannot be represented

by explicit mathematical models through approximation of system knowledge in

a similar way to human perception and reasoning. The design of FIS involves the

following steps [108]:

1. Fuzzification of the crisp input signals : crisp values are the exact values

as read from sensors or measurements. Fuzzification of crisp input signals

is done by defining the fuzzy sets and membership functions of the input

signals. Hence, the state space is partitioned into various fuzzy sets through

membership functions. Each fuzzy set is associated with linguistic terms such

as ”high” or ”low”. The most common membership functions are triangular

and trapezoidal.

2. Defining the rule base: this step involves defining the behavior of the con-

troller in terms of control actions using linguistic variables defined in the first

step. This corresponds to a series of ”if ... then” rules for each combinations

of fuzzy sets of input signals. For deriving these rules, expert knowledge and

experience is generally used.

3. Defuzzification: this step reverts back the results from the fuzzy rule base in

step 2) back to crisp mode and activates the output action.

FIS elements are shown in Fig. 3.2. The limitations of FIS arise from the rule base

definition in step 2). FIS requires an expert knowledge to define the consequents

of each rule (each combination of input signals and fuzzy sets). However, most of

the consequents can not be easily deduced using previous knowledge/experience

which can result in lower performance of the FIS. To overcome these challenges,

FIS is applied in combination with RL, in particular QL, to learn the consequents

of each rule.

Even though QL is one of the most widely used RL algorithms, it can be inefficient

for large state-action spaces and cannot be directly applied in problems involving

continuous state-action spaces. In such cases, fine grained discretization of the

state-action space helps, but at a cost of an exponential increase in the state space,

which makes the learning process slow. In order to overcome these limitations,



Chapter 3. Reinforcement Learning 43

Figure 3.2: FIS elements

fuzzy functions approximation can be used with QL and achieve a more smooth

action transition in response to a smooth change in states, without the need for fine

grained discretization. FQL allows to integrate the benefits of FIS in QL: provide

good approximations of the Q-function and enable the use of QL in continuous

state spaces [109]. In FQL, let X be the crisp set of inputs defining the state

of a learning agent. Crisp values are the exact values of the inputs without any

form of pre-processing. The process of converting the crisp values to fuzzy values is

known as fuzzification. Fuzzification is done according to the degree of membership

determined from membership functions. Each fuzzy rule corresponds to a state

and its firing strength defines the degree to which the agent is in that state. Unlike

FIS, in FQL, rules do not have fixed consequents.

The consequents of each rule are learned through exploration/exploitation algo-

rithm. The resulting FIS will have competing actions for each rule and each rule

with have the following form:

if X is Xi then A[i, 1] with q[i, 1]

or A[i, j] with q[i, j]

.

.

.

or A[i, k] with q[i, k],

where A[i, k] is the kth possible action in rule i and q[i, k] its corresponding q value.

Each fuzzy rule is corresponding to a state. A state Xi is defined as: (x1 is Xi,1

and x2 is Xi,2 and .... xn is Xi,n), where Xi,j, i = 1, ..., n and j = 1, ..., n are the

fuzzy sets corresponding to the membership functions of each crisp inputs xi. The

procedure of FQL algorithm is shown in Algorithm 5.
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Algorithm 5 FQL Algorithm

Initialize q-values q(i, k) for each rule i and number of possible actions Ak

Observe the crisp input state Xt

Select action Ai from the number of possible actions for each rule i according to

ε-greedy policy:

Ai = argmaxj q(i, j) with probability 1− ε,
Ai = random Aj , j = 1, ...k with probability ε

Determine the global action A(Xt) for the state Xt using (3.9)

Estimate the corresponding Q value Q(Xt, A) using (3.10)

Take action A(Xt) and observe the new state Xt+1

Get the reward rt

Estimate the value of the new state v(Xt+1) using (3.11)

Calculate the error signal ∆Q using (3.12)

Update q-values using (3.13)

A(X t) =

∑i=N
i=1 wi(X t)Ai∑i=N
i=1 wi(X t)

(3.9)

where wi(X t) is the firing strength of rule i which is determined by the membership

functions of crisp input X t using fuzzy and operation and Ai is the corresponding

action/consequent of rule i from the exploration/exploitation policy.

Q(X t, A) =

∑i=N
i=1 wi(X t)Aiq(i, Ai)∑i=N

i=1 wi(X t)
(3.10)

where q(i, Ai) is the q-value associated with rule i and its selected action Ai.

v(X t+1) =

∑i=N
i=1 wi(X t+1)Aiq(i, Amax)∑i=N

i=1 wi(X t+1)
(3.11)

where wi(X t+1) is the firing strength of rule i evaluated from the new state X t+1

and q(i, Amax) is the maximum q-value for rule i.

∆Q = rt + γv(X t+1)−Q(X t, A) (3.12)

where γ is the discount factor.

∆q(i, Ai) = α∆Q
wi(X t)∑i=N
i=1 wi(X t)

(3.13)
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where α is the learning rate.

3.3 Deep Reinforcement Learning

Tabular RL methods, e.g., QL, work through mapping each state to a value.

Hence, each state-action pair need to be explored. As a result, these RL methods

can be inefficient for large state-action spaces and cannot be directly applied in

problems involving continuous state-action spaces. In such cases, fine grained

discretization of the state-action space can be applied, e.g., FQL, but at a cost of

an exponential increase in the state-action space. Learning via tabular RL methods

may become infeasible due to the need to store large state-action table and a very

slow learning process of exploring each state-action pairs. Hence, it is important

to learn to generalize similar states to similar values as well as inferring the values

of new states from the already explored ones. Recently, neural networks have been

used for approximating the Q-values of state-action pairs [110]. The methods are

known as DRL and combine deep neural networks with RL. In particular, Deep

Q-Networks (DQN) use deep neural networks as value approximation functions

[110, 111]. In what follows we briefly describe deep neural networks and the

foundations of deep Q-network.

3.3.1 Deep Neural Network

Neural Networks are models of computation inspired by the neurons in human

brains. A neural network can be represented as a direct graph whose nodes cor-

respond to neurons and edges correspond to links between them. Hence, each

neuron receives as input a weighted sum of the outputs of the neurons connected

to its incoming edges. The recent advances in computing power, algorithms and

big data drive the effectiveness of neural networks with multiple layers between

input and output layers. This paradigm is known as deep learning and the neural

network architecture is called deep neural network.

Deep learning relies on a function f : x → y parametrized with θ ∈ Rnθ :

y = f(x; θ). A deep neural network is characterized by a succession of multi-

ple processing layers. Each layer consists in a non-linear transformation and the

sequence of these transformation leads to learning different levels of abstraction

[111]. A simplified neural network with one fully connected hidden layer is shown

in Fig. 3.3. The first layer is given the input features x in the form of a column
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Figure 3.3: Simple neural network with one hidden layer

vector of size nx. The values of the next hidden layer are a transformation of these

values by a non-linear parametric function, which is essentially a matrix multipli-

cation by W1 of size nh×nx plus a bias term b1 of size nh followed by a non-linear

transformation as shown in (3.14).

h = A(W1 · x+ b1) (3.14)

Where A is the activation function. These activation functions are non-linear and

consequently the transformation at each layer is non-linear. The hidden layer h

can in turn be transformed to other sets of values up to the last transformation

that provides the output values y. For the case of one layer neural network, the

output y is given as (3.15):

y = (W2 · h+ b2) (3.15)

Where W2 is of size ny × nh and b2 is of size ny. The layers of neural network

are trained to minimize the empirical error IS[f ]. The most widely used method

for optimizing the parameters of a neural network is based on a gradient descent

via the back propagation algorithm [112]. In this case, at every iteration, the

algorithm changes its parameters set θ so as to fit the desired function given in

(3.16).

θ ← θ − α∇θIS[f ] (3.16)

Where α is the learning rate.

These type of neural networks are known as feed forward networks. Recently,
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Figure 3.4: DQN Framework

many different types of neural network layers have appeared beyond the simple

feed forward networks. Each variation provides specific advantages depending

on the application at hand. The two most widely used types are convolutional

layers which are well suited to images and recurrent layers which are particularity

well suited for sequential data. In addition, there is a growing trend of using an

increasing number of layers.

3.3.2 Deep Q-Network (DQN)

DQN uses neural networks as estimators of Q-values for state-actions pairs. Neural

networks are widely known as universal function approximators and combining

them with RL has recently been shown to be a promising paradigm with many

successful applications. Earlier RL algorithms, e.g., QL, are limited in practice

due to the tabular nature of Q-value updates which limits the scalability of the

algorithms in case of problems involving continuous / large state-action pairs.

DQN allows us to work with such complex problems through Q-value estimations

without a need for a large and impractical look-up tables. The main idea behind

DQN algorithm is shown in Fig. 3.4.
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Algorithm 6 DQN Procedure

Initialize replay memory D of capacity M

Initialize action-value neural network Q with random weights θ

Initialize target action-value neural network Q̂ with weights θ− = θ

for each episode do:

Initialize St - observation from the scenario

for each step, t, of episode do:

with probability ε select a random action at, otherwise at = π(St)

Take action at, get reward rt and observe next state St+1

Store transition ( St, at, rt, St+1) in D

Sample a random mini batch of K transitions (Sj , aj , rj , Sj+1) from D

Set target value, yj = rj + γ ×maxâ Q̂(Sj+1, â;θ−)

Perform a gradient descent step on (yj −Q(Sj , aj ;θ))2 with respect to θ

reset Q̂ = Q every C steps

end for

end for

As recommended in [110], there are some techniques usually applied to help the

convergence of DQN algorithm. Among these, storing previous experiences of

states, actions, reward and next state in memory buffer and randomly sampling

mini-batch of this experience for training the neural network is proved to be the

most effective way to ensure convergence by avoiding temporal correlation effects.

This technique is known as experience replay. The training procedure of DQN

with experience replay is shown in Algorithm 6.

3.4 Multi-agent Reinforcement Learning

Single Agent RL approach in systems involving many actors is prone to challenges

mainly arising from scalability and long convergence phase. In systems with mul-

tiple actors, e.g. mobile networks with many BSs, a centralized decision making

might experience long convergence and training phases due to high number of state

and action spaces. Hence, a distributed approach is more feasible in such systems

via sharing the problem among multiple agents and learning jointly towards a

common goal. This approach is known as multi-agent RL (MRL). MRL can also

harness new benefits from sharing experience, e.g. by communication, teaching

or imitation. Experience sharing can help agents with similar goals learn faster

and reach better performance. For instance, the agents can exchange information
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using communication [113], skilled agents can act as teachers for others [114] or

the learner may watch and imitate skilled agents [115]. Thanks to the decentral-

ized nature of MRL set-up, speed-up can also be realized via parallel computation.

MRL is also robust, i.e. when one or more agents fail in the system, the remaining

agents can take over some of their tasks. In addition, in MRL design, insertion

of new agents into the system is relatively easier leading to the a high degree of

scalabiltiy.

However, defining a good MRL goal is a challenge due to the correlation among

the agents’ environment and each agent objective can not be maximized inde-

pendently. Non-stationarity arises in MRL since all the agents in the system are

learning simultaneously. This lead to a moving target dilemma, i.e. the best

policy changes as the other agents’ polices change [116]. The learning process in

MRL is further complicated since exploration is required to obtain information

not only about the environment, but also about the other agents in order to adapt

their behavior. However, too much exploration can destabilize the other agents,

thereby making the learning task more difficult for the exploring agent. Hence

the agents decision depends also on the the decision taken by the other agents.

As a result, the learning agents need to be coordinated. Coordination typically

involves consistently breaking ties between equally good joint actions or strategies.

Coordination is needed both in cooperative settings as well as in self-interested

agents if the lack of coordination affects all the agents negatively.

In fully cooperative setting, as the one investigated in this work, the common

return or reward can be jointly maximized. In this approach, the agents have the

same reward function and the learning goal is to maximize the common discounted

return. An example of MRL algorithm for cooperative setting is Distributed QL

[117]. In this case, each agent maintains a local policy and local Q-function which

depends only on its action. These local Q-values are updated only when the update

leads to an increase in the Q-value, thus ensuring that the local Q-value always

captures the maximum of the joint-action Q-values. However, the algorithm is

limited only in deterministic problems with non-negative reward functions. An

other approach involves correlated and different agents’ returns which cannot be

maximized independently. Specifying a good MRL goal is challenging since it

should incorporate stability of the learning dynamics as well as adaptation to the

changing behavior of other learning agents. Stability ensures convergence to a

stationary policy. This requires the agents’ strategies to eventually converge to a

coordinated equilibrium like the Nash equilibria. However, the connection between

Nash equilibra and the performance of stochastic dynamic games is unclear [118].
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For ensuring adaption, Rationality [119] as well as the concept of no-regret [120]

are defined as criteria of an agent behavior in the environment where policies of

other agents change.

Empirical coordination techniques among the agents are also proposed in [121].

In these solutions, the convergence rate of RL algorithms are increased using a

heuristic function for selecting actions in order to guide the exploration of the

state-action space efficiently. Moreover, heuristically accelerated approach, which

was proposed as a mechanism to improve the training phase of a single-agent RL,

has been extended to MRL [122]. The external heuristic aids in coordinating the

agents and can be defined to have a centralized view of the effect of the agents’

action on the overall environment through adopting a hierarchical architecture.

This hierarchical approach is known as layered learning and has been applied to

energy management control in renewable powered mobile networks in [89].

In this thesis, the definition of a common system wide return as well as information

exchange among agents as ways of mitigating the coordination issue are presented

in detail in Chapters 6 and 7.



Chapter 4

Performance Bound Study

4.1 Introduction

This chapter focuses on determining the performance bounds of an optimal se-

lection functional split options for networks of vSCs that are solely powered by

EH. The functional splits give insights into considering more operation modes of

BSs, in addition to switch on/off. DP, in particular, shortest path search is used

to determine the optimal functional split options considering traffic requirements

and available energy budget. In addition, this chapter considers dynamic func-

tional split control with energy sharing. In this case, the vSCs are interconnected

to the MBS to form a micro-grid that enables them to share excess energy to

the MBS. Hence, the energy inflow is managed based on a harvest-store-share ap-

proach where a harvested energy is consumed by the vSC and any excess is stored

in the battery for later use. Whenever, the battery reaches its maximum capacity,

the excess energy is shared with the MBS to reduce grid energy consumption. The

main goals of this chapter are:

� Formulating the energy management of vSCs and a MBS with co-located

BBU pool as an offline optimization problem targeting three functional split

options, namely MAC-PHY, UpperPHY-LowerPHY and PHY-RF;

� Applying a DP algorithm to find the optimal placement of functional split

options considering the traffic demand, energy reserve and forecasted energy

arrival. In particular shortest path search is applied for solving the optimiza-

tion problem;

51
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� Presenting the performance of dynamic placement of functional split op-

tions through numerical results with comparison against static configura-

tions. Hence, these results can serve as performance bounds for online opti-

mization approaches;

� Integration of distributed EH and storage systems in RANs and theoretical

formulation of the joint load control and energy sharing optimization prob-

lem;

� Design of a joint optimal traffic and computational load control plus energy

sharing method;

� Dimension of the EH and storage systems, characterization of the network

performance with energy saving and cost analysis for different EH and storage

design approaches.

In the following, we describe the network scenario in Section 4.2. The system

model is explained in Section 4.3. The optimization problem statement and the

optimal solutions are described in Section 4.4. The simulation scenario and re-

sults are explained in Section 4.5. Moreover, the modified problem statement to

include energy sharing and numerical results are shown in Section 4.6. Finally,

the conclusions of the chapter are presented in Section 4.7.

4.2 Network Scenario

We consider a CRAN-like architecture composed of a MBS with co-located BBU

pool, acting as MEC server, and vSCs that are deployed in hot-spots for capacity

enhancement. The MBS is relying on grid power whereas all the vSCs are powered

by EH and batteries. The BB functions of the vSCs are executed as virtual network

functions. The network scenario is described in detail in Section 1.2. These virtual

network functions can be executed locally at the vSCs own resources or remotely

using the BBU pool resources at the MBS. The decision on where to execute the BB

functions depends on the available energy budget at the vSCs. The architecture

considered is depicted in Fig. 1.2. The objective of this study is to determine the

performance bounds of dynamic functional split selection policy. The functional

split options that can be applied for the vSCs are given in [1]. Considering the

potential centralization gains and effects on energy, we have selected the following

functional split options as targets:
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� PHY-RF – all the BB processing is done centrally at the BBU pool at MBS

site;

� UpperPHY-LowerPHY – the LowerPHY layer processing is done by the vSC

whereas UpperPHY and above are executed by the BBU pool at MBS site;

� MAC-PHY – the whole PHY layer processing takes place at vSCs whereas

MAC and above layers are done at the central BBU pool.

4.3 System Model

A vector At , [At1, A
t
2, . . . , A

t
N ] denotes the modes of operation of the N vSCs at

time slot t where Atn is the mode of nth vSC. Each single element Ati is defined as:

Ati =



0, if ith vSC is switched off

1, if ith vSC is in PHY-RF split mode

2, if ith vSC is in UpperPHY-LowerPHY mode

3, if ith vSC is in MAC-PHY mode

(4.1)

The energy harvested by each vSC at time slot t is denoted byH t , [H t
1, H

t
2, . . . , H

t
N ]

whereas the energy stored by each vSC at time slot t is denoted byBt , [Bt
1, B

t
2, . . . , B

t
N ],

where H t
n and Bt

n are the energy harvested and stored by the nth vSC respec-

tively. The traffic load experienced by each vSC is denoted by the vector Lt ,

[Lt1, L
t
2, . . . , L

t
N ] where Ltn denotes the traffic load of nth vSC. The power consump-

tion model for estimating the energy requirements of vSCs and MBS is described

in Section 2.6.

4.3.1 EH and Demand Profiles

Hourly EH traces from a solar source are generated using the SolarStat tool [92].

The tool is based on a Markov model that provides accurate statistics per month

basis by processing hourly energy arrival data of 20 years. EH traces are gener-

ally bell-shaped with a peak around midday, whereas the EH during the night is

negligible. Moreover, as discussed in [92], high variability of the harvested energy

may occur during the day, even for the summer months. As a result, although the

energy inflow pattern can be known to a certain extent, intelligent and adaptive
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Figure 4.1: Typical weekly traffic profiles in different functional regions [9]

algorithms that make their decisions based on current and past inflow patterns,

as well as predictions of future energy arrivals, have to be designed.

For the traffic demand profile, the UEs have been classified as in [106] in heavy

and ordinary users according to their amount of requested traffic. Moreover, we

use the traffic load profile obtained in [9] as the average amount generated by

the users. In addition, based on the average traffic generated by the users, traffic

variability is added following a normal distribution using standard deviation from

measurements of real mobile traffic traces [123]. The traffic demand of each UEs in

a cycle are dimensioned based on traffic profiles presented in [9], which are derived

from time, location and frequency information of thousands of cellular towers. The

analysis in [9] demonstrates that the urban mobile traffic usage can be described

by mainly five basic time domain patterns that corresponds to different functional

regions, i.e., residential, office, transportation, entertainment and comprehensive

areas. Moreover, these traffic profiles are also characterized by weekdays and

weekend variation. The relative magnitudes of the traffic in these regions as well

as both weekday and weekend variations are depicted in Fig. 4.1, as described

in [9].

In particular, we are considering residential and office profiles which are the most

common use cases for urban deployment scenarios. An example of a normalized
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Figure 4.2: Typical weekly normalized energy harvesting, office traffic profile and
residential traffic profile

EH trace, the residential traffic profile and the office traffic profile for both week

and weekend days is shown in Fig. 4.2. The figure shows that EH and residential

traffic profile peaks occur at different hours of the day i.e. EH peak occurs around

noon where as traffic demand peak occurs during the evening emphasizing the

need for an intelligent energy management policy to maximize the utilization of

harvested energy.

4.4 Optimal Solution

4.4.1 Problem Statement

An intelligent energy management decision is a sequential process that selects the

optimal configurations of the N vSCs based on the traffic demand, the energy

reserve and energy arrivals. The objective is to minimize both the grid energy

consumption and the amount of dropped traffic due to the vSCs in the OFF

mode. Since the vSCs are solely powered by EH, the grid energy consumption

of the system is equivalent to the energy consumption of the MBS. The decision

process evolves in cycles along with the traffic demand and the energy arrival

variations. At each cycle t, the task of the centralized controller is to select the

optimal mode of each vSC among the four options given by (4.1). Hence the goal

is to minimize the total weighted cost of both grid energy consumption at MBS

and the traffic demands that cannot be satisfied due to vSCs in the OFF mode.
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For a finite time horizon, K, it is modeled as a DP problem:

min
{At}t=1,...,K

K∑
t=1

f(At)

subject to Bt
(i) > Bth ∀i.

(4.2)

where Bth is the battery threshold level adopted to prevent damages to the storage

devices and K is the time horizon and f(At) is the cost function at time step t,

which is defined as:

f(At) = ω1 · Pm(At) + ω2 ·D(At) (4.3)

where Pm(At) and D(At) are respectively the grid power consumption and the

traffic drop rate of the system, given the modes of operation of the vSCs. The

grid energy consumption, Pm(At), is equivalent to the power consumption by MBS

and is determined based on (2.1), as shown in Section 2.6. The traffic drop rate,

D(At), is the ratio of the total amount of traffic demand that cannot be served

by the system in the time step t. Additionally, each battery at the vSCs has

to be maintained in the proper State Of Charge (SOC) (i.e, above the battery

level threshold Bth) to avoid a rapid reduction of its lifetime [124]. Finally, the

weights ω1 and ω2 determine the balance between two objectives and ω1 ≥ 0,

ω2 ≥ 0, ω1 + ω2 = 1. In what follows, we describe the optimal solution for the

optimization problem shown in (4.2). The solution rely on a-priori knowledge

of the sequential decision making process, i.e., energy arrival and traffic request

information are known in advance.

4.4.2 Graphical Representation

The problem of finding the optimal modes of operation at each time slot t is

represented as a graph. In the graph, a single node (N i
t ) represents a possible

combination of different modes of the vSCs. These combinations result in different

grid power consumption, system drop rate and energy storage levels of vSCs. In

Fig. 4.3, an example of graph for a system with a single vSC is depicted. At

first time step (t = 1), the vSC can be in one of the four possible modes: switch

off, PHY-RF split mode, UpperPHY-LowerPHY split mode and MAC-PHY split

mode. Moving one time step ahead, EH and traffic demands are also evolving.

Hence, each node (N i
t ) generates four possible child nodes corresponding to the
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Figure 4.3: Graphical representation of sequential functional split options a vSC

four possible operating modes at cycle t + 1, (N j
t+1), j = 1, ..., 4. The number of

such possible combinations keeps on evolving until reaching the time horizon K,

leading to the maximum number of possible paths at time instant K.

At cycle t + 1, the battery level corresponding to the child nodes is calculated

based on:

Bt+1 = min
(
Bt +H t −PvSC(At)∆t, Bcap

)
(4.4)

where Bcap is the maximum capacity of the battery in kWh, ∆t is the duration

of a slot, PvSC(At) is a vector representing the power consumption of the vSCs

which depends on their modes of operation as described in Section 2.6. The cost

function (4.3) is used to compute the cost associated to each arc connecting two

nodes. Two artificial nodes have been added at time step t = 0 and t = K + 1, to

have a single initial node and a single terminal node. The cost associated to the

arcs connecting the artificial nodes are set to zero. The cost associated to each arc

of the graph can be interpreted as its length. Hence, the optimization problem in

(4.2) is equivalent to finding the shortest path from the initial node at time t = 0

to the terminal node at time t = K + 1.
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4.4.3 Shortest Path Search

We consider the Label Correcting Algorithm [107] for finding the shortest path.

The exploration of the graph is done in a depth-first approach by sequentially

discovering shorter paths from the starting node to the intermediate nodes until

reaching the destination. We define the variable di, called label of i, as the length

of the shortest path to the node i, OPEN as the list of nodes to be explored and

UPPER as the last found minimum-length path. Initially both UPPER and di

are set to ∞. Throughout the exploration process, the length of the shorter path

found so far is maintained in di. If a new path is found with shorter length to i, the

algorithm considers whether the labels dj of the child nodes j can be corrected by

setting dj to di+aij, where aij is the arc(i, j). The nodes that are candidates to be

included in the shortest path are maintained in the list OPEN. Nodes that result

in a path length longer than UPPER or those that cannot satisfy the battery

and system constraints are excluded from this candidate list. The steps of the

algorithm are shown in Algorithm 7. This exploration policy is relatively faster

and requires lower memory by avoiding to explore the whole graph [107]. This

is especially advantageous for a tree-like problem such as the one tackled in this

work.

Algorithm 7 Shortest Path Search Algorithm

initialize OPEN with possible states at time t

while OPEN is not empty do

remove a node N i
t

compute Bt+1,j , j = 1, .., 4N , for all At+1 using (4.4)

for each node N j
t+1 child of N i

t do

aij = f(At+1
j )

if di + aij < min{dj ,UPPER}
and Bt+1

j > Bth then

dj ← di + aij

set N i
t parent of N j

t+1

if t 6= K then

place N j
t+1 in OPEN (if not already)

else

UPPER = di + aij

end if

end if

end for

end while
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4.5 Numerical Results

4.5.1 Simulation Scenario

According to the traffic model defined in Section 4.3.1, user activities are catego-

rized based on [125] as heavy users with an activity of 900 MB/hr and ordinary

users with an activity of 112.5 MB/hr. Moreover, 90 UEs per vSC are considered

and out of these, the number of active UEs vary according to the traffic profiles

shown in Section 4.3.1 depending on the vSC deployment area, i.e, residential

or office. The solar energy traces are generated using the SolarStat tool [92] for

the city of Los Angeles. For the PV modules, we have considered the commercial

Panasonic N235B. These panels have single cell efficiencies as high as 21.1%, which

ranks them amongst the most efficient solar modules delivering about 186 W/m2.

The solar panel size and battery capacity are dimensioned based on the criteria

that the vSC can be fully recharged on a typical winter day. The simulation pa-

rameters and reference power consumption values are given in Table 4.1. The BB

static power consumption figures are composed of PCPU, POFDM and Pfilter and the

load dependent components are PFD and PFEC.

Table 4.1: Simulation Parameters.

Parameter Value

Transmission power of macro cell (dBm) 43
Transmission power of vSC (dBm) 38
UEs per vSC 90
Heavy users ratio 0.5
Solar panel size (m2) 4.48
Battery capacity (kWh) 2
Bth 20%
PRFvSC 2.6 W
PPAvSC 71.4 W
PRFMBS

9.18 W
PPAMBS

1100 W
GOPS to W conversion factor 8
PBBstaticvSC 440 GOPS

PBBload−dependentvSC 60 GOPS

PBBstaticMBS
630 GOPS

PBBload−dependentMBS
215 GOPS

PoverheadvSC 0.0%
PoverheadMBS

10.0%

Simulations of 3 vSCs in residential and office area profiles are considered. More-

over, A time horizon of 21 hours (i.e., K = 21 ) is selected, as it represents a
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Figure 4.4: Optimal functional splits placement results in a residential area scenario
for a week of January and July (hour 0 to hour 168; Monday from 0 - 23 hr). The
traces show the amount of harvested energy, the amount of mobile traffic handled by
vSCs and MBS and operative mode of each vSCs for both January and July weeks.

The standard CRAN split is equivalent to PHY-RF split.

reasonable balance between algorithm performance and complexity [81]. In addi-

tion, equal weights of energy and system drop rate are used in the cost function

(4.3), i.e., ω1 = ω2 = 0.5 to impose equal importance on the two objectives.

4.5.2 Optimal Functional Split Configurations

The result of optimal functional splits placement for a scenario involving 3 vSCs

with 90 users per vSC in a residential area is shown in Fig. 4.4. Heavy users ratio

of 50% is considered. The policy is able to decide the placement of the baseband

functions in accordance with the available energy, forecasted harvested energy and

traffic demands. Hence the result shows that, most of the user traffic is handled

by the vSCs without dropped traffic. Moreover, for a January week, the PHY-

RF and MAC-PHY are the most chosen split options during daytime and peak

traffic periods where as switching off occurs during very low traffic hours. The

average PHY-RF and MAC-PHY selection rate is 37% each and switching off rate
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Figure 4.5: Optimal functional splits placement results in an office area scenario for
a week of January and July (hour 0 to hour 168; Monday from 0 - 23 hr). The traces
show the amount of harvested energy, the amount of mobile traffic handled by vSCs
and MBS and operative mode of each vSCs for both January and July weeks. Standard

CRAN split is equivalent to the PHY-RF split.

is averaged at 20%. The results of the simulation for a week of July shows that

MAC-PHY split mode is the most selected option. Average MAC-PHY selection

rate is 67%, where as switching off rate is averaged at 8%. This confirms that

due to high energy availability, the vSCs are performing most of the baseband

processes by themselves which, in turn, further reduces the grid energy consumed

by the MBS.

The result of optimal functional split placement for a scenario of 3 vSCs deployed

in an office area with 90 users per vSC is shown in Fig. 4.5. Heavy users ratio of

50% is considered. An office area traffic profile is characterized by relatively lower

traffic peak both in weekdays and weekends. In addition, the peak traffic hours

are different than the residential traffic profile and more aligned with the solar

energy arrivals. The result shows that the dynamic placement of the baseband

functions enable the vSCs to offload the MBS for most of the users traffic without

any drop. In addition, MAC-PHY and PHY-RF operative modes are the most

selected options in January during peak traffic periods. The average MAC-PHY
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and PHY-RF selection rate is 47% and 28% respectively. Average switch off rate

is at 23% and occurs during very low traffic periods, i.e., during night. In July,

MAC-PHY is the most selected operative mode with an average selection rate of

68% and occurring during peak traffic periods, whereas, switch off occurs during

very low traffic hours with average rate of 7.3%. This is due to the higher energy

income in July. The high selection rate of MAC-PHY split results in a further

reduction of grid energy consumption, since most of the baseband processes are

performed locally by vSCs.

4.5.3 Comparison with static policies

This subsection provides a comparative analysis of the proposed optimal solutions

with static configurations. In the static configurations, a vSC is kept in the same

mode/functional split as long as the battery level is above the threshold, otherwise

it is switched off. The results of these static policies for a scenario with 3 vSCs

deployed in a residential area with 90 users each and a heavy user ratio of 50% for

a week of January and July are shown in Table 4.2.

All the static policies are not capable to reach the traffic drop rate performance

of the optimal bound. Moreover, the performance gap can vary importantly with

respect to the policy. The PHY-RF policy shows smaller outage against both

UpperPHY-LowerPHY and MAC-PHY policies. This is mainly due to the low

energy consumption of the vSCs in PHY-RF mode since they do not perform any

BB operation. Both UpperPHY-LowerPHY and MAC-PHY polices experience

high drop rates and grid energy consumption for the case of January. This arises

from the inability of the static polices to maintain the operation during the peak

traffic periods that occur in the evening hours when the EH income is almost zero,

which in turn overloads the MBS with the UEs from vSCs in the off mode. The

static policies in general are sub-optimal in terms of grid energy consumption,

where savings of up to 24 KWh and 29 KWh can be achieved with the optimal

policy respectively for a week of January and July.

4.6 Joint Load Control and Energy Sharing

In this section, we focus on the study of an optimal dynamic control of functional

split options with energy sharing. In particular, we investigate the case where vSCs
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Table 4.2: Policy Comparisons

Policy
Grid energy

consumption (KWh)
Average drop rate (%)

January July January July

Optimal 149.51 133.23 0 0
PHY-RF 170.01 162.48 2.35 1.5

UpperPHY-LowerPHY 173.76 153.64 16.43 5
MAC-PHY 173.56 151.40 17.10 5

Intelligent Energy Management System (IEMS)

power lines

Figure 4.6: Diagram illustrating the reference framework, including the RAN with
multiple tiers, the intelligent energy management system, the power line connections.

In left-bottom side, a simplified scheme of the solar-powered BS is shown.

can share excess energy with the MBS when their batteries reach the maximum

capacity.

4.6.1 Control Architecture and Problem Statement

We consider a two-tier scenario where the connection between the MBS and vSCs

can be enabled via power lines and low resistance losses ( i.e., the amount of energy

lost in the conductor in form of heat) are guaranteed by the short distances between

the vSCs and the MBS. In this scenario, a central control entity named Intelligent

Energy Management System (IEMS) is located at the MBS and it is in charge

of managing the operative states of the vSCs with the goal of achieving efficient

utilization of the harvested energy. In detail, the IEMS opportunistically decides

where to execute the BB functions of the vSCs. The operational states of the vCSs

depend on the dynamics of the traffic demands and the EH arrivals. Therefore,

the IEMS is in charge of predicting the evolution of those two processes to prevent
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vSCs blackout during periods with low renewable energy arrivals and high traffic

demands. The Energy Controller (EC) is an entity located at the vSC site that

implements the decision taken by the IEMS. The full control architecture is shown

in Fig. 4.6.

We modify the offline optimization problem introduced in Section 4.4.1 to include

the possibility that vSCs can share excess energy, i.e., when the energy storage is

full, to the MBS. The system model is described in Section 4.3 and the problem

statement with the cost function is given in Section 4.4.1. The amount of harvested

energy that exceeds the battery capacity is denoted by X t , [X t
1, X

t
2, . . . , X

t
N ] and

it is calculated as:

X t+1 = max
(
Bt +H t − P t∆t −Bcap, 0

)
(4.5)

The operative state of the vSCs at time t is defined by At = [At1, A
t
2, . . . , A

t
N ].

At each cycle, the intelligent energy management system decides the optimal con-

figurations of each vSC to serve the traffic demand in that area. The general

optimization problem formulation is shown in (4.2) and the cost function formu-

lated in (4.3) is modified to include energy sharing as follows:

f(At) = ω1 · Em(At) + ω2 ·D(At) (4.6)

where Em(At) and D(At) are respectively the normalized grid energy consumption

and the traffic drop rate in the cluster, given the operative modes of the vSCs and

the time step t. The optimization objective is to minimize the energy drained from

the grid and reduce traffic drop rate. The grid energy consumption at time t is

equivalent to the difference between the MBS energy consumption and the excess

energy shared by the vSCs. The normalized grid energy consumption is then

computed as:

Em(At) = max

(
Pm(At)∆t −

∑N
i=1X

t
i

PMAX
m ∆t

, 0

)
(4.7)

where Pm(At) is the grid power consumption of the MBSs given the operative

modes of the vSCs and the time step t, whereas PMAX
m is the power consumption of

the MBS at full load. The reader can refer to Section 2.6 for the power consumption

model description. Due to the very low effect of UpperPHY-LowerPHY split on

the energy consumption as shown in the results of Section 4.5.2, we target the

following two functional split configuration options based on [31]:
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OAM
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RRC
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RLC RF

Physical Network Function (PNF)MAC - PHY split

PHY - RF split RRH PNF

Conventional eNBServices

Figure 4.7: The different implementations of the functional split configuration options
for a small BS, including Standard PHY-RF and MAC-PHY split. The conventional

eNodeB (eNB) configuration is also shown for comparison.

� PHY-RF split: all the protocols, Physical (PHY) and above layers, are imple-

mented at the MEC server located in the MBS site. Hence, the vSCs behaves

as a Radio Frequency (RF) transceiver, used only for signal transmission and

reception;

� MAC-PHY split: PHY layer processing takes place at the SBS, in addition

to RF functions. Medium Access Control (MAC) and above layer functions

are executed by the MEC server at the MBS site.

Fig. 4.7 shows the target functional split options compared to the conventional

eNodeB architecture. Each operative mode corresponds to different computa-

tional load for the vSCs and MBSs, which in turn, corresponds to different energy

consumption estimates, as described in Section 2.6.

It is worth highlighting here that in PHY-RF split, the vSCs are executing only the

RF functionalities and the other upper layer functions, including PHY and MAC,

are executed at the MBS site. This is similar to a CRAN architecture. Therefore,

this architecture relies on a re-configurable fronthaul since the bandwidth and

latency requirements become more stringent when more functions are placed in

the centralized unit [1].

In this case, the state of the ith vSC at time t is defined as:

Ati =


0 if the i-th vSC is OFF

1 if the i-th vSC is in PHY-RF split mode

2 if the i-th vSC is in MAC-PHY split mode

(4.8)

EH sources and demand profiles are given in Section 4.3.1.
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Figure 4.8: Contour plot of the traffic drop rate of LC-ES and the naive algorithm.
Different colors indicate traffic drop rate regions, whose maximum outage is specified
in the color map in the right hand side of the plot. The white filled region indicates a

traffic drop rate smaller than 1%.

4.6.2 Optimal Load Control with Energy Sharing

In this section, we introduce the Load Control with Energy Sharing (LC-ES) algo-

rithm, which provides the optimal functional split selection of vSCs at every time

instant, given the temporal evolution of the EH arrival and traffic load processes.

We represent the optimization problem in (4.2) as a graph. A node i at time

t in the graph (V t
i ) represents a possible combination of states of the vSCs in

the cluster. Each combination returns a different level of the batteries of the

vSCs. The procedure of the shortest path search algorithm for finding the optimal

configurations are detailed in Section 4.4.3.

4.6.3 Numerical Results

We considered a simulation scenario as described in 4.5.1. Moreover, energy ar-

rivals and aggregated downlink traffic have been generated according to the real-

istic models described in Section 4.3.1. In particular, the city of Los Angeles has

been used for generating the solar harvested energy traces. The adopted power

consumption model is described in Section 2.6. The results provided in what

follows are averaged among ten different independent realizations of both energy

arrivals and traffic processes.

Fig. 4.8 shows the contour plots of the traffic drop rate of the system, during the

month of December (the worst in terms of harvested energy). Different colors
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are used to indicate traffic drop rate regions (maximum values are specified in

the associated color map). The white filled area indicates the parameter region

where the traffic drop is smaller than 1%. Our optimal analysis is compared with

naive approaches according to the network scenario. In naive approach, when the

battery level is above the threshold the vSC is configured in the PHY-RF split

mode, otherwise is in OFF state.

Taking 1% as our design parameter, all the points on the boundary of the white

filled region are equally good. It is evident that optimal LC-ES allows the network

to work with smaller sizes of the harvesting/storage system compared to the naive

approaches. These results confirm that an intelligent energy management system is

essential for an efficient use of the renewable energy resource and its installation in

town facilities. The analysis in the following parts of the section considers various

harvesting/storage design approaches corresponding to the different points laying

in the boundary of the white filled area of Fig. 4.8 and labeled with star, circle,

square and diamond.

4.6.3.1 vSCs Operative State Configuration

In Fig. 4.9, we report the different choices of the operative states of the vSCs

by the optimal LC-ES across the different months of the year. The graphs refer

to the selected harvesting/storage dimensions. It is shown that, vSCs offload the

MBS for longer periods during the summer months, as expected. The length of

the active periods and the choice of the operational mode depends on the spe-

cific harvesting/storage dimension. The vSC active period in the star deployment

ranges between 54% (44% in PHY-RF mode and 10% in MAC-PHY, respectively,

in December) and 78% (30% in PHY-RF mode and 48% in MAC-PHY, respec-

tively, in August) of time; in the circle deployment between 55% (48% in PHY-RF

and 9% in MAC-PHY, in December) and 80% (28% in PHY-RF, 52% in MAC-

PHY, in August); in the diamond deployment between 65% (38% in PHY-RF,

27% in MAC-PHY, in December) and 73% (34% in PHY-RF, 39% in MAC-PHY,

in August). Finally, the square deployment has an active period that ranges be-

tween 69% (39% in PHY-RF, 30% in MAC-PHY, in December) and 75% (32% in

PHY-RF, 43% in MAC-PHY, in July) of the time.

PHY-RF split is the most chosen configuration option in the winter months,

whereas MAC-PHY is the most prevalent in the summer months. A higher energy

inflow allows the vSCs to locally perform their BB processing, whereas in winter,
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Figure 4.9: States selected by the LC-ES algorithm per month (in percentage) for
different deployment sizes.

the lower energy arrivals force the vSC to offload the BB processing to the MBS

and, hence, PHY-RF is the dominant operative mode. We observe that moving

to the left side of the contour plot (i.e., bigger solar panels and smaller batteries)

leads to longer activity during winter months and slightly shorter in summer.

4.6.3.2 Shared Energy Assessment

In Fig. 4.10 we show the energy shared and used by the MBS for every month of

the year for different deployment sizes. The graphs are collected considering the

selected harvesting/storage design approaches. For comparison purposes, we also

indicate the amount of shared energy using the naive approaches.



Chapter 4. Performance Bound Study 69

2 4 6 8 10 12

Month

0

50

100

150

200

S
h

a
re

d
 e

n
e

rg
y
 u

s
e

d
 b

y
 M

B
S

 (
k
W

h
)

2.52 m² - 62 Ah

2.52 m² - 83 Ah

4.48 m² - 42 Ah

7 m² - 42 Ah

7 m² - 83 Ah (naive)

Figure 4.10: Energy shared by the vSCs and used by the MBS per month when
considering different deployment sizes.

We observe a general trend of sharing a bigger amount of energy during the summer

months, when a higher solar energy inflow occurs and, hence, a higher probability

of exceeding the battery capacity of the vSCs.

4.6.4 Energy Savings and Cost Analysis

Table 4.3: Energy savings and costs for different deployment dimensions

Algorithm
Configuration Energy (kW) Costs ($)
P.(m2) B. (Ah) consumption [1yr] CAPEX OPEX [1yr] cost [5yrs] cost [10yrs]

Grid connected - - 10,264 0 2,155 10,775 21,550

LC-ES
? 2.52 62 8,584 (-16%) 1,695 1,802 10,705 (-0.7%) 19,715 (-9%)

◦ 2.52 83 8,515 (-17%) 1,891 1,788 10,831 (-0.5%) 19,771 (-8%)

� 4.48 42 7,335 (-29%) 2,359 1,540 10,059 (-7%) 17,759 (-18%)

� 7.00 42 5,373 (-48%) 3,464 1,128 9,104 (-16%) 14,744 (-32%)

In Table 4.3 we provide an energy and economic comparison between our LC-ES

method and a scenario in which all the BSs are always active and supplied by the

power grid. We refer to the latter as grid-connected. For the considered network

scenario, we report the grid energy consumption, the CAPEX, the 1-year OPEX

and the monetary cost (i.e., CAPEX + OPEX) due to the harvesting/storage add-

on after 5 and 10 years, for the different panel and battery dimensions introduced

in the previous section. The values between brackets indicate the savings with

respect to the grid-connected scenario. We consider a cost of 1.17 $/W for the

solar panel (which also includes the installation cost) and 131 $/kWh for the
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battery. Moreover, the energy purchased from the grid has a cost of 0.21 $/kWh

in our calculation.

The additional harvesting/storage hardware jointly with the LC-ES method allows

reducing the grid power consumption for the different deployments considered.

The energy savings range between 16% and 48% , depending on the harvesting/s-

torage size. Carbon footprint and OPEX are decreased accordingly. In particular,

monetary cost savings range between 0.5% and 16% after 5 years of operation.

The results at 10 years show higher savings, ranging between 8% and 32%.

Table 4.3 provides useful insights on the energy and cost savings and permits

the MNOs to design their harvesting/storage systems by considering the tradeoff

between dimensions and economic cost. In general, the harvesting/storage system

with the lowest CAPEX is not the most economically convenient option in the

long run. In particular, the deployment size shown in the left side of Fig. 4.8 (i.e.,

square) is the most economically convenient option. Using these sizes, LC-ES is

achieving higher savings by maintaining the vSCs operative for shorter periods in

summer months and sharing more energy with the MBS compared to the other

harvesting/storage configurations.

As a final remark, we can assume that higher revenues and savings can be achieved

during the lifetime of the network in a near future considering that: i) equipment

hardware is designed to be always more energy efficient, ii) the actual market

trends show a decreasing cost of the solar panels and batteries, and increasing

prices of the grid energy, iii) future RANs will be ultra-dense and longer offloading

periods may occur due to the higher number of vSCs.

4.7 Conclusions

In this chapter, we have proposed an optimal functional split placement of EH

vSCs that rely on central BBU pool for part of their BB processing. In particular,

three functional split options namely, PHY-RF, UpperPHY-LowerPHY and MAC-

PHY, have been targeted. A grid energy consumption minimization problem is

stated and DP, more specifically shortest path search algorithm, is applied to

determine the optimal functional split configurations. Simulation results show

that dynamic functional split options placement with optimal control serves the

traffic demand with significant energy saving, and hence lower OPEX, with respect

to static functional split policies. Therefore, the obtained performance bounds
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represent an encouraging starting point for the evaluation of more sophisticated

online optimization techniques.

The chapter has also presented an optimal traffic and computational load control

method with energy sharing to efficiently use the renewable energy coming from

distributed sources and to facilitate the off-grid operation of the RAN. The pro-

posed approach permits to move and execute some of the transmission functions

of the vSCs at the MBS site. Energy exceeding the battery capacity is managed

to be used by the MBS operations and further reduce the energy drained from

the power grid. Software simulations demonstrate that an intelligent renewable

energy management is essential to reduce the harvesting/storage dimensions with

respect to naive approaches and leads to high energy and cost savings for a MNO.



Chapter 5

The Case of a Single vSC

5.1 Introduction

In Chapter 4, we have studied the performance bounds of dynamic selection of

functional split options in an offline manner. The bounds are determined by solving

a grid energy consumption minimization problem, based on a-priori knowledge of

the system dynamics (traffic and energy arrivals) subject to battery constraints.

This chapter focuses on proposing an online algorithm for the dynamic functional

splits selection in vSCs with EH capabilities relying in part on central BBU pool

co-located at MBS site.

The main contributions of this chapter are:

� Applying RL based on-line algorithms to find the optimal placement of func-

tional split options for a scenario involving a single vSC and a MBS with

co-located BBU pool. The approach considers the traffic demand, energy

reserve and energy arrivals. In particular, TD learning approach is used and

both QL and SARSA algorithms are applied;

� Presenting the performance of the RL based placement of functional split op-

tions through numerical results with comparison against offline performance

bounds proposed in Chapter 4.

In what follows, we present the network model in Section 5.2. RL based energy

management algorithm is described in Section 5.3. The results are analyzed in

Section 5.4 and finally the conclusions of the chapter are written in Section 5.5.

72
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5.2 Network Model

We consider a network scenario involving a vSC and MBS with BBU pool as

described in Sections 1.2 and 4.2. Considering the potential centralization gains

and following the results in Section 4.4, we have selected the following functional

split options as targets in this work (shown in Fig. 5.1):

� PHY-RF – all the BB processing is done centrally at the BBU pool;

� MAC/PHY – the whole PHY layer processing takes place at vSCs, whereas

MAC and above layers are done at the central BBU pool.

As a result, the vSC can be in one of the following three operative modes: PHY-

RF/MAC-PHY/switch-off. At each time step, the RL based algorithm decides

the optimal operative mode of the vSC by considering the traffic demand, energy

arrival and energy reserve. The details of the RL algorithms applied are given in

Chapter 3.

MAC

Upper Lower Upper Lower

PHY
SON
OAM
APPs

RRC

PDCP
RLC RF

Physical Network Function (PNF)MAC - PHY split

PHY - RF split RRH PNF

Conventional eNBServices

Figure 5.1: Functional split options considered in the scenario

The power model for estimating the power consumed by both MBS and vSCs in

different functional split mode is described in Section 2.6. Moreover the energy

arrival and demand profiles are explained in Section 4.3.1.

5.3 Algorithm

5.3.1 RL Based Energy Management

Formally, the RL framework is defined in terms of states, actions and rewards.

For our network model, the objective of the RL based controller is to learn energy
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management policies through interaction with the environment. The controller

decides the operative mode of the vSC at each time step based on the traffic load,

energy arrival and energy storage information. Let St be the state of the system at

time t, the controller chooses an action At from action set A, which is one of the

operative modes of the vSC. As a result of this action, the environment returns an

immediate reward rt. Based on this rt, the Q-value, Q(St, At), which represents

the value, i.e., how good it is to take a specific action in a given state, will be

updated. This process of selecting a specific action and updating the Q-value

continues sequentially for each time step. The controller selects the action at time

step t based on the specific RL algorithm it applies. The goal of such algorithms is

to estimate the Q-values for each state-action pair in order to learn optimal values

in the long-term. In this work, we have applied algorithms that belong to the class

called TD learning. Specifically both SARSA and QL RL procedures are applied

for dynamic functional split placement policies. The TD class of RL methods are

explained in Section 3.2.4. Moreover, the procedures of QL and SARSA based

training are shown in Chapter 3, algorithms 3 and 4 respectively.

5.3.2 Algorithm Details

This section introduces the state, actions and reward functions that are defined

for the dynamic functional split selection. The state, action and reward definitions

are the same for both SARSA and QL based controllers. However, they differ on

how they update Q-values as shown in Algorithm 3 and 4.

States: The state is dependent on the energy storage level, the normalized traffic

load and the harvesting condition. Hence at time step, t, the state is given by

(5.1).

St = {Ht, Bt, ρt} (5.1)

Where Ht is the harvesting condition (e.g. daylight and night hours), Bt and ρt

are the normalized battery status and traffic load which are quantized into 4 and

5 levels, respectively. This quantization levels are sufficient for capturing state

variations in state representations.

Actions: The set of possible actions are the possible operative mode of the vSC.

Hence, the action set are switch-off, PHY-RF split mode and MAC-PHY split

mode.
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Reward: The reward function determines the immediate reward the controller

acquires as a result of taking a specific action. Since our goal is to maximize the

harvested energy utilization (minimize the grid energy consumption by MBS), the

reward definition should reflect this objective. The reward function is given as in

(5.2).

rt =


(1/(a+ ρt))− 1/(b×Bt), At is switch-off

(c× ρt)− (1/Bt), At is PHY-RF

(d× ρt)− (1/Bt), At is MAC-PHY

(5.2)

Where ρt and Bt are the normalized traffic load and battery level at time step t

respectively. The rationale behind the reward function is:

� It is desirable to switch-off during very low traffic periods and to operate

in one of the split modes (PHY-RF or MAC-PHY) otherwise. Hence the

immediate reward has inverse relationship with the traffic load for switching-

off action whereas it is directly proportional to the traffic load for both PHY-

RF and MAC-PHY modes;

� For all actions, there is an immediate penalty which is inversely proportional

to the battery level. This helps to avoid the level of battery from falling into

very low levels;

� The constants a, b, c and d are used to emphasize the reward according to

the desired behavior. For example, choosing higher d than c implies higher

immediate reward for MAC-PHY action than for PHY-RF action.

5.4 Numerical Results

The simulation scenario considered is the same as shown in Section 4.5.1. In what

follows, we explain the training phase as well as the policy characteristics with

comparison against the offline bound shown in Section 4.4.

5.4.1 Training phase

The training of the TD learning algorithms is performed on a residential, office and

transport area traffic profiles. The traffic load at vSC is generated by 90 UEs with

50% heavy users ratio. After simulations involving different values of the training

parameters, the values given in Table 7.1 are selected as the best combinations.
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Similarly, for the reward function given in (5.2), the values of the constants a, b,

c and d are chosen to be 1.15, 2, 10 and 20 respectively, as a result of a simulative

evaluation. The training is done starting from January, by treating a month as one

episode of training. The policy used for action selection during the training phase

is an ε-greedy policy that can explore random action with probability of ε. The

value of ε is multiplied by an ε-discount factor after each episode. The training

phase battery status of the vSC in residential area are given in Fig. 5.2 for QL and

SARSA algorithms, for one seed of training. It can be noted that during initial

hours of training, the algorithm is unstable and the battery reaches very low level in

many occasions. The training is performed with different seeds to add randomness

in the energy arrival process. On average over 10 different seeds, the QL achieves

stability after about 1750 hours of training whereas SARSA reaches stability after

about 2000 hours of training. This is the average training duration computed for

10 seeds and can be interpreted as the duration after which the algorithm can be

deployed for operation while improving its performance. Maintaining the battery

level above the threshold is an important stability requirement since a wrong

decision that results in a lower than threshold battery level can have negative

consequences such as, damage in the storage system [126]. For this reason, the

battery level is a good indicator to determine the stability of the algorithm.

(a) (b)

Figure 5.2: Battery level during the training phase: (a) QL (b) SARSA

Table 5.1: Training parameters values

Parameter QL SARSA

α 0.8 0.8
γ 0.9 0.9
ε 0.5 0.65

ε-discount 0.1 0.2
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Figure 5.3: Functional split selection results in a residential area scenario for a week
of January (hour 0 to hour 168; Monday from 0 - 23 hr). The traces show the amount of
harvested energy, the amount of mobile traffic handled by vSC and MBS and operative

mode of the vSC for a January week for offline, QL and SARSA policies.

5.4.2 Policy Characteristics and Comparison

This section describes the policies obtained by QL and SARSA and compares them

with the offline optimal policy described in Section 4.4. The offline optimization is

based on DP, in particular shortest path search, to determine the optimal policy

for each hour of operation by taking into account the battery level, energy arrival

and traffic requests. The offline optimization is used as a bound to evaluate how

the performance of the online approaches is close to the optimal bound.

For both SARSA and QL, the training is performed for one year and the evaluation

is done for a year of operation after the training. The training and evaluations are

done for ten different seeds. A sample of the output of the policies for a week of

January and for a residential traffic profile is shown in Fig. 5.3. As it is shown,

both QL and SARSA are able to switch-off during low traffic periods as it is the

case also for the optimal offline policy. However, the optimal offline policy and the



Chapter 5. The Case of a Single vSC 78

Figure 5.4: Functional split selection results in a residential area scenario for a week
of July (hour 0 to hour 168; Monday from 0 - 23 hr). The traces show the amount of
harvested energy, the amount of mobile traffic handled by vSC and MBS and operative

mode of the vSC for a July week for offline, QL and SARSA policies.

TD policies differ in the selection of the operative modes. Both SARSA and QL

choose the MAC-PHY split mode for most hours of operation, whereas the offline

approach chooses the MAC-PHY and PHY-RF splits evenly. A sample output of

the policies for July week and residential traffic profile is shown in Fig. 5.4. This

month is characterized by high energy income. As a result, it can be observed

that the policies adjust the operative mode decisions accordingly. All the three

policies switch-off during very low traffic periods and all the three policies select

MAC-PHY mode predominantly. In addition, SARSA shows higher switch-off rate

with almost negligible PHY-RF selection mode whereas QL maintains relatively

lower switch-off rate by selecting PHY-RF mode during some hours of operation.

Residential profile is shown here as it represents traffic peaks during night when

energy arrival is zero. Hence it is the most representative profile to evaluate the

performance of the TD learning policies.

The policies output for a year of operation for three traffic profiles, namely res-

idential, office and transport area are shown in Table 5.2. The results are the

averages of ten different simulations running over one year of operation. As it
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is shown, both QL and SARSA are able to consume a grid energy which is very

close to the amount of grid energy consumed by the offline optimal policy. For

a year of operation, the average annual grid energy consumption by QL policy is

only 2.5%, 1.9% and 1.6% higher than the amount consumed by the offline pol-

icy, in residential, office and transport areas respectively. Moreover, for SARSA,

the respective residential, office and transport area average annual grid energy

consumption are 4.3%, 2.6% and 2.3% higher than the annual consumption by

the offline policy. Furthermore, both QL and SARSA are able to achieve a total

offloaded traffic of more than 90% with respect to the total offloaded traffic by

the offline policy. The TD learning policies also approximate the optimal offline

policy in terms of predominant operative mode selection rate. In all the three

profiles, MAC-PHY is an operative mode with highest selection rate by the offline

policy and this is also reflected by the TD learning policies. In MAC-PHY split

mode, most of the BB processes takes place at vSC utilizing the harvested energy.

Hence, the high MAC-PHY split selection rate helps the TD learning policies to

achieve close to the optimum annual grid energy consumption. The TD learning

polices tend to have relatively higher switch-off rate than the offline policy. This

shows the conservative nature of the proposed online policies as compared to the

offline approach.

It can also be noted that SARSA policy shows relatively higher PHY-RF split

rate than QL. This explains the higher grid energy consumption by SARSA than

QL. Hence, for all traffic profiles, QL performs better both in terms of grid energy

consumption and offloaded traffic. This can be attributed to the nature of Q-

values update in QL. As an off-policy method, QL learns the optimal behavior by

choosing the maximum return that can be gained from one state-action transition

to the next one, regardless of what the current policy might choose.

Finally, it is worth noting here that single agent TD learning algorithms are proved

to perform optimally given the system model [127]. However, the two proposals

in this work rely on different models with respect to the one used to solve the

offline optimization problem. In particular, the reward function used by SARSA

and QL algorithms presents minor modifications to the cost function of the of-

fline optimization, which results in the different performance as presented in this

section.
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Table 5.2: Policy Comparisons (R = Residential, O = Office, T = Transport, OP =
optimal-offline, QL , S = SARSA)

Profile Policy Grid
energy
(KWh)

Offloaded
traffic

(107Mbps)

Switch-
off

rate (%)

PHY-
RF

rate (%)

MAC-
PHY

rate (%)
OP 6780 3.47825 18.26 19.89 61.84

R QL 6952 3.1838 24.3 10.3 65.4
S 7074 3.1 26 15. 02 58.97

OP 6572 1.450 26.55 1.148 72.29
O QL 6700 1.397 26.88 5.41 67.71

S 6748 1.364 25.77 9.4 64.82

OP 6507 0.680 26.63 0.26 73.1
T QL 6611 0.573 30.29 1.5 68.2

S 6661 0.531 34.6 6.72 58.61

5.5 Conclusions

In this chapter, an online optimization approach based on TD learning and more

specifically QL and SARSA algorithms have been applied to determine the optimal

functional split configurations. In particular, three operative modes namely, PHY-

RF split mode, MAC-PHY split mode and switching off have been targeted. Such

online approaches are evaluated and compared with respect to an offline optimal

policy. Simulation results prove that the two proposed methods perform close to

the optimal bounds and confirm the validity of our approach. In addition, QL is

observed to perform better than SARSA both in the amount of annual grid energy

consumption and offloaded traffic.
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The Case of Multi-vSCs

6.1 Introduction

In Chapter 5, RL based algorithm for dynamic placement of functional split op-

tions have been proposed. It is based on TD learning methods, namely QL and

SARSA [8], for on-line learning of control policies of a vSC powered by EH with

flexible operative modes. In this case, RL allows learning of optimal strategy

through interaction with the system environment for achieving system wide objec-

tives, i.e., efficient utilization of the harvested energy. However, when considering

the case of various vSCs operating simultaneously, RL is expected to face more

problems. Centralized solutions might experience long convergence and training

phases due to the high number of state/action pairs needed to model the envi-

ronment. Alternatively, a distributed approach, i.e, multi-agent RL, may allow to

reduce the complexity by dividing the problem among the multiple agents. Never-

theless, multi-agent systems can experience issues due to the conflicting interests

of the agents [128]. In fact, when each vSC is allowed to learn the best energy

management policy independently, there is a risk that its actions affect other vSCs’

policies, which in turn would have a negative effect on the overall performance of

the network, e.g., system drop rate. Hence, multi-agent RL based strategy should

ensure coordination among the learning agents, i.e., the vSCs, towards achieving

system wide gains.

This chapter proposes multi-agent RL based on-line algorithms for dynamic selec-

tion of functional split options in MEC-enabled RAN with EH capabilities. Both

FQL and QL based on-line algorithms are proposed with performance comparisons

and evaluation against an off-line bound. Coordination among the multiple agents

is favored by broadcasting system level information to the independent learners.

81
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A comparison with an implementation of the learning algorithms without coordi-

nation is also analyzed.

The main contributions of this chapter may be summarized in the following items:

� Grid Energy Minimization Problem Statement : we formulate a network wide

grid energy and traffic drop rate minimization problem for the proposed

network scenario.

� Coordinated Multi-agent RL Solutions : we propose multi-agent RL con-

trollers to solve the optimization problem. In particular, distributed FQL

and QL based solutions are tailored for our purposes, including different

levels of coordination among the vSCs.

� Characterization of the Learning Algorithms : we analyze the complexity and

the convergence of the proposed learning algorithms by giving insights of the

hyperparameter setup in both simulative training and run-time scenarios. We

study the effects of the quantization of states and actions on the stability and

system performance. We characterize the selected policy of the coordinated

solutions with respect to the off-line bound.

� Network Performance Evaluation: we evaluate the network performance (in

terms of energy consumption and traffic drop rate) by our multi-agent RL

solutions with different levels of coordination and compare them against the

off-line performance bound and static solutions.

The considered network scenario and the system model are described in Section

6.2. In addition, the design of distributed RL based controllers are shown in

Section 6.3. The numerical results are analyzed in Section 6.4 and finally the

conclusions are drawn in Section 6.5.

6.2 Network Scenario and System Model

A two-tier network architecture consisting of a MBS and co-located BBU pool

and hot-spot deployed vSCs is considered. The network scenario is described in

detail Sections 1.2 and 4.2. The vSCs are deployed in hot-spot manner for capacity

enhancement and they do not overlap in coverage [27]. The vSCs in our scenario

can opportunistically operate in one of the functional split configuration options,

which are based on [31] and are explained in Section 5.2. These two functional
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split options have been selected based on their impact on the energy consumption

of vSCs following the results in Section 4.4. The functional split options are

depicted in Section 5.2, Fig. 5.1 along with the conventional eNodeB architecture.

Each operative mode corresponds to different computational load for the vSCs

and MBSs, which in turn, corresponds to different energy consumption models, as

will be described in Section 2.6.

In the following, we provide the system model for the dynamic control of func-

tional split options for multi-vSCs scenario. We consider a two-tier mobile net-

work composed of clusters of one MBS with co-located BBU pool and N vSCs.

The system evolves in time slots based on the variation of the traffic demand

and the energy arrivals. Recalling the definitions used in Section 4.3, The traffic

load at slot t generated by the users in the coverage of the vSCs is defined as

Lt , [Lt1, L
t
2, . . . , L

t
N ] where Ltn is the traffic load at the nth vSC. The traffic load

experienced by the MBS in slot t is defined as ρt. The energy harvested by the

vSCs in slot t is defined by H t , [H t
1, H

t
2, . . . , H

t
N ] while the battery states are

denoted by Bt , [Bt
1, B

t
2, . . . , B

t
N ] where H t

n and Bt
n are the harvested energy and

the battery state of the nth vSC. Moreover, the battery states evolve according to

the following relation:

Bt+1 = min
(
Bt +H t − P t∆t, Bcap

)
(6.1)

where P t , [P t
1, P

t
2, . . . , P

t
N ] and P t

n is the power consumed by the nth vSCs in slot

t (and described in Section 2.6), Bcap is the maximum battery capacity and ∆t is

the duration of one time slot. The operative state of the vSCs in slot t is defined

by At = [At1, A
t
2, . . . , A

t
N ] and the mode of nth vSC in time slot t, Atn, is given by:

Atn =


0 if the n-th vSC is OFF

1 if the n-th vSC is in PHY-RF split mode

2 if the n-th vSC is in MAC-PHY split mode

(6.2)

At each slot, intelligent decisions are made to determine the optimal configura-

tion of the vSCs based on their battery state, energy arrival information and

the traffic demand. The network wide sequential decision making problem is

defined by a MDP as X t+1 = f(X t,At,wt), where X t = [X t
1, X

t
2, . . . , X

t
N ] is

the state of the vSCs in slot t, At = [At1, A
t
2, . . . , A

t
N ] is the control action and

wt = [wt1, w
t
2, . . . , w

t
N ] is the random disturbance of the environmental variables.

In particular, we define each state X t
i , with i = 1, ..., N , as X t

i = (H t
i , B

t
i , L

t
i, ρ

t).
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The optimization objective is to minimize both the energy consumption from the

grid and the traffic demands that cannot be satisfied due to vSCs in the OFF

mode. As shown in Section 4.4.1, the optimization goal at each decision slot t will

be to minimize the total weighted cost over a finite time horizon formulated as

follows:

P1: min
{At}t=1,...,K

K∑
t=1

f(At)

subject to Bt
i > Bth ∀i.

(6.3)

where Bth is the battery threshold level and K is the time horizon or the number

of times the energy control is applied; f(At) is the weighted cost function in slot

t, defined in Section 4.4.1 as:

f(At) = ω1 · Em(At) + ω2 ·D(At) (6.4)

where Em(At) and D(At) are respectively the normalized grid energy consumption

and the traffic drop rate in the cluster, given the operative modes of the vSCs in

slot t. The grid energy consumption in the slot t is equivalent to the energy

consumption at the MBS site, including the MEC server used for computational

offloading. The grid energy consumption is then computed as:

Em(At) = Pm(At)∆t (6.5)

where Pm(At) is the power consumption of the MBS given the operative modes of

the vSCs. The details on the power consumption models are described in Section

2.6. The traffic drop rate in slot t, D(St, t), is the ratio of the total amount of traffic

demand that cannot be served by the system in the slot t. The weights ω1 and ω2

determine the balance between the two objectives and ω1 ≥ 0, ω2 ≥ 0, ω1 +ω2 = 1.

In this work, we will consider ω1 = ω2 = 0.5 to impose equal importance on the

two objectives, but the results can easily be generalized to arbitrary weights.

A centralized off-line solution of this problem is proposed in Chapter 4 using

DP and with a priori knowledge of the environmental variables. The problem of

finding optimal configuration options is represented as a graph and stated as a

shortest path search, while label correcting method is used to explore the graph

and find the the shortest path. Those obtained results are considered as system

performance bounds and are used as a benchmark to the control methods proposed
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in this chapter. Here, we propose an on-line solution based on multi-agent RL. In

particular, we use approximated DP methods, known as TD learning, to determine

optimal policies [8]. Our proposal is based on distributed and coordinated decision

making: i.e., each vSCs take actions by itself, which makes it scalable with the

number of vSCs. In order to coordinate the decision making process, we rely on

communicating system wide information, e.g., traffic load at MBS, to each vSCs.

Section 6.3 describes the proposed QL and FQL based control solutions to the

sequential decision making process described here. The power consumption model

is described in Section 2.6. Moreover, the EH and traffic demand profiles are

described in Section 4.3.1.

6.3 Distributed Control Methods

In this section, we introduce our distributed and coordinated multi-agent RL so-

lutions and we focus on the details about both FQL and QL based controllers

design. In the distributed QL and FQL controllers, each vSC are modeled as QL

and FQL agent, respectively, and the agents decisions are coordinated via broad-

casting MBS traffic load information to each vSC. For detailed background on RL

and multi-agent RL including the algorithms of QL and FQL, the reader can refer

to Chapter 3.

6.3.1 QL controllers

In what follows, we describe the definition of states, reward and actions for QL

based controller for solving our MDP.

1. States: According to the system model defined in Section 6.2, the state of

the ith vSC modeled as QL agent, X t
i = (H t

i , B
t
i , L

t
i, ρ

t) is composed of the

energy arrival H t
i , the battery level at the vSC, Bt

i , the traffic load at MBS,

ρt, and the traffic load at vSC, Lti.

The values of each state variables are all normalized and quantized into 5

levels. Hence, the QL based controller has 5×5×5×5 = 625 states. Since our

optimization objective is system-wide where as the vSCs are taking actions

in distributed fashion, the coordination among vSCs is achieved by including

the MBS traffic load information in the states of the controller at each vSCs.

In this way, vSCs action selection can be coordinated towards minimizing



Chapter 6. The Case of Multi-vSCs 86

the MBS load which, in turn, is equivalent to minimizing the grid energy

consumption.

2. Actions: The set of possible actions are the possible operative modes of the

vSCs, At. The action set for the ith vSC are switching off, PHY-RF split

mode, or MAC-PHY split mode. Hence, the action set for the whole QL

solution is a combination of the three operative modes of each vSC.

3. Reward: The reward function determines the immediate reward the controller

acquire as a result of taking a specific action. The optimization goal is to

minimize the power drained from the grid while reducing traffic drop rate as

given by (6.4). Hence, the reward function can be formulated as:

rt = 1− (ω1 · Em(At) + ω2 ·D(At)) (6.6)

where Em(At) and D(At) are respectively the normalized grid energy con-

sumption and the traffic drop rate in the cluster, given the operative modes

of the vSCs and the time step t.

Each vSC agent applies QL procedure as shown in Algorithm 3.

6.3.2 FQL controllers

FQL allows to integrate the benefits of FIS in QL: provide good approximations of

the Q-function and enable the use of QL in continuous state spaces [109]. In FQL,

let X be the crisp set of inputs defining the state of a learning agent. Crisp values

are the exact values of the inputs without any form of pre-processing. The process

of converting the crisp values to fuzzy values is known as fuzzification. Fuzzifica-

tion is done according to the degree of membership determined from membership

functions. In our scenario, we define the membership functions for the traffic load,

energy arrival and battery as well as actions and reward functions, as follows.

1. Membership functions and fuzzy rules: The crisp input state of ith vSC X t
i

is defined in Section 6.2 as X t
i = (H t

i , B
t
i , L

t
i, ρ

t). Trapezoidal and triangular

membership functions are used for the traffic load at MBS, traffic load at

vSCs, energy arrival and battery level of vSCs. In particular, 5 fuzzy sets are

defined with linguistic terms ”Very Low”, ”Low”, ”Medium”, ”High” and

”Very High” as shown in Fig. 6.1. Hence, the fuzzification step involves

mapping the input X t
i into 5 fuzzy sets for traffic load at MBS, traffic load
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Figure 6.1: Membership functions of MBS traffic load, vSC traffic load, energy har-
vesting and battery level

at each vSCs, energy arrivals and battery level of each vSCs. Hence, there

are 625 rules corresponding to every combination of fuzzy sets in the FQL.

Similarly as for QL-based controller design, MBS traffic load information

is included in the fuzzy rules definition of each vSCs controller to achieve

coordination among vSCs towards a common optimization goal of minimizing

grid energy consumption while avoiding system outages.

2. Actions: The set of possible actions are the possible operative mode of each

vSC. An action for each rule is determined by using the exploration/exploita-

tion policy as shown in step 2 of Algorithm 5. After computing the firing

strength of each rule using membership functions, the global action is com-

puted as a weighted sum of each action and the corresponding firing strength

using (3.9). This defuzzification method is commonly applied in zero order

Sugeno fuzzy systems [129] and is known to be computationally efficient. In

our controllers, since the set of actions are limited (3 operative modes of each

vSC), the crisp output obtained by the defuzzification method using (3.9) is

converted to a nearest integer, which corresponds to an operative mode of a

vSC.

3. Reward: The reward function is the same as defined for QL control in (6.6).

The procedure of FQL algorithm is shown in Algorithm 5.

6.3.3 Control Without Coordination

This section presents the control methods where each vSCs take actions indepen-

dently without any system wide information. In this case, as opposed to the QL
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and FQL methods described above, the vSCs did not have the load level of the

MBS and this is not considered in their decision making process. As a result the

state/rules of ith vSC in un-coordinated methods are given by:

X t
i = H t

i , B
t
i , L

t
i (6.7)

Therefore, the un-coordinated methods have 5× 5× 5 = 125 rules/states for FQL

and QL methods respectively. We call these methods as Un-Coordinated FQL

(U-FQL) and Un-Coordinated QL (U-QL). The actions and reward definitions of

U-FQL and U-QL methods are the same to the actions and rewards defined above

for both FQL and QL controls.

6.4 Numerical Results

We considered a simulation scenario as described in 4.5.1. Moreover, energy ar-

rivals and aggregated downlink traffic have been generated according to the real-

istic models described in Section 4.3.1.

6.4.1 Off-line Training

In this section we analyze the behavior of the system when the training is per-

formed off-line. In particular, we considered one year as an episode with time

granularity of one hour, since it allows to achieve a correct dimensioning of the

solar power system for cellular BSs, as shown in [130]. Therefore, each train-

ing epoch has 8640 decision slots. Hence, every hour the agents choose actions

corresponding to one of the possible operative modes of the vSCs with the goal

of minimizing grid energy consumption, while reducing system drop rate. The

training phase requires calibrating the parameters of the algorithm that have the

strongest impact appropriately. These parameters are the learning rate (α), the

exploration parameter (ε) and discount factor (γ). Moreover, we also adopt a

discount process on these parameters in order to guide the exploration toward the

stability. In particular, we are applying an exploration discount factor of 0.5 at

the beginning of each epoch until the agent reaches minimum level of exploration,

which is equivalent to 3%.

The cumulative reward of FQL and QL methods for a system composed of 3 vSCs

and a MBS with in a residential area traffic profile are shown in Fig. 6.2. The
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cumulative reward is normalized with respect to a cumulative reward bound which

is determined off-line using DP [131], as shown in Chapter 4. As it can be seen

from Fig. 6.2a, FQL based control can achieve a cumulative reward very close to

the optimal bound (more than 97%). In addition, the choice of training parameters

affects the convergence of the FQL control. The cumulative reward is shown to

be sensitive to the exploration and learning rate parameter choices as it can reach

the 85% level in the case of α = 0.01 and ε = 0.5. The cumulative reward of

QL based control in residential area is shown in Fig. 6.2b. In the best case, the

cumulative reward obtained by QL (94%) is close to the optimal bound but lower

with respect to FQL.
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Figure 6.2: Cumulative reward in residential area corresponding to different training
parameters: (a) FQL (b) QL
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Figure 6.3: Cumulative reward in office area corresponding to different training pa-
rameters: (a) FQL (b) QL

The normalized cumulative reward for a system of 3 vSCs deployed in an office

area is shown in Fig. 6.3. These results show that at the best case, FQL and QL

controls in an office area are able to gain a cumulative reward of about 99% and

97% with respect to the optimal bound, respectively. The results in Fig. 6.2 and
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Fig. 6.3 also show that, FQL based control is able to accumulate rewards faster

than QL. In residential scenario, the FQL method is able to get around 95% of the

reward in less than 5 epochs where as QL requires about 15 epochs to reach the

same level of cumulative reward. For an office scenario, FQL achieves a cumulative

reward of about 97% in less than 5 epochs, whereas QL requires about 20 epochs

to reach 96% level. Moreover, higher initial exploration rate is important for both

FQL and QL, since it enables to explore more actions randomly during the initial

phase of the training. Thus, the agent in the vSC has already discovered a higher

number of rules-actions/state-actions pairs for FQL and QL, respectively, which,

in turn, help to avoid entering local optima.

The same analysis has been also applied for scenarios with 5, 7, 10, 12 and 15

vSCs. The maximum cumulative reward obtained by both QL and FQL based

controllers in residential and office area are shown in Fig. 6.4. The results show

that FQL is able to accumulate higher reward compared to QL, 35% more with 15

vSCs. It is to be noted that, the maximum cumulative reward is decreasing as the

number of vSCs increases. This is due to the higher load in the system injected

by the vSCs which generates higher system drop rate and, in turn, reduces the

immediate reward. Moreover, as the number of vSCs increases, conflicts among

the actions of the agents can emerge which can impact the immediate reward

obtainable. In addition, the cumulative reward is higher in an office area. In fact,

the peak of traffic in the residential profile occurs during the early night (11 pm),

as shown in Fig. 4.2, when the energy income is low, thus forcing the agents to

switch-off or choose actions with more computational offloading to MBS.

Finally, the maximum cumulative reward gap between FQL and QL increases with

the number of vSCs, as can be seen in Fig. 6.4a and Fig. 6.4b. This highlights

the better suitability of FQL control especially in a network of higher number of

vSCs.

6.4.2 Policy Characteristics

The policy behavior of both FQL and QL based controls for a system with 3 vSCs

are evaluated with respect to the off-line policy. The off-line solution, described in

Chapter 4, is based on DP and aimed at determining the performance bound of

dynamic functional split placement when system dynamics information are known

a-priori. The policy behaviors of an off-line, FQL and QL based controls for 3 vSCs

for an average winter day are depicted in Fig. 6.5 and Fig. 6.6 for residential and
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Figure 6.4: Maximum cumulative reward obtained by FQL and QL for 3, 5, 7, 10, 12
and 15 vSCs (a) Residential (b) Office

office area, respectively. Moreover the functional split selection behaviors for an

average summer day are shown in Fig. 6.7 and Fig. 6.8 for off-line, FQL and QL

controls in residential and office area, respectively. These results show that both

FQL and QL polices usually switch-off most of the vSCs during very low traffic

periods, as done by the off-line policy. However, the polices substantially differ

in their respective functional split options selection when switched on. In this

regard, QL is adopting a more conservative approach by selecting more PHY-RF

split option as compared to the other solutions. In fact, FQL has a more similar

behavior with respect to the off-line solution thanks to its higher flexibility in

policy selection for both MAC-PHY and PHY-RF splits. In residential area and

on average winter day, the MAC-PHY selection rates are 51%, 46% and 23% for

off-line, FQL and QL controls respectively. For average summer day, the residential

area MAC-PHY selection rate rises to 77%, 68% and 34% in off-line, FQL and QL

solutions respectively. On the other hand, on average winter day in office area,

the MAC-PHY selection rates are 62%, 50% and 34% for off-line, FQL and QL

controls respectively. For average summer day, the office area MAC-PHY selection

rate rises to 81%, 70% and 44% in off-line, FQL and QL solutions respectively.

Hence, the FQL policy is able to have higher adaptation to the energy income

of the seasons. It is also interesting to note that for an office area, the off-line

solution configuration is predominantly between switch-off and MAC-PHY split.

This can be clearly seen in Fig. 6.8, where the off-line solution has 0% PHY-RF

selection rate on an average summer day.
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Figure 6.5: Average residential area winter day policy characteristics of: (a) Off-line
(b) FQL (c) QL

6.4.3 Network Performance

This section evaluates the performance of the polices obtained in the training

phase in terms of grid energy consumption and system drop rate parameters for

a year of operation. Hence, the same energy arrival and traffic demand profiles

used in the training phase are used for the evaluation of the network performance.

First we compare the performance of the policies against the off-line bound in

a scenario with 3 vSCs. Moreover, as a comparison bench mark, we considered

uncoordinated solutions, i.e., U-FQL and U-QL presented in Section 6.3.3, and a

greedy approach. The Greedy (G) approach works by keeping the vSC in PHY-RF

mode all the time as long as the level of the battery is above a certain threshold

(Bth). We call this static configuration as G-PHY-RF. The network performance

results are shown in Table 6.1.
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Figure 6.6: Average office area winter day policy characteristics of: (a) Off-line
(b) FQL (c) QL

Table 6.1: Comparisons with respect to the off-line bound - 3 vSCs

Algorithm
Grid energy

consumption

(KWh)

Average

drop rate

(%)

Residential Office Residential Office

Off-line 7403 6744 0.3 0.02

FQL 7695 (+3.9%) 7076 (+4.9%) 0.9 0.05

QL 8150 (+10%) 7289 (+8.1%) 0.5 0.03

U-FQL 8000 (+8.0%) 7487 (+11%) 1.2 0.1

U-QL 8202 (+10.8%) 7688 (+14%) 0.7 0.1

G-PHY-RF 8320 (+11.2%) 8232 (+18.1%) 3.3 0.8

These results show that FQL is able to achieve very low grid energy consumption

which is only 4% to 5% higher than the energy consumption value obtained by the

off-line bound for both office and residential profiles. On the other hand, QL policy

consumes relatively higher grid energy which is about 8% to 10% higher than the
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Figure 6.7: Average residential area summer day policy characteristics of: (a) Off-line
(b) FQL (c) QL

off-line policy, for both office and residential area traffic. This can also be deduced

from the policy behaviors in Fig. 6.5, Fig. 6.6, Fig. 6.7 and Fig. 6.8, which show

that FQL has higher MAC-PHY selection rate than QL. In particular, the FQL

policy shows adaptation to a higher energy income in summer months by increasing

the selection rate of MAC-PHY split. This behavior is also observed from the off-

line solution. With higher MAC-PHY selection rate, more energy saving can be

achieved since most of the BB processing functions are performed locally at vSCs.

The results in Table 6.1 also show that the policies without coordination, i.e. U-

FQL and U-QL, exhibit lower performance than their coordinated counterparts,

i.e. FQL and QL, respectively.

The grid energy consumption performances of FQL and QL based controllers in

residential and office area for a year of operation for higher number of vSCs are

shown in Fig. 6.9. Due to high computational demand of the off-line solution, we

could not show the off-line bound results for vSCs higher than 3. Moreover, the

traffic drop rate performances of both FQL and QL controls in residential and office

area scenario are shown in Fig. 6.10. These results show that FQL policy performs

better both in grid energy consumption and average drop rate in both residential
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Figure 6.8: Average office area summer day policy characteristics of: (a) Off-line
(b) FQL (c) QL

and office profiles for higher number of vSCs. The performance gap between FQL

and the other solutions grows with the number of vSCs (7, 10, 12 and 15 vSCs).

In residential area traffic, the FQL controller achieves an energy saving of up to

12% and an average drop rate of up to 10% less than the QL control. Moreover,

FQL controller is able to achieve energy saving of up to 17% and average drop

rate of up to 8% less than QL control in an office area traffic profile. The better

performance by the FQL is aligned with the higher cumulative rewards obtained by

the FQL controller as shown in Fig. 6.4. In addition, the results of uncoordinated

solutions, i.e., U-FQL and U-QL, are shown for comparison. The solutions without

MBS traffic load information, i.e. U-QL and U-FQL, have lower performances than

the proposed QL and FQL counterparts both in energy consumption and average

drop rate. In addition, the static configuration policy i.e., G-PHY-RF, presents

the lowest performance, below than the RL based methods in both grid energy

saving and average drop rate.
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Figure 6.9: Grid energy consumption comparison among FQL, QL, U-FQL, U-QL
and G-PHY-RF solutions: (a) Residential (b) Office
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Figure 6.10: Average drop rate comparison among FQL, QL, U-FQL, U-QL and
G-PHY-RF solutions: (a) Residential (b) Office

6.4.4 Policy Validation

In this section we evaluate the behavior of the system in real deployment scenario

with a training performed off-line with simulation. In detail, we will validate

the proposed FQL and QL based controllers using a new environment, which is

characterized by an energy arrival and traffic demand profiles which are different

from the environment used for simulated training. In particular, different EH

traces and a slight variation in the traffic demand is applied in the new environment

with respect to the environment used for the simulated training. In this case we

are using the algorithms with pre-trained Q-values and with an exploration rate

of 5%. The validation of the policies along with the training environment policy

evaluation for 3, 5, 7, 10, 12 and 15 vSCs for a year of operation are shown in

Table 6.2. The validation results in Table 6.2 show that both FQL and QL are

able to adapt their behaviors to the new validation environment. This is confirmed

by both grid energy and average drop rate performances that are very close to the

corresponding policy evaluation results. These results give an insight that using
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Table 6.2: Policy validation results
(R-T: Residential Training, O-T: Office Training, R-V: Residential Validation, O-V:

Office Validation)

No. of vSCs
Algorithm

Grid energy
consumption (KWh)

Average drop rate (%)

R - T O - T R - V O - V R - T O - T R - V O - V

3 FQL 7695 7076 7757 7211 0.9 0.05 0.8 0.02
QL 8150 7289 8330 7495 0.5 0.03 0.6 0.03

5 FQL 8490 7806 8527 7805 2.4 0.2 3 0.18
QL 8682 8644 8903 8639 1.3 0.3 1.4 0.35

7 FQL 9193 8285 9189 8330 4.1 1.2 4.8 1.37
QL 10466 9912 10482 9885 4.4 0.9 4.7 1.1

10 FQL 10591 9357 10606 9367 5.2 1.5 5.4 1.5
QL 12076 11299 12177 11291 8.4 4.9 8.8 5.1

12 FQL 11211 9956 11222 10019 7.6 1.8 8.4 2.0
QL 12240 11955 12216 11967 13.7 6.7 14. 1 6.7

15 FQL 12056 10546 12182 10623 10.2 2.7 10.6 3.2
QL 12869 12742 12917 12711 23 11 23.4 11.1

simulated trained Q-values / rules-actions consequents for QL / FQL respectively,

continuously exploring new actions in the new environment and updating the

corresponding Q-tables is a viable approach in real deployment scenarios.
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Figure 6.11: Cumulative reward for run-time training of FQL and QL in residential
area for 3 vSCs

6.4.5 Run-time training

Here, we perform the evaluation of the proposed FQL and QL based controls in

run-time deployment scenario without pre-training, i.e., the vSCs are learning on

the job while they are in operation. In this case, all the Q-values / rules-actions



Chapter 6. The Case of Multi-vSCs 98

1 2 3 4 5

Year of operation

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

G
ri
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

K
W

h
r)

×104

FQL-3vSCs

QL-3vSCs

FQL-5vSCs

QL-5vSCs

FQL-7vSCs

QL-7vSCs

FQL-10vSCs

QL-10vSCs

FQL-12vSCs

QL-12vSCs

FQL-15vSCs

QL-15vSCs

Figure 6.12: Grid energy consumption of run-time FQL and QL controls in residential
scenario for 3, 5, 7, 10, 12 and 15 vSCs
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Figure 6.13: Average drop rate of run-time FQL and QL controls in residential
scenario for 3, 5, 7, 10, 12 and 15 vSCs

consequences are initialized to 0 for QL and FQL, respectively. An exploration/-

exploitation strategy is used for the learning of vSCs. In order to determine the

effect of the learning parameters on run-time FQL and QL performances, we have

compared the on-line training for different sets of learning rate (α) and exploration

(ε) parameters for 3 vSCs. These results are shown in Fig. 6.11. The results show

that FQL is able to gain higher cumulative rewards than QL starting from the

first year of operation.

As a result, it is more suitable for run-time training of the vSCs than QL. Moreover,
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lower values of the learning rate are better for FQL, whereas QL requires relatively

higher learning rate. The exploration rate parameter shown in Fig. 6.11 are initial

exploration rates, which are continuously discounted as the training progresses

until reaching the minimum level of exploration, which is set at 5%.

The grid energy consumption performances of both FQL and QL controls for a

run-time training and operation are shown in Fig. 6.12. Moreover the average

drop rate performances of run-time controls are shown in Fig. 6.13. These results

show that FQL policy is more suitable for run-time application, as shown both in

terms of grid energy consumption and average drop rate.

Run-time FQL is able to gain an energy saving ranging from 10% to 17% with

an average drop rate of 2.5% to 13% less, than run-time QL, in the first year of

deployment. However, compared to policy validation results based on pre-trained

agents, shown in Table 6.2, the run-time training and operation results shown

in Fig. 6.12 and Fig. 6.13 display lower performances. For FQL controller, the

validation results of pre-trained agents shown in Table 6.2, achieve energy saving

ranging from 5% to 9.5% with a drop rate of 0.4% to 1% less, than the run-time

results in Fig. 6.12 and Fig. 6.13. Moreover, for QL, the validation results in

Table 6.2, show an energy saving ranging from 7% to 19% with a drop rate of 3%

to 12% less, than the run-time results.

Hence, to get closer to the optimization goals, it is better to initialize vSCs’ agents

with some knowledge prior to their deployment. This can be in the form of simu-

lated training of the vSCs, as shown in Section 6.4.1. As a result, training of the

vSCs in a simulative environment prior to their deployment and allowing them to

explore new knowledge while in operation is a more appropriate approach in real

deployments.

6.5 Conclusions

In this chapter, we have investigated the joint grid energy and traffic drop rate

minimization problem and proposed multi-agent RL to solve it for a scenario where

the computational processes of the vSCs powered solely by EH and batteries may

be executed on a grid-connected central MEC-server at the MBS. Distributed FQL

and QL on-line algorithms are tailored for our purposes. Coordination among the

multiple agents is achieved by broadcasting system level information (i.e. the

traffic load at MBS) to the independent learners. Finally, we have evaluated the
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network performance (in terms of energy consumption and traffic drop rate) by our

multi-agent RL solutions with different levels of coordination and compared them

against the off-line performance bound and static solutions. Our results confirm

that coordination via broadcasting may achieve higher system level gains than

un-coordinated solutions and cumulative rewards closer to the off-line bounds.

Moreover, our analysis permits to evaluate the benefits of continuous state/action

representation for the learning algorithms in terms of faster convergence, higher

cumulative reward and more adaptation to changing environments.



Chapter 7

The Case of Multi-vSCs: Deep RL Approach

7.1 Introduction

Multi-agent RL based online algorithms for dynamic placement of functional split

options in MEC-enabled RAN with EH capabilities have been proposed in Chap-

ter 6. The methods are based on distributed RL, in particular QL and FQL.

Coordination among the learning agents is favored via broadcasting system-wide

information, i.e. the traffic load of MBS. In this Chapter, instead we propose a co-

ordination scheme based on the exchange of specific local state information among

the agents. Hence, we increase the amount of knowledge shared in order to reduce

conflicting behaviors, and, in turn, converge to stationary policies with higher sys-

tem wide gains. The main challenge with this approach is the exponential increase

in the state space dimension, which may slow down the learning process and even

jeopardize its convergence. Tabular multi-agent RL methods (e.g., QL, FQL) work

through mapping each state to a value; hence, each state-action pair need to be

properly explored. In problems with continuous state variables, as ours, this map-

ping is performed through quantization (QL) or fuzzy inference systems (FQL)

and may result in large state-action spaces, which slow down the learning process.

For instance, the solutions proposed in Chapter 6 relies on broadcasting system

level information and have 4 state variables corresponding to energy, battery, local

traffic load and system traffic load. Let z denote the level of quantization, then

the state size of each agent in Chapter 6 is z4. For more coordination, if vSCs

exchange battery state information, the number of states will be multiplied by

a factor of zN , where N is the number of vSCs in the system. This implies an

increment in the size of the states from 625 in Chapter 6 to a range from 78125 to

1.9073486× e13, for z = 5, in a scenario of 3 and 15 vSCs, respectively. Therefore,

tabular RL methods can not be applied on such a large state space.

101
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Artificial neural networks can be used to approximate the Q-values of state-action

pairs [110], known as DRL, described in Chapter 3. DRL allows working with large

state and action spaces through Q-value estimations without the need for large

and impractical look-up tables. Here, we propose a Distributed DRL (DDRL)

for the dynamic selection of functional split options in MEC-enabled RAN with

EH capabilities, where each vSC is modeled as a DRL-based agent that takes

decisions with coordination among other vSC agents. As opposed to tabular multi-

agent RL, DDRL allows to coordinate the policies of the learning agents via local

state information exchange among them without facing practically infeasible state-

action tables.

The main contributions of this chapter may be summarized in the following items:

� Coordinated DDRL Solutions : We propose a multi-agent RL solution that

can handle the prohibitively large state space in an efficient manner to opti-

mally leverage flexible functional split options at the vSCs with the goals of

minimizing the grid energy consumption and the amount of dropped traffic

� Characterization of the Learning Algorithms : We analyze the complexity

and convergence properties of the proposed DDRL algorithms, and provide

insights on the hyperparameter setup in both simulative training and policy

validation. We also describe the spatio-temporal behavior of the selected

DDRL policies.

� Network Performance Evaluation: We evaluate the performance (in terms of

energy consumption and traffic drop rate) of the proposed DDRL solution

with local state coordination, and compare them against the multi-agent

FQL benchmark of Chapter 6 with system level coordination, as well as the

offline bound of Chapter 4.

� Cost Analysis : We estimate the energy and cost savings that can be expected

after 5 and 10 years of operation through DDRL and FQL controllers as

compared to a system only relying on grid connection

In what follows, we describe briefly the scenario and system model considered

in Section 7.2. The proposed DDRL solution is explained in Section 7.3. The

numerical results and cost saving estimates are given in Section 7.4. Finally, we

draw conclusions in Section 7.5.
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7.2 Network Scenario and System Model

The network scenario, the system model as well as the optimization problem are ex-

plained in Chapter 6, Section 6.2. Recall that, the traffic loads at time slot t gener-

ated by the users in the coverage of the vSCs are denoted by Lt , [Lt1, L
t
2, . . . , L

t
N ],

where Ltn is the traffic load at the nth vSC. The energy harvested by the vSCs in

slot t are denoted by H t , [H t
1, H

t
2, . . . , H

t
N ], while the battery states are denoted

by Bt , [Bt
1, B

t
2, . . . , B

t
N ], where H t

n and Bt
n are the harvested energy and the

battery state of the nth vSC, respectively. In addition, in order to capture the

evolution of the traffic requests and energy arrivals, the hour of the day and the

month are defined as ht and mt, respectively for time slot t.

The network wide sequential decision making problem is defined by a MDP as

X t+1 = f(X t,A
t,Lt,H t), where X t , [X t

1, X
t
2, . . . , X

t
N ] are the states of the

vSCs in slot t, At , [At1, A
t
2, . . . , A

t
N ] are the control actions/modes of the vSCs

and (Lt,H t) are the environmental random variables (i.e., traffic and EH stochas-

tic processes). In particular, we define each state X t
i , with i = 1, ..., N , as

X t
i = (ht,mt, Lti,B

t). Hence, the state of the ith vSC in slot t is represented

by the battery levels of each vSCs Bt, its traffic load Lti, the month of operation

mt and the hour of the day ht. As stated in Section 6.2, the optimization objectives

are to minimize the total weighted cost of grid energy consumption and system

traffic drop rate over a finite time horizon. An off-line solution of this problem is

proposed in Chapter 4 using DP with a priori knowledge of the environmental vari-

ables. The offline solution results are considered as system performance bounds.

Moreover, Chapter 6 introduces an online solution based on tabular multi-agent

RL, namely QL and FQL, that are used as a benchmark to the control methods

proposed in this chapter.

In this chapter, we propose an on-line solution based on multi-agent DRL, without

assuming the explicit knowledge of the system statistics governing the underlying

random processes. In particular, we introduce distributed DRL agents in which

neural networks are used as value approximation functions [110] to determine the

optimal actions At. Our proposal is based on distributed and coordinated deci-

sion making, i.e., each vSC takes its own action based on its state, which makes

it scalable with the number of vSCs. In order to coordinate the decision making

process, we rely on local state information exchange among vSCs; in particular,

we assume that all the vSCs know the battery levels of all the other vSCs. The

communication among vSCs may have additional overhead in terms of latency



Chapter 7. Distributed Deep RL Approach 104

and signaling. However, considering the time granularity of the decision making

process (i.e., 1 hour), these effects are neglected in this study. The power con-

sumption model is described in Section 2.6. Moreover, the EH and traffic demand

profiles are described in Section 4.3.1.

7.3 Distributed Deep RL

In this section, we introduce the design of DDRL-based controllers where each vSC

is modeled as a DRL agent taking decisions in coordination with other vSC agents.

The details of the DDRL controllers including the states, actions and reward as

well as the procedure followed by each DRL agent are included. We adopted

a distributed approach where each vSC is modeled as a DRL-based agent that

takes actions in coordination with other vSCs. This helps to avoid the exponen-

tially increasing number of actions. For instance, if there are 3 possible operative

modes/actions per vSC, a centralized approach will require the exploration of 3N

actions where N is the number of vSCs. This is a huge action space, e.g., the

number of possible actions in centralized approach will reach 14, 348, 907 for 15

vSCs. The distributed design ensures scalability while maintaining the complexity

of the controllers to a reasonable level. In our DDRL implementation, coordina-

tion among the agents is enabled by the exchange of battery state information

among agents as well as via the design of global reward where each vSC receives

the same system level feedback.

7.3.1 DDRL control

In this section, the details of our DDRL based controller including the states,

actions and reward definitions are given.

States: According to the system model defined in Section 7.2, the state of the ith

vSC at time slot t is defined as X t
i = (ht,mt, Lti,B

t), where ht denotes the hour of

the day, mt denotes the month, Lti denotes the average traffic load experienced by

the vSC and Bt denotes the vector of battery states of all the vSCs. The values

of input the traffic load and the battery state variables, namely Lti and Bt are all

normalized with respect to their maximum. On the other hand, for cyclic inputs

ht and mt, sinusoidal transformation is applied [132]. Hence, the hour values

ranging from [0, 23] and months from [0, 11] are transformed into sinusoidal values

between [−1, 1] and their cyclic properties are maintained. These state variables,
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after normalization, are the input of the neural network that is used to estimate

the Q values of all the actions at that state. Since the battery levels of all the

vSCs are part of the states, the size of the input to the neural network of each

vSC agent is dependent on the number of vSCs and is given as 3 +N , where N is

the number of vSC agents.

Actions: The set of possible actions are the possible operative modes of the

vSCs, At. The action set for the ith vSC are switching off, PHY-RF split mode,

or MAC-PHY split mode. Hence, the action set for the whole DDRL solution is a

combination of the three operative modes of each vSC.

Reward: The reward function determines the immediate reward each DRL-agent,

i.e., vSCs, acquires as a result of taking a specific action. The optimization goal is

to minimize the power drained from the grid while reducing the traffic drop rate,

as given by (6.4). Hence, the reward function can be formulated as:

rt = 1− (ω1 · Em(At) + ω2 ·D(At)) (7.1)

where Em(At) and D(At) are, respectively, the normalized grid energy consump-

tion and the traffic drop rate, given the operative modes of the vSCs. In our

DDRL implementation, each agent receives the same system level reward signal

determined based on system drop rate and grid energy consumption. System level

reward design is chosen to enable coordinated learning.

In order to improve the convergence behaviors of the DRL algorithm, we will use

an experience buffer of capacity M , denoted by D in which we store previous

experiences of the agents consisting of state, action, reward and next state tuples.

We then randomly sample mini-batches from this experience buffer for training

the neural networks of each DRL agents. This technique is known as experience

replay. The neural networks used for estimating the Q-values are initialized with

random weights, θ, and an ε-greedy policy maps the input states to actions; where

actions are chosen randomly with probability of ε, i.e., exploration, otherwise an

action with the highest Q-value is taken, i.e., exploitation. Each vSC agent applies

a procedure shown in Algorithm 8.
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Algorithm 8 DDRL based control

Initialize replay memory Di of capacity M

Initialize action-value function, Qi, with random weights θi

for each episode do:

Initialize Xt
i = (ht,mt, Lti,B

t) - observation from the scenario

for each step, t, of episode do:

With probability ε select a random action At

Otherwise At = maxAQi(X
t
i , A;θi)

Take action At, get reward rt and observe next state Xt+1
i

Store transition ( Xt
i , A

t
i, rt, X

t+1
i ) in Di

Sample a random mini-batch of K transitions (Xj , Aj , rj , X
j+1) from Di

Set target value, yj = rj + γmaxÂQi(X
j+1, Â;θi)

Perform a gradient descent step on (yj −Qi(Xj , Aj ;θi))
2 with respect to θi

end for

end for

7.4 Numerical Results

We considered a simulation scenario as described in 4.5.1. Moreover, energy ar-

rivals and aggregated downlink traffic have been generated according to the real-

istic models described in Section 4.3.1.

7.4.1 Training

In this section we analyze the behavior of the system when the training is per-

formed off-line. In particular, we considered one year as an episode with time

granularity of one hour, since it allows to achieve a correct dimensioning of the so-

lar power system for cellular BSs, as shown in [130]. Hence, every hour the agents

choose actions corresponding to one of the possible operative modes of the vSCs,

with the goal of minimizing the weighted sum of grid energy consumption and traf-

fic drop rate. As mentioned in 7.3.1, the size of the state set for each of the DRL

agents is N +3, where N denotes the number of vSCs. An important step prior to

feeding these inputs to the neural networks of each vSC agent are normalization

and transformation, as described in Section 7.3.1. Through simulation trials and

evaluation, we have selected a 3-layer dense neural network architecture with 256,

128 and 64 neurons, respectively. Moreover, ReLu activation function is used for

hidden layers and linear activation is applied at the output layer. In addition,
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Stochastic Gradient Descent (SGD) optimizer with momentum and learning rate

decay is used for the training.

For each DRL agent, we have employed an experience replay buffer of size of

M = 2000 and a mini-batch size of 32 are chosen for the training. The training

procedure each DRL agent, i.e., each vSC, with experience replay is shown in

Algorithm 8. Given that an episode lasts 1 year and actions are taken every

hour, there are 8640 time steps within one episode of training. During training,

there is random sampling of mini-batch of experiences from the replay memory

to perform forward and back propagation steps in every hour prior to taking

actions. After the mini-batch pass, the selection of the action is dependent on the

ε-greedy policy. Each agent can select random action (exploration) or an action

with maximum Q-value (exploitation) based on the exploration rate parameter ε

used during training. In typical RL application, it is usually recommended to start

with higher level of exploration and slowly decay exploration rates as the training

progresses. The parameters used for the training of each DRL agent in our DDRL

implementation are summarized in Table 7.1.

Table 7.1: Training Parameters.

Parameter Value

learning rate (α) 0.01
initial exploration (ε) 0.9
discount factor (γ) 0.9
learning rate decay 0.01
exploration decay 0.9
optimizer SGD
mini-batch size 32
number of layers 3

The cumulative rewards during the training procedure of vSC agents are shown in

Fig. 7.1 for residential and office area traffic profiles. The training of each DRL

agent is performed during 45 episodes. As it is shown in Fig. 7.1, the scenarios

with higher number of vSCs require relatively longer training phase to reach sta-

bility and higher rewards. Moreover, the maximum cumulative reward reached at

convergence decreases as the number of vSCs increases. This arise mainly due to

the non-stationarity of the environment reflecting the conflicts among vSC poli-

cies. Finally, we notice that office profile results in a faster training phase and

more stable behavior at convergence. In office scenario, traffic and energy harvest-

ing phenomena are synchronous and facilitate an easier learning process compared

to the residential scenario, in which the higher values of traffic demands appear

during evening hours.
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Figure 7.1: Cumulative reward vs number of vSCs: (a) Residential, and (b) Office
traffic profiles

7.4.2 Policy Characteristics

In this section, we investigate the characteristics of the DDRL policies adopted

by the vSCs. In DDRL, each agent chooses its policy in coordination with other

agents with a common goal of minimizing the grid energy consumption and the

dropped traffic rate simultaneously. As a result, even though the agents’ policies

can be different, the ultimate feedback or reward signal each agent acquires is

the same, as provided in (7.1). This setup helps agents to jointly learn their

own policies towards the direction of achieving a system wide goal. In addition,

FQL policies are also shown here for comparison. The FQL controller design and

training procedures are described in in Chapter 6. It is important to note that,

the FQL controller state space consists of the vSC’s battery level, energy arrival

and vSC’s and MBS’s traffic load levels. Therefore, agents in FQL are coordinated

only via the MBS’s traffic load and they are not aware of others vSCs’ battery

conditions. For the case of 3 vSCs, both DDRL and FQL solutions are compared

against an offline solution based on DP and described in Chapter 4. Due to the

offline model computational complexity, we could not show this comparison for

higher number of vSCs.

The average hourly winter and summer day policies for a scenario of 3 vSCs in

residential area by the offline, FQL and DDRL controllers are shown in Fig.s 7.2

and 7.3, respectively. We have selected a day in December for winter, i.e., worst

EH, and a day in August for summer, i.e., best EH. It can be observed that

both FQL and DDRL are able to approximate the behavior of the optimal offline

policy. A further investigation shows that DDRL better approximates the offline
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Figure 7.2: Average winter day policies of 3 vSCs: (a) Offline (b) FQL (c) DDRL
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Figure 7.3: Average summer day policies of 3 vSCs: (a) Offline (b) FQL (c) DDRL

policy in terms of PHY-RF and MAC-PHY selection rates. On average, during

December, MAC-PHY selection rates were 56%, 61% and 67% for the FQL, DDRL

and offline policies whereas, during August, these rates increase to 65%, 78% and

87% respectively. It is interesting to observe from Fig. 7.3 that the offline policy

shows no PHY-RF selection during August, thanks to the higher energy income,

and indicating the benefit of processing most of the baseband functions locally
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Figure 7.4: Typical winter day policies with 12 vSCs: (a) DDRL (b) FQL
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Figure 7.5: Typical summer day policies with 12 vSCs: (a) DDRL (b) FQL

at vSCs. On the other hand, DDRL and FQL result in 8% and 17% PHY-RF

selection, respectively, in August.

Table 7.2 shows the average winter and summer DDRL policy characteristics of

the vSCs in residential area, averaged over the months of December and August.

It can be seen that the winter policies are characterized by relatively higher switch-

off rate than the corresponding summer policies. Moreover, the summer polices

have higher MAC-PHY selection rate. This shows the adaptation to the months

with higher energy income, i.e., by selecting MAC-PHY strategy, so that the

vSCs execute most of the baseband processes locally, in turn saving more grid

energy. On average, summer policies have 20.37% higher MAC-PHY and 18.82%

lower switch-off rate than winter day policies. An example of daily policies by

DDRL and FQL for a network setup of 12 vSCs in residential area are shown

in Fig.s 7.4 and 7.5, respectively. The figures show that, in both DDRL and

FQL, the vSCs learn relatively different policies with different PHY-RF, MAC-

PHY and switch-off rates. The behaviors of DDRL and FQL policies differ in
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Table 7.2: Average Policy Characteristics in Residential Area
(off: Switch-off, P-R: PHY-RF, M-P: MAC-PHY)

no. of vSCs
Winter Summer

off(%) P-R(%) M-P(%) off(%) P-R(%) M-P(%)

3 20.8 18.1 61.1 13.9 8.3 77.8

5 32.7 23.0 44.3 15.7 17.5 66.8

7 33.9 26.9 39.2 15.2 28.0 56.8

10 33.6 24.7 41.7 16.4 21.5 62.1

12 38.4 20.3 41.3 18.1 23.9 58.0

15 36.7 26.2 37.1 17.6 25.1 57.3

their respective selection rates of operative modes. For instance, for a scenario

of 12 vSCs, the winter policies’ MAC-PHY selection rates are 41% and 32% by

DDRL and FQL, respectively. Whereas, during summer, the MAC-PHY rates

increase to 58% and 49%, respectively, for DDRL and FQL. The FQL policy is

characterized by a relatively higher PHY-RF selection rate. For a scenario of 12

vSCs, winter PHY-RF rates are 20% and 44%, while summer PHY-RF rates are

23% and 26%, by DDRL and FQL, respectively. This shows the relatively better

flexibility of the DDRL policies according to the seasonal energy incomes. FQL

results in less aggressive energy policies for the vSCs via selecting more PHY-RF

modes, thereby relying more on the MBS for BB processing, which leads to higher

grid energy consumption (as shown in Section 7.4.3). This is due to the fact that

FQL controllers rely only on the MBS traffic load information for coordination.

Therefore, each vSC does not have information about the battery state of the

others, and hence, it is encouraged to remain switched on in order to reduce the

load on MBS and select PHY-RF mode, which is the operative mode with lower

energy consumption. Moreover, from the policy characteristics shown in Fig.s 7.4

and 7.5, the DDRL agents tend to have more stable behavior, i.e., vSCs prefer to

stay in a single operative mode for longer time-slots than the FQL agents. This will

help in limiting the overhead in the SDN/NFV framework for moving the virtual

network functions as well as to reduce the frequency of operative mode changes

in a deployed infrastructure. In order to assess this behavior, we have shown

the average day policies of FQL and DDRL during winter and summer months

in Fig.s 7.6 and 7.7, respectively, for a scenario of 12 vSCs. These behaviors are

computed by averaging the vSC policies observed in each day during December and

August. As shown in Fig.s 7.6 and 7.7, the DDRL results in policies that exhibit

similar behavior within certain time-slots, whereas FQL policies are characterized

by relatively higher variation within a day.
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Figure 7.6: Average winter day policies of 12 vSCs: (a) DDRL (b) FQL
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Figure 7.7: Average summer day policies of 12 vSCs: (a) DDRL (b) FQL

7.4.3 Network Performance

In this section, we evaluate the performance of the trained agents in terms of annual

network grid energy consumption and average traffic drop rate. As a comparison

benchmark, we have also analyzed the performance of FQL policies with similar

simulation scenario. In addition, for the case of 3 vSCs, the network performance

of both DDRL and FQL are evaluated against the offline bound studied in Chapter

4.

Table 7.3 shows the performance of DDRL and FQL polices compared with the

offline bound of 3 vSCs. Both DDRL and FQL polices perform close to the offline

bound in both residential and office scenarios with only 1.4− 2.1% and 4.8− 5.3%

increase in annual grid energy consumption, respectively. DDRL performs closer

to the offline bound and this can be confirmed by the cumulative reward plot

shown in Fig. 7.8, where it can be seen that DDRL accumulates up to 97% of the

rewards obtained by the offline policy whereas FQL accumulates up to 94%.
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Table 7.3: Comparisons with respect to the off-line bound - 3 vSCs

Algorithm
Grid energy

consumption

(KWh)

Average

drop rate

(%)

Residential Office Residential Office

Off-line 6775 6712 0.0 0.0

DDRL 6874 (+1.4%) 6857 (+2.1%) 0.0 0.0

FQL 7136 (+5.3%) 7037 (+4.8%) 0.0 0.0

Figure 7.8: Cumulative reward comparison among the policies obtained by offline
optimization, DDRL and FQL

The network grid energy consumption in one year of operation and the system

drop rate comparison between DDRL and FQL controllers in residential and office

areas for higher number of vSCs are shown in Fig. 7.9 and Fig. 7.10, respectively.

The results show the better performance obtained by DDRL as compared to FQL

controllers. More than 13% and 5% reduction in annual grid energy consumption

is achieved with DDRL compared to FQL, in residential and office scenarios, re-

spectively. Moreover, the DDRL control results in up to 2.6% and 1.3% less traffic

drop rate than FQL in office and residential scenarios, respectively. The better

performance by DDRL compared to FQL is also evident from the cumulative re-

ward achieved by the correspondent controllers in the same simulation scenarios.

The maximum cumulative rewards obtained by DDRL and FQL in residential and

office area traffic profiles are shown in Fig. 7.11. It shows the relatively higher

cumulative reward gained by DDRL, which translates to better network perfor-

mance, i.e., lower grid energy consumption and system drop rate, as justified by

Fig. 7.9 and 7.10. Moreover, the gap in cumulative reward is increasing with the

number of vSCs, which implies that DDRL is able to reach better coordination

among the agents
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(a) (b)

Figure 7.9: Network performance comparison between DDRL and FQL in residential
profile: (a) Grid Energy Consumption (KWh) (b) Average drop rate (%)

(a) (b)

Figure 7.10: Network performance comparison between DDRL and FQL in office
profile: (a) Grid Energy Consumption (KWh) (b) Average drop rate (%)

(a) (b)

Figure 7.11: Maximum cumulative reward: (a) Residential and, (b) Office

7.4.4 Policy Validation

Here, we evaluate the behavior of the system in real deployment scenario after an

offline training. In detail, we will validate the proposed DDRL based controllers

using a new environment, which is characterized by an energy arrival and traffic
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demand profiles which are different from the environment used for training. In

this case we are using the pre-trained model with an exploration rate of 5%.

The validation of the policies along with the training environment policy evaluation

for 3, 5, 7, 10, 12 and 15 vSCs for a year of operation are shown in Table 7.4.

The validation results in Table 7.4 show that DDRL agents are able to adapt

their behaviors to the new validation environment. This is confirmed by both grid

energy and average drop rate performances that are very close to the corresponding

policy evaluation results. On average, only 0.5% to 1.3% variation is observed in

annual grid energy consumption results of policy evaluation and validation, in both

residential and office profiles with no relevant changes in the system drop rate of

the new environment. These results give an insight that using offline trained

model and continuous exploration in the new environment is a viable approach for

deployment.

Table 7.4: Policy validation results
(R-T: Residential Training, O-T: Office Training, R-V: Residential Validation, O-V:

Office Validation)

No. of vSCs
Grid energy

consumption (KWh)
Average drop rate (%)

R - T O - T R - V O - V R - T O - T R - V O - V

3 6874 6857 6909 6891 0.00 0.00 0.00 0.00

5 7331 7191 7412 7287 0.00 0.00 0.00 0.00

7 8058 7617 8161 7677 0.03 0.00 0.10 0.10

10 8736 8591 8850 8422 1.04 0.10 1.61 0.90

12 9404 8775 9508 8694 2.42 0.23 2.38 0.93

15 10760 9116 10938 9162 2.63 0.61 2.71 1.03

7.4.5 Energy Savings and Cost Analysis

In Table 7.5, we compared the RL based controllers, i.e., FQL and DDRL, with a

scenario in which all vSCs and MBS are supplied by grid power, refereed as Grid

Connected (G-C). Both CAPEX and OPEX and the total costs of operation for

5 and 10 years duration are estimated. We consider a cost of 1.17$/W for solar

panels including installation, and 131$/KWh for energy storage costs [133]. The

energy purchasing price from the grid is set to 0.21$/KWh [134].

As it is shown in Table 7.5, both FQL and DDRL controllers provide significant

energy savings, reaching up to 54% and 61% for FQL and DDRL, respectively,

compared to the G-C solution. In terms of cost savings, FQL provides 11% and

32% cost reduction during 5 and 10 years of operation, respectively. For DDRL
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controller, the cost savings rise to 17% and 39% during 5 and 10 years of operation,

respectively. Moreover, DDRL provides more energy and cost reduction than FQL

controllers. These results are encouraging as they show that powering mobile

networks with renewable energy sources with an intelligent control are not only

environmental friendly, but also cost effective solutions.

Table 7.5: Energy savings and costs

vSCs
Algorithm Energy (kW) Costs ($)

consumption [1yr] CAPEX OPEX [1yr] cost [5yrs] cost [10yrs]

3
G-C 11334 0 2380 11900 23801
FQL 7136 2541 1498 10033 17526
DDRL 6814 2541 1430 9695 16850

5
G-C 14051 0 2950 14753 29507
FQL 8199 4235 1721 12843 21452
DDRL 7331 4235 1539 11932 19630

7
G-C 16769 0 3521 17607 35214
FQL 8647 5929 1815 15008 24087
DDRL 8057 5929 1691 14388 22848

10
G-C 20845 0 4377 21887 43774
FQL 9910 8470 2081 18875 29281
DDRL 8736 8470 1834 17642 26815

12
G-C 23562 0 4948 24740 49480
FQL 10844 10164 2277 21550 32936
DDRL 9404 10164 1974 20038 29912

15
G-C 27638 0 5803 29019 58039
FQL 12510 12705 2627 25840 38976
DDRL 10760 12705 2259 24003 35301

7.5 Conclusions

In this chapter, we have investigated the joint grid energy and traffic drop rate min-

imization problem and proposed multi-agent DRL solution. Coordinated learning

among multiple agents is enabled via the exchange of the agents’ battery state

information. We have evaluated the network performance, in terms of the grid

energy consumption and traffic drop rate for the proposed DDRL controller, and

compared the results with an offline solution proposed in Chapter 4 and a tabular

multi-agent RL solutions proposed in Chapter 6. The results have confirmed that

limited coordination among the agents via the exchange of battery states achieve

higher system level gains and cumulative rewards closer to the off-line bounds,
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while requiring limited computational complexity. Extensive numerical results us-

ing traffic and EH data have confirmed that the proposed DDRL strategy ensures

higher network performance, better adaptation to a changing environment, and

higher cost savings with respect to the benchmark scheme.



Chapter 8

Conclusions and Future Works

The exponential growth of mobile traffic demand drives the deployment of multi-

tier BSs as a means of enhancing capacity. Dense deployment of BSs is one of the

main reasons behind the rapidly increasing electrical power consumption by mobile

networks. This, in turn, leads to both environmental and economic concerns.

Fueled by the growing mobile traffic demand, the energy consumption of ICT

will reach about 51% of worldwide electricity consumption in 2030 [13]. Hence,

sustainable design and operation of mobile networks is included in the road map

towards future mobile networks, known as 5G and beyond.

In mobile network, RAN is the major energy consuming part [17]. To enhance

RAN’s efficiency, CRAN is proposed to enable centralized processing of BB func-

tions and simplification of BSs to RRHs. However, the need for high capacity and

very low latency fronthaul is a major drawback in CRAN. To relax the fronthaul

requirements, part of the BB processes can be executed at the local BS sites while

maintaining many of the centralization advantages of CRAN, i.e., flexible func-

tional split between local BS sites and a central BBU pool. Moreover, NFV enables

the execution of network functions on general purpose computing hardware as vir-

tual network functions and SDN is emerging as a tool to realize the management

and control of these functions. Flexible functional split with NFV/SDN opens a

possibility that network functions of SBSs can be virtualized and placed at differ-

ent sites of the network. These SBSs, known as vSCs, enable flexibility in resource

allocation and management.

Moreover, to mitigate both environmental and cost issues, the research community

have been studying the application of EH technology in mobile networks, including

various control algorithms aiming at efficient utilization of the harvested energy.

118
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Most of these research focus on online switch on/off control of SBSs in multi-

tier deployments, known as HetNets. The recent softwarization trend in mobile

networks including the introduction of MEC opens a new frontier in energy-aware

processing and sharing of BB processing units according to flexible functional

split options. This thesis provides novel contributions in energy-aware control of

EH powered softwarized/MEC enabled RANs leveraging functional split options.

Both offline control based on DP to determine the performance bound and online

control methods based on multi-agent RL have been proposed and evaluated in

realistic scenarios including residential and office area traffic profiles and different

seasons of the year. The algorithms effectiveness have been analyzed with respect

to the theoretical bound, naive controllers and with systems powered solely by the

electric grid. In addition, energy and cost saving benefits of the proposed methods

are estimated.

8.1 Summary of Results

The objective of the thesis is to study energy-aware control algorithms for mobile

networks that are partly powered by EH and rely on MEC for flexible functional

split between local sites (vSCs) and central cloud co-located with MBS, acting

as a MEC server. Both DP and RL based algorithms are designed and their

effectiveness is evaluated under different scenarios. The main parts of the thesis

are:

� Chapters 1, 2 and 3: Introduction to the thesis objectives, the state-of-the

art and the theoretical background.

� Chapter 4: Presents the study on performance bound using offline optimiza-

tion for dynamic selection of functional split options.

� Chapters 5 and 6: Present online RL based controllers design and perfor-

mance evaluation for both single and multi-vSCs scenarios.

� Chapter 7: Presents distributed deep RL based approach for dynamic control

of functional split options in multi-vSCs scenario.

In what follows, the contributions and conclusions of the main technical parts of

the thesis are summarized.
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8.1.1 Performance Bound Study

The thesis contribution starts by studying the performance bound of dynamic

functional splits control via offline optimization. DP is applied based on the as-

sumption that the environment dynamics are known a-priori. In particular, three

functional split options namely, PHY-RF, UpperPHY-LowerPHY and MAC-PHY,

have been targeted. A grid energy consumption and traffic drop rate minimization

problem is stated as DP problem and shortest path search algorithm is applied

to determine the optimal functional split configurations. Simulation results show

that dynamic control of functional split options serves the traffic demand with sig-

nificant energy saving, and hence lower OPEX, with respect to static functional

split policies. Therefore, the obtained performance bounds represent an encour-

aging starting point for the evaluation of more sophisticated online optimization

techniques.

We have also presented an optimal control of functional split options with energy

sharing to efficiently use the renewable energy coming from distributed sources and

to facilitate the off-grid operation of the RAN. The proposed approach permits to

move and execute some of the BB functions of the vSCs at the MBS site. Energy

exceeding the battery capacity of the vSCs has been used for the MBS operations

in order to further reduce the energy drained from the power grid. Software simu-

lations demonstrate that an intelligent renewable energy management is essential

to reduce the harvesting/storage dimensions with respect to naive approaches and

leads to high energy and cost savings for a MNO.

8.1.2 Online RL Based Control

In these regard, the PhD thesis contributes on the study on online optimization

algorithms for energy-aware control of functional split options in CRAN-like ar-

chitecture. First, single agent RL based energy management is introduced via the

application of QL and SARSA algorithms. Three operative modes namely, PHY-

RF split mode, MAC-PHY split mode and switching off have been targeted. These

online approaches are evaluated and compared with respect to an offline optimal

policy. Simulation results prove that the two proposed methods perform close to

the optimal bounds. In addition, it is observed that QL is observed to perform

better than SARSA both in the amount of annual grid energy consumption and

offloaded traffic.
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In addition, after stating the limitations encountered by a single-agent RL ap-

proach, we have proposed multi-agent RL based energy engagement in a scenario

where the computational processes of the vSCs powered solely by EH and batteries

may be executed on a grid-connected MEC-server at the MBS. Distributed FQL

and QL algorithms are tailored for our purposes. Coordination among the agents

is achieved by broadcasting system level information (i.e., the traffic load at MBS)

to each of the vSC agents. Finally, we have evaluated the network performance

(in terms of energy consumption and traffic drop rate) by the multi-agent RL so-

lutions with different levels of coordination and compared them against the offline

performance bound and static solutions. Our results confirm that coordination

via broadcasting may achieve higher system level gains and cumulative rewards

closer to the offline bound. Moreover, our analysis permits to evaluate the benefits

of continuous state/action representation for the learning algorithms in terms of

faster convergence, higher cumulative reward and more adaptation to changing

environments.

8.1.3 Distributed Deep RL Based Control

The last part of the thesis contribution focuses on the design of distributed deep

RL control for EH vSCs that rely on MEC server at the MBS for full/partial BB

processing. After stating the limitations of tabular multi-agent RL methods in

dealing with continuous or large state/action spaces, a more robust and scalable

control using neural networks as value function approximators, i.e. DQN, have

been proposed. The proposed approach relies on a distributed architecture where

each vSC is modeled as a DRL agent, i.e., DDRL, and the decisions of each

vSC is coordinated via the exchange of local state information, i.e., the battery

states of each vSC. The resulting controllers training, policy characteristics and

performance are evaluated. Moreover, a comparison between multi-agent FQL and

DDRL based approaches has been made. The results prove that DDRL controllers

achieve higher cumulative rewards, more stability and higher network performance

with respect to the benchmark multi-agent FQL controllers. In addition, energy

and cost saving estimations are provided to give insights on long-term benefits of

RL based controllers with respect to a system fully powered by the grid.
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8.2 Future Works

The thesis objective is to investigate energy-aware control methods for CRAN-

like mobile architectures that rely on EH for part of their operation. Both offline

and online control methods were studied and the policies characteristics as well as

their potential advantage in terms of energy saving are highlighted. Based on the

conclusions drawn above, in what follows we summarize future research directions

that are identified through the course of the PhD study.

8.2.1 Energy Sharing

Sharing of excess energy to the MBS is briefly studied in Section 4.6. The results

were promising in ensuring efficient utilization of the harvested energy and further

reducing the grid energy consumed by the network. However, energy cooperation

methods can be extended to include sharing among vSCs as well as sharing be-

tween each vSC and MBS. This will ensure further gains in efficient utilization of

energy and to make the whole system more self-reliant. Including energy cooper-

ation entails higher complexity in solving the optimization problem both in offline

and online approaches. Hence, it requires a proper trade-off between algorithm

complexity and practical gains that can be harnessed via energy cooperation. In

addition, with advances in smart grid, energy price will be dynamic depending on

the cost of production and on the expected demand. As such, investigating the

integration of mobile networks to the smart grid and evaluating decision-making

solutions to find the best energy-purchasing policies for the BSs is a promising

research direction. These study should take into account: (i) the current and fore-

cast renewable energy inflow, (ii) the current and forecast traffic load, and (iii)

the future evolution of the energy prices. In this scenario, BSs will act as both

producers and consumers to the smart grids.

8.2.2 Alternative EH Systems

This thesis is based on a distributed EH system where each SBS are powered by

harvesting hardware with rechargeable batteries. It is also important to investigate

alternative EH system design approaches where EH and storage can be done at

one site while enabling the allocation of energy to different parts of the network

in energy efficient manner, i.e., centralized EH system. Evaluation of the relative
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benefits of distributed and centralized EH systems including short-term and long-

term energy and cost saving benefits is important. Moreover, it is interesting to

study energy-aware control algorithms by considering more than one EH sources,

e.g., solar and wind. In this regard, open-data initiatives for EH sources data,

e.g., solar irradiance and wind data [135], and incorporating them into data-driven

forecast models can be a promising research direction.

8.2.3 Control Methods for Ultra-dense Scenario

It is expected that the next generation of mobile networks will be ultra-dense,

having as many SBSs as mobile users. Automated and energy-aware control of

these dense networks is a very complex problem given the high number of system

variables. Due to the complexity and the dynamism of this scenario, the design of

online control solutions becomes crucial to reach close to the optimal performance

without compromising on service quality. In this regard, centralized solutions

may suffer from complexity due to large state/action spaces whereas multi-agent

solutions will suffer from non-stationarity due to the learning of many agents si-

multaneously. Hence, it is important to investigate the application of novel DRL

approaches in ultra-dense scenario. These methods can be policy based DRL

methods that can learn stochastic policies without value estimations as well as

deep recurrent Q-networks which can be effective to capture and generalize based

on the evolution of the system dynamics. Moreover, in ultra-dense scenario, com-

pletely distributed control architecture may not be feasible approach due to the

non-stationarity of the polices learned by the agents and require very strong coor-

dination techniques. On the other hand, the centralized approach suffers from a

huge-number of action space and high computational complexity. Hence, investi-

gating hybrid control architectures for ultra-dense scenario is a promising future

research direction. In addition, a study on the trade off between complexity of the

control algorithms and practicability is of paramount importance to find feasible

solutions. This involves estimating the energy and computational processing re-

quirements of the control algorithms and incorporating them in the evaluation of

the algorithms’ performance.
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8.2.4 Joint Energy and Service Aware Network Management

Dynamic and flexible service deployment is identified as one of the requirements

for 5G and beyond networks. To this end, network slicing as well as MEC are iden-

tified as enablers to ensure fast service deployment times. Hence, the integration of

energy-aware control methods with network slicing to ensure both intra-slice and

inter-slice efficiency is essential. Different services will have diverse requirements.

For instance, mobile broadband services require high data-rates and low latency

whereas machine type communications require reliable, low latency and resilient

communication links. In this regard, enabling both energy and service aware

placement of virtual functions with in a network infrastructure is promising and

requires further investigation. In addition, networks can involve multi-tier archi-

tecture having local, edge and cloud level deployments. As a result, it is important

to consider more functional split options and the inclusion of service deployment

times and service specific requirements in the optimization objective in order to

design controllers that can place virtual network functions on local/edge/cloud

resources in service-aware and energy efficient way. To this end, ML techniques

for decomposition of a problem into a hierarchy of sub-problems are applicable for

handling the complex optimization objectives. For instance, hierarchical RL [136]

is a method to decompose a RL problem into a hierarchy of sub-tasks where higher

level parent tasks invoke lower level tasks as if they were actions. This is advanta-

geous to reduce computational complexity since reusable sub-tasks can be learned

and provided independently. Moreover, it is important to consider the fronthaul

constraints in the movement of virtual network functions among different network

sites.

8.2.5 Edge Intelligence

Edge computing has been proposed to push cloud services to the proximity of

end-users. The closer proximity between computing and information generation

sources has many benefits, e.g., lower latency, energy efficiency and context aware-

ness. On the other hand, we have recently seen many applications of AI in many

fields, including telecommunications. These intelligent applications rely on data

sources. Moreover, due to mobile computing and IoT, the network edge is be-

coming a huge source of data. Hence, pushing the AI potential to the source

of data, i.e., to the edge, has given rise to an edge intelligence paradigm [137].

Edge intelligence aims at unlocking AI insights by using the resources at the edge
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of the network. This paradigm opens new frontiers in enabling intelligent net-

work applications in resource constrained environment. Therefore, it is promising

to harness the potential of edge intelligence for network control applications in

5G and beyond systems. The multi-agent RL based control algorithms proposed

in this thesis align with this emerging paradigm, with vSCs acting as the edge

devices. Edge intelligence empowers edge devices to collect, generate communi-

cate and analyze data in near real-time. To this end, edge intelligence gives a

platform to extend the control methods proposed in the thesis via decentralized

implementation of both energy and service-aware control algorithms by employ-

ing learning methods that are tailored for resource constraint environment (at the

edge of the network), e.g., vSCs in ultra-dense deployments. This enables to design

context-aware control solutions with near real-time granularity of decision making.

Computational complexity is one of the challenges to extend the control solutions

proposed in this thesis towards ultra-dense scenarios. Edge intelligence helps to al-

leviate this problem via leveraging decentralized learning techniques. For instance,

federated learning [138] allows training a model on a server by aggregating only

locally computed updates while leaving the data generated at the edge devices.

This allows decentralized implementation, reduction in communication overhead

as well as to preserve privacy. Due to the multi-tenancy ecosystem of future ultra-

dense networks, it will be essential to maintain privacy of the generated data while

ensuring optimization with in a network infrastructure shared by many tenants.

Other techniques include gradient compression for reducing the communication

overhead [139] and transfer learning [140] which is suitable for edge devices since

it has greatly reduced resource demand.
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[122] Reinaldo AC Bianchi and Ramón López de Mantaras. Case-based multiagent

reinforcement learning: Cases as heuristics for selection of actions. In ECAI,

pages 355–360, 2010.



Bibliography 138

[123] H. D. Trinh, L. Giupponi, and P. Dini. Mobile traffic prediction from raw

data using lstm networks. In 2018 IEEE 29th Annual International Sym-

posium on Personal, Indoor and Mobile Radio Communications (PIMRC),

pages 1827–1832, Sep. 2018. doi: 10.1109/PIMRC.2018.8581000.

[124] Languang Lu, Xuebing Han, Jianqiu Li, Jianfeng Hua, and Minggao Ouyang.

A review on the key issues for lithium-ion battery management in electric

vehicles. Journal of power sources, 226:272–288, 2013.

[125] Gunther Auer, Oliver Blume, Vito Giannini, Istvan Godor, M Imran, Ylva

Jading, Efstathios Katranaras, Magnus Olsson, Dario Sabella, Per Skiller-

mark, et al. D2. 3: Energy efficiency analysis of the reference systems, areas

of improvements and target breakdown. EARTH, 20(10), 2010.

[126] Languang Lu, Xuebing Han, Jianqiu Li, Jianfeng Hua, and Minggao Ouyang.

A review on the key issues for lithium-ion battery management in electric

vehicles. Journal of power sources, 226:272–288, 2013.

[127] Christopher J.C.H. Watkins and Peter Dayan. Technical note: Q-learning.

Machine Learning, 8(3):279–292, May 1992. ISSN 1573-0565. doi: 10.1023/

A:1022676722315.
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