Generalized Delaunay triangulations: Graph-theoretic properties and Algorithms

by María del Pilar Cano Vila

A thesis to obtain the
Doctoral degree in Applied Mathematics

from Universitat Politècnica de Catalunya

Supervised by
Prosenjit Bose, and Rodrigo Silveira

Generalized Delaunay triangulations: Graph-theoretic properties and Algorithms

by María del Pilar Cano Vila

A thesis presented to obtain the
Doctoral degree in Computer Science

from Carleton University

Supervised by
Prosenjit Bose, and Rodrigo Silveira

School of Computer Science
Ottawa 2020

To all women in science.
${ }^{\prime \prime} .$. a scientist must also be absolutely like a child. If he sees a thing, he must say that he sees it, whether it was what he thought he was going to see or not. See first, think later, then test. But always see first. Otherwise you will see only what you were expecting. " Douglas Adams - The Hitchhicker's Guide to the Galaxy

Abstract

This thesis studies different generalizations of Delaunay triangulations, both from a combinatorial and algorithmic point of view. The Delaunay triangulation of a point set S, denoted $D T(S)$, has vertex set S. An edge $u v$ is in $D T(S)$ if it satisfies the empty circle property: there exists a circle with u and v on its boundary that does not enclose points of S. Due to different optimization criteria, many generalizations of the $D T(S)$ have been proposed. Several properties are known for $D T(S)$, yet, few are known for its generalizations. The main question we explore is: to what extent can properties of $D T(S)$ be extended for generalized Delaunay graphs?

First, we explore the connectivity of the flip graph of higher order Delaunay triangulations of a point set S in the plane. The order- k flip graph might be disconnected for $k \geq 3$, yet, we give upper and lower bounds on the flip distance from one order- k triangulation to another in certain settings.

Later, we show that there exists a length-decreasing sequence of plane spanning trees of S that converges to the minimum spanning tree of S with respect to an arbitrary convex distance function. Each pair of consecutive trees in the sequence is contained in a constrained convex shape Delaunay graph. In addition, we give a linear upper bound and specific bounds when the convex shape is a square.

With focus still on convex distance functions, we study Hamiltonicity in k-order convex shape Delaunay graphs. Depending on the convex shape, we provide several upper bounds for the minimum k for which the k-order convex shape Delaunay graph is always Hamiltonian. In addition, we provide lower bounds when the convex shape is in a set of certain regular polygons.

Finally, we revisit an affine invariant triangulation, which is a special type of convex shape Delaunay triangulation. We show that many properties of the standard Delaunay triangulations carry over to these triangulations. Also, motivated by this affine invariant triangulation, we study different triangulation methods for producing other affine invariant geometric objects.

RESUMEN

Esta tesis estudia diferentes generalizaciones de la triangulación de Delaunay, tanto desde un punto de vista combinatorio como algorítmico. La triangulación de Delaunay de un conjunto de puntos S, denotada $D T(S)$, tiene como conjunto de vértices a S. Una arista uv está en $D T(S)$ si satisface la propiedad del círculo vacío: existe un círculo con u y v en su frontera que no contiene ningún punto de S en su interior. Debido a distintos criterios de optimización, se han propuesto varias generalizaciones de la $D T(S)$. Hoy en día, se conocen bastantes propiedades de la $D T(S)$, sin embargo, poco se sabe sobre sus generalizaciones. La pregunta principal que exploramos es: ¿Hasta qué punto las propiedades de la $D T(S)$ se pueden extender para generalizaciones de gráficas de Delaunay?

Primero, exploramos la conectividad de la gráfica de flips de las triangulaciones de Delaunay de orden alto de un conjunto de puntos S en el plano. La gráfica de flips de triangulaciones de orden $k \geq 3$ podría ser disconexa, sin embargo, nosotros damos una cota superior e inferior para la distancia en flips de una triangulación de orden k a alguna otra cuando S cumple con ciertas características.

Relacionado con transformaciones entre dos triangulaciones, está el problema de transformar un árbol generador de S a otro. Nosotros probamos que existe una secuencia de árboles generadores sin cruces tal que la suma total de la longitud de las aristas con respecto a una distancia convexa arbitraria es decreciente y converge al árbol generador mínimo con respecto a la distancia correspondiente. Cada par de árboles consecutivos en la secuencia se encuentran en una triangulación de Delaunay con restricciones. Adicionalmente, damos una cota superior lineal para la longitud de la secuencia y cotas específicas cuando el conjunto convexo es un cuadrado.

Aún concentrados en distancias convexas, estudiamos hamiltonicidad en las gráficas de Delaunay de distancia convexa de k-orden. Dependiendo en la distancia convexa, exhibimos diversas cotas superiores para el mínimo valor de k que satisface que la gráfica de Delaunay de distancia convexa de orden- k es hamiltoniana. También damos cotas inferiores para k cuando el conjunto convexo pertenece a un conjunto de ciertos polígonos regulares.

Finalmente, re-visitamos una triangulación afín invariante, la cual es un
caso especial de triangulación de Delaunay de distancia convexa. Probamos que muchas propiedades de la triangulación de Delaunay estándar se preservan en estas triangulaciones. Además, motivados por esta triangulación afín invariante, estudiamos diferentes algoritmos que producen otros objetos geométricos afín invariantes.

Acknowledgements

First of all, I would like to thank Jit and Rodrigo. Both of you have been excellent supervisors and more than I could have wished for. I am so grateful for all of your lessons, your patience, your jokes, and your support. For teaching me that science can be hard but also exciting and fun, for believing in me and for your work. For the Argentinian and the Quebecois accents, and the funny questions about Mexican slang. For all this journey, thank you! Hopefully we can have our solomillo con foie soon.

Thanks to all of my co-authors during this time. For taking your time to work with me, for having fun together while doing science, for all the new things I learned from you, and for correcting my writing. Special thanks to Maria, for receiving me in Prague, for all the discussions and for taking your time on reading every sentence I wrote in our work together. In addition, thanks to Elena, for your friendship, for being the best presentation's partner, and for all of our fruitful work together.

I want to thank the people at UPC that were with me in some or other way. To all the members of the DCCG group, specially to Vera, who believed in me from the beginning and introduced me to my supervisors. To my "academic family in combinatorics": Vasiliki, Max, Christoph and Clement. Thanks for the 13:00 lunch, the after coffee, and the late night olives and vermut.

Gràcies a la meva primera i millor companya de despatx, Anna. Gracias por escucharme cada vez que dudaba de mí, por hacerme ver que no soy la única y por ser una gran amiga. Merci! - Pronto tendremos que ir a México.

I would also like to thank the people at Carleton U. Thanks to all the members of the Computational Geometry lab, for making Carleton such a nice place to be in. To the 12:00 lunch time, the coffee, the chocolates and all the beer every Friday at Mike's place. I am especially grateful for all the former and current students and postdocs that made the CGlab so fun: Sander, Anthony, Darryl, Hugo, Chris, and Saeed, and sometimes Luis.

Thanks to all the wonderful friends I made in Barcelona along this journey. A Juan y Gaby, por siempre darme asilo, cuidar mis cosas y ser tan lindos conmigo. A mis chicas cangrejo - Ko y Lili - gracias por esos primeros meses de mi doctorado, por los videos de youtube, la cumbia y el vinito. A los amigos
del barrio - Alba, Agathe, Isa y Jaime - por hacer de ese piso un hogar. Y finalmente, a Kat y Lucho, por siempre invitarme a sus ricas comidas y buenas conversaciones.

Thanks to all the wonderful friends I made in Ottawa along this journey. To Andrea, thanks for all the dancing, the Canadian experiences and your friendship. To my very first friend in Ottawa, Tanvir, thanks for all the rides, the boardgames, the trivia and food. A mi "familia" mexicana - Gera - gracias por ser tan buen amigo, por los brunches, por hablar español, por los chistes, por los memes y tanto más. To my big family at 380 Lewis: Devon, Gita, Audrey and Priscilla.

A mi física favorita, Diani, gracias por escucharme siempre, en cualquier momento, por terapearme, por alojarme y por siempre, siempre estar ahí.

Y por último pero no menos importante, quiero agradecer a mi familia. A mis padres, Ricardo y Pilar, por apoyarme siempre. A mi hermano Javi, por alentarme a hacer este doctorado, y bien o mal, escucharme. A mis hermanos, Ricardín, Bernie y Pau. Y finalmente, a Stephen, por todo el apoyo, el amor, for correcting my English, los viajes, bailes y caminatas, por todo, ¡Gracias!.

Thanks to you, for taking your time to read this thesis.
This work has been made thanks to the support of CONACyT (Consejo Nacional de Ciencia y Tecnología, México).

Thank you! ¡Gracias! Gràcies! Merci!

Contents

Abstract 7
Resumen 9
Acknowledgements 11
Contents 13
1 Introduction 15
1.1 Basic notions 18
1.2 A hierarchy of subgraphs 19
1.3 Generalized Delaunay graphs 21
1.4 Convex distances and the \mathcal{C}-Gabriel graph 25
1.5 Outline 27
2 Higher order Delaunay triangulations and flips 31
2.1 Preliminaries and general observations 33
2.2 Points in convex position 36
2.3 General point sets 44
2.4 Conclusions 54
3 Convex shape Delaunay graphs and trees 57
3.1 General observations 59
3.2 Fixed tree theorem 63
3.2.1 Upper bound 64
3.3 Bounds for square spanning trees 66
3.3.1 A lower bound 66
3.3.2 An upper bound 67
3.4 Conclusions 77
4 Convex shape Delaunay graphs and Hamiltonicity 79
4.1 Hamiltonicity for general convex shapes 80
4.2 Hamiltonicity for point-symmetric convex shapes 85
4.3 Hamiltonicity for regular polygons 87
4.3.1 Hamiltonicity for squares 88
4.3.2 Hamiltonicity for regular hexagons 90
4.3.3 Hamiltonicity for regular even-sided t-gons where $t \geq 8$ 92
4.4 Bottleneck Hamiltonian cycles in $k-G G_{\square}$ and $k-G G_{\mathcal{P}_{6}}$ 93
4.5 Non-Hamiltonicity for regular polygons 96
4.5.1 Non-Hamiltonicity for regular polygons with small num- ber of sides 96
4.5.2 An infinite family of regular polygons such that $D G_{\mathcal{P}_{t}}$ is non-Hamiltonian 97
4.6 Conclusions 102
5 An Affine Delaunay triangulation and more 103
5.1 Preliminaries 104
5.2 The A_{S}-Delaunay triangulation revisited 107
5.3 Primitives for other affine invariant geometric constructions 109
5.4 Affine invariant sorting algorithms of a point set 113
5.4.1 Affine invariant radial ordering 113
5.4.2 Affine invariant sweep-line ordering 115
5.5 Applications to affine invariant geometric objects 117
5.5.1 Affine invariant algorithms based on A_{S}-norm 117
5.5.2 An affine invariant Graham triangulation 118
5.5.3 An affine invariant Hamiltonian triangulation 119
5.5.4 An affine invariant triangulation of a polygon by ear clipping 120
5.5.5 An affine invariant triangulation of a polygon by sweep-line 1 121
5.6 Conclusions 123
Concluding remarks 125
Bibliography 127

Introduction

Computational geometry is an area of discrete mathematics and computer science dealing with the study of geometric problems. For instance, the real world problem of finding the closest hospital to home can be rephrased as: given a point p and a set of points S in the plane, find the closest point of S to p. The field of computational geometry is concerned with the systematic study of algorithms and data structures associated with geometric objects, with an emphasis on exact algorithms that are asymptotically fast. An important feature of this discipline is that often the classical mathematical characterization of geometric objects does not lead to the design of efficient algorithms. As such, a focus on computational aspects is a prerequisite for guaranteeing efficient algorithms.

Combinatorial geometry and discrete geometry are branches of geometry that deal with combinations and arrangements of geometric objects and discrete properties of these objects, respectively. Combinatorial geometry includes aspects of topology, graph theory, number theory, and other disciplines. In particular, geometric graph theory lies in the union of the fields of computational geometry, combinatorial geometry and graph theory. More precisely, geometric graph theory is concerned with graphs defined by geometric means. For instance, once we find which hospital is the closest to home, the next problem is to find the fastest route from home to the hospital. This problem can be translated in the following fashion: given two vertices in a connected graph G in which each edge has weight equal to the distance between its endpoints, find the path with smallest weight in G from p to q.

A geometric graph has a vertex set, a set of points in the plane and edges are pairs of points joined by straight line segments. This definition of edge is in contrast with the definition in the combinatorial setting where an edge is defined as a binary relation rather than as a geometric object. The study of

Figure 1.1: Left: a point set in the plane. Center and right: two different triangulations of the point set.
graph-theoretic properties and algorithms of geometric graphs is much closer in spirit to our research.

We define a planar graph as a geometric graph where no pair of edges properly intersect, i.e., their interiors are disjoint. A triangulation of a point set S in the plane is a planar graph with vertex set S where each of its faces define a triangle except maybe its outer face. Triangulations are one of the most studied objects in discrete and computational geometry due to their many applications in different fields like mesh generation, computer aided geometric design, and geographic information science [4, 18, 44, 95], among others.

A point set in the plane can have many different triangulations, as shown in Figure 1.1. More precisely, there are point sets with n points that have $\Omega\left(8.65^{n}\right)$ distinct triangulations [52], while the best upper bound is currently 30^{n} [94]. In the literature, much effort has been dedicated to study the efficient computation of triangulations that are optimal with respect to a desired property or criteria. Examples of properties studied include: having the minimum sum of edgelength among all possible triangulations [53, 77, 83], or maximizing the minimum angle among all possible triangulations [73, 96], among others. The Delaunay triangulation is the most widely used and studied type of triangulation.

The study of the Delaunay triangulation comes from two different paths that are joined. The oldest path comes from the study of Voronoi diagrams, also known as Dirichlet tessellations, whose origins date back to the 17th century by René Descartes [47]. Roughly speaking, a Voronoi diagram of a set of sites (points) in a certain space, is defined as a partition of the space into regions, where each region "belongs" to a site, and for each site p, its region consists of elements that are "influenced" by p in some way. See Figure 1.2. For instance, the sites can represent the hospitals in Barcelona and the influence is the walking distance to each hospital. Voronoi diagrams have not only been important in mathematics but in other areas, such as physics, mineralogy, geography [107, 101, 106], among a host of others; for this reason we can find them in the literature with different names. When the space is the plane and the influence is measured using the Euclidean distance, we obtain the name Voronoi diagrams

Figure 1.2: Left: Voronoi diagram of a point set. Right: Dual of the Voronoi diagram.
after Georgi Feodosjewitsch Voronoi [105] who formally introduced this concept.
Voronoi [105] also defines the geometric dual of the Voronoi diagram, where two points will be connected if and only if their Voronoi regions have a boundary in common. The second path comes from Boris Delaunay [46] who defines a geometric graph of a point set S in the plane by joining two points p and q by an edge if they satisfy the empty circle property, that is there exists a circle that contains p and q on its boundary and no other point of S lies in its interior. This structure is called Delaunay graph or Delaunay tessellation after Boris Delaunay. This structure is a triangulation and unique, called Delaunay triangulation and denoted $D T(S)$, when the point set S is in general position, that is, no three points are collinear and no four points are cocircular. The Delaunay triangulation turns out to be the dual of the Voronoi diagram.

As mentioned before, the Delaunay triangulation is one of the most studied triangulations due to its fascinating properties. One such property follows directly from one of its definitions, that it is the dual of the Voronoi diagram, which by itself is already interesting and complex. A second property, is that the Delaunay triangulation maximizes the minimum angle of all angles in the triangles among all triangulations of a given point set. This property describes "well shaped" triangles, which is one of the main reasons for its popularity. In particular, in mesh generation this well shaped property is important for modeling objects in 3D because it allows some kind of smoothness. For a survey, we refer to [25, 95].

Another interesting property of Delaunay triangulations is that it contains different important proximity graphs. A proximity graph is simply a graph where a pair of vertices are joined by an edge if they satisfy a certain geometric property. In particular, for the Delaunay triangulation, the context of proximity is associated with a distance function. It is also a 1.99 -spanner [108] (i.e., for any pair of vertices x, y, the shortest path between x and y in the Delaunay triangulation has length that is at most 1.99 times the Euclidean distance from x to y). See $[14,87]$ for an encyclopedic treatment of this structure and its
many properties.
For these reasons and more, the Delaunay triangulation is one of the most studied structures in computational geometry. However, for different applications there are certain desired properties that the Delaunay triangulation almost but does not quite possess. Thus, several generalizations of the Delaunay graph have been introduced.

In this thesis we explore different combinatorial properties of some generalizations of the Delaunay graph, together with some of their different proximity subgraphs. In the remainder of this chapter, we first give some basic notions about graphs that will be fundamental throughout this thesis, followed by a brief introduction to the hierarchy of subgraphs of the Delaunay triangulation. Then, we introduce different generalizations of the Delaunay graph. Later, we give an introduction to convex distances together with a discussion about their relation with convex Gabriel graphs, and finally, we give the outline of this thesis.

1.1 Basic notions

We assume that the reader has some knowledge on the basic notions of computational geometry. If this is not the case, we refer to the books by Shamos and Preparata [89], and by de Berg et al. [43]. In this section we give some basic definitions that will be used in this thesis. Most of them are standard in graph theory but we include their definitions for the sake of completeness. See Bondy and Murty [23] for a comprehensive overview of the terminology used on graph theory.

A graph $G=(V, E)$ is a set V of vertices and a set E defined by a subset of elements in $V \times V$ called edges. If it is not clear from the context, the vertex set of a graph G is denoted by $V(G)$ and edge set by $E(G)$. All graphs considered are undirected, finite and simple, unless stated otherwise.

A graph H is a subgraph of G, denoted as $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If $V(H)=V(G)$ we say that H is a spanning subgraph of G. Let $A \subseteq V$, the subgraph of G induced by A, denoted $G[A]$, is the graph with vertex set A where two vertices are joined by an edge if and only if they are joined by an edge in G. A graph is complete if for each pair of vertices u and v there exists the edge $u v$ in $E(G)$.

A path in G is a finite non-empty sequence of pairwise distinct vertices $P=v_{0} v_{1} \ldots v_{n-1} v_{n}$, such that $v_{i} v_{i+1}$ is an edge in E for all $i \in\{0, \ldots, n-1\}$. A cycle is the union of a path and the edge joining the first and last vertex of the path. An acyclic graph is one that contains no cycles.

Two vertices u and v are connected in G if there exists a path between them
in G. A graph G is connected if every pair of vertices in G is connected. A tree is a connected acyclic graph. A spanning tree of G is a spanning subgraph of G that is a tree. Consider a subset A of $V(G)$, we denote by $G \backslash A$ the induced subgraph $G[V(G) \backslash A]$. The graph G is k-connected if there exists a subset C of $V(G)$ of size k such that $G \backslash C$ is disconnected. For instance, a tree is 1 -connected, a cycle is 2 -connected and a triangulation can be 2 -, 3 - and 4-connected.

A path that contains every vertex of G is called a Hamiltonian path; similarly, a Hamiltonian cycle of G is a cycle that contains every vertex of G. If a graph G contains a Hamiltonian cycle then G is called Hamiltonian. A graph is 1-tough if, for any k, removing k vertices from the graph splits the graph into at most k components. An important relation between the concept of 1-toughness and Hamiltonian graphs is that every Hamiltonian graph is 1-tough. However, not every 1-tough graph is Hamiltonian.

A graph G is weighted if each edge e in $E(G)$ is associated to a real number $w(e)$, called its weight. The weight of G is the total sum of the weight of all its edges. Given a weighted graph $G=(V, E)$ and a real number $t \geq 1$, a t-spanner of G is a spanning subgraph G^{\prime} such that for every edge $u v$ in G, there exists a path from u to v in G^{\prime} whose weight is no more than t times the weight of the edge $u v$ in G. When G^{\prime} is a t-spanner of the complete graph and each edge is weighted with its Euclidean length, we denote $t=\operatorname{sr}\left(G^{\prime}\right)$ and call $\operatorname{sr}\left(G^{\prime}\right)$ the spanning ratio of G^{\prime}. We say that G^{\prime} is a t-spanner - or simply spanner - if $\operatorname{sr}\left(G^{\prime}\right)=t$ is a constant.

Throughout this thesis we will assume that all graphs are geometric graphs, i.e., the edges are line segments.

Let S be a point set in the plane. Let $G=(S, E)$ be a plane graph with vertex set $V(G)=S$ and edges $E(G)$. We say that the edge $p q$ is visible in G if and only if one of the following holds: (i) $p q \in E(G)$, or (ii) $p q$ does not cross edges in $E(G)$. When $p q$ is visible in G, we say that p and q see each other in G or that p is visible to q in G and vice versa. Let e be an edge in $E(G)$, we say that e is blocking a point $p \in S$ from a point $q \in S$, if the line segment $p q$ crosses e in its interior. We define the visibility graph of S in G as the graph with vertices S and the set of all visible edges in G as the edge set. Notice that the visibility graph is always a connected graph.

1.2 A hierarchy of subgraphs

As mentioned before, one of the nice properties of the Delaunay triangulation is the containment of some important proximity graphs. In this section we introduce such graphs.

Figure 1.3: The Euclidean minimum spanning tree, the relative neighborhood graph, the Gabriel graph and the Delaunay triangulation of a point set.

The minimum spanning tree was introduced by Borůvka [26, 27, 84] in order to design an efficient electric distribution network of Moravia. A minimum spanning tree of a weighted graph G is a spanning tree of G with minimum weight. The minimum spanning tree has been widely studied due to its several applications in the design of networks, in the approximation of the traveling salesman problem, cluster analysis [13, 42, 61, 70, 90], and more. Consider a point set S in the plane and a graph G with vertex set S. The Euclidean minimum spanning tree of G, denoted $\operatorname{MST}(G)$, is the minimum spanning tree of G where the weight of each edge e in G is the Euclidean distance between the endpoints of e. When G is the complete graph, it is called the Euclidean minimum spanning tree of S and it is denoted by $\operatorname{MST}(S)$.

In order to describe geographical variation data and develop statistical methods for categorizing sets of populations sampled from different localities, Gabriel with Sokal [106] introduced the following geometric graph. Given a point set S in the plane, two points p and q in S are joined by an edge if the smallest circle that contains p and q on its boundary does not contain other points of S in its interior. This graph is called the Gabriel graph after K. Ruben Gabriel and it is denoted $G G(S)$.

Motivated by pattern recognition, Toussaint introduced the relative neighborhood graph [102], slightly changing the notion of "relatively close" neighbours defined by Lankford [71]. A relative neighborhood graph of a point set S in the plane, denoted $R N G(S)$, is a geometric graph with vertex set S, where a pair of points p and q in S are connected by an edge if and only if no other point of S is at lower Euclidean distance to both of them. Geometrically speaking, two
points p and q in S are connected by an edge in $R N G(S)$ if the lune defined by the intersection of the disks centered at p and q with radius the Euclidean distance $d(p, q)$ does not contain points of S in its interior. Toussaint showed that for any point set S, the relative neighborhood graph of S is a subgraph of the Delaunay triangulation of S [102]. In fact, one of the nicest properties about all of these graphs is the following hierarchical order in containment:

$$
\begin{equation*}
M S T(S) \subseteq R N G(S) \subseteq G G(S) \subseteq D T(S) \tag{1.1}
\end{equation*}
$$

Figure 1.3 depicts an example of this hierarchy of subgraphs.
Finally, note that the definitions of the Relative neighborhood graph, Gabriel graph and Delaunay triangulation satisfy an empty region property. That is, a pair of points of S are joined by an edge if there exists certain closed region that contains the two points but no other point of S in its interior.

1.3 Generalized Delaunay graphs

The Delaunay triangulation, as mentioned before, is an important triangulation due to its several applications in mesh generation, finite element methods, GIS, graphics, and more. For a survey we refer to [14, 37, 25, 87, 95]. However, the fact that the Delaunay triangulation of a point set S in general position is unique can become an issue in certain application domains where extra flexibility is needed.

For instance, triangulations are often used to model terrains. In this case, the points in S are samples of a 3D surface, thus they also have an elevation. Yet, the Delaunay triangulation ignores the elevation information, potentially resulting in poor terrain models where important terrain features, such as valleys or ridge lines, are ignored $[44,63]$. Then it would be nice if the triangulation could preserve the additional information as well. This leads us to consider the construction of a "nice" triangulation for a set of points and line segments. This motivated Lee $[74,75]$ to define the "Generalized Delaunay Triangulation", such graph was also called "obstacle triangulation" by Chew [41] due to its applications in motion planning with obstacles. Finally, Chew [40] introduced such graph as the constrained Delaunay triangulation.

Let S be a point set in the plane and G be a geometric graph with vertex set S and edges called constraints The constrained Delaunay triangulation of G, denoted $D G(G)$, is a geometric graph with vertex set S where each pair of points p and q in S are joined by an edge if either $p q$ is a constraint or there exists a circle that contains p and q that does not enclose points of S that are visible to both p and q. Note that when G has no edges, then we obtain the Delaunay triangulation. Moreover, since this definition depends on the empty

Figure 1.4: Three different order-2 triangulations of a point set.
region property, then one can similarly define the constrained Gabriel Graph and constrained Relative neighborhood graph.

Gudmundsson et al. [62] were also motivated by the terrain interpolation problem. They were trying to describe a nice triangulation that contains certain constraints, in which case the constrained Delaunay triangulation is not always the optimal. Thus, they proposed the higher order Delaunay triangulations, a generalization of the Delaunay triangulation that intends to provide well shaped triangles, while giving flexibility to choose from a larger set of triangulations. A triangulation T of S is an order- k Delaunay triangulation -or, simply, order- k triangulation - if the circumcircle of each triangle of T encloses at most k points of S in its interior. Note that an order-0 triangulation is a standard Delaunay triangulation. Order- k triangulations have been used for terrain modeling, minimum interference networks and triangulation of polygons [17, 97, 91]. Note that for $k \geq 1$, there might be more than one order- k triangulation. See Figure 1.4.

A very similar generalization of the Delaunay triangulation is the k-order Delaunay Graph. A k-order Delaunay graph -or, simply, k-Delaunay graphof a point set S in the plane, denoted $k-D G(S)$, is a geometric graph with vertex set S where each pair of points p and q of S are connected by an edge if and only if there exists a circle that contains both p and q such that the circle encloses at most k points of S. This graph was introduced by TungHsin Su and Ruei-Chuan Chang [100], which they used to improve the running time of solving the Euclidean bottleneck biconnected edge subgraph problem and Euclidean bottleneck matching problem. Note that the $k-D G(S)$ is not necessarily a planar graph. Also, from the definition, one can easily show that for any $k \geq 0, k-D G(S) \subset(k+1)-D G(S)$, see Figure 1.5. In particular, note that the 0-Delaunay graph is the standard Delaunay triangulation. In addition, this generalization is again defined under the empty region property, then a similar definition exists for the k-Gabriel Graph, denoted $k-G G(S)$ and the k Relative neighborhood graph, denoted $k-R N G(S)$. In fact, the hierarchy order $k-R N G(S) \subseteq k-G G(S) \subseteq k-D G(S)$ is still preserved

For some applications, the Euclidean distance does not provide the desired

Figure 1.5: The 0 -, 1- and 2-Delaunay graphs of a point set.
measure. In this thesis we are particularly interested in convex distance functions, which we will formally define in Section 1.4. Consider a compact convex set \mathcal{C} that contains the origin as its center. Roughly speaking, the \mathcal{C}-distance from p to q, denoted $d_{\mathcal{C}}(p, q)$, is calculated in the following way. Center \mathcal{C} at p and scale (expand or contract) \mathcal{C} until its boundary touches q, then $d_{\mathcal{C}}(p, q)$ is the scaling factor of the resulted homothet ${ }^{1}$ of \mathcal{C}.

There are two ways of defining the Delaunay triangulation - the geometric dual of the Voronoi Diagram, and with the empty circle property - these definitions are equivalent for the Euclidean distance. However, this might not be true for convex distance functions, since the symmetry property of a metric might not hold, i.e., $d_{\mathcal{C}}(p, q)$ is not necessarily equal to $d_{\mathcal{C}}(q, p)$. The definition of an edge in the empty circle property looks for the distance of the center towards the endpoints of the edge. This is in contrast to the definition of a bisector in the Voronoi diagram, which looks for the distance to each of the two sites towards points at same convex distance, i.e., for each $p, q \in S$, the bisector of p and q is defined by all points x such $d_{\mathcal{C}}(p, x)=d_{\mathcal{C}}(q, x)$. Let \mathcal{C}^{\prime} be the reflected shaped of \mathcal{C} about the origin. Then, since $d_{\mathcal{C}}(p, q)=d_{\mathcal{C}^{\prime}}(q, p)$, the dual of the Voronoi diagram in the \mathcal{C}-distance is equivalent to the structure with edges that satisfy the empty \mathcal{C}^{\prime} shape property. This leads to a surprising property, that the dual of a \mathcal{C}-distance Voronoi diagram is invariant under movements of the center of \mathcal{C}. See [14, 33, 79].

In this thesis we will study properties of the Convex shape Delaunay graph by the empty disk property. Thus, we define the Convex shape Delaunay graph -or, simply, \mathcal{C}-Delaunay graph - of a point set S in the plane, denoted $D G_{\mathcal{C}}(S)$, as the graph with vertex set S and for each pair p and q in S, the edge $p q$ is in $D G_{\mathcal{C}}(S)$ provided that there exists a homothet of \mathcal{C} that contains p and q on its boundary and no other point of S in its interior. Note that when \mathcal{C} is a circle, then $D G_{\mathcal{C}}(S)$ is the standard $D T(S)$. It is known that the \mathcal{C}-Delaunay graph

[^0]is a geometric planar graph [33]. Several classes of Convex Delaunay graphs have been studied in the literature. For instance, Chew [41] showed that the \triangle-Delaunay graph (i.e., where the shape is an equilateral triangle instead of a disk), denoted $D G_{\triangle}(S)$, is a 2-spanner and that the \square-Delaunay graph (i.e., where the disk is replaced by a square), denoted $D G_{\square}(S)$, is a $\sqrt{10}$-spanner. Bose et al. [33] proved that the \mathcal{C}-Delaunay graph is a c-spanner where the constant c depends only on the perimeter and width of the convex shape \mathcal{C}.

Similarly, the \mathcal{C}-Gabriel graph of a point set S, denoted $G G_{\mathcal{C}}(S)$, is defined as the graph with vertex set S where two points p and q of S are joined by an edge if and only if there exists a smallest homothet of \mathcal{C} with p and q on its boundary such that no other point of S is in its interior. The \mathcal{C}-Relative neighborhood graph of a point set S, denoted $R N G_{\mathcal{C}}(S)$, is a graph with vertex set S and for each pair p and q in S, the edge $p q$ is in $R N G_{\mathcal{C}}(S)$ if and only if the intersection of the homothets of \mathcal{C} centered at p and q with scaling factor $d_{\mathcal{C}}(p, q)$ and $d_{\mathcal{C}}(q, p)$, respectively, contains no points of S in its interior. Finally, the $d_{\mathcal{C}^{-}}$ minimum spanning tree of a point set S, denoted $M S T_{\mathcal{C}}(S)$ in the plane, is the minimum spanning tree of the complete subgraph of S with weight for each edge e equal to the \mathcal{C}-distance between its endpoints. Aurenhammer and Paulini [15] recently showed that the subgraph hierarchy also holds for any compact convex set \mathcal{C}, i.e., $M S T_{\mathcal{C}}(S) \subseteq R N G_{\mathcal{C}}(S) \subseteq G G_{\mathcal{C}}(S) \subseteq D T_{\mathcal{C}}(S)$.

Note that the definition of the constrained Delaunay graph can be generalized to constrained \mathcal{C}-Delaunay graph by replacing the circle with a homothet of \mathcal{C}. Consider a planar graph G with vertex set S. The constrained \mathcal{C}-Delaunay graph of S, denoted $D T_{\mathcal{C}}(G)$, is formally defined as follows. For each pair u and v in S, an edge $u v \in D T_{\mathcal{C}}(G)$ if either $u v \in E(G)$ or there exists a homothet of \mathcal{C} that contains u and v on its boundary and no point of S in its interior is visible to both u and v. Bose et al. [35] proved that these graphs are planar. Moreover, they proved that regardless of the shape there exists a constant t such that the constrained \mathcal{C}-Delaunay graph is a t-spanner.

Finally, we can define the most general of the generalized Delaunay graphs used in this thesis: the k-order \mathcal{C}-Delaunay graph. Similarly to the Euclidean distance (where the empty shape is a circle) a k-order \mathcal{C}-Delaunay graph of a point set S in the plane, denoted $k-D G_{\mathcal{C}}(S)$, is the graph with vertex set S such that, for each pair of points $p, q \in S$, the edge $p q$ is in $k-D G_{\mathcal{C}}(S)$ if and only if there exists a \mathcal{C}-disk that has p and q on its boundary and contains at most k points of S different from p and q. When $k=0$ and \mathcal{C} is a circle, $k-D G_{\mathcal{C}}(S)$ is the standard Delaunay triangulation. In addition, we analogously define the k-order \mathcal{C}-Gabriel graph and the k-order Relative neighborhood of a point set S, denoted $k-G G_{\mathcal{C}}(S)$ and $k-R N G_{\mathcal{C}}(S)$, respectively. Except that in $k-G G_{\mathcal{C}}(S)$, the homothets considered are restricted to be smallest homothets of \mathcal{C} with p and q on the boundary. In fact, $M S T_{\mathcal{C}}(S) \subseteq k-R N G_{\mathcal{C}}(S) \subseteq k-G G_{\mathcal{C}}(S) \subseteq k-D G_{\mathcal{C}}(S)$.

The main topic in this thesis is the study of different combinatorial and algorithmic properties of these generalized Delaunay triangulations.

1.4 Convex distances and the \mathcal{C}-Gabriel graph

In this section we define the convex distance functions that will be used throughout this thesis.

A norm of \mathbb{R}^{2} is a nonnegative function $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$with the following properties, for all $\lambda \in \mathbb{R}^{+}$and $u, v \in \mathbb{R}^{2}$: (a) $\rho(u+v) \leq \rho(u)+\rho(v)$, (b) $\rho(\lambda v)=\lambda \rho(v)$ and, (c) if $\rho(v)=0$ then v is the zero vector. A metric is a distance function $d: \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$such that for all $u, v, w \in \mathbb{R}^{2}$ the following properties hold: (a) $d(u, v)=0 \Longleftrightarrow u=v$, (b) $d(u, v)=d(v, u)$ and, (c) $d(u, w) \leq d(u, v)+d(v, w)$. When the function $d(u, v)=\rho(u-v)$ is a norm, then it is called a normed metric.

Let p and q be two points in the plane. Let \mathcal{C} be a compact convex set that contains the origin, denoted \bar{o}, in its interior. We denote the boundary of \mathcal{C} by $\partial \mathcal{C}$. The convex distance $d_{\mathcal{C}}(p, q)$ is defined as follows: If $p=q$, then $d_{\mathcal{C}}(p, q)=0$. Otherwise, let \mathcal{C}_{p} be the convex set \mathcal{C} translated by the vector \vec{p} and let q^{\prime} be the intersection of the ray from p through q and $\partial \mathcal{C}_{p}$. Then, $d_{\mathcal{C}}(p, q)=\frac{d(p, q)}{d\left(p, q^{\prime}\right)}$ (see Figure 1.6) where d denotes the Euclidean distance.

Figure 1.6: Convex distance from p to q.
The convex set \mathcal{C} is the unit \mathcal{C}-disk of $d_{\mathcal{C}}$ with center \bar{o}, i.e., every point p in \mathcal{C} satisfies that $d_{\mathcal{C}}(\bar{o}, p) \leq 1$. The \mathcal{C}-disk with center c and radius r is defined as the homothet of \mathcal{C} centered at c and with scaling factor r. The triangle inequality holds: $d_{\mathcal{C}}(p, q) \leq d_{\mathcal{C}}(p, z)+d_{\mathcal{C}}(z, q), \forall p, q, z \in \mathbb{R}^{2}$. However, this distance may not define a metric when \mathcal{C} is not point-symmetric about the origin, ${ }^{2}$ since there may be points p, q for which $d_{\mathcal{C}}(p, q) \neq d_{\mathcal{C}}(q, p)$. When \mathcal{C} is point-symmetric with respect to the origin, $d_{\mathcal{C}}$ is called a symmetric convex distance function and it is a metric. We will refer to such distance functions as symmetric convex.

[^1]
(a)

(b)

Figure 1.7: (a) A triangle is a non-symmetric shape \mathcal{C}. (b) $\hat{\mathcal{C}}$ for this triangle is a hexagon.

Moreover, $d_{\mathcal{C}}(\bar{o}, p)$ defines a norm of a metric space. In addition, if a point p is on the line segment $a b$, then $d_{\mathcal{C}}(a, b)=d_{\mathcal{C}}(a, p)+d_{\mathcal{C}}(p, b)$ (see [14, Chapter 7]).

Recall that an edge $p q$ is in the k-order \mathcal{C}-Delaunay graph of S, provided that there exists a \mathcal{C}-disk that has p and q on its boundary and contains at most k points of S different from p and q.

As mentioned earlier, the definition of Gabriel graphs requires the notion of a smallest homothet containing two points on its boundary. To be able to use our techniques, it is convenient to be able to associate a distance to the size of such smallest homothets, but $d_{\mathcal{C}}$ fails on defining such distance because $d_{\mathcal{C}}$ might not be symmetric when the shape is not point-symmetric. To circumvent this isssue, Aurenhammer and Paulini [15] showed how to define, from any convex shape \mathcal{C}, another shape that results in a distance function that is always symmetric: The set $\hat{\mathcal{C}}$ is defined as the Minkowski sum^{3} of \mathcal{C} and its shape reflected about its center. For an example, see Figure 1.7. The shape $\hat{\mathcal{C}}$ is point-symmetric and the $d_{\hat{\mathcal{C}}}$-distance from p to q is given by the scaling factor of a smallest homothet of \mathcal{C} containing p and q on its boundary. The diameter and width of $\hat{\mathcal{C}}$ is twice the diameter and width of \mathcal{C}, respectively. Moreover, if \mathcal{C} is point-symmetric, $d_{\hat{\mathcal{C}}}(p, q)=\frac{d_{\mathcal{C}}(p, q)}{2}$.

Thus, for any pair of points $p, q \in S$, edge $p q$ is in the k-order \mathcal{C}-Gabriel graph of S provided that there exists a \mathcal{C}-disk with radius $d_{\hat{\mathcal{C}}}(p, q)$ that has p and q on its boundary and contains at most k points of S different from p and q. From the definition of $k-G G_{\mathcal{C}}(S)$ and $k-D G_{\mathcal{C}}(S)$ it follows that $k-G G_{\mathcal{C}}(S) \subseteq k-D G_{\mathcal{C}}(S)$, and it can be a proper subgraph. See Figure 1.8a for an example. Further, $\hat{\mathcal{C}}$ always contains \mathcal{C} in its interior. However, for some non point-symmetric convex \mathcal{C} it is not true that $G G_{\hat{\mathcal{C}}} \subseteq G G_{\mathcal{C}}$; see Figure 1.8 b for an example.

For simplicity, denote by $\mathcal{C}_{r}(a, b)$ a \mathcal{C}-disk of radius r with the points a and b on its boundary. For the special case of a diametral disk, i.e., when $r=d_{\hat{\mathcal{C}}}(a, b)$,

[^2]

Figure 1.8: (a) \mathcal{C} is a regular hexagon. Edge $p q$ is in $2-D G_{\mathcal{C}}(S)$ but it is not in 2- $G G_{\mathcal{C}}(S)$. (b) Edge $p q$ is in $G G_{\hat{\mathcal{C}}}(S)$ but it is not in $G G_{\mathcal{C}}(S)$. (c) Many \mathcal{C}-disks $\mathcal{C}(a, b)$ may exist for a and b.
we denote it by $\mathcal{C}(a, b)$. Note that $\mathcal{C}(a, b)$ may not be unique when the boundary $\partial \mathcal{C}$ is not smooth, see Figure 1.8c. In addition, we denote by $D_{\mathcal{C}}(c, r)$ the \mathcal{C}-disk centered at point c with radius r.

1.5 Outline

In Chapter 2 we consider the flip graph of k-Delaunay triangulations of a point set S. The flip graph of S has one vertex for each possible triangulation of S, and an edge connecting two vertices when the two corresponding triangulations can be transformed into each other by a flip (i.e., exchanging the diagonal of a convex quadrilateral by the other one). The flip graph is an essential structure in the study of triangulations, but until now it had been barely studied for order- k Delaunay triangulations. In this work we show that, even though the order- k flip graph can be disconnected for $k \geq 3$, any order- k triangulation can be transformed into some other order- k triangulation by at most $k-1$ flips, such that the intermediate triangulations are of order at most $2 k-2$, in the following settings: (1) for any $k \geq 0$ when S is in convex position, and (2) for any $k \leq 5$ and any point set S. Our results have several implications on the flip distance between order- k triangulations, as well as on their efficient algorithmic enumeration.

This chapter is based on the following publications:
[12] Elena Arseneva, Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Flips in higher order Delaunay triangulations. In Proceedings of the 14 th Latin American Theoretical Informatics Symposium (LATIN), to appear, 2020
[11] Elena Arseneva, Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Flips in higher order Delaunay triangulations. In 36th European Workshop on

In Chapter 3 we look at constrained \mathcal{C}-Delaunay triangulations and $d_{\mathcal{C}}$-minimum spanning trees, for an arbitrary compact convex set \mathcal{C}. We first extend a known result about standard Delaunay triangulations to \mathcal{C}-Delaunay graphs. Let $\mathcal{S T}(S)$ be the set of all plane spanning trees of a planar point set S of size n. We prove that for each element T of $\mathcal{S} \mathcal{T}(S)$, there exists a weight-decreasing sequence of trees T_{0}, \ldots, T_{k} in the $d_{\mathcal{C}}$-distance such that $T_{0}=T, T_{k}=\operatorname{MS} T_{\mathcal{C}}(S)$ and T_{i} is the $d_{\mathcal{C}}$-minimum spanning tree of $D G_{\mathcal{C}}\left(T_{i-1}\right)$. Hence, T_{i} does not cross T_{i-1} for all $i=1, \ldots, k$. Later, we look at the \square-distance -also known as the L_{∞}-metric - and give an $\Omega(\log n)$ lower bound for the length of the sequence. Finally, we show an upper bound of $\log n$ on the length of the sequence for a case in which the constraints are crossing the edges of the $M S T_{\square}(S)$ in a specific manner.

This chapter is based on the following publication:
[31] Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Sequences of spanning trees for L_{∞}-Delaunay triangulations. In 34th European Workshop on Computational Geometry: extended abstracts (EuroCG), 2018

In Chapter 4 we study Hamiltonicity in the \mathcal{C}-Delaunay graphs. More specifically, we provide upper bounds on the minimum value of k for which $k-G G_{\mathcal{C}}(S)$ is Hamiltonian. Since $k-G G_{\mathcal{C}}(S) \subseteq k-D G_{\mathcal{C}}(S)$, all results carry over to $k-D G_{\mathcal{C}}(S)$. In particular, we give upper bounds of 24 for every \mathcal{C} and 15 for every pointsymmetric \mathcal{C}. We also improve these bounds to 7 for squares, 11 for regular hexagons, 12 for regular octagons, and 11 for even-sided regular t-gons (for $t \geq 10$). These constitute the first general results on Hamiltonicity for convex shape Delaunay and Gabriel graphs.

In addition, we show lower bounds of $k=3$ and $k=6$ on the existence of a bottleneck Hamiltonian cycle in the k-order Gabriel graph for squares and hexagons, respectively. Finally, we construct a point set such that for an infinite family of regular polygons \mathcal{P}_{t}, the Delaunay graph $D G_{\mathcal{P}_{t}}$ does not contain a Hamiltonian cycle.

This chapter is based on the following publications:
[30] Prosenjit Bose, Pilar Cano, Maria Saumell, and Rodrigo I. Silveira. Hamiltonicity for convex shape Delaunay and Gabriel graphs. Computational Geometry, to appear, 2020
[28] Prosenjit Bose, Pilar Cano, Maria Saumell, and Rodrigo I. Silveira. Hamiltonicity for convex shape Delaunay and Gabriel graphs. In Proceedings of
the 16th Algorithms and Data Structures Symposium (WADS), pages 196210. Springer, 2019
[29] Prosenjit Bose, Pilar Cano, Maria Saumell, and Rodrigo I. Silveira. Hamiltonicity for convex shape Delaunay and Gabriel graphs. In 35th European Workshop on Computational Geometry: extended abstracts (EuroCG), 2019

In Chapter 5 we revisit an affine invariant triangulation defined by Gregory M. Nielson [86], that uses the inverse of the covariance matrix of S to define an affine invariant norm, denoted A_{S}, and an affine invariant triangulation, denoted $D T_{A_{S}}(S)$. The A_{S}-norm is a special kind of \mathcal{C}-distance where \mathcal{C} is replaced by a type of ellipse. We revisit the A_{S}-norm from a geometric perspective, and show that $D T_{A_{S}}(S)$ can be seen as a standard Delaunay triangulation of a transformed point set based on S. We prove that it retains all of its well-known properties. In addition, motivated by this norm and the problem of finding affine geometric methods, we provide different affine invariant sorting methods of a point set S and of the vertices of a polygon P that can be combined with well-known algorithms in order to obtain other affine invariant methods.

This chapter is based on the following publication:
[32] Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Affine invariant triangulations. In 31st Canadian Conference in Computational Geometry (CCCG), pages 250-256, 2019

Finally, in the concluding remarks of this thesis we introduce some open problems that were not studied in this thesis but are related to some of our results and generalized Delaunay triangulations.

Higher order Delaunay TRIANGULATIONS AND FLIPS

A fundamental operation to work with triangulations is the edge flip. It consists in removing an edge, shared by two triangles that form a convex quadrilateral, and inserting the other diagonal of the quadrilateral. A flip transforms a triangulation T into another triangulation T^{\prime} that differs by exactly one edge and two triangles. The flip operation leads naturally to the definition of the flip graph of S. Each triangulation of S is represented by a vertex in this graph, and two vertices are adjacent if their corresponding triangulations differ by exactly one flip.

The importance of flips in triangulations comes from the fact, first proved by Lawson [72], that the flip graph is connected. Moreover, the sequence of edge flips connecting any two triangulations has length $O\left(n^{2}\right)$. In fact, it was later shown [73, 96] that any triangulation of S can be converted into $D T(S)$ by performing $O\left(n^{2}\right)$ flips. Each flip in this transformation also results in an increase of the angle vector of the triangulation, i.e., the vector of all angles of each of its triangles in increasing order. It is also known that the quadratic upper bound on the diameter of the flip graph is tight in general [58, 66], although it goes down to $\Theta(n)$ if the points in S are in convex position [99]. In general, computing the distance in the flip graph between two given triangulations is a difficult problem, whose complexity was open until recently, when it was shown to be APX-hard [78, 88]. This has drawn considerable attention to the study of certain subgraphs of the flip graph, which define the flip graph of certain classes of triangulations, for instance, bounded degree triangulations [7] or triangulations with perfect matchings [65]. We refer to [36] for a survey.

In this chapter we study the flip graph of higher order Delaunay triangulations. Most previous work on such triangulations focused on algorithmic questions related to finding order- k triangulations that are optimal with respect
to extra criteria [104, 97, 98], or on evaluating their effectiveness in practical settings [20, 45]. One of the few theoretical aspects studied is the asymptotic number of order- k triangulations [82]. In that work, the authors showed that for points drawn uniformly at random, already for $k=1$ one can expect an exponential number of different order- k triangulations. However, almost nothing is known about the flip graph of order- k triangulations, except that it is connected only for $k \leq 2$ [1].

Abellanas et al. [2] studied the flip graph of triangulations that consists of only order- k edges. In their work an order- k (Delaunay) edge e is defined as an edge for which there exists a circle through the endpoints of e that encloses at most k points of S. All edges in an order- k triangulation are order- k. However, the converse is not true: a triangle composed of three order- k edges can have order greater than k. In fact, the lowest order triangulation containing an orderk edge can have order up to $2 k-2$ [63]. Similarly as for order- k triangulations, Abellanas et al. [2] showed that the flip graph of triangulations of point sets with edges of order k is connected for $k \leq 1$, but might be disconnected for $k \geq 2$. On the other hand, they proved that for point sets in convex position the flip graph is always connected [2]. However, their proof implies an exponential bound in the diameter of the flip graph. The only previous work on the flip graph of order- k triangulations is by Abe and Okamoto [1], in the context of enumeration algorithms. They observed that for $k \leq 2$, the fact that the flip graph is connected implies that the reverse enumeration framework by Avis and Fukuda [16] can be applied to enumerate all order- k triangulations, spending polynomial time on each of them.

Our countributions. We present several structural properties of the flip graph of order- k triangulations. For points in convex position, we show that for any $k>2$ there exist a point set in convex position for which the flip graph is not connected. However, we prove that no order- k triangulation is too far from all the other order- k triangulations, in the sense that for any order- k triangulation T there exists another order- k triangulation T^{\prime} at distance at most $k-1$ in the flip graph of order- $(2 k-2)$ triangulations. It is noteworthy that each flip on the path from T to T^{\prime} increases the angle vector of the triangulation. The bottom line is that while order- k triangulations are not connected via the flip operation, they become connected if a slightly relaxed condition is considered. For points in generic (non-convex) position, we prove the same result for up to $k \leq 5$, although we conjecture that it holds for all k. Our results have several implications on the flip distance between order- k triangulations, as well as on their efficient algorithmic enumeration.

2.1 Preliminaries and general observations

In this section we give some definitions and observations that will be useful for the rest of the chapter.

Let S be a point set in the plane. Throughout this chapter we assume that set S is in general position, i.e., that no three points of S lie on a line and no four points of S lie on a circle. Let T be a triangulation of S, and let $\triangle u y v$ be a triangle in T with vertices u, y, v. We will denote by $\bigcirc u y v$ the open disk defined by the enclosed area of the circumcircle of $\Delta u y v$ (i.e., the unique circle through u, y, and v). Thus, $\partial \bigcirc u y v$ denotes the circumcircle of $\triangle u y v$. Triangle $\triangle u y v$ is a triangle of order k, also called an order- k triangle, if $\bigcirc u y v$ contains at most k points of S. A triangulation where all triangles are order- k is an order-k (Delaunay) triangulation. Hence, a triangulation T is not order- k if Ouvy contains more than k points of S for some $\triangle u y v$ in T. The set of all order- k triangulations of S will be denoted $\mathcal{T}_{k}(S)$.

Let $e=u v$ be an edge in T. Edge e is flippable if e is incident to two triangles $\triangle u x v$ and $\triangle u y v$ of T and $u x v y$ is a convex quadrilateral. The edge e is called illegal if $\bigcirc u x v$ contains y. Note that this happens if and only if〇uyv contains x. See Fig. 2.1.b. Otherwise, the edge $u v$ is called legal. It is easy to see that an illegal edge is flippable. The angle vector $\alpha(T)$ of a triangulation T is the vector whose components are the angles of each triangle in T ordered in increasing order. Let $T^{\prime} \neq T$ be another triangulation of S. We say that $\alpha(T)>\alpha\left(T^{\prime}\right)$ if $\alpha(T)>\alpha\left(T^{\prime}\right)$ in lexicographic order. It is well-known that if T^{\prime} is the triangulation obtained by flipping an illegal edge of T, then $\alpha\left(T^{\prime}\right)>\alpha(T)$ [58]. Moreover, since $D T(S)$ maximizes the minimum angle, it follows that $D T(S)$ is the only triangulation where all the edges are legal [96]. This property leads to a simple algorithm for computing the $D T(S)$: start from

Figure 2.1: (a) An illegal edge $u v$, with region $\otimes_{y}^{u v}$ in gray. (b) The union of the dashed filled disks $\bigcirc u x y$ and $\bigcirc x v y$ is contained in the union of the gray disks $\bigcirc u x v$ and $\bigcirc u y v$.
an arbitrary triangulation of S, and flip illegal edges until none is left. This also implies that the flip graph of all triangulations of S is connected, since any triangulation can be transformed into the $D T(S)$ by a finite number of flips. Let $G\left(\mathcal{T}_{k}(S)\right)$ denote the flip graph of $\mathcal{T}_{k}(S)$.

Next we present several important facts. We start with a well-known observation, illustrated in Fig. 2.1.b.
Observation 2.1.1. Let $\triangle u x v$ and $\triangle u y v$ be two adjacent triangles in a triangulation of S. If edge $u v$ is illegal, then $(\bigcirc u x y \cup \bigcirc x y v) \subset(\bigcirc u x v \cup \bigcirc u v y)$.

In the context of order- k triangulations, Obs. 2.1.1 implies the following.
Lemma 2.1.2 (Abe and Okamoto [1]). Let T be a triangulation of S, let $u v$ be an illegal edge of T, and let $\triangle u v x$ and $\triangle u y v$ be the triangles incident to $u v$ in T. If $\triangle u x v$ is of order k, and $\triangle u y v$ is of order l, then triangles $\triangle u x y$ and $\triangle x y v$ are of order k^{\prime} and l^{\prime}, respectively, for some k^{\prime}, l^{\prime} with $k^{\prime}+l^{\prime} \leq k+l-2$.

Now we need an extra piece of notation, which we will use extensively. For a triangle $\triangle u y v$, we let $\boldsymbol{\theta}_{y}^{u v}$ denote the open region bounded by edge $u v$ and the arc of $\partial \bigcirc u y v$ that does not contain y. See Fig 2.1.a.

In what remains of this section we will consider a triangulation T of order $k \geq 3$, and an illegal edge $u v$ adjacent to triangles $\triangle u x v$ and $\triangle u y v$.

Throughout this chapter we will often refer to points of S that are containedor not-in a certain region. For brevity, we will sometimes omit "of S ", and simply refer to points in a certain region, as we do in next observation.
Observation 2.1.3. If $\boldsymbol{\theta}_{y}^{u v}$ does not contain points, then $(\bigcirc u x y \cap \bigcirc x y v \cap$ $\left.\boldsymbol{Q}_{y}^{u v}\right) \subset\left(\bigcirc u x v \cap \boldsymbol{Q}_{y}^{u v}\right)$ does not contain points.

Proof. Consider the intersection $\partial \bigcirc u x y \cap \partial \bigcirc x y v=\{x, y\}$. Thus, $\bigcirc u x y \cap$ $\bigcirc x y v$ is defined by the area between the arcs from x to y of the circles $\partial \bigcirc u x y$ and $\partial \bigcirc x y v$ that do not contain u and v, respectively. Since y lies in $\bigcirc u x v$ and x lies in $\bigcirc u y v$, the intersection $\bigcirc u x y \cap \bigcirc x y v$ is contained in $\bigcirc u x v \cap \bigcirc u y v$, which does not contain any point in $\theta_{y}^{u v}$.

Consider the triangulation T^{\prime} resulting from flipping $u v$ in T such that $\triangle u x y$ is not of order k. Thus, T^{\prime} is not of order k. For the sake of simplicity, for any region R in the plane, we denote by $|R|$ the number of points of S in the interior of R.

Using that $|\bigcirc u x v \backslash\{y\}| \leq k-1,|\bigcirc u y v \backslash\{x\}| \leq k-1$ and $|\bigcirc u x y| \geq k+1$, a rather simple counting argument implies the following.
Observation 2.1.4. Each of $\boldsymbol{\theta}_{y}^{u x} \backslash \bigcirc u x v$ and $\boldsymbol{\theta}_{x}^{u y} \backslash \bigcirc u y v$ contains at least two points.

Proof. Since $\triangle u y v$ is of order $k,\left|\left(\otimes_{y}^{u x} \backslash \bigcirc u x v\right) \cup(\bigcirc u x v \cap \bigcirc u y v)\right|=\mid \otimes_{y}^{u x} \backslash$ $\bigcirc u x v|+|\bigcirc u x v \cap \bigcirc u y v| \leq k-1$ (1) since x is on $\partial \bigcirc u x v$. Similarly, since $\triangle u x v$ is of order $k,\left|\left(\otimes_{x}^{u y} \backslash \bigcirc u y v\right) \cup(\bigcirc u x v \cap \bigcirc u y v)\right|=\left|\otimes_{x}^{u y} \backslash \bigcirc u y v\right|+\mid \bigcirc$ $u x v \cap \bigcirc u y v \mid \leq k-1$ (2). On the other hand, since $\triangle u x y$ is not of order k, $\left|\otimes_{y}^{u x} \backslash \bigcirc u x v\right|+\left|\Theta_{x}^{u y} \backslash \bigcirc u y v\right|+|\bigcirc u x v \cap \bigcirc u y v| \geq k+1$ (3). Combining inequalities (2) and (3) we obtain that $\left|\otimes_{y}^{u x} \backslash \bigcirc u x v\right|+k-1 \geq k+1$, thus $\left|\otimes_{y}^{u x} \backslash \bigcirc u x v\right| \geq 2$. Analogously, combining inequalities (1) and (3), we obtain that $\left|\boldsymbol{Q}_{x}^{u y} \backslash \bigcirc u y v\right|+k-1 \geq k+1$. Hence, $\left|\boldsymbol{Q}_{x}^{u y} \backslash \bigcirc u y v\right| \geq 2$.

The next two observations concern the case where the region $\bigcirc u x y \backslash \boldsymbol{\theta}_{y}^{u x}$ contains the maximum possible number of points, i.e., $k-1$. As shown next, in this case the intersection $\otimes_{y}^{u x} \cap \bigcirc u x v$ does not contain points of S.
Observation 2.1.5. If $\bigcirc u x y \backslash \boldsymbol{\theta}_{y}^{u x}$ contains $k-1$ points, then $\boldsymbol{\theta}_{y}^{u x} \cap \bigcirc u x v$ does not contain any point.

Proof. Since y is in $\bigcirc u x v$, the arc of $\partial \bigcirc u x y$ from u to v that contains y is contained in $\bigcirc u x v$. Hence, $\bigcirc u x y \backslash \boldsymbol{\theta}_{y}^{u x}$ is contained in $\bigcirc u x v$. Thus, the interior of $\bigcirc u x v \backslash \boldsymbol{\theta}_{v}^{u x}$ contains k points, the $k-1$ points in $\bigcirc u x y \backslash \boldsymbol{\theta}_{y}^{u x}$ and y. Since $\Delta u x v$ is of order $k, \otimes_{y}^{u x} \cap \bigcirc u x v$ does not contain any point.

Let $p_{1} \neq y$ in S be such that $\triangle u p_{1} x$ is in T. The next lemma implies that $u x$ is an illegal edge. Furthermore, $\bigcirc u p_{1} x$ cannot contain points in $\theta_{y}^{u x}$.
Lemma 2.1.6. If $\bigcirc u x y \backslash \boldsymbol{Q}_{y}^{u x}$ contains $k-1$ points, then $\bigcirc u p_{1} x$ contains point y, but does not contain any point of $\boldsymbol{Q}_{y}^{u x}$.

Proof. From Obs. 2.1.4 there are at least two points in $\boldsymbol{\theta}_{y}^{u x} \backslash \bigcirc u x v$. Since there are points in $\theta_{y}^{u x}$, from Obs. 2.1.5 such points are only in $\boldsymbol{\theta}_{y}^{u x} \backslash \bigcirc u x v$. Let p_{1} be the point in $\otimes_{y}^{u x}$ such that $\bigcirc u p_{1} x$ does not contain any point of $\boldsymbol{Q}_{y}^{u x}$. Then, the arc of $\partial \bigcirc u p_{1} x$ from u to x that contains p_{1} lies in $\boldsymbol{Q}_{y}^{u x}$. Thus, the other arc of $\partial \bigcirc u p_{1} x$ from x to u lies outside $\bigcirc u x y$. Therefore, the region $\bigcirc u x y \backslash \boldsymbol{\theta}_{y}^{u x}$ is contained in $\bigcirc u p_{1} x$. Then, $\bigcirc u p_{1} x$ contains k points (the $k-1$ points in $\bigcirc u x y \backslash \boldsymbol{Q}_{y}^{u x}$ and y). By the same arguments, for any $p^{\prime} \in \boldsymbol{\theta}_{y}^{u x} \backslash\left\{p_{1}\right\}$, $\bigcirc u p^{\prime} x$ contain at least $k+1$ points (the points in $\bigcirc u p_{1} x$ and p_{1}). Thus, for any $p^{\prime} \in \mathcal{Q}_{y}^{u x} \backslash\left\{p_{1}\right\}, \Delta u p^{\prime} x$ is not in T. It remains to show that $\triangle u p_{1} x$ is in T. For the sake of a contradiction suppose that $\triangle u p_{1} x \notin T$. Thus, u and x are not adjacent to any point in $\boldsymbol{Q}_{y}^{u x}$ in T. Then, there exists at least one $p^{\prime} \in \boldsymbol{Q}_{y}^{u x}$ such that p^{\prime} is adjacent to the endpoints of an edge $a b$ crossing twice $\partial \bigcirc u x y$ and is blocking x or u from p^{\prime} (note that a can be u and b can be x but $a b \neq u x$). Hence, at least one of a or b lies outside $\bigcirc u x y$. Consider the disk $\bigcirc a p^{\prime} b$. Since $a b$ crosses $\partial \boldsymbol{Q}_{y}^{u x}$, the arc of $\partial \bigcirc a p^{\prime} b$ from a to b that contains p^{\prime} crosses twice the

Figure 2.2: For $k=4$ we have $\epsilon=4^{\circ}$: (a) Shows the intersection points $a_{1}, a_{1}^{\prime}, b_{1}$ and b_{1}^{\prime} given in the proof of Theorem 2.2.1. (b) Shows an example of regions R_{1} and R_{1}^{\prime} given in the proof of Theorem 2.2.1, represented by the blue raising tilling pattern and the grey filled area, respectively; in this case $R_{1} \cap R_{1}^{\prime}=R_{1}$
arc of $\partial \bigcirc u x y$ from u to x that defines $\boldsymbol{\theta}_{y}^{u x}$. Hence, $\bigcirc u x y \backslash \boldsymbol{\theta}_{y}^{u x}$ is contained in $\bigcirc a p^{\prime} b$. Therefore, $\bigcirc a p^{\prime} b$ contains at least $k+1$ points of S (the $k-1$ points in $\bigcirc u x y \backslash \boldsymbol{Q}_{y}^{u x}, y$ and either u or x), which is a contradiction.

2.2 Points in convex position

In this section we show that $k-1$ flips are sufficient to transform any order- k triangulation of a convex point set into some other order- k triangulation, such that all the intermediate triangulations are of order $2 k-2$.

Before that, we show that our result is tight in how large the flip distance between two order- k triangulations can be.

Theorem 2.2.1. For any $k>2$ there is a set S_{k} of $2 k+2$ points in convex position such that $G\left(\mathcal{T}_{k}\left(S_{k}\right)\right)$ is not connected. Moreover, there is a triangulation T_{k} in $\mathcal{T}_{k}\left(S_{k}\right)$ such that in order to transform T_{k} into any other triangulation in $\mathcal{T}_{k}\left(S_{k}\right)$ one needs to perform at least $k-1$ flips.

Proof. In this construction, all angles will be smaller than 180°, so by $\angle x y z$ we denote the smaller of the two angles formed by the rays $y x$ and $y z$. By angle between two lines we mean the smaller or the two such angles.

We start with a horizontal line segment $u v$ and a point p_{1} above it, such that $\angle\left(v u p_{1}\right)=15^{\circ}$ and $\angle\left(p_{1} v u\right)=35^{\circ}$. Let q_{1} be the reflection of p_{1} with respect to the line through $u v$. Then, $\angle\left(u p_{1} v\right)=\angle\left(v q_{1} u\right)=130^{\circ}$. Thus, $\angle\left(u p_{1} q_{1}\right)=\angle\left(p_{1} q_{1} u\right)=75^{\circ}$ and $\angle\left(v q_{1} p_{1}\right)=\angle\left(q_{1} p_{1} v\right)=55^{\circ}$. Let $\epsilon>0$ be such that $\left(205^{\circ}-2(k-1) \epsilon^{\circ}\right)>180^{\circ}$. Let \bigcirc_{1} be $\bigcirc u p_{1} v$ and ℓ_{1} be the line through $p_{1} v$. See Fig. 2.3.

Figure 2.3: Each disk \bigcirc_{i} contains q_{1} and $\theta_{p_{1}}^{u q_{1}}$. The colored rays represent the supporting line of the edge $e_{i}=p_{i} p_{i-1}$ for all $i>1$ and respecting \bigcirc_{i}.

Let a_{1} be the intersection point of ℓ_{1} and the line obtained by rotating the line through $q_{1} p_{1}$ about q_{1} counterclockwise by ϵ°. Thus, $\angle a_{1} q_{1} v=55^{\circ}+\epsilon^{\circ}$. Let a_{1}^{\prime} be the point defined as $q_{1} a_{1} \cap\left(\partial \bigcirc_{1}\right)$. Let b_{1} be the point defined as the intersecting of ℓ_{1} and the line obtained by rotating counterclockwise ϵ° about u the line through $u p_{1}$. Hence, $\angle q_{1} u b_{1}=35^{\circ}+\epsilon^{\circ}$. Let b_{1}^{\prime} be the point defined as $u b_{1} \cap\left(\partial \bigcirc_{1} \backslash u\right)$. Notice that by construction, the points a_{1} and b_{1} do not lie in \bigcirc_{1}. Moreover, there is a 2-dimensional region R_{1} outside \bigcirc_{1} defined by the edges $a_{1} a_{1}^{\prime}, p_{1} a_{1}$ and the arc of $\partial \bigcirc_{1}$ with endpoints p_{1} and a_{1}^{\prime}, that does not contain u. Similarly, there is a 2 -dimensional region R_{1}^{\prime} outside \bigcirc_{1} defined by the edges $b_{1} b_{1}^{\prime}, p_{1} b_{1}$ and the arc of $\partial \bigcirc_{1}$ with endpoints p_{1} and b_{1}^{\prime}, that does not contain u. See Fig. 2.2.a. Notice, that since a_{1} and b_{1} are outside \bigcirc_{1}, then $R_{1} \cap R_{1}^{\prime}$ defines a non-empty 2-dimensional region. Let p_{2} be a point in the interior of $R_{1} \cap R_{1}^{\prime}$. See Fig. 2.2.b. Let δ_{1} be the angle $\angle\left(p_{1} u p_{2}\right)$ and let δ_{1}^{\prime} be the angle $\angle\left(p_{1} q_{1} p_{2}\right)$. By definition of $p_{2}, \delta_{1}<\epsilon$ and $\delta_{1}^{\prime}<\epsilon$. Then,
$\angle\left(u p_{2} p_{1}\right)=\angle\left(u p_{2} q_{1}\right)+\angle\left(q_{1} p_{2} p_{1}\right) \geq \angle\left(u b_{1} p_{1}\right)+\angle\left(q_{1} a_{1} v\right) \geq \angle\left(u p_{1} q_{1}\right)+\delta_{1}^{\prime}-$ $\delta_{1}+\angle\left(q_{1} p_{1} v\right)-\delta_{1}^{\prime}=130-\delta_{1}$.
Thus, $\angle\left(u p_{2} p_{1}\right)+\angle\left(p_{1} q_{1} u\right)>\angle\left(u p_{1} v\right)-\delta_{1}+\angle\left(p_{1} q_{1} u\right)-\delta_{1}^{\prime}=130-\delta_{1}+75-\delta_{1}^{\prime} \geq$ $205-2 \epsilon>180$. Therefore, $\bigcirc_{2}=\bigcirc u p_{2} p_{1}$ contains q_{1}. Moreover, \bigcirc_{2} contains $Q_{p_{1}}^{u q_{1}}$.

Recursively, for $i \in\{1, \ldots, k-1\}$ we find a point p_{i+1} with the following properties: (1) p_{i+1} lies in R_{i} and R_{i}^{\prime} between the supporting line ℓ_{i} of edge $p_{i} p_{i-1}$ and outside $\bigcirc_{i}=\bigcirc_{u p_{i} p_{i-1}}$, where $p_{0}=v$. (2) $\angle\left(u p_{i+1} q_{1}\right)+\angle\left(p_{i+1} q_{1} u\right)>130-$ $\delta_{i}+75-\delta_{i}^{\prime}-2(i-1) \epsilon \geq 205-2 i \epsilon>180$. For all $i>2$, note that by construction p_{j} does not lie in \bigcirc_{i} for all $j<i-1$. Also, note that $Q_{p_{1}}^{u q_{1}}$ is contained in \bigcirc_{i}.

See Fig. 2.3. Symmetrically, we define a point set $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$, such that q_{i} is the reflection of p_{i} with respect to the horizontal line passing through u and v.

Let $S^{\prime}:=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ and $S^{\prime \prime}:=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$. We define $S_{k}:=$ $\{u, v\} \cup S^{\prime} \cup S^{\prime \prime}$. Consider the triangulation $T=\left\{\triangle u p_{1} v, \triangle u q_{1} v\right\} \cup\left\{\triangle u p_{i+1} p_{i}\right.$, $\left.\triangle u q_{i+1} q_{i}: \forall i \in\{1, \ldots, k-1\}\right\}$. See Fig. 2.4. By construction of S_{k}, each of the triangles is of order k, which is, each triangle formed by points in $S \backslash S^{\prime}$ contains exactly the k points of S^{\prime} in the interior of its circumcircle and symmetrically each triangle formed by points in $S \backslash S^{\prime \prime}$ contains in the interior of its circumcircle exactly the k points of $S^{\prime \prime}$. Moreover, the triangulations $T \backslash S^{\prime}$ and $T \backslash S^{\prime \prime}$ are the Delaunay triangulations of the point sets $S \backslash S^{\prime}$ and $S \backslash S^{\prime \prime}$, respectively.

Let us show that for any order- k triangulation T^{\prime} different from T, the difference between T and T^{\prime} consists of a set of edges with one endpoint in S^{\prime} and the other endpoint in $S^{\prime \prime}$. In other words, we will show that any edge $p_{i} p_{j}$ or $q_{i} q_{j}$ with $i-1>j$ is in a triangle that is not order k. Note, that if this is true, then flipping any edge of $T \backslash S^{\prime}$ or $T \backslash S^{\prime \prime}$ will result in a triangulation that is not of order k. In addition, the only edge of T that can be transformed by one flip flipped to an edge with one endpoint in S^{\prime} and the other in $S^{\prime \prime}$ is $u v$. By construction, the triangle $\triangle u p_{1} q_{1}$ is of order $2 k-2$. This means that flipping any edge of T results in a triangulation that is not order- k. Therefore $G\left(\mathcal{T}_{k}\left(S_{k}\right)\right)$ is not connected.

Let us show that for $k-1 \geq i-1>j$, any triangulation of S_{k} containing edge $p_{i} p_{j}$ is not order- k, the other case for $q_{i} q_{j}$ is symmetric. To show this, we consider triangle $\triangle p_{i} p_{t} p_{j}$ for any $k \geq i>t>j \geq 0$. Note that there exists a t with $i>t>j$, since $p_{i} p_{j}$ is a diagonal of the convex hull of S_{k} where one of the two triangles containing $p_{i} p_{j}$ has a vertex p_{t} with $i>t>j$.

By construction, points p_{i} and p_{j} are not in $\bigcirc u p_{t} p_{t-1}$. Then the arc A of $\partial \bigcirc p_{i} p_{t} p_{j}$ with endpoints p_{i} and p_{j} that contains p_{t} crosses $\partial \bigcirc u p_{t} p_{t-1}$ twice, that is, once in p_{t} and one more time in one of the two arcs: (1) the arc with endpoints p_{i} and p_{t} that does not contain p_{j}, or (2) the arc with endpoints p_{t} and p_{j} that does not contain p_{i}. Arc A has a portion that lies in $\bigcirc u p_{t} p_{t-1} \cap \boldsymbol{\theta}_{q_{1}}^{u p_{1}}$, since the points $p_{i}, p_{t}, p_{t-1}, p_{j}$ lie in $\boldsymbol{Q}_{q_{1}}^{u p_{1}}$ In addition, since p_{i} and p_{j} do not lie in $\bigcirc u p_{t} p_{t-1}, \bigcirc p_{i} p_{t} p_{j}$ contains all the points in $S^{\prime \prime} \cup\{u\}$ whose total number is $k+1$. Thus, flipping any edge of T (including $u v$ as mentioned before) results in a triangulation that is not order- k. Therefore, two things have been showed: (1) the flip graph $G\left(\mathcal{T}_{k}\left(S_{k}\right)\right)$ is not connected, and (2) any order- k triangulation differs from T by only edges with one endpoint in S^{\prime} and the other in $S^{\prime \prime}$.

It remains to show that $k-1$ flips are necessary to transform T into another order- k triangulation T^{\prime}. We have shown above, that each edge of T^{\prime} that is not in T must have one endpoint in S^{\prime} and one in $S^{\prime \prime}$. Thus, edge $u v$ has to be flipped at some point. Note that if there is an edge $p_{t} q_{r}$, then there is a

Figure 2.4: (a) An order- k triangulation at distance at least $k-1$ from any other order- k triangulation $(k=4)$. (b) The gray area corresponds to $T_{u v}^{x}$.
triangle $\triangle u p_{i} q_{j}$ with $i \geq t$ and $j \geq r$: since u is not adjacent to v and u and it is adjacent to p_{k} and q_{k}, the minimum i and minimum j such that u is adjacent to p_{i} and q_{j} creates a triangle $\triangle u p_{i} q_{j}$. For $k-1 \geq i \geq 1$ and $k-1 \geq j \geq 1$, let us show that $\bigcirc u p_{i} q_{j}$ contains all points p_{t} with $t>i$ and all points q_{r} with $r>j$, i.e., triangle $\triangle u p_{i} q_{j}$ is not of order $2 k-i-j-1$. This would end the proof, since any edge $p_{i} q_{j}$ with $2 k-i-j \leq k$ crosses at least $k-1$ edges from T, i.e., edge $p_{i} q_{j}$ crosses the edges $u v, u p_{t}$ and $u q_{r}$ for all $t<i$ and $r<j$. This would conclude that $k-1$ flips are needed in order to transform T into another triangulation of order k.

Notice that disk $\partial \bigcirc u p_{i} q_{j}$ crosses disk $\partial \bigcirc u p_{i} p_{i-1}$ twice in u and in p_{i}. See Fig. 2.4.a. Since q_{j} is in $\bigcirc u p_{i} p_{i-1}$, the arc of $\partial \bigcirc u p_{i} q_{j}$ between u and p_{i} that contains q_{j} lies in $\bigcirc u p_{i} p_{i-1}$. In addition, since the point q_{j} lies in $\bigcirc u p_{t} p_{t-1}$ for all $t>i$, the arc from u to q_{j} of $\partial \bigcirc u p_{i} q_{j}$ that does not contain p_{i} lies in $\bigcirc u p_{t} p_{t-1}$ for all $t>i$. Also, since p_{i} is not in $\bigcirc u p_{t} p_{t-1}$, it follows that the arc between u and p_{i} that contains q_{j} crosses $\partial \bigcirc u p_{t} p_{t-1}$ twice, and a portion of this arc lies in $\theta_{p_{t}}^{u q_{t-1}}$. Thus, the arc of $\partial \bigcirc u p_{t} p_{t-1}$ between u and p_{t} that does not contain p_{t-1} lies in $\bigcirc u p_{i} q_{j}$. Hence, p_{t} lies in $\bigcirc u p_{i} q_{j}$. Similarly, q_{r} is in $\bigcirc u p_{i} q_{j}$ for all $r>j$. Therefore, since for any order- k triangulation different from T differs by only edges with one endpoint in S^{\prime} and the other in $S^{\prime \prime}$, in order to get some triangle $\triangle u p_{i} q_{j}$ of order k, we have to flip $k-1$: the edge $u v$ and $k-2$ edges of the form $u p_{t}$ and $u q_{r}$ with $2 k-i-j \leq k, t<i$ and $r<j$.

Let S be a point set in convex position. Let T be an order- k triangulation of S. We say that T is minimal if flipping any illegal edge in T results in a triangulation that is not order- k. Let $u v$ be a diagonal in T and let $\triangle u x v$ and $\triangle u y v$ be the triangles incident to it. Since S is in convex position, the diagonal $u v$ partitions T into two sub-triangulations that only share edge $u v$. Let $T_{u v}^{x}$ (respectively, $T_{u v}^{y}$) denote the sub-triangulation that contains triangle

Figure 2.5: (a) The $\bigcirc u x y$ contains 12 points, i.e, \triangle is not order 11. But the rest of the triangles are of order 8 . The gray area is $\theta_{y}^{u x}$ and the dashed area corresponds to $T_{u x}^{p_{1}}$, which in this case is contained in $Q_{y}^{u x}$. (b) Triangulation $T_{u x}^{p_{1}} \cup\{\triangle u x y\}$ obtained from the one in (a).
$\triangle u x v$ (respectively, $\triangle u y v$). See Fig. 2.4b.
Recall that $\left|Q_{y}^{u x}\right|$ referes to the number of points of S in the interior of $Q_{y}^{u x}$. The following lemma will be important for showing the main theorem of this section.

Lemma 2.2.2. Let T be a triangulation with the following properties:

1. Exactly one triangle $\triangle u x y$ in T is not of order $k>2$,
2. $\theta_{y}^{u x}$ contains at least two points,
3. $T_{u x}^{p_{1}}$ consists only of legal edges, where $\triangle u p_{1} x$ is the triangle in T adjacent to $\triangle u x y$ through edge $u x$. See Fig 2.5a.
Then, there exists a triangulation T^{\prime} in $\mathcal{T}_{k}(S)$ which can be reached from T by flipping at most $\left|\bigotimes_{y}^{u x}\right|-1$ illegal edges of $T_{u x}^{p_{1}}$. Moreover, each intermediate triangulation is of order $\left|\otimes_{y}^{u x}\right|+k-1$.

Proof. Consider the triangulation $T_{u x}^{p_{1}} \cup\{\triangle u x y\}$, which is a sub-triangulation of T. See Fig. 2.5b. Since $\theta_{y}^{u x}$ contains at least two points in $T_{u x}^{p_{1}}$, it follows that $u x$ is an illegal edge in $T_{u x}^{p_{1}} \cup\{\triangle u x y\}$. All other edges in $T_{u x}^{p_{1}} \cup\{\triangle u x y\}$ are legal since $T_{u x}^{p_{1}}$ consists of legal edges and $u y, x y$ are convex hull edges by construction.

Let us prove the lemma by induction on $\left|\theta_{y}^{u x}\right|$.
Consider the base case: $\left|\theta_{y}^{u x}\right|=2$. Since $u x$ is an illegal edge, $p_{1} \in \theta_{y}^{u x}$. Consider the triangulation $T_{1}=(T \backslash\{u x\}) \cup\left\{p_{1} y\right\}$. Since $u x$ is an illegal edge, by Obs. 2.1.1 $\left(\bigcirc u p_{1} y \cup \bigcirc p_{1} x y\right) \subset\left(\bigcirc u x y \cup \bigcirc u p_{1} x\right)$. Since $T_{u x}^{p_{1}}$ consists of legal edges, $T_{u x}^{p_{1}}$ is a Delaunay triangulation. Thus, $\bigcirc u p_{1} x$ does not contain any

Figure 2.6: The resulted triangulation after flipping $u x$ in T from Fig 2.5.a. Both new triangles $\triangle u p_{1} y$ and $\triangle p_{1} x y$ are not of order 8 . The sub-triangulation in the gray area contains exactly one triangle, $\triangle u p_{1} y$, that is not of order 8 .
point from $T_{u x}^{p_{1}}$. Hence, $\bigcirc u p_{1} y$ contains at most one point in $\bigotimes_{y}^{u p_{1}} \subset \bigotimes_{y}^{u x}$ and at most $k-1$ points in $\bigcirc u p_{1} y \backslash \otimes_{y}^{u p_{1}}$ (the points from $\bigcirc u p_{1} x \backslash\{y\}$). Similarly, for $\bigcirc p_{1} x y$. Thus, $\triangle u p_{1} y$ and $\triangle p_{1} x y$ are of order k.

Inductive hypothesis: Assume that lemma holds when $\left|\theta_{y}^{u x}\right| \leq m-1$ for $m \geq 3$.

Let $\left|\otimes_{y}^{u x}\right|=m$. Since $u x$ is an illegal edge, $p_{1} \in \bigotimes_{y}^{u x}$. Consider the triangulation $T_{1}=(T \backslash\{u x\}) \cup\left\{p_{1} y\right\}$. Then, $\left(\bigcirc u p_{1} y \cup \bigcirc p_{1} x y\right) \subset\left(\bigcirc u x y \cup \bigcirc u p_{1} x\right)$. In addition, since $T_{u x}^{p_{1}}$ consists of legal edges, $\bigcirc u p_{1} x$ does not contain any point from $T_{u x}^{p_{1}}$. Hence, $\bigcirc u p_{1} y$ contains at most $m-1$ points in $\otimes_{y}^{u p_{1}} \subset \otimes_{y}^{u x}$ (the m points in $\bigotimes_{y}^{u x}$ minus p_{1}) and at most $k-1$ points in $\bigcirc u p_{1} y \backslash \otimes_{y}^{u p_{1}}$ (the points from $\left.\bigcirc u p_{1} x \backslash\{y\}\right)$. A similar argument holds for $\bigcirc p_{1} x y$. On the other hand, by Obs. 2.1.3 the disks $\bigcirc u p_{1} y$ and $\bigcirc p_{1} x y$ do not share points in $\theta_{y}^{u x}$. Hence, $\left|\otimes_{y}^{u p_{1}}\right| \leq\left|\otimes_{y}^{u x}\right|-\left|\otimes_{y}^{p_{1} x}\right|-1 \leq m-1$ and $\left|\otimes_{y}^{p_{1} x}\right| \leq\left|\otimes_{y}^{u x}\right|-\left|\otimes_{y}^{u p_{1}}\right|-1 \leq m-1$. Thus, the order of triangles $\triangle u p_{1} y$ and $\triangle p_{1} x y$ is $\left|\theta_{y}^{u x}\right|+k-2$. If the new triangles $\triangle u p_{1} y$ and $\triangle p_{1} x y$ are of order k, then the lemma follows. If exactly one of $\triangle u p_{1} y$ and $\triangle p_{1} x y$ is not of order k, then by the inductive hypothesis the lemma follows. Assume that both $\triangle u p_{1} y$ and $\triangle p_{1} x y$ are not of order k. See Fig. 2.6.

Since $\bigcirc u p_{1} y \backslash \bigotimes_{y}^{u p_{1}}$ contains at most $k-1$ points, $\left|\otimes_{y}^{u p_{1}}\right| \geq 2$. Similarly, $Q_{y}^{p_{1} x} \mid \geq 2$. Consider p_{2} and p_{3} in S such that $\triangle u p_{2} p_{1}$ is adjacent to $\triangle u p_{1} y$, and $\triangle p_{1} p_{3} x$ is adjacent to $\triangle p_{1} x y$. Then, the points in $\otimes_{y}^{u p_{1}}$ are vertices of $T_{u p_{1}}^{p_{2}}$
and the points in $\bigotimes_{y}^{p_{1} x}$ are vertices of $T_{p_{1} x}^{p_{3}}$.
Consider the triangulation $T_{2}=\left(T_{1} \backslash T_{p_{1} x}^{p_{3}}\right) \cup\left\{p_{1} x\right\}$, which consists of the triangulation T_{1} of S minus the points in $T_{p_{1} x}^{p_{3}} \backslash\left\{p_{1}, x\right\}$. See the triangulation of the gray area in Fig. 2.6. Note that $\triangle u p_{1} y$ is the only triangle that is not of order k in T_{2}. Indeed, since the only points in $\bigcirc p_{1} x y$ in T_{2} are in $\bigcirc p_{1} x y \backslash \mathbb{Q}_{y}^{p_{1} x}$, the triangle $\triangle p_{1} x y$ is of order $k-1$ in T_{2}. Thus, $\triangle u p_{1} x$ is the only triangle that is not of order k in T_{2}. Since $T_{u p_{1}}^{p_{2}} \subset T_{u x}^{p_{1}}, T_{u p_{1}}^{p_{2}}$ consists of legal edges. Thus, the inductive hypothesis holds for T_{2}. That is, T_{2} is at distance at most $\left|\otimes_{y}^{u p_{1}}\right|-1$ from some triangulation T_{2}^{\prime} of order k such that the only edges flipped are in $T_{u p_{1}}^{p_{2}}$. Moreover, the triangulations between T_{2} and T_{2}^{\prime} are of order $\left|\mathcal{Q}_{y}^{u p_{1}}\right|+k-1$. Consider the triangulation $T_{3}=\left(T_{1} \backslash T_{2}\right) \cup T_{2}^{\prime}$. Since T_{3} consists of edges in T_{1} and at most $\left|\bigotimes_{y}^{u p_{1}}\right|-1$ flipped edges from $T_{u p_{1}}^{p_{2}}$, the triangulation T_{3} is at distance at most $\left|\Theta_{y}^{u p_{1}}\right|-1$ from T_{1} by flipping only illegal edges in $T_{u p_{1}}^{p_{2}}$. In addition, the triangles between T_{1} and T_{3} are of order $\max \left\{\left|\otimes_{y}^{u p_{1}}\right|,\left|\otimes_{y}^{p_{1} x}\right|\right\}+k-1 \leq\left|\otimes_{y}^{u x}\right|+k-1$. Note that $\triangle p_{1} x y \in T_{3}$. By construction, $\triangle p_{1} x y$ is the only triangle that is not of order k in T_{3} since T_{2}^{\prime} is of order k and the only that are not order- k in T_{1} were $\triangle u p_{1} y$ and $\triangle p_{1} x y$. Thus, T_{3} is of order $\left|\mathcal{Q}_{y}^{p_{1} x}\right|+k-1$. Finally, since $T_{p_{1} x}^{p_{3}} \subset T_{u x}^{p_{1}}, T_{p_{1} x}^{p_{3}}$ consists of legal edges. Thus, by inductive hypothesis T_{3} is at distance at most $\left|\bigotimes_{y}^{p_{1} x}\right|-1$ from a triangulation T_{3}^{\prime} of order k by flipping only illegal edges in $T_{p_{1} x}^{p_{3}}$. Also, the triangulations between T_{3} and T_{3}^{\prime} are of order $\left|\boldsymbol{Q}_{y}^{p_{1} x}\right|+k-1$. Thus, T_{1} is at distance at most $\left|\Theta_{y}^{u p_{1}}\right|+\left|\otimes_{y}^{p_{1} x}\right|-2 \leq\left|\Theta_{y}^{u x}\right|-2=m-2$ to a k-DT (S) by flipping only illegal edges in $\left(T_{u p_{1}}^{p_{2}} \cup T_{p_{1} x}^{p_{3}}\right) \subset T_{u x}^{p_{1}}$. Therefore, there exists a triangulation T^{\prime} of order k which resulted after flipping at most $\left|\boldsymbol{Q}_{y}^{u x}\right|-1$ illegal edges from $T_{u x}^{p_{1}}$ in T. Moreover, the triangulations between T and T^{\prime} are of order $\left|\boldsymbol{Q}_{y}^{u x}\right|+k-1$.

Using Lemma 2.2.2 we now proceed to prove the upper bound.
Theorem 2.2.3. For a point set S in convex position and $k \geq 2$, let $T \neq D T(S)$ be a triangulation in $\mathcal{T}_{k}(S)$. Then, there exists T^{\prime} in $\mathcal{T}_{k}(S)$ such that there is a path between T and T^{\prime} in $G\left(\mathcal{T}_{2 k-2}(S)\right)$ of length at most $k-1$, where each edge of the path corresponds to flipping an illegal edge.

Proof. Note that for $k=2$, follow trivially since $G\left(\mathcal{T}_{2}(S)\right)$ is connected. Assume $k \geq 3$. If T is not minimal, then T contains an illegal edge e such that flipping e results in an order- k triangulation. Thus, we assume that triangulation T is minimal. Observe first that there must be an illegal edge $u v$ in T incident to triangle $\triangle u x v$ such that all edges of $T_{u v}^{x}$ are legal. Indeed, since T is not an order-0 triangulation, T contains an illegal edge. Any triangulation of S has at least two ears, i. e., triangles with two edges in the convex hull of S, and for any ear in T all three of its edges are legal, otherwise T is not minimal.

Let $u v$ be an illegal edge incident to triangle $\triangle u x v$ such that all edges in $T_{u v}^{x}$ are legal. Let $\triangle u y v$ be the other triangle in T incident to $u v$. Consider triangulation $T_{1}=(T \backslash\{u v\}) \cup\{x y\}$. Since T is minimal, T_{1} is not orderk. The only triangles in T_{1} that could be not order- k are the new triangles $\triangle u x y$ and $\triangle x y v$. Without loss of generality assume that $\triangle u x y$ is not order- k. By Lemma 2.1.2, it follows that $\triangle u x y$ is the only one that is not order- k. In addition, $\triangle u x y$ is order- $(2 k-2)$. By Obs. 2.1.4 it follows that $2 \leq\left|\theta_{y}^{u x}\right| \leq k-1$.

By Lemma 2.2.2 it follows that T_{1} can be transformed into an order- k triangulation T^{\prime} by flipping at most $k-2$ illegal edges. Moreover, in the sequence of triangulations from T_{1} to T^{\prime} every triangulation is of order $2 k-2$. The claim follows.

Observe that due to the known property of illegal edges, each flip in the path from T to T^{\prime} increases the angle vector of the triangulation. In addition, if T is an order $-k$ triangulation, then the edges of T ar of order k. Independently Abellanas et al. [2] and Gudmundsson et al. [62] showed that there are $O(k n)$ order- k edges. It follows from Theorem 2.2 .3 that T can be transformed into $D T(S)$ by a sequence of at most $O((2 k-2) n)=O(k n)$ flips, since all the flipped edges are illegal and of order at most $2 k-2$, which implies that no order- $(2 k-2)$ edge is flipped twice.

Corollary 2.2.4. Let S be a point set in convex position. Any triangulation in $T_{k}(S)$ can be transformed into $D T(S)$ by a sequence of at most $O(k n)$ triangulations of order at most $2 k-2$.

Proof. Let $T \in \mathcal{T}_{k}$. Let us show that there is a sequence of triangulations $T_{0}=T, T_{1}, \ldots, T_{m}=D T(S)$. By Sibson [96], T can be transformed into $D T(S)$ by a finite number of illegal flips. For $i \geq 0$, if T_{i} is not minimal then there exists an illegal edge $u_{i} v_{i}$ in two triangles $\triangle u_{i} x_{i} v_{i}$ and $\triangle u_{i} y_{i} v_{i}$ such that $T_{i+1}=$ $T_{i} \backslash\left\{u_{i} v_{i}\right\} \cup\left\{x_{i} y_{i}\right\}$ is an order- k triangulation. If T_{i} is minimal, then flipping any illegal edge in T_{i} will result into a triangulation that is not order- k. It follows from Theorem 2.3 .1 that there exists an order- k triangulation T_{j} such that T_{i} can be transformed into T_{j} by flipping at most $k-1$ only illegal edges and the intermediate triangulations are order- $(2 k-2)$. So, add the sequence of triangulations between T_{i} and $T_{j}: T_{i}, T_{i}+1, \ldots, T_{j}$ where $j<i+k$. Since all of the flipped edges (including the ones of order- $(2 k-2)$) are illegal, the sequence of order- $(2 k-2)$ triangulations is strictly increasing with respect to the angle vector and $D T(S)$ is the only maximum element, at most all of the order- $(2 k-2)$ edges are flipped in order to reach $D T(S)$. By Abellanas et al. [2] and Gudmundsson et al. [62], there are $O((2 k-2) n)=O(k n)$ flipped edges.

Theorem 2.2.3 also implies an enumeration algorithm for all order- k triangulations. However, using the preprocessing method given by Silveira and van

Kreveld [97] where all order- k triangles and order- k edges in all order- k triangulation of a point set in general position can be computed in $O\left(k^{2} n \log k+\right.$ $k n \log n)$ expected time, implies a faster algorithm.

Lemma 2.2.5. For any point set S in convex position, there exists an algorithm that enumerates all order- k triangulations of S in polynomial time per triangulation.

The lemma follows since we can store all the order- k possible triangles in order- k triangulations given by Silveira and van Kreveld [97] in a hash table. Then, for each order- k triangle we subdivide the problem into three subsets of S and count all possible triangulations of each subset without repeating triangles already visited.

2.3 General point sets

In this section we consider a general point set S. We show that a triangulation of order $k=3,4$ or 5 of S can be transformed into some other order- k triangulation of S by flipping at most $k-1$ illegal edges, and that the intermediate triangulations are of order $2 k-2$. Moreover, since we flip only illegal edges, after each flip that transforms a triangulation T to T^{\prime}, we have that $\alpha\left(T^{\prime}\right)>\alpha(T)$. Thus, if we keep applying this procedure, we will eventually reach $D T(S)$.

Theorem 2.3.1. Let S be a point set in general position and let T be a triangulation in $\mathcal{T}_{k}(S)$ for $2 \leq k \leq 5$. There exists T^{\prime} in $\mathcal{T}_{k}(S)$ such that there is a path from T to T^{\prime} in $G\left(\mathcal{T}_{2 k-2}(S)\right)$ of length at most $k-1$, where each edge of the path corresponds to flipping an illegal edge.

In order to prove Theorem 2.3.1, we consider whether T is minimal. If not, the statement follows trivially. If T is minimal, then $k>2$. Also, for any illegal edge $u v$ in T, flipping $u v$ produces a new and unique triangle $\triangle u x y$ that is not order- k. Next, we show that the statement holds for such two cases and with

(a)

(b)

Figure 2.7: In both cases, $k=5$. (a) There are four points in the gray region $\bigcirc u x y \backslash \otimes_{y}^{u x}$.(b) There are exactly three points in $\theta_{y}^{u x}$ and exactly three points in $\theta_{x}^{u y}$.
that we conclude with the theorem.
Lemma 2.3.2. For $k=3,4,5$, the following are the only two possible cases: (a) There are exactly $k-1$ points in $\bigcirc u x y \backslash Q_{y}^{u x}$ or exactly $k-1$ points in $\bigcirc u x y \backslash Q_{x}^{u y}$. See Fig 2.7.a. (b) There are exactly $k-2$ points in $\otimes_{y}^{u x}$ and exactly $k-2$ points in $Q_{x}^{u y}$.

Proof. By Obs. 2.1.1, 〇uxy has at most $2 k-2$ points of S. First, we consider $k=3,4$ and show that in order for the $\bigcirc u x y$ to have more than k points, then only case (a) can happen. Recall that since $\bigcirc u x y$ contains more than k points, by Obs. 2.1.4 both regions $\theta_{y}^{u x}$ and $\otimes_{x}^{u y}$ have at least 2 points. In addition, each of $\bigcirc u x y \backslash \boldsymbol{\theta}_{y}^{u x} \subset \bigcirc u x v$ and $\bigcirc u x y \backslash \otimes_{x}^{u y} \subset \bigcirc u y v$ can contain at most $k-1$ points.

Consider $k=3$. Since by Obs. 2.1.1 $\bigcirc u x y$ has at most $2 k-2=2(3)-2=4$ points, it follows from Obs. 2.1.4 that there are exactly 2 points in $\theta_{y}^{u x}$ and exactly 2 in $\otimes_{x}^{u y}$. Thus, both regions $\bigcirc u x y \backslash \otimes_{y}^{u x}$ and $\bigcirc u x y \backslash \otimes_{x}^{u y}$ have exactly $k-1=3-1=2$ points.

Now, consider $k=4$. Since there are at least 2 points in each of $Q_{y}^{u x}$ and $Q_{x}^{u y}$, and $\bigcirc u x y$ contains at least $k+1=5$ points, it follows that at least one of the regions $\bigcirc u x y \backslash \bigotimes_{y}^{u x}$ and $\bigcirc u x y \backslash \bigotimes_{x}^{u y}$ contains 3 (thus $k-1$) points.

Therefore, we can conclude that for $k=3,4$ in order for $\bigcirc u x y$ to contain more that k points, there most be exactly $k-1$ points in $\bigcirc u x y \backslash Q_{y}^{u x}$ or exactly $k-1$ points in $\bigcirc u x y \backslash Q_{x}^{u y}$.

When $k=5$, there are two cases to consider. The first one is when there are exactly $k-1$ points in $\bigcirc u x y \backslash \Theta_{y}^{u x}$ or in $\bigcirc u x y \backslash \Theta_{x}^{u y}$. This case can happen, since $\bigcirc u x y \backslash Q_{y}^{u x}$ is contained in $\bigcirc u x v$, which can have up to $k-1$ points. Similarly, $\bigcirc u x y \backslash Q_{x}^{u y}$ is contained in $\bigcirc u y v$, which can have up to $k-1$ points different from x.

The only other case for $k=5$ is when there are $k-2=3$ points in $Q_{y}^{u x}$ and $k-2=3$ points in $Q_{x}^{u y}$. To observe this, note that if there are fewer than $k-1$ points in $\bigcirc u x y \backslash \otimes_{y}^{u x}$ and $\bigcirc u x y \backslash \otimes_{x}^{u y}$, then there are at most $k-2=3$ points in both regions $\bigcirc u x y \backslash \otimes_{y}^{u x}$ or $\bigcirc u x y \backslash \otimes_{x}^{u y}$. On the other hand, since $k=5$ and $\bigcirc u x y$ contains at least $k+1=6$ points, $\left|\bigcirc u x y \backslash \theta_{y}^{u x}\right|+\left|\bigcirc u x y \backslash \otimes_{x}^{u y}\right| \geq 6$. Thus, both $\bigcirc u x y \backslash Q_{y}^{u x}$ and $\bigcirc u x y \backslash Q_{x}^{u y}$ contain at least $k-2=3$ points, otherwise one of $\bigcirc u x y \backslash Q_{y}^{u x}$ and $\bigcirc u x y \backslash \bigotimes_{x}^{u y}$ contains at least $4=k-1$ points, falling into the previous case. It remains to show that the 3 points in $\bigcirc u x y \backslash \theta_{y}^{u x}$ and $\bigcirc u x y \backslash \theta_{x}^{u y}$ are actually in $\theta_{x}^{u y}$ and $\theta_{x}^{u y}$, respectively. Note that if $Q_{u}^{x y}$ does not contain points, then it follows that there are 3 points in both $Q_{y}^{u x}$ and $Q_{x}^{u y}$. For the sake of a contradiction suppose that there are points in $\otimes_{u}^{x y}$. Since $\bigcirc u x y \backslash \otimes_{y}^{u x}$ contains exactly 3 points and $Q_{x}^{u y}$ contains at
least 2 points, it follows that $Q_{u}^{x y}$ contains exactly one point and $Q_{x}^{u y}$ contains exactly 2 points. Similarly, since $\bigcirc u x y \backslash Q_{x}^{u y}$ contains exactly 3 points and $Q_{y}^{u x}$ contains at least 2 points, it follows that $\otimes_{u}^{x y}$ contains exactly 1 point and $Q_{y}^{u x}$ contains exactly 2 points. Thus, $\bigcirc u x y$ has $\left|\otimes_{y}^{u x}\right|+\left|Q_{x}^{u y}\right|+\left|\bigotimes_{u}^{x y}\right|=2+1+2=5$ points, which contradicts the assumption that $\bigcirc u x y$ contains more than $k=5$ points.

Therefore, in order to show that with at most $k-1$ flips the triangulation T can be transformed into some other triangulation T^{\prime} of order k such that only illegal edges are flipped, for $k=3,4,5$, we consider two cases:
A) $[k=3,4,5]$ There are exactly $k-1$ points in $\bigcirc u x y \backslash Q_{y}^{u x}$ or exactly $k-1$ points in $\bigcirc u x y \backslash \Theta_{x}^{u y}$. See Fig 2.7.a.
B) $[k=5]$ There are exactly $k-2=3$ points in $\bigotimes_{y}^{u x}$ and exactly $k-2=3$ points in $\otimes_{x}^{u y}$. See Fig 2.7.b.

Case A

For $k=3,4,5$; there are exactly $k-1$ points in $\bigcirc u x y \backslash Q_{y}^{u x}$ or exactly $k-1$ points in $\bigcirc u x y \backslash \bigotimes_{x}^{u y}$. Since the case when there are exactly $k-1$ points in $\bigcirc u x y \backslash Q_{y}^{u x}$ is symmetric to the one in $\bigcirc u x y \backslash \boldsymbol{Q}_{x}^{u y}$, without loss of generality we assume that there are exactly $k-1$ points in $\bigcirc u x y \backslash \emptyset_{y}^{u x}$.

We show that T can be transformed into a different order- k triangulation T^{\prime} by a sequence of of at most $k-1$ flips of only illegal edges. Moreover, the intermediate triangulations are of order $2 k-2$.

Lemma 2.3.3. Let S be a point set in general position and let T be a minimal triangulation in $\mathcal{T}_{k}(S)$, for $3 \leq k \leq 5$. Let $u v$ be an illegal edge of T with adjacent triangles $\triangle u x v$ and $\triangle u y v$. Consider the triangulation $T_{1}=(T \backslash$ $\{u v\}) \cup\{u x\}$ such that:

1. $\triangle u x y$ is not of order k,
2. there are $k-1$ points in $\bigcirc u x y \backslash Q_{y}^{u x}$.

Then, there exists a triangulation T^{\prime} in $\mathcal{T}_{k}(S)$ which can be reach from T by flipping at most $k-1$ only illegal edges. Moreover, the intermediate triangulations are of order $2 k-2$.

Proof. Recall by Lemma 2.1.2 that $\bigcirc u x y$ contains at most $2 k-2$ points. Thus, $T_{1} \in \mathcal{T}_{2 k-2}(S)$.

From Lemma 2.1.6 there exists a point $p_{1} \in \otimes_{y}^{u x} \backslash \bigcirc u x v$ such that $\triangle u p_{1} x$ is in T and $\bigcirc u p_{1} x$ does not contain a point from $\otimes_{y}^{u x}$. Then, the edge $u x$ is an illegal edge. Moreover, since the arc from u to x in $\partial \bigcirc u p_{1} x$ that contains p_{1} is contained in $\boldsymbol{\theta}_{y}^{u x} \subset \bigcirc u x y, \bigcirc u p_{1} x$ contains all of the points in $\bigcirc u x y \backslash \theta_{y}^{u x}$
including y. Thus, $\bigcirc u p_{1} x$ contains exactly k points, which are the points in $\bigcirc u x y \backslash \boldsymbol{Q}_{y}^{u x}$ including y.

Consider the triangulation T_{2} obtained from T_{1} after flipping $u x: T_{2}=$ $\left(T_{1} \backslash\{u x\}\right) \cup\left\{p_{1} y\right\}=(T \backslash\{u v, u x\}) \cup\left\{x y, p_{1} y\right\}$. Since $u x$ is an illegal edge, by Obs. 2.1.1 $\left(\bigcirc u p_{1} y \cup \bigcirc p_{1} x y\right) \subset\left(\bigcirc u x y \cup \bigcirc u p_{1} x\right)$. Hence, $\bigcirc u p_{1} y$ and $\bigcirc p_{1} x y$ contain at most $2 k-3$ points (the at most $2 k-2$ points in $\bigcirc u x y \cup \bigcirc u p_{1} x$ minus p_{1}). Thus, $T_{2} \in \mathcal{T}_{2 k-3}(S) \subset \mathcal{T}_{2 k-2}(S)$. Note that for $k=3$ the lemma already follows, since $2 k-3=6-3=3$. For the remaining of this proof, we assume that $k=4,5$. If $T_{2} \in \mathcal{T}_{k}(S)$, then the lemma follows. Assume that T_{2} is not of order k.

Thus, there is one triangle $\boldsymbol{\Delta}$ (either $\triangle u p_{1} y$ or $\triangle p_{1} x y$) that is not order- k. Since $p_{1} \in \otimes_{y}^{u x}$, the regions $\otimes_{y}^{u p_{1}}$ and $\otimes_{y}^{p_{1} x}$ are in $\otimes_{y}^{u x}$. Therefore, by Obs. 2.1.4 the interior of circumcircle $\bigcirc \mathbf{\Delta}$ of $\mathbf{\Delta}$ contains at least 2 points from $\boldsymbol{Q}_{y}^{u x} \backslash\left\{p_{1}\right\}$. From Obs. 2.1.3 it follows that $\bigcirc u p_{1} y$ and $\bigcirc p_{1} x y$ do not share a point from $\theta_{y}^{u x} \backslash\left\{p_{1}\right\}$. Since $k=4,5$, there are at most $3=5-2$ points in $\theta_{y}^{u x} \backslash\left\{p_{1}\right\}$. Then, exactly one triangle $\boldsymbol{\Delta}$ of $\triangle u p_{1} y$ and $\triangle p_{1} x y$ is not order $-k$.

Now, we consider the following two cases depending how many points are contained in $\bigcirc \Delta \backslash \bigotimes_{y}^{u x}: k-1$ or fewer.
Case 1) The disk $\bigcirc \boldsymbol{\Delta}$ contains $k-1$ points in $\bigcirc \Delta \backslash \otimes_{y}^{u x}$. Recall that the points contained in $\bigcirc u p_{1} x$ are the $k-1$ points in $\bigcirc u x y \backslash Q_{y}^{u x}$ and y. Hence, the $k-1$ points in $\bigcirc \Delta \backslash \otimes_{y}^{u x}$ are the $k-1$ points in $\bigcirc u x y \backslash \otimes_{y}^{u x}$. Thus, for either $\mathbf{\Delta}=\triangle u p_{1} y$ or $\boldsymbol{\Delta}=\triangle p_{1} x y$, this is an instance of case A again, but now with at most $k-2$ points in either of $\otimes_{y}^{u p_{1}}$ or $\otimes_{y}^{p_{1} x}$, respectively.

Assume $\boldsymbol{\Delta}=\triangle u p_{1} y$ (the case $\boldsymbol{\Delta}=\triangle p_{2} p_{1} y$ is analogous). Using the same arguments as in the beginning of this proof, there exists a point p_{2} in $Q_{y}^{u p_{1}} \subset$ $Q_{y}^{u x}$ such that $\triangle u p_{2} p_{1} \in T$ and $\bigcirc u p_{2} p_{1}$ does not contain points in $Q_{y}^{u p_{1}}$. Then, the edge $u p_{1}$ is an illegal edge in T_{2}. Consider $T_{3}=\left(T_{2} \backslash\left\{u p_{1}\right\}\right) \cup\left\{p_{2} y\right\}$. Analogously, as before we show that T_{3} has order $2 k-3-1=2 k-4$, since $\left(\bigcirc u p_{2} y \cup \bigcirc p_{2} p_{1} y\right) \subset\left(\bigcirc u p_{1} y \cup \bigcirc u p_{2} p_{1}\right)$. Therefore, $T_{3} \in \mathcal{T}_{2 k-4}(S) \subset \mathcal{T}_{2 k-2}(S)$. Note that for $k=4, \mathcal{T}_{2 k-4}(S)=\mathcal{T}_{4}$. Thus, for $k=4$ the lemma follows.

Consider $k=5$. If $T_{3} \in \mathcal{T}_{5}$, then the lemma follows. Otherwise, consider $T_{3} \notin \mathcal{T}_{5}$. Hence, $T_{3} \in \mathcal{T}_{6}(S)$ since $2 k-4=6$. Thus, one triangle $\hat{\mathbf{\wedge}}$ of the new triangles $\triangle u p_{2} y$ or $\triangle p_{2} p_{1} y$ is of order 6. Since $p_{2} \in \bigotimes_{y}^{u p_{1}} \subset \bigotimes_{y}^{u x} \backslash\left\{p_{1}\right\}$, we have that $\bigotimes_{y}^{u p_{2}} \subset \Theta_{y}^{u x} \backslash\left\{p_{1}\right\}$ and $\otimes_{y}^{p_{2} p_{1}} \subset \Theta_{y}^{u x} \backslash\left\{p_{1}\right\}$. Then, by Obs. 2.1.4, $\bigcirc \hat{\boldsymbol{\Delta}}$ contains the 2 points in $\theta_{y}^{u x} \backslash\left\{p_{1}, p_{2}\right\}$, namely, in either the regions $\theta_{y}^{u p_{2}} \subset$ $\otimes_{y}^{u x} \backslash\left\{p_{1}, p_{2}\right\}$ or $\otimes_{y}^{p_{2} p_{1}} \subset \otimes_{y}^{u x} \backslash\left\{p_{1}, p_{2}\right\}$. In addition, by Obs. 2.1.3 it follows that $\otimes_{y}^{u p_{2}} \cap \bigotimes_{y}^{p_{2} p_{1}}=\emptyset$. Hence, exactly one of $\triangle u p_{2} y$ and $\triangle p_{2} p_{1} y$ can have order 6 . Also, since $\bigcirc \hat{\mathbf{\Delta}}$ has exactly 2 points in $\theta_{y}^{u x}, \bigcirc \hat{\mathbf{\Delta}}$ contains the $k-1=4$ points in $\bigcirc u p_{1} y \backslash \otimes_{y}^{u p_{1}} \subset \bigcirc u p_{2} p_{1}$. Therefore, $\bigcirc \hat{\mathbf{\Delta}} \backslash \otimes_{y}^{u x}$ contains $k-1$ points,

Figure 2.8: In both cases: $k=5$, the gray filled disk is $\bigcirc u x y$ and both $\theta_{y}^{u x}$ and $Q_{x}^{u y}$ contain 4 points. (a) Disk $\bigcirc p_{1} x y$ does not contain the 4 points in $\bigcirc u x y \backslash Q_{y}^{u x}$.(b) The blue disk $\bigcirc u p_{1} y$ contains the 4 points in $\bigcirc u x y \backslash Q_{y}^{u x}$.
which is again an instance of Case A. Analogously, there is an illegal edge e (either $u p_{2}$ or $p_{2} p_{1}$) such that the triangulation $T_{4}=T_{3} \backslash\{e\} \cup\left\{e^{\prime}\right\}$ resulting after flipping e by e^{\prime} in T_{3} is of order at most $2 k-4-1=5$. Therefore, the lemma follows for this case.

Case 2) The disk $\bigcirc \boldsymbol{\Delta}$ contains fewer than $k-1$ points in $\bigcirc \Delta \backslash \boldsymbol{\theta}_{y}^{u x}$. In addition, since $\otimes_{y}^{u x} \subset \bigcirc u y v$ contains at most $k-1$ points, the region of $\bigcirc \boldsymbol{\Delta}$ contained in $\otimes_{y}^{u x}$ contains at most $k-2$ points (the points that are in $\theta_{y}^{u x}$ minus p_{1}). Hence, note that this is a special instance of Case B. Thus, this case can only happen for $k=5$. Moreover, $\bigcirc \Delta$ contains exactly 3 points in $\bigotimes_{x}^{u y}$ (either the 3 points in $Q_{p_{1}}^{u y}$ or the 3 points in $\otimes_{x}^{p_{1} y}$) and exactly 3 points in $Q_{y}^{u x}$ (either the 3 in $\otimes_{y}^{u p_{1}}$ or the 3 in $\otimes_{y}^{p_{1} x}$). In addition, $\otimes_{y}^{u x} \subset \bigcirc u y v$ must contain $k-1=4$ points in order for either $Q_{y}^{u p_{1}}$ or $\otimes_{y}^{p_{1} x}$ to have exactly 3 points. Since $\bigcirc u x y \backslash \otimes_{y}^{u x}$ contains $k-1$ points, these must lie in $\otimes_{x}^{u y} \subset \bigcirc u x v$, since $\bigotimes_{u}^{x y} \subset \bigcirc u x v \cap \bigcirc u y v$. But $\bigcirc u y v \backslash Q_{u}^{x y}$ already contains k points: $k-1$ in $\theta_{y}^{u x}$ and x. Notice that $\bigcirc u p_{1} y$ contains $Q_{x}^{u y}$, since the arc from u to y of $\partial \bigcirc u p_{1} y$ that contains p_{1} is in $\bigcirc u x y$. Thus, $\boldsymbol{Q}_{p_{1}}^{u y}$ contains exactly $k-1=4$ points. Therefore we have $\boldsymbol{\Delta}=\triangle p_{1} x y$. See Fig. 2.8.

Let us show that the edge $p_{1} x$ is an illegal edge. Suppose for the sake of a contradiction that $p_{1} x$ is not illegal. Then, none of the points in $\otimes_{y}^{p_{1} x}$ is in a triangle with both x and p_{1}. Hence, there exists a point p^{\prime} in $Q_{y}^{p_{1} x}$ that is in a triangle $\triangle a p^{\prime} b \in T$ such that the edge $a b$ is blocking either p_{1} or x from all the points in $Q_{y}^{p_{1} x}$. Thus, either both endpoints are different from x and p_{1} or either $p_{1}=a$ or $x=b$ but $p_{1} x \neq a b$. Since $\otimes_{y}^{u x}$ contains 4 points and $\otimes_{y}^{p_{1} x}$ contains 3 points, at least one of the endpoints of $a b$ is not in $\bigcirc u x v \cup \bigcirc u y v$. If $a b$ is blocking p_{1} from p^{\prime} then the arc from a to b of $\partial \bigcirc a p^{\prime} b$ that contains p^{\prime} crosses twice $Q_{y}^{u x}$ and has a portion in $\otimes_{y}^{p_{1} x} \subset \otimes_{y}^{u x}$. Thus, $\bigcirc a p^{\prime} b$ contains y, p_{1}, u and the 4 points in $\otimes_{x}^{u y}$, contradicting that $\triangle a p^{\prime} b$ is in T. If $a b$ is blocking x

Figure 2.9: (a) Triangle $\triangle a_{1} p_{1} b_{1}$ is of order 6. (b) Triangle $\triangle u p_{1} b_{2}$ has order 6. (c) Triangle $\triangle a_{2} q_{1} y$ is of order 6. (d) Triangles $\triangle u p_{1} b_{1}$ and $\triangle a_{2} q_{1} y$ are of order 5.
from p^{\prime}, then the arc from a to b of $\partial \bigcirc a p^{\prime} b$ that contains p^{\prime} has a portion in $Q_{y}^{p_{1} x} \subset \otimes_{y}^{u v}$. Since at least one of the endpoints of $a b$ is not in $\bigcirc u y v, \bigcirc a p^{\prime} b$ contains y, x, v and the 3 points in $Q_{x}^{p_{1} y}$, contradicting that $\triangle a p^{\prime} b$ is in T.

Therefore, there exists a point p_{2} in $\bigotimes_{y}^{p_{1} x}$ such that $\triangle p_{1} p_{2} x$ is in T, and $p_{1} x$ is illegal. Consider the triangulation $T_{3}=T_{2} \backslash\left\{p_{1} x\right\} \cup\left\{p_{2} y\right\}$.

Case 2a) Disk $\bigcirc p_{1} p_{2} x$ contains at most 3 points from $\theta_{x}^{u y}$. Since the disks $\bigcirc p_{2} x y$ and $\bigcirc p_{1} p_{2} y$ are in the union of $\bigcirc p_{1} x y \cup \bigcirc p_{1} p_{2} x$, which contains at most 7 points including p_{2} and y, the order of the triangles $\triangle p_{2} x y$ and $\triangle p_{1} p_{2} y$ is 5 . Thus, the lemma follows.
Case 2b) Disk $\bigcirc p_{1} p_{2} x$ contains exactly 4 points from $Q_{x}^{u y}$. Hence, T_{3} has order $\left|Q_{x}^{u y}\right|+\left|\bigotimes_{y}^{p_{1} x} \backslash\left\{p_{2}\right\}\right|=4+2=6$. Therefore, $T_{3} \in \mathcal{T}_{6}(S) \subset \mathcal{T}_{2 k-2}(S)$. If $T_{3} \in \mathcal{T}_{5}(S)$, then the lemma follows. Otherwise, consider the case when T_{3} is of order 6 . There is at most one triangle $\hat{\boldsymbol{\Delta}}$ from $\triangle p_{1} p_{2} y$ and $\triangle p_{2} y x$ of order 6. Thus the circumcircle of $\hat{\mathbf{\Delta}}$ contains the 4 points in $\boldsymbol{\theta}_{x}^{u y}$, implying that there are 4 points in $\bigcirc \hat{\boldsymbol{\Delta}} \backslash \bigotimes_{y}^{p_{1} x}$, which is an instance of Case A again. Using similar arguments as in case 1, the lemma follows.

Case B

We consider the resulting triangulation T_{1} after flipping $u v$ such that Case B occurs: (1) $\triangle u x y$ is not order-5, (2) there are exactly three points in both $\boldsymbol{\theta}_{y}^{u x}$ and $\boldsymbol{\theta}_{x}^{u y}$.

We show that there exists an order-5 triangulation T^{\prime} that can be reached from T in the flip graph of $\mathcal{T}_{2 k-2}(S)$ by flipping at most 4 illegal edges.
Lemma 2.3.4. Let S be a point set in general position and let T be a minimal triangulation in $\mathcal{T}_{5}(S)$. Let $u v$ be an illegal edge of T with adjacent triangles $\triangle u x v$ and $\triangle u y v$. Consider the triangulation $T_{1}=(T \backslash\{u v\}) \cup\{u x\}$ such that:

1. $\triangle u x y$ is not order-5,
2. there are exactly three points in both $\boldsymbol{\theta}_{y}^{u x}$ and $\boldsymbol{\theta}_{x}^{u y}$.

Then, there exists a triangulation T^{\prime} in $\mathcal{T}_{5}(S)$ at flip distance at most 3 from T in $G\left(\mathcal{T}_{8}(S)\right)$ such that all of the flipped edges are illegal.

Proof. Since edge $u v$ is an illegal edge in T, Since $\triangle u x y$ is of order 6 , it follows from Lemma 2.1.2 that $\triangle x v y$ is of order 2 , since $2 k-2=8$. Thus, $T_{1} \in$ $\mathcal{T}_{2 k-2}(S)$.

Next we consider two cases, depending on whether one of $u x$ or $u y$ is illegal or not.

Case 1) One of $u x$ or $u y$ is an illegal edge. Assume $u x$ is an illegal edge (the case when $u y$ is illegal is symmetric). There exists a point p_{1} in $\theta_{y}^{u x}$ such that $\triangle u p_{1} x$ is in T. Consider the triangulation $T_{2}=T_{1} \backslash\{u x\} \cup\left\{p_{1} y\right\}$. If $T_{2} \in \mathcal{T}_{5}(S)$ then the lemma follows. Assume that T_{2} is not of order 5 .

Note that the disk $\bigcirc u p_{1} y$ is contained in $\bigcirc u x v \cup \bigcirc u y v$ since the arc from u to y in $\partial \bigcirc u p_{1} y$ that contains p_{1} is in $\bigcirc u y v$ and the other arc from y to u is contained in $\bigcirc u x v$. Similarly, $\bigcirc p_{1} x y$ is in $\bigcirc u x v \cup \bigcirc u y v$ since the arc from p_{1} to y of $\partial \bigcirc p_{1} x y$ that contains x is contained in $\bigcirc u y v$ and the other arc from y to p_{1} is contained in $\bigcirc u y v$ with one portion in $\bigcirc u x v$. Moreover, since $p_{1} \in \boldsymbol{\theta}_{y}^{u x}, \bigcirc u p_{1} x$ can contain an extra point in $\bigcirc u x v \backslash(\bigcirc u y v \cup \bigcirc u x y)$. Thus, T_{2} is of order 6 , since each of $\bigcirc u p_{1} y$ and $\bigcirc p_{1} x y$ can contain at most 6 points (the 5 points in $\bigcirc u x y \backslash\left\{p_{1}\right\}$ plus the extra point in $\bigcirc u p_{1} x$). Since $\left|\bigcirc u p_{1} x\right|+|\bigcirc u x y|=5+6-2=9$, by Lemma 2.1.2 it follows that at most one of the triangles $u p_{1} y$ and $p_{1} x y$ is of order 6 , say $\triangle u p_{1} y$. Hence, there are 4 points in $\bigcirc u p_{1} y \backslash \boldsymbol{Q}_{y}^{u p_{1}}$ which is an instance of Case A. So, analogously as in the proof of Lemma 2.3.3, the lemma follows. Anagously, we prove it when $\triangle p_{1} x y$ is of order 6 .

Case 2) None of the edges $u x, u y$ is illegal. Since $u x$ is not illegal, the triangle $\triangle u t x$ of T incident to $u x$ must have its third vertex t outside $\bigcirc u x y$, so t cannot be any of the three points in $\boldsymbol{\theta}_{y}^{u x}$. Hence, there are edges blocking
u or x from all of the vertices in $\otimes_{y}^{u x}$. Thus, there exists a point p_{1} in $\otimes_{y}^{u x}$ that is incident to one of the edges that is blocking u or x from all the points in $\otimes_{y}^{u x}$.

Let $a_{1} b_{1}$ be the blocking edge such that $\triangle a_{1} p_{1} b_{1} \in T$. See Fig. 2.9. For point a_{1} two cases are possible: $a_{1}=u$, or a_{1} is outside $\bigcirc u x y$. Similarly, either $b_{1}=x$, or b_{1} is outside $\bigcirc u x y$. Observe that $a_{1} b_{1}$ intersects $\partial \bigcirc u x y$ twice, and both intersection points are on the closed arc from u to x that defines the boundary of $Q_{y}^{u x}$. Now, consider the cases whether a_{1} and b_{1} are in $\bigcirc u x y$.

If both a_{1} and b_{1} were outside $\bigcirc u x y$, then $\bigcirc a_{1} p_{1} b_{1}$ would contain at least six points: u, x, y and the three points that are in $Q_{x}^{u y}$, see Fig. 2.9a. This would make $\bigcirc a_{1} p_{1} b_{1}$ a triangle of T of order 6 , a contradiction. Thus one of a_{1}, b_{1} must be respectively u or x, and the other one must be outside $\bigcirc u x y$. Symmetrically, define triangle $\triangle a_{2} q_{1} b_{2}$ such that $q_{1} \in \bigotimes_{x}^{u y}$ and $a_{2} b_{2}$ is blocking u or y from all the points in $Q_{x}^{u y}$. By the same argument as above, one of a_{2}, b_{2} must be respectively u or y, and the other one must be outside $\bigcirc u x y$.

Consider $a_{1}=a_{2}=u$. See Fig. 2.9b. Since both $\bigcirc a_{1} p_{1} b_{1}$ and $\bigcirc a_{2} q_{1} b_{2}$ contain x and y, at least one of the following holds: $b_{1} \in \bigcirc a_{2} q_{1} b_{2}$ or $b_{2} \in$ $\bigcirc a_{1} p_{1} b_{1}$. This again contradicts our assumption that T is of order 5 .

Consider $b_{1}=x$ and $b_{2}=y$. See Fig. 2.9c. Since both $\bigcirc a_{1} p_{1} b_{1}$ and $\bigcirc a_{2} q_{1} b_{2}$ contain u, x and y, at least one of the following holds: $a_{1} \in \bigcirc a_{2} q_{1} b_{2}$ or $a_{2} \in \bigcirc a_{1} p_{1} b_{1}$. This also contradicts our assumption that T is of order 5 .

Finally, consider $a_{1}=u$ and $b_{2}=y$ (the remaining case is symmetric, $a_{2}=u$ and $\left.b_{1}=x\right)$. See Fig. 2.9d. Notice that b_{1} has to lie in the interior of 〇uyv. Otherwise, $\bigcirc u p_{1} b_{1}$ contains at least 6 points (the three points in $Q_{x}^{u y}$, and $\{x, y, v\}$), which is a contradiction. On the other hand, notice that triangulation T must contain the triangle $\triangle u x b_{1}$. Otherwise, b_{1} form a triangle with an edge $u b_{3}$, such that b_{3} is outside $\bigcirc u y v$, since $\bigcirc u y v$ contains already 5 points (the three points in $\otimes_{y}^{u x}$, and $\left\{x, b_{1}\right\}$). Hence, $\triangle u b_{1} b_{3}$ is of order 6 , since part of the arc of $\partial \bigcirc u b_{1} b_{3}$ from u to b_{3} that contains b_{1} is in $\bigcirc u x y$ and $\bigcirc u y v$, the disk $\bigcirc u b_{1} b_{3}$ must contain the three points in $\otimes_{x}^{u y}$, and $\{x, y, v\}$, which is a contradiction. Therefore, $\triangle u x b_{1}$ is in T. Moreover, $\bigcirc u x b_{1}$ contains the three points in $\otimes_{y}^{u x}$ since the arc from u to x of $\partial \bigcirc u x b_{1}$ that does not contain b_{1} is contained in $\bigcirc u x y \backslash Q_{v}^{u x}$. Hence, the edge $u b_{1}$ is an illegal edge in T_{1}.

Now, consider the triangulation $T_{2}=T_{1} \backslash\left\{u b_{1}\right\} \cup\left\{p_{1} x\right\}$.
Let us show that $\triangle p_{1} b_{1} x$ is of order 4 . First, notice that if a point is in the intersection $\bigcirc u x v \cap \bigcirc u y v$, then such point has to be in $\otimes_{y}^{u x}$, otherwise Ouyv contains more than 5 points (the three points in $\theta_{y}^{u x},\left\{x, b_{1}\right\}$ plus the extra point in $\left.(\bigcirc u y v \cap \bigcirc u x v) \backslash Q_{y}^{u x}\right)$. Notice that the arc of $\partial \bigcirc p_{1} b_{1} x$ from b_{1} to p_{1} that contains x is in $\bigcirc u y v$. Hence, if $\partial\left(\bigcirc p_{1} b_{1} x\right)$ intersects twice $\partial(\bigcirc u x v)$ (otherwise $\bigcirc p_{1} b_{1} x$ and $\bigcirc u x v$ are tangent), $\left(\bigcirc p_{1} b_{1} x \cap \bigcirc u x v\right) \subset$
$(\bigcirc u x v \cap \bigcirc u y v)$. Thus, $\bigcirc p_{1} b_{1} x$ can only contain points in $\bigotimes_{y}^{u v} \backslash\left\{p_{1}, x, b_{1}\right\}$ and the points in $\bigcirc u x b_{1} \backslash\left(\bigcirc u x v \cup\left\{p_{1}\right\}\right)$. Since $\bigcirc u x b_{1}$ contains the points in $\otimes_{y}^{u v} \backslash\left\{x, b_{1}\right\}, \bigcirc u x b_{1}$ contains at most 4 points (the at most 5 points in $\bigcirc u x b_{1}$ minus p_{1}).

Now, let us show that triangle $\triangle u p_{1} x$ is of order 6 . Since T is minimal, then $\triangle u p_{1} x$ is not of order 5 . Notice that p_{1} lies in $\theta_{y}^{u x} \backslash \bigcirc u x v$, otherwise $\bigcirc u p_{1} b_{1}$ contains more than 5 points: Since the arc from u to b_{1} of $\partial \bigcirc u p_{1} b_{1}$ that contains p_{1} crosses twice $\partial \bigcirc u x v$ and a portion of such arc is in $\bigotimes_{v}^{u x}$, $\bigcirc u p_{1} b_{1}$ contains the 3 points in $\mathbb{Q}_{x}^{u y}$, and $\{x, y, v\}$, which is a contradiction. Thus, disk $\bigcirc u p_{1} x$ must contain the points in $\left(\bigcirc u p_{1} b_{1} \cap \bigcirc u x v\right) \backslash\{x\}$ which are the 3 points in $\boldsymbol{Q}_{x}^{u y}$ and y. In addition, since the arc of $\partial \bigcirc u p_{1} x$ from u to x containing p_{1} is in $\theta_{y}^{u x}$, the disk $\bigcirc u p_{1} x$ can also contain the 2 points in $\otimes_{y}^{u x} \backslash\left\{p_{1}\right\}$. Hence, $\triangle u p_{1} x$ is of order 6. Thus, $T_{2} \in \mathcal{T}_{6}(S) \subset \mathcal{T}_{8}(S)$. Since p_{1} is in $\theta_{y}^{u x}$, the edge $u x$ is an illegal edge in T_{2}.

Consider the triangulation $T_{3}=T_{2} \backslash\{u x\} \cup\left\{p_{1} y\right\}$. Notice that the two new triangles $\triangle u p_{1} y$ and $\triangle p_{1} x y$ are of order 5 since the union of $\bigcirc u p_{1} x \cup \bigcirc u x y$ only contains the points in $\bigcirc u x y$. Therefore, T_{3} is of order 5 .

Finally, Theorem 2.3.1 follows.
proof of Theorem 2.3.1. Note that for $k=2$, the theorem follows since $G\left(\mathcal{T}_{2}(S)\right)$ is connected. If T is not minimal, then there exists an illegal edge e such that the resulting triangulation T^{\prime} after flipping e is of order k. Assume that T is a minimal triangulation. Hence, by Lemmas 2.3.3 and 2.3.4 there exists an orderk triangulation T^{\prime} that is flip distance at most $k-1$ in $G\left(\mathcal{T}_{2 k-2}(S)\right)$ such that all the flipped edges are illegal.

Finally, since there are $O(k n)$ order- k edges (see [2, 62]), it follows from Theorem 2.3.1 that for $k \leq 5$, any order- k triangulation can be transformed into $D T(S)$ by a sequence of at most $O(k n)$ triangulations of order at most $2 k-2$.

Corollary 2.3.5. Let S be a point set in general position. For $k \leq 5$, any triangulation in $T_{k}(S)$ can be transformed into $D T(S)$ by a sequence of at most $O(k n)$ triangulations of order $2 k-2$.

Proof. Let $T \in \mathcal{T}_{k}$. Let us show that there is a sequence of triangulations $T_{0}=T, T_{1}, \ldots, T_{m}=D T(S)$. By Sibson [96], T can be transformed into $D T(S)$ by a finite number of illegal flips. For $i \geq 0$, if T_{i} is not minimal then there exists an illegal edge $u_{i} v_{i}$ in two triangles $\triangle u_{i} x_{i} v_{i}$ and $\triangle u_{i} y_{i} v_{i}$ such that $T_{i+1}=$ $T_{i} \backslash\left\{u_{i} v_{i}\right\} \cup\left\{x_{i} y_{i}\right\}$ is an order- k triangulation. If T_{i} is minimal, then flipping any illegal edge in T_{i} will result into a triangulation that is not order- k. It follows from Theorem 2.3.1 that there exists an order- k triangulation T_{j} at flip distance
at most $k-1$ in $G\left(\mathcal{T}_{2 k-2}(S)\right)$ from T_{i} such that all the flipped edges are illegal. So, add the sequence of triangulations between T_{i} and $T_{j}: T_{i}, T_{i}+1, \ldots, T_{j}$ where $j<i+k$. Since all of the flipped edges (including the ones of order- $(2 k-2)$) are illegal, the sequence of order- $(2 k-2)$ triangulations is strictly increasing with respect to the angle vector and $D T(S)$ is the only maximum element, at most all of the order- $(2 k-2)$ edges are flipped in order to reach $D T(S)$. By Abellanas et al. [2] and Gudmundsson et al. [62], there are $O((2 k-2) n)=O(k n)$ flipped edges.

Using Theorem 2.3.1, the reverse search framework of Avis and Fukuda [16] and pre-processing the order- k triangles of a points set S in general position, we can enumerate all of the triangulations of order- k in expected polynomial time per triangulation.
Corollary 2.3.6. For $k \leq 5$, there exists an algorithm that enumerates all k order Delaunay triangulations of any point set in general position in expected $O\left(k^{4} n^{2}\right)$ time per triangulation.

Proof. Let S be a point set in general position. First, we compute the Delaunay triangulation of S which takes $O(n \log n)$ time. Also, we use the preprocessing algorithm that computes all the triangles and edges that are in triangulations of order k of S defined by Silveira and van Kreveld [97], which takes $O\left(k^{2} n \log k+k n \log n\right)$ expected time. We place each triangle and corresponding edges in a hash table. Now, in order to enumerate all of the k-order Delaunay triangulations of S for $k \leq 5$, we do a reverse search method as the one define by Avis and Fukuda [16] where $D T(S)$ defines the root element of order- k triangulations of S. For a triangulation T in $\mathcal{T}_{k}(S)$ in order to find its child T^{\prime} in $\mathcal{T}_{k}(S)$ and the parent of T^{\prime} of a rooted spanning tree of $\mathcal{T}_{k}(S)$, we do the following:

For each vertex v in T, we look at any pair of incident edges $e_{1}=(v, a)$ and $e_{2}=(v, b)$ to v such that $a b \notin T$ and there are at most $k-1$ edges in T crossing $a b$. Then, in expected $O(1)$ time, we can check in the hash table if $\triangle a v b$ is of order k. Since we do this for each vertex, in at most $\sum_{v \in S} \frac{\operatorname{deg}_{T}(v)\left(d e g_{T}(v)-1\right)}{2}=$ $O\left(n^{2}\right)$ we can check which are the possible order- k triangles that T can reach after $O(k-1)$ edges being flipped, in order to reach another triangulation of order k. By [62] there are $O(k n)$ edges of order k that belong to a triangulation of order k. Hence, there are $O(k n)$ possible triangles of order k that are not in T where for each triangle $\triangle a v b$ exactly one of its edges $a b$ is not in T and is crossed by at most $k-1$ edges of T. Thus, we have to flip at most $k-1$ edges from T in order to get a triangulation that contains $\triangle a v b$. In order to know which triangulations of order k can be obtained after flipping at most $k-1$ edges of T, we do the following. Per each possible triangle $\triangle a v b$ of order k with
exactly one edge $a b$ not in T, we find the vertex p_{1} of edge $v p_{1}$ that crosses $a b$ in T with the following properties: 1) $\triangle a p_{1} b$ is of order k, and 2) $\bigcirc a p_{1} b$ does not contain point p such that $v p \in T$ and crosses $a b$. This takes $O(k)$ expected time. We do the same for each point p adjacent to v and edge $v p$ crosses either $a p_{1}$ or $p_{1} b$. Since there are at most $k-1$ edges crossing $a b$, this process takes $O\left(k^{2}\right)$ expected time. Thus, in at most $O\left(k^{3} n\right)$ time we can find possible children of T. Per each possible child T^{\prime} of T, we can check in $O(k n)$ time the triangulation $T^{\prime \prime}$ of order k with maximum angle vector with $\alpha\left(T^{\prime \prime}\right)>\alpha(T)$. Therefore, there exists an algorithm that enumerates the elements of $\mathcal{T}_{k}(S)$ in $O\left(k^{4} n^{2}\right)$ expected time per triangulation.

2.4 Conclusions

In this chapter we presented the first general results on the flip graph of order- k Delaunay triangulations. We showed that already for points in convex position, the flip graph may not be connected. This is in contrast to the flip graph of triangulations that consist of order- k edges, for which the flip graph is always connected [2]. Our main result is that $k-1$ flips are sometimes necessary and always sufficient to transform an order- k triangulation into some other order- k triangulation, for any $k \geq 2$ if the points are in convex position. Moreover, we proved that these $k-1$ flips go through triangulations of order $2 k-2$. This is a noteworthy result, and one of the first results on order- k Delaunay triangulations proven for any value of k. In the setting of general point sets, we also showed that for $k=3,4,5$, the order- k triangulations are at flip distance at most $k-1$ from some other order- k triangulation within the flip graph of order$(2 k-2)$ triangulations. This result also implies that the flip distance between any two order- k triangulations is $O(k n)$, which is consistent with the fact that the diameter of the flip graph of all triangulations is $\Theta\left(n^{2}\right)$.

Our results imply an enumeration algorithm using the Avis and Fukuda framework [16], generalizing the results that Abe and Okamoto obtained for $k \leq 2$ [1]. For the case of convex position this is not of practical importance, as in that case one can obtain a more efficient method by first pre-computing all order- k triangles, and then recursively enumerating all order- k triangulations. However, our results imply the first non-trivial enumeration results for points in generic position for $3 \leq k \leq 5$. It should be mentioned that small values of k are the most important ones in practice, since for small orders the triangle shape is still close to Delaunay, but at the same time they are enough to obtain significantly better triangulations [91].

Clearly, the main question left open is what happens in general when $k \geq 6$. For larger orders our techniques present issues due to a large increase in the
number of cases that need to be considered. However, we conjecture that the same results obtained for convex position hold in general, and in particular, that any order- k triangulation is at flip distance at most $k-1$ from another order- k triangulation.

Convex shape Delaunay GRAPHS AND TREES

Flips in triangulations are an instance of a more general question: Given a class of spanning graphs \mathcal{G} of a point set S, which local operations can transform one element of \mathcal{G} into another? Several operators have been introduced for different classes of spanning graphs that are not triangulations, such as perfect matchings, plane Hamiltonian cycles and plane spanning trees [6, 9, 36]. One class of graphs that has received much attention in these type of operators, is the set of plane spanning trees of a point set.

Consider the set of all plane spanning trees ${ }^{1}$ of S, denoted $\mathcal{S T}(S)$. Avis and Fukuda [16] considered a graph with vertex set $\mathcal{S T}(S)$ where two vertices are connected if the corresponding trees can be transformed into each other by an edge move, i.e., the corresponding two trees differ by exactly one edge. They showed that this graph is connected with diameter $O(n)$. In other words, Avis and Fukuda showed that any two distinct plane spanning trees can be transformed into each other by performing a linear number of edge moves. Observe that the edge move is a very general operation, since once we remove one edge of a tree, there might be a quadratic number of possible replacements.

A more local operation for transforming two different plane trees is the edge slide, which consists of replacing the edge $u v$ from $T \in \mathcal{S} \mathcal{T}(S)$ by an edge $v w$ such that w is adjacent to u in T. See Figure 3.1. Consider the graph $G(\mathcal{S T}(S))$ with vertex set $\mathcal{S} \mathcal{T}(S)$ and a pair of vertices are joined if the corresponding trees can be transformed into each other by a slide edge operation. Aichholzer et al. [5] showed that $G(\mathcal{S T}(S))$ is connected. Later, it was shown that the diameter of $G(\mathcal{S T}(S))$ is $O\left(n^{2}\right)$ [8].

[^3]

Figure 3.1: Example of slide edge operation in a tree.

In order to prove that $G(\mathcal{S T}(S))$ is connected, Aichholzer et al. [5] used another operation that transforms one plane spanning tree into a complementary plane spanning tree. This result is interesting on its own, since they showed that any plane spanning tree of S can be transformed into the Euclidean minimum spanning tree of S by repeatedly computing Euclidean minimum spanning trees of the constrained Delaunay triangulations. More precisely, the following iterative procedure converges to the Euclidean minimum spanning tree of S. Start with an arbitrary spanning tree T_{0} of S. Compute the Delaunay triangulation of S taking the edges of T_{0} as constraints. Next, compute the Euclidean minimum spanning tree T_{1} of this constrained triangulation, and repeat. Aichholzer et al. [5] also showed a tight bound of $\Theta(\log n)$ on the length of this sequence.

A natural question with respect to \mathcal{C}-distances is whether there exists a sequence that transforms any plane spanning tree of S into the $d_{\mathcal{C}}$-minimum spanning tree of S such that two consecutive plane trees are contained in the constrained \mathcal{C}-Delaunay graph.

Our contributions. In this chapter we first show that the result by Aichholzer et al. [5] can be generalized to arbitrary \mathcal{C}-distance functions, i.e., there exists a sequence of trees $T_{0}, T_{1}, \ldots T_{k}$ such that $T_{i}=M S T_{\mathcal{C}}\left(D T_{\mathcal{C}}\left(T_{i-1}\right)\right)$ and this procedure converges in $O(n)$ steps to the $d_{\mathcal{C}}$-minimum spanning tree of S, where $|S|=n$. The main ingredient of our result is, as in [5], a fixed tree theorem (Theorem 3.2.1) that states that once one iteration of the above procedure does not produce a change, then it must have reached the $d_{\mathcal{C}}$-minimum spanning tree of S. We note, however, that our proofs are different from those used for the Euclidean metric, since several key lemmas in [5] rely on properties of circles. Later, we show a lower bound of $\Omega(\log n)$ on the sequence of trees that converges to the d_{\square}-minimum spanning tree. Finally, for \square-distance we prove that for a special case of plane spanning trees, the length of this sequence is $O(\log n)$.

3.1 General observations

In this section we give different results that will be essential for the proof of the fixed tree theorem.

Let S be a point set in the plane and let \mathcal{C} be a compact convex set that contains the origin in it interior. Throughout this chapter we will assume that all pairwise \mathcal{C}-distances between points in S are different. Let G be a planar graph with vertex set S and edges $E(G)$. Let p and q be two points in S. We say that a path is a $p q$-path in G if it is contained in G and it starts from p and ends in q.

The following property is a known characterization of the edges in the minimum spanning tree.

Property 3.1.1. For any graph G, an edge $e \in G$ is not present in $M S T_{\mathcal{C}}(G)$ if and only if there is a path in G between the endpoints of e that solely consists of edges shorter than e.

Next we show that for each pair of points p and q that are visible to each other there exists a path that connects them in $D G_{\mathcal{C}}(G)$ fully contained in $\mathcal{C}_{r}(p, q)$ for all $r \geq d_{\mathcal{C}}(p, q)$.

Lemma 3.1.2. Let p, q be two visible vertices such that $p q$ in G. Then, for all $r \geq d_{\mathcal{C}}(p, q)$ the \mathcal{C}-disk $\mathcal{C}_{r}(p, q)$ contains a $p q$-path in $D G_{\mathcal{C}}(G)$.

Proof. Let $r \geq d_{\mathcal{C}}(p, q)$ and let C be a $\mathcal{C}_{r}(p, q)$. The proof is by induction on the number of points of S contained in the interior of the disk C. If C does not contain points in its interior, then by definition, there exists the edge $p q$ in $D G_{\mathcal{C}}(S)$.

Now, suppose that the result holds for $k \geq 0$ points contained in $\mathcal{C}_{r}(p, q)$. Assume that C contains $k+1$ vertices of S in its interior.

Note that if none of the points in the interior of C is visible to both of p and q, then by definition the edge $p q \in D G_{\mathcal{C}}(G)$. Consider the case when at least one point $v \in S$ contained in C is visible to both points. Since v is in the interior of C, there exist $C^{\prime}=\mathcal{C}_{r^{\prime}}(p, v)$ and $C^{\prime \prime}=\mathcal{C}_{r^{\prime \prime}}(v, q)$ that are fully contained in C. Hence, C^{\prime} and $C^{\prime \prime}$ contain at most k points in their interior. Then, by inductive hypothesis, there exist a $p v$-path P^{\prime} and a $v q$-path $P^{\prime \prime}$ that are contained in $C^{\prime} \subset C$ and $C^{\prime \prime} \subset C$, respectively. Therefore, there is a $p q$-path in $P^{\prime} \cup P^{\prime \prime}$ that is contained in C (note that $P^{\prime} \cup P^{\prime \prime}$ might repeat edges, i.e., it is not necessarily a $p q$-path but it contains one).

Observe that for any edge $u v \in M S T_{\mathcal{C}}(S)$ it holds that any $\mathcal{C}(u, v)$ does not contain any point of S in its interior, otherwise, from Lemma 3.1.2 there exists an $u v$-path with edges solely shorter than $u v$, contradicting Property 3.1.1.

Figure 3.2: The points p and q are separated in C by a constraint c.

We say that p and q are separated in a \mathcal{C}-disk C if p and q are in C and there exists a constraint $c \in E(G)$ crossing C such that c divides C into two different sets such that p and q are in different sets, we refer to Figure 3.2. Using Lemma 3.1.2 we can show that if two points are contained in a homothet C of \mathcal{C} where no edge is separating them (note that, despite this, the points might not be visible to each other), then there exists a path between the two points in $D G_{\mathcal{C}}(G)$ that is contained in C.

Lemma 3.1.3. Let C be a $\mathcal{C}_{r}(p, q)$ for some $r \geq d_{\hat{\mathcal{C}}}(p, q)$ such that there is no constraint separating p and q in C, then there exists a $p q$-path of $D G_{\mathcal{C}}(G)$ contained in C.

Proof. Since there is no constraint separating p and q, there exists a path $P=$ $p_{0}, p_{1}, \ldots, p_{m}$ in the visibility graph in C, where $p_{0}=p$ and $p_{m}=q$. The vertices p_{i} and p_{i-1} can see each other, since the edge $p_{i-1} p_{i}$ is in the visibility graph for all $i \in\{1, \ldots, n\}$. Also, since p_{i-1} and p_{i} are in C, there is an r_{i} such that $C_{i}=\mathcal{C}_{r_{i}}\left(p_{i-1}, p_{i}\right)$ is contained in C for each i. Thus by Lemma 3.1.2 there exists a $p_{i-1} p_{i}$-path P_{i} in C_{i} for all i. Therefore, there is a $p q$-path in $P_{1} \cup P_{2} \cup \ldots \cup P_{m}$ that is contained in C (note that $P_{1} \cup P_{2} \cup \ldots \cup P_{m}$ might repeat edges, i.e., it is not necessarily a $p q$-path but it contains one).

A characteristic of circles is that two different circles intersect either in exactly one point or exactly two points where one arc of a circle is enclosed by the other and vice versa. Something similar is true for convex curves.

Proposition 3.1.4 (Ge Xia [108]). Let $\partial \mathcal{C}$ be the boundary of \mathcal{C}, which is a closed convex curve in the plane. The intersection of two distinct homothets of $\partial \mathcal{C}$ is the union of two sets, each of which is either a segment, a single point, or empty.

We know that if two points z and w lie in the interior of a $\mathcal{C}(p, q)$, then $d_{\mathcal{C}}(z, w) \leq d_{\mathcal{C}}(p, q)$ and that there exists a $\mathcal{C}_{r}(z, w)$ contained in $\mathcal{C}(p, q)$. How-
ever, it is possible that $\mathcal{C}(z, w)$ is not fully contained in $\mathcal{C}(p, q)$. See Figure 3.3a.
We observe that if the points z and w lie in the line segment $p q$ then there exists a $\mathcal{C}(z, w)$ in the interior of $\mathcal{C}(p, q)$.

(a)

(b)

Figure 3.3: (a) The unique $\mathcal{C}(z, w)$ is not fully contained in $\mathcal{C}(p, q)$. (b) The line segment $z w$ lies in the line segment $p q$. The origin corresponds to the midpoint of $p q$. The gray ellipse is the homothet C^{\prime} of $\mathcal{C}(p, q)$ scaled by $\frac{d(z, w)}{d(p, q)}=\frac{1}{\lambda}$, and the ellipse $\mathcal{C}(z, w)$ is the homothet of C^{\prime} translated by a vector \bar{b}.

Observation 3.1.5. Let z and w be two points that lie in the line segment $p q$, then for each $C=\mathcal{C}(p, q)$ there exists a $\mathcal{C}(z, w)$ contained in C, and vice versa, for each $C^{\prime}=\mathcal{C}(z, w)$ there exists a $\mathcal{C}(p, q)$ that contains C^{\prime}.

Proof. Since scaling of \mathcal{C} does not depend on where the center of \mathcal{C} is, we consider without loss of generality a convex set \mathcal{C}^{\prime}, homothet of \mathcal{C}, such that the origin \bar{o} is in the midpoint of $p q$. Since $d(z, w)=\lambda d(p, q)$ we can scale C by $1 / \lambda$ with a linear transformation α and translate the new scale C^{\prime} by a vector \bar{b}, denoted $C^{\prime}+\bar{b}$, that maps \bar{o} to the midpoint b of $z w$, then $\alpha(p) \alpha(q)+\bar{b}=z w$. See Figure 3.3b. By construction, $C^{\prime}+\bar{b}$ is a $\mathcal{C}_{r}(z, w)$. In addition, $C^{\prime}+\bar{b}$ is a $\mathcal{C}(z, w)$, otherwise there exists a smaller radius (scaling factor) r such that $\mathcal{C}_{r}(z, w)$ is smaller than C^{\prime}, then scaling it by λ we obtained a smaller $\mathcal{C}(p, q)$ than C, which is a contradiction. Note that if we show that $d_{\mathcal{C}^{\prime}}(\bar{o}, u) \leq d_{\mathcal{C}^{\prime}}(\bar{o}, p)$ for all $u \in\left(C^{\prime}+\bar{b}\right)$, then $C^{\prime}+\bar{b}$, that is a $\mathcal{C}(z, w)$, is contained in C. Let $u \in\left(C^{\prime}+\bar{b}\right)$, then $d_{\mathcal{C}^{\prime}}(\bar{o}, u) \leq d_{\mathcal{C}^{\prime}}(\bar{o}, b)+d_{\mathcal{C}^{\prime}}(b, u) \leq d_{\mathcal{C}^{\prime}}(\bar{o}, b)+d_{\mathcal{C}^{\prime}}(b, z) \leq$ $d_{\mathcal{C}^{\prime}}(\bar{o}, b)+d_{\mathcal{C}^{\prime}}(b, p)=d_{\mathcal{C}^{\prime}}(\bar{o}, p)$. The second part of the observation is proved analogously.

(a)

(b)

Figure 3.4: Edges e and e^{\prime} are edges crossing $u v \in M S T_{\mathcal{C}}$: (a) The edge e is closer to v than e^{\prime}, and e^{\prime} is closer to u than e. (b) None of $\mathcal{C}(p, q)$ and $\mathcal{C}\left(p^{\prime}, q^{\prime}\right)$ contain u, but both contain v.

Let $t=u v$ be an edge of the $M S T_{\mathcal{C}}(S)$ crossed by a set of constraints. Let C_{t} be a $\mathcal{C}(u, v)$. Let $e=p q$ and $e^{\prime}=p q$ be two edges in $D G_{\mathcal{C}}(G)$ that cross t. We say that e is closer than e^{\prime} to v if $d(e \cap t, v) \leq d\left(e^{\prime} \cap t, v\right)$. See Figure 3.4a.

Lemma 3.1.6. Let $e=p q$ and $e^{\prime}=p^{\prime} q^{\prime}$ be edges of $D G_{\mathcal{C}}(T)$ crossing $u v$ such that u is not contained in any $\mathcal{C}\left(p^{\prime}, q^{\prime}\right)$ and, e is closer to v than e^{\prime}. Then, there exists a $\mathcal{C}(p, q)$ that contains v. See Figure 3.4 b .

Proof. Let C_{t} be a $\mathcal{C}(u, v)$. Since $u v \in M S T_{\mathcal{C}}(S), p$ and q lie outside C_{t}. Consider the intersection points z^{\prime}, w^{\prime} of $e^{\prime} \cap \partial C_{t}$. Let $C_{e^{\prime}}$ be a $\mathcal{C}\left(p^{\prime}, q^{\prime}\right)$. By Observation 3.1.5 there exists a $C_{z^{\prime} w^{\prime}}=\mathcal{C}\left(z^{\prime}, w^{\prime}\right)$ contained in $C_{e^{\prime}}$. Since z^{\prime} and w^{\prime} lie on $\partial C_{t}, z^{\prime} w^{\prime}$ partitions C_{t} into two convex subsets of C_{t}. Thus, by Proposition 3.1.4 one of the two convex subsets defined by $z^{\prime} w^{\prime}$ in C_{t} is totally contained in $C_{z^{\prime} w^{\prime}}$: Since $C_{e^{\prime}}$ does not contain $u, C_{z^{\prime} w^{\prime}}$ does not contain u neither. Hence, $C_{z^{\prime} w^{\prime}}$ contains the subset of C_{t} defined by $z^{\prime} w^{\prime}$ that contains v.

Since e crosses t closer to v than e^{\prime}, the intersection points z and w of $e \cap \partial C_{t}$ are contained in $C_{z^{\prime} w^{\prime}}$. Hence, $d_{\hat{\mathcal{C}}}(z, w) \leq d_{\hat{\mathcal{C}}}\left(z^{\prime}, w^{\prime}\right)$. Note that if there exists a $\mathcal{C}(z, w)$ that contains v in its interior, then, by Observation 3.1.5 there exists a $\mathcal{C}(p, q)$ that contains v in its interior. For the sake of a contradiction suppose that none of the $\mathcal{C}(z, w)$ contains v. Let $C_{z w}$ be a $\mathcal{C}(z, w)$. Since z and w are on $\partial \mathcal{C}(u, v)$ and $v \notin C_{z w}$, by Proposition 3.1.4 it follows that $C_{z w}$ contains the subset of C_{t} that contains u. Since e^{\prime} is closer to u than $e, C_{z w}$ contains z^{\prime} and w^{\prime}. Then, $d_{\hat{\mathcal{C}}}(z, w)=d_{\hat{\mathcal{C}}}\left(z^{\prime}, w^{\prime}\right)$. Thus, $C_{z w}$ is a $\mathcal{C}\left(z^{\prime}, w^{\prime}\right)$ that contains u. Therefore, by Observation 3.1.5 it follows that there exists a $\mathcal{C}\left(p^{\prime}, q^{\prime}\right)$ that
contains u, a contradiction.

3.2 Fixed tree theorem

Let $\mathcal{S T}(S)$ be the set of all crossing-free spanning trees of S. For each element $T \in \mathcal{S T}(S)$, we define the sequence $T_{0}, T_{1}, T_{2}, \ldots$ where $T_{0}=T, T_{i}=$ $M S T_{\mathcal{C}}\left(D G_{\mathcal{C}}\left(T_{i-1}\right)\right)$ for all $i>0$. In this section we will prove the convergence of this sequence to the canonical element $M S T_{\mathcal{C}}(S)$ of $\mathcal{S T}(S)$. In other words, we show that any spanning tree of S can be transformed into the $M S T_{\mathcal{C}}(S)$ by a finite sequence of crossing-free spanning trees.

The following theorem shows that the fixed tree in the sequence of $T_{0}, T_{1} \ldots$ is unique and it is the $M S T_{\mathcal{C}}(S)$.

Theorem 3.2.1 (Fixed tree theorem). Let $T \in \mathcal{S} \mathcal{T}_{S} . T=M S T_{\mathcal{C}}\left(D G_{\mathcal{C}}(T)\right)$ if and only if $T=M S T_{\mathcal{C}}(S)$.

Proof. The "if" part is trivial by definition of $\operatorname{MST}_{\mathcal{C}}(S)$. Let us prove the "only if" part. Let $T=M S T_{\mathcal{C}}\left(D T_{\mathcal{C}}(T)\right)$, and assume for the sake of a contradiction that $T \neq M S T_{\mathcal{C}}(S)$. Then, there exists an edge $t=u v \in M S T_{\mathcal{C}}(S)$ that does not belong to T. Note that there is at least one edge in T that crosses t : otherwise, $t \in D G_{\mathcal{C}}(T)$. Thus, t must be in $M S T_{\mathcal{C}}\left(D G_{\mathcal{C}}(T)\right)$, a contradiction. Hence, there is at least one edge in T that crosses t.

Let C_{t} be a $\mathcal{C}(u, v)$. Each edge in $D G_{\mathcal{C}}(T)$ crossing t crosses C_{t} and has its endpoints outside C_{t}. Let $c=a b \in T$ be the constraint closest to v. We consider whether there exists a $\mathcal{C}(a, b)$ that contains v.

If there exists a $C_{c}=\mathcal{C}(a, b)$ that contains v, then none of the edges of T separates v from a and b in C_{c}. Otherwise, such edge crosses t and is closer to v than c, a contradiction. Hence, by Lemma 3.1.3 there is an $a v$-path, P_{a}, and a $v b$-path, P_{b}, contained in C_{c}. Therefore there is an $a b$-path in $P_{a} \cup P_{b}$ that solely consists of edges shorter than c, contradicting our hypothesis by Property 3.1.1.

If there does not exist a $\mathcal{C}(a, b)$ that contains v, then by Proposition 3.1.4, any $\mathcal{C}(a, b)$ must contain u. Consider the closest constraint $c^{\prime}=a^{\prime} b^{\prime}$ to u. Thus, by Lemma 3.1.6 there exists a $C_{c^{\prime}}=\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$ that contains u. Again, there is no edge in $C_{c^{\prime}}$ that separates u from a^{\prime} and b^{\prime}. Thence, by Lemma 3.1.3 there is an $a^{\prime} u$-path, $P_{a^{\prime}}$, and an $u b^{\prime}$-path, $P_{b^{\prime}}$, contained in $C_{c^{\prime}}$. Therefore there is an $a^{\prime} b^{\prime}$-path in $P_{a^{\prime}} \cup P_{b^{\prime}}$ that solely consists of edges shorter than c, contradicting our hypothesis by Property 3.1.1. Therefore $T=M S T_{\mathcal{C}}(S)$.

Consider again an arbitrary tree $T \in \mathcal{S} \mathcal{T}(S)$ and a sequence T_{0}, T_{1}, \ldots, such that $T_{0}=T, T_{i}=\operatorname{MST}_{\mathcal{C}}\left(D G_{\mathcal{C}}\left(T_{i-1}\right)\right)$ for all $i \geq 1$. Notice that this is a $d_{\mathcal{C}}$-length-decreasing sequence, since T_{i} has smaller $d_{\mathcal{C}}$-weight than T_{i-1}, unless both are identical trees. Also, by definition of T_{i}, the trees T_{i} and T_{i-1} do not

Figure 3.5: Edge $c_{j}=a_{j} b_{j}$ is the closest edge to v in T_{j} with $j=n-3$ and $\triangle_{j}=\triangle a_{j} p_{j} b_{j}$ is in $D T_{\mathcal{C}}\left(T_{j}\right)$. Edge c^{\prime} is in T_{j-1} and it is blocking the visibility from a_{j} to p_{j}.
cross, since they belong to the same plane graph, namely $D G_{\mathcal{C}}\left(T_{i-1}\right)$, for all $i>0$. Since the size of S is finite, there are only a finite number of crossingfree spanning trees of S. Thus, as a consequence of Theorem 3.2.1 we obtain a $d_{\mathcal{C}}$-length-decreasing sequence of trees in $\mathcal{S} \mathcal{T}(S)$ which reaches a fixed point $T_{k}=M S T_{\mathcal{C}}(S)$ in a finite number of steps. We will call this sequence the canonical sequence of T.

Theorem 3.2.2. For any $T \in \mathcal{S} \mathcal{T}(S)$ there exists a finite sequence $T_{0}, T_{1}, \ldots, T_{k}$ in $\mathcal{S T}(S)$, such that $T_{0}=T$ and $T_{k}=M S T_{\mathcal{C}}(S)$.

Figure 3.6 shows a canonical sequence that converges in 4 steps where \mathcal{C} is an axis-aligned square.

3.2.1 Upper bound

The next question to answer is what the length of the canonical sequence is. In this section we give a linear upper bound for the length of such sequence.

First, we show that for any $i \geq 0$, if an edge is in the constrained Delaunay graph of T_{i} and does not appear in T_{i+1}, then such edge cannot appear in any of the following trees of the canonical sequence.
Lemma 3.2.3. Let $e=p q$ be an edge in $D G_{\mathcal{C}}\left(T_{i}\right)$ that is not in tree T_{i+1}, with $i \geq 0$. Then $d \notin T_{i+j}$ for all $j>1$.

Proof. Recall that $T_{i+1}=M S T_{\mathcal{C}}\left(D G_{\mathcal{C}}\left(T_{i}\right)\right)$. Since $e \notin T_{i+1}$, then by Property 3.1.1 there exist a $p q$-path in $D G_{\mathcal{C}}\left(T_{i}\right)$ that solely consists of edges of
$d_{\mathcal{C}}$-length smaller than $d_{\hat{\mathcal{C}}}(p, q)$. In particular, T_{i+1} contains a $p q$-path with this property, such a path is in $D G_{\mathcal{C}}\left(T_{i+1}\right)$, hence $e \notin M S T_{\mathcal{C}}\left(D G_{\mathcal{C}}\left(T_{i+1}\right)\right)=T_{i+2}$. By induction, e can never reappear in the following trees.

Next, we show that the canonical sequence converges in $O(n)$ steps, where n is the size of S. The proof is similar to the one in Aichholzer et al. [5] for circles, yet we make use of special properties of arbitrary convex shapes.

Theorem 3.2.4. The canonical sequence has length $O(n)$, where $|S|=n$.
Proof. Let $k \geq 2$ and $j=k-2$. Then, there exists an edge $t=u v \in M S T_{\mathcal{C}}(S)$ that is not in T_{j}. Thus, by Proposition 3.1.4 there exists a constraint $c=a b$ in T_{j} such that $\mathcal{C}(a, b)$ contains either u or v, without loss of generality say v. Hence, by Lemma 3.1.6 the edge $c_{j}=a_{j} b_{j}$ closest to v has the property that $C_{j}=\mathcal{C}\left(a_{j}, b_{j}\right)$ contains v. Then, v is not separated by an edge in T from a_{j} and b_{j} in C_{j}. Thus, by Lemma 3.1.3 there exists an $a_{j} b_{j}$-path that goes through v contained in C_{j}. Hence, there exists a point p_{j} in C_{j} that is visible to both a_{j} and b_{j} such that $\triangle_{j}=\triangle a_{j} p_{j} b_{j} \in D G_{\mathcal{C}}\left(T_{j}\right)$. Since $a_{j} p_{j} b_{j}$ is an $a_{j} b_{j}$-path that consists of edges solely shorter than c_{j}, the point p_{j} had to be separated by an edge $c^{\prime}=a^{\prime} b^{\prime}$ of T_{j-1} for every $\mathcal{C}\left(a_{j}, b_{j}\right)$. But c^{\prime} cannot cross c_{j}, since $c_{j} \in D G_{\mathcal{C}}\left(T_{j-1}\right)$. See Figure 3.5. Note that there exists a $\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$ that contains p_{j} in its interior: For the sake of a contradiction suppose that p_{j} is not contained in any $\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$. We note that c^{\prime} partitions C_{j} into two parts, one of which, by Proposition 3.1.4, is contained in any $\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$, that is the one that does not contain p_{j}. Since, c^{\prime} separates p_{j} from either a_{j} of b_{j}, c_{j} is contained in any $\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$. Now, consider the intersecting points z and w in $c^{\prime} \cap \partial C_{j}$ (note that at most one of the following can happen: $a_{j}=z=a^{\prime}$ or $\left.b_{j}=w=b^{\prime}\right)$. Thus, $d_{\hat{\mathcal{C}}}(z, w) \leq d_{\hat{\mathcal{C}}}\left(a_{j}, b_{j}\right)$. Also, by Observation 3.1.5, for each $C=\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$ there is a $C_{z w}=\mathcal{C}(z, w)$ contained in C. Then, by Proposition 3.1.4, $C_{z w}$ contains c_{j}. Therefore, $d_{\hat{\mathcal{C}}}\left(a_{j}, b_{j}\right)=d_{\hat{\mathcal{C}}}(z, w)$. Thus, C_{j} is a $\mathcal{C}(z, w)$. Hence, $\mathcal{C}(z, w)$ contains p_{j}, a contradiction.

Consider the closest edge $c_{j-1}=a_{j-1} b_{j-1}$ to p_{j} that separates p_{j} from a_{j} or b_{j} in C_{j-1}. Then, there exists a $\mathcal{C}\left(a_{j-1}, b_{j-1}\right)$ that contains p_{j}. Moreover, there is no edge in T_{j-1} that can separate p_{j} from a_{j-1} and b_{j-1} in C_{j-1}, otherwise, c_{j} wouldn't be the closest edge to p_{j} crossing $p_{j} a_{j}$ and C_{j} in T_{j-1}. Therefore, there exists a p_{j-1} in C_{j-1}, such that $\triangle_{j-1}=\triangle a_{j-1} p_{j-1} b_{j-1}$ is in $D T_{\mathcal{C}}\left(T_{j-1}\right)$. Consequently, we obtained a sequence $\triangle_{j}, \triangle_{j-1}, \ldots \triangle_{0}$ of empty triangles.

Observe that for each point p_{i} the edge c_{j} blocks the visibility to each $c_{i+1}, \ldots c_{j}$. Thus, we can map each index i in $\{0, \ldots, j-1\}$ to an endpoint of edge c_{i+1} that is different from the one in c_{i} (they can share at most one endpoint). Since p_{0} and c_{0} do not participate, then $j \leq n-3$. Therefore, $k \leq n-1$.

3.3 Bounds for square spanning trees

In this section we study the canonical sequence when \mathcal{C} is an axis-aligned square.
We denote the x - and y-coordinate of a point p by p_{x} and p_{y}, respectively. An important property of the \square-distance is that it is the same as the L_{∞}-metric, i.e., for any pair $p, q \in S, d_{\square}(p, q)=\max \left\{\left|p_{x}-q_{x}\right|,\left|p_{y}-q_{y}\right|\right\}$. In particular, any $\mathcal{C}(p, q)$ contains p and q on opposite sides of $\partial \mathcal{C}(p, q)$.

Figure 3.6: Example of a sequence with a spanning tree of a 10 -point set that converges to $M S T_{\square}(S)$ in 4 steps. The dashed edges represent the appearing edges at stage $i+1$.

3.3.1 A lower bound

In this section we give a lower bound on the length of the canonical sequence when \mathcal{C} is a square.

A natural question, once we know that this sequence converges, is how fast it reaches the $M S T_{\square}(S)$. As a first step for answering this question we give a lower bound based on a construction shown in Figure 3.6, similar to the one given in [5], which has length $\Theta(\log n)$.

Consider points u and b such that the edge $t=u v$ is a diagonal of the unique square $Q_{t}=\mathcal{C}(u, v)$. Let $n=2^{m}+2$ for some $m \in \mathbb{N}$. Let b be a point below Q_{t}. Consider points $a_{1}, a_{2}, \ldots a_{n-3}$ above Q_{t} such that each a_{j} has the following properties: (1) the line segment $c_{j}=a_{j} b$ crosses the top and bottom sides of $Q_{t},(\mathrm{~b}) c_{j}$ is closer to u than c_{s} for all $j<s$, and (c) if j is odd, then c_{j} has length ℓ, otherwise, c_{j} has length $\frac{\ell}{3^{i-1}}$ where $j \equiv 2 i$ modulo 2^{i+1} for
some $i \in\{2, \ldots, m\}$. Refer to Figure 3.6. Let $S:=\left\{u, v, b, a_{1} \ldots, a_{n-3}\right\}$. By construction, $t \in M S T_{\square}(S)$.

Now, consider the spanning tree T of S with edges $c_{1}, \ldots c_{n-3}, u b$ and $v b$. Then, t is crossed by all the constraints c_{1}, \ldots, c_{n-3}. Notice that at step $i-1$, the $d_{\square-l o n g e s t ~ c o n s t r a i n t s ~ o f ~}^{i-1}{ }_{i}$ are the constraints with length $\frac{\ell}{3^{i-1}}$ and these constraints are the only ones of T_{i-1} not present at T_{i} for $1 \leq i<m$. Indeed, let $c_{k}=a b$ be a constraint crossing t in T_{i-1} where $k \not \equiv 2 i$ modulo 2^{i+1}, then $d_{\square}\left(a_{i}, b\right) \leq \frac{\ell}{3^{i-1}}$, where $c_{i}=a_{i} b$ for all $1 \leq i<k$. Thus, any $a_{i} b$-path different from edge $a_{i} b$ would contain an edge with length $\frac{2 \ell}{3^{i-1}}$, refer to Figure 3.7. Also, the constraints c_{j} where $j \equiv 2 i$ modulo 2^{i+1} disappear at stage $i-1$, since there exists a path between c_{j} 's endpoints with edges shorter than c_{j}, refer to Figure 3.7. Hence the tree undergoes $m+1=\log _{2}(n-2)+1$ iterations.

Figure 3.7: The dashed edges have d_{\square}-length $\frac{2 \ell}{3^{i-1}}$, while each of the $a_{4} b$-paths different from $a_{4} b$ passes through one of the endpoints of c_{2} or c_{6} that are different from b.

Theorem 3.3.1. There exists a point set S and $T \in \mathcal{S} \mathcal{T}(S)$, such that its canonical sequence has length $\Theta(\log n)$.

3.3.2 An upper bound

In this section we show a special case when the upper bound of $O(\log n)$ on the length of the canonical sequence when \mathcal{C} is a square.

Note that if we show that an arbitrary edge of $M S T_{\square}(S)$ appears in $O(\log n)$ steps, then the sequence of d_{\square}-spanning trees has length $O(\log n)$. In this section we will show that an arbitrary edge $u v$ of the $M S T_{\square}(S)$ that is only crossed by constraints that cross opposite sides of a square $\partial \mathcal{C}(u, v)$, then $u v$ appears in a tree of the canonical sequence in at most $O(\log n)$ steps.

Let $t=u v$ be an edge of the $M S T_{\square}(S)$ crossed by a set of constraints. Let Q_{t} be a $\mathcal{C}(u, v)$. Without loss of generality we assume that $d_{\square}(u, v)=\left|u_{x}-v_{x}\right|$ and that u and v lie on the right and left side of Q_{t}, respectively. Let e be an edge crossing t. We say that e is a diagonal when e crosses t in consecutive sides
of ∂Q_{t}, or call it vertical and horizontal if e crosses opposite sides that are topand bottom-sides or left- and right-sides of ∂Q_{t}, respectively. In this section, we show that if an edge $t \in M S T_{\square}(S)$ is only crossed by vertical constraints, then t appears in $O(\log n)$ steps. The case when the constraints are horizontal is symmetric.

Figure 3.8: Left: quadrants at p. Right: both q and q^{\prime} are in the same quadrant at p. Point q^{\prime} is in $\square(p, q)$.

Recall that the quadrants at a point p of S are given by the four quadrants defined by the lines $x=p_{x}$ and $y=q_{y}$. See Figure 3.8(left). Consider two edges $p q$ and $p q^{\prime}$ such that $d \square\left(p, q^{\prime}\right)<d_{\square}(p, q)$. Observe that if q and q^{\prime} are in the same quadrant at p, then q^{\prime} lies in a $\square(p, q)$: since the $Q=\square(p, q)$ with vertex p lies in the same quadrant at p as q and q^{\prime}. Thus, since $d_{\square}\left(p, q^{\prime}\right)<d_{\square}(p, q)$, it follows that q^{\prime} lies in Q. Therefore, $d_{\square}\left(q, q^{\prime}\right)<d_{\square}(p, q)$. See Fig. 3.8(right).

Observation 3.3.2. Consider edges $p q$ and $p q^{\prime}$ incident to p. If q and q^{\prime} are in the same quadrant at p, then $d_{\square}\left(q, q^{\prime}\right)<\max \left\{d_{\square}(p, q), d_{\square}\left(p, q^{\prime}\right)\right\}$.

Consider a vertical edge $e=p q$ and the intersection points z, w in $e \cap \partial Q_{t}$. We have that $d_{\square}(z, w)=\left|z_{y}-w_{y}\right|=d_{\square}(u, v)$. Thus, the rectangle $R_{z w}$ with z and w as opposite vertices has height greater or equal than its width. The rectangle $R_{z w}$ is a homothet of the rectangle with opposite vertices p and q. Therefore, $d_{\square}(p, q)=\left|p_{y}-q_{y}\right|$.

Observation 3.3.3. If $p q$ is a vertical edge in $D G_{\square}(T)$, then $d_{\square}(p, q)=\left|p_{y}-q_{y}\right|$.
Moreover, there exists a $\mathcal{C}(z, w)$ that contains both u and v. Hence, by Observation 3.1.5 there exists a $\mathcal{C}(p, q)$ that contains both u and v. Thus, the following observation holds.

Observation 3.3.4. If $e=p q$ is a vertical edge crossing $t=u v \in M S T_{\square}(S)$, then $d_{\square}(p, v)<d_{\square}(p, q)$ and $d_{\square}(v, q)<d_{\square}(p, q)$.

Next, we observe that if two edges e and e^{\prime} are vertical edges crossing t, then

Figure 3.9: (a) Point z lies in the supporting line of $p q$ and $z_{y}=p_{y}^{\prime}$. (b) Rectangle R has vertices z and p^{\prime} on its top-side and q lies on its boundary.
the d_{\square} distance of the two endpoints below Q_{t} is shorter than the d_{\square}-length of the largest of e and e^{\prime}.
Observation 3.3.5. Let $e=p q$ and $e^{\prime}=p^{\prime} q^{\prime}$ be two vertical edges crossing Q_{t} with the next properties: (a) $p_{y}>q_{y}$ and $p_{y}^{\prime}>q_{y}^{\prime}$, and, (b) $d_{\square}(p, q)<d_{\square}\left(p^{\prime}, q^{\prime}\right)$. Then, the following hold:

1. If $p \neq p^{\prime}$, then $d_{\square}\left(p, p^{\prime}\right)<d_{\square}\left(p^{\prime}, q^{\prime}\right)$.
2. If $q \neq q^{\prime}$, then $d_{\square}\left(q, q^{\prime}\right)<d_{\square}\left(p^{\prime}, q^{\prime}\right)$.

Proof. Since $d_{\square}(p, q)<d_{\square}\left(p^{\prime}, q^{\prime}\right)$, at least one of $p \neq p^{\prime}$ and $q \neq q^{\prime}$ happens. Since both cases are symmetric, without loss of generality we assume that $p \neq p^{\prime}$. Note that the edges $p^{\prime} q$ and $p q^{\prime}$ are also vertical edges, since they are either edges (if $q=q^{\prime}$) or diagonals of the polygon $p q q^{\prime} p^{\prime}$. Also, note that one of $p^{\prime} q$ or $p q^{\prime}$ has smaller d_{\square}-length than $p^{\prime} q^{\prime}$, since either $q_{y}>q_{y}^{\prime}$ or $p_{y}<p_{y}^{\prime}$, otherwise $p^{\prime} q^{\prime}$ has smaller d_{\square}-length than $p q$, which is a contradiction. Consider the edge $e^{\prime \prime}$ from $\left\{p^{\prime} q, p q^{\prime}\right\}$ that has smaller d_{\square}-length than $p^{\prime} q^{\prime}$. Without loss of generality assume that $e^{\prime \prime}=p^{\prime} q$ and $p_{y}<p_{y}^{\prime}$. Observe that if p and p^{\prime} belong to the same quadrant at q, then by Observation 3.3.2 the statement holds. Assume that p and p^{\prime} are in different quadrants at q. Consider the point z on the supporting line of e with $z_{y}=z_{y}^{\prime}$. Let R rectangle be the rectangle that contains q on its boundary and the points z and p^{\prime} are vertices of R. See Figure 3.9. Rectangle R has height $\left|p_{y}^{\prime}-q_{y}\right|=\left|z_{y}^{\prime}-q_{y}\right|$ and width $\left|p_{x}^{\prime}-z_{x}\right| \geq\left|p_{x}^{\prime}-p_{x}\right|$. Consider the intersection points w of the top side of Q_{t} and $p q$, and the intersection point w^{\prime} of top side of Q_{t} and $p^{\prime} q$. Consider the rectangle R^{\prime} that has w and w^{\prime} as vertices and contains
q on its bottom side. See Fig. 3.9b. Then, R^{\prime} has width $\left|w_{x}-w_{x}^{\prime}\right| \leq d_{\square}(u, v)$ and height greater than $d_{\square}(u, v)$. Thus, $\left|q_{y}-w_{x}^{\prime}\right|<\left|w_{x}-w_{x}^{\prime}\right|$. The rectangle R^{\prime} is a homothet of R. Hence, the height of R is greater than its width. Therefore, $d_{\square}\left(p, p^{\prime}\right)<\left|p_{y}^{\prime}-q_{y}\right|=d_{\square}\left(p^{\prime}, q\right) \leq d_{\square}\left(p^{\prime}, q^{\prime}\right)$.

Let $C_{i}:=\left\{c_{1}^{i}, c_{2}^{i}, \ldots c_{m}^{i}\right\}$ be the set of vertical constraints in T_{i} crossing t sorted in the following fashion: $d\left(c_{j}^{i} \cap t, u\right)<d\left(c_{j+1}^{i} \cap t, u\right)$ for all $1 \leq j<m$.

Observe that c_{1}^{i} and c_{m}^{i} are the closest edges to u and v, respectively. In addition, $m \leq n-3$, since the edges in T_{i} with endpoints u and v do not cross $u v$ and T_{i} has $n-1$ edges. Let $c_{j}^{i} \in C_{i}$, we denote $c_{j}^{i}=a_{j} b_{j}$ where $a_{j_{y}}>b_{j_{y}}$ for all j, i.e., a_{j} is above b_{j}. Let $s_{t}, s_{b}, s_{r}, s_{l}$ denote the top-side, bottom-side, right-side and left-side of ∂Q_{t}, respectively.

Consider two consecutive constraints c_{j}^{i} and c_{j+1}^{i}. Let z be the intersection point $c_{j}^{i} \cap s_{t}$ and z^{\prime} be the intersection point $c_{j+1}^{i} \cap s_{t}$. Let P be the polygon $a_{j} z z^{\prime} a_{j+1}$. Since the line segments $a_{j} z, z z^{\prime}$ and $z^{\prime} a_{j+1}$ are contained in c_{i}^{j}, s_{t} and c_{i}^{j+1}, respectively, the constraints crossing P are only crossing the segment $a_{j} a_{j+1}$, we refer to Figure 3.10a. Consider the convex hull $C H_{a_{j}}$ of all the points of S contained in P. Notice that if $a_{j} \neq a_{j+1}$, then $a_{j} a_{j+1}$ is an edge of $C H_{a_{j}}$. If $C H_{a_{j}}$ is different than a point (i.e., $C H_{a_{j}} \neq a_{j}$ when $a_{j}=a_{j+1}$), then we denote by $c h_{a_{j}}$ the longest $a_{j} a_{j+1}$-path in $C H_{a_{j}}$ (note that $C H_{a_{j}}$ can be an edge $\left.a_{j} a_{j+1}\right)$. Similarly, we define a chain between b_{j} and b_{j+1} denoted $c h_{b_{j}}$. See Figure 3.10a.

Consider the intersection points $c_{j}^{i} \cap t$ and $c_{j+1}^{i} \cap t$, we say that an edge e is between c_{j}^{i} and c_{j+1}^{i} if e crosses t in the line segment $\left(c_{j}^{i} \cap t\right)\left(c_{j+1}^{i} \cap t\right)$. See Figure 3.10b.

The following lemma shows that for every two consecutive constraints c_{j}^{i} and c_{j+1}^{i} constraints in C_{i}, then at most one vertical constraint appears in T_{i+1} between c_{j}^{i} and c_{j+1}^{i} (possibly one of c_{j}^{i} and c_{j+1}^{i}).

Lemma 3.3.6. Consider two consecutive vertical constraints c_{j}^{i} and c_{j+1}^{i} crossing t and consider the chains $c h_{a_{j}}$ and $c h_{b_{j}}$. Let a be the bottom-most point of $c h_{a_{j}}$ and b the top-most point of $c h_{b_{j}}$. If there is a constraint $c \in C_{i+1}$ between c_{j}^{i} and c_{j+1}^{i}, then such a constraint is the only constraint of C_{i+1} that appears between c_{i}^{j} and c_{i}^{j+1}. Moreover, $c=a b$.

Proof. By Observation 3.3.3 the length of any vertical constraint is given by the y-coordinates of its endpoints, then $a b$ is the shortest possible edge between c_{j}^{i} and c_{j+1}^{i}. Let us show that the edge $c=a b$ crossing t is the only possible constraint of T_{i+1} between c_{j}^{i} and c_{j+1}^{i}. For the sake of a contradiction suppose that there exists a constraint $c^{\prime}=a^{\prime} b^{\prime} \in T_{i+1}$ with $d_{\square}\left(a^{\prime}, b^{\prime}\right)>d_{\square}(a, b)$ that is between c_{j}^{i} and c_{j+1}^{i}. Consider squares $Q_{a}=\mathcal{C}\left(a, a^{\prime}\right)$ and $Q_{b}=\mathcal{C}\left(b, b^{\prime}\right)$. Note

Figure 3.10: (a) The polygon $a_{j} z z^{\prime} a_{j+1}$ is only crossed by constraints in the line segment $a_{j} a_{j+1}$. The chain $c h_{a_{j}}$ is defined by the $a_{j} a_{j+1}$-path different from $a_{j} a_{j+1}$ in the convex hull of the points of S that lie in the polygon $a_{j} z z^{\prime} a_{j+1}$. (b) Edge e is between c_{j} and c_{j+1}.
that the bottom side of ∂Q_{a} lies at most at the height of a_{y} and the top side of ∂Q_{b} lies at least at the height of b_{y}. In addition, by Observation 3.3.5 the square Q_{a} has side-length less than $\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$. Similarly, Q_{b} has side-length less than $\mathcal{C}\left(a^{\prime}, b^{\prime}\right)$. Since a defines the bottom-most point of the chain $c h_{a_{j}}$, there is no edge in T_{i} that separates a from a^{\prime} in Q_{a}. Similarly, since b is the top-most point in the chain $c h_{b_{j}}$, there does not exist a constraint in T_{i} that separates b from b^{\prime} in Q_{b}. Thus, by Lemma 3.1.3 there exists an $a^{\prime} a$-path P_{a} and a $b b^{\prime}$ path P_{b} in $D G_{\square}\left(T_{i}\right)$ contained in Q_{a} and Q_{b}, respectively. Therefore, there is an $a^{\prime} b^{\prime}$-path in $P_{a} \cup\{a b\} \cup P_{b}$ that solely consists of edges shorter than $a^{\prime} b^{\prime}$, contradicting Property 3.1.1.

In the following lemma we show that if there appears a constraint c of C_{i+1} between two consecutive constraints c_{j}^{i} and c_{j+1}^{i} in C_{i} such that c is neither c_{j}^{i} or c_{j+1}^{i}, or adjacent to both c_{j}^{i} and c_{j+1}^{i}, then there must have been two constraints in C_{i-1} between c_{j}^{i} and c_{j+1}^{i}. See Figure 3.11.
Lemma 3.3.7. Let $i \geq 1$. If a constraint $c=a b$ in C_{i+1} is between $c_{j}^{i}=a_{j} b_{j}$ and $c_{j+1}^{i}=a_{j+1} b_{j+1}$, and at least one of a and b is not in $\left\{a_{j}, a_{j+1}, b_{j}, b_{j+1}\right\}$, then there are at least two constraints in C_{i-1} that are between c_{j}^{i} and c_{j+1}^{i}.

Proof. Assume without loss of generality that a is not in $\left\{a_{j}, a_{j+1}, b_{j}, b_{j+1}\right\}$.

Figure 3.11: There are two blue vertical constraints in T_{i-1} that are between two consecutive red constraints $c_{j}^{i}=a_{j} b_{j}$ and $c_{j+1}^{i}=a_{j+1} b_{j+1}$ in T_{i}. The constraint $c=a b$ is in C_{i+1} and $a \notin\left\{a_{j}, a_{j+1}\right\}$.

Then, there must be an edge $c^{\prime}=a^{\prime} b^{\prime}$ blocking a from b, otherwise $a b$ is visible in T_{i-1}. Thus by Property 3.1 .1 there exists an $a b$-path P that solely consists of edges shorter than $a b$ in T_{i}. Hence, P is in $D G_{\square}\left(T_{i}\right)$, by Property 3.1.1 we get a contradiction.

In addition, c^{\prime} has to be in C_{i-1}, otherwise c^{\prime} has an endpoint with either y-coordinate less than a_{y} or greater than b_{y}, contradicting Lemma 3.3.6. See Figure 3.12a.

Observe that there exists a constraint $c^{\prime \prime}$ in T_{i-1} that blocks the visibility from a to either a_{j} and b_{j}, and a different constraint $c^{\prime \prime \prime}$ in T_{i-1} that blocks the visibility from a to either a_{j+1} and b_{j+1} : suppose for the sake of a contradiction that a is visible to either b_{j} or a_{j}. Consider the consecutive constraints $c_{j^{\prime}}^{i-1}$ and $c_{j^{\prime}+1}^{i-1}$ in C_{i-1} such that c_{j}^{i} appears in between $c_{j^{\prime}}^{i-1}$ and $c_{j^{\prime}+1}^{i-1}$. We consider whether a_{j} is visible to a. If a_{j} is visible to a, then $a_{j}=a_{j^{\prime}+1}$, otherwise there exists a point p in $c h_{a_{j^{\prime}}}$ with $p_{y}<a_{j_{y}}$, which contradicts Lemma 3.3.6. Then, a must be blocked from b_{j} by a constraint in C_{i-1}, otherwise there is a square $\mathcal{C}\left(a, b_{j}\right)$ with side-length less than $d_{\square}\left(a_{j}, b_{j}\right)$ such that a and b_{j} are not separated by a constraint in T_{i-1}. Hence, by Lemma. 3.1.3 there exists an $a_{j} a$-path $P_{a_{j}}$
and an $a b_{j}$-path $P_{b_{j}}$ in $D G_{\square}\left(T_{i-1}\right)$ such that $P_{a_{j}} \cup P_{b_{j}}$ solely consists of shorter edges than c_{j}^{i}, contradicting Property 3.1.1. Analogously we prove that there exists another constraint blocking a_{l} from a_{j+1} or b_{j+1}. Note that one of the constraints $c^{\prime \prime}$ and $c^{\prime \prime \prime}$ can be the constraint c^{\prime} that is blocking the visibility from a_{l} to b_{l}.

(a)

(b)

Figure 3.12: Forbidden configurations: (a) Edge c^{\prime} is in T_{i-1} and $c \in C_{i+1}$. Edge c^{\prime} blocks the visibility from a to $b=b_{j^{\prime}}$ and one of the endpoints of c^{\prime} has lower y-coordinate than a. (b) The consecutive constraints c_{j}^{i} and c_{j+1}^{i} are not incident but both edges are incident to $c_{j^{\prime}}^{i-1}$. Constraint $c_{j^{\prime}}^{i-1}$ is the only constraint of C_{i-1} between c_{j}^{i} and c_{j+1}^{i}.

We show that if there is exactly one constraint $c_{j^{\prime}}^{i-1}$ in C_{i-1} between two consecutive constraints c_{j}^{i} and c_{j+1}^{i} in C_{i} and $c_{j^{\prime}}^{i-1}$ is incident to both c_{j}^{i} and c_{j+1}^{i}, then c_{j}^{i} and c_{j+1}^{i} are incident as well.
Proposition 3.3.8. Let c_{j}^{i} and c_{j+1}^{i} consecutive constraints in C_{i} such that exactly one edge $c_{j^{\prime}}^{i-1}$ of C_{i-1} is in between c_{j}^{i} and c_{j+1}^{i}. If c_{j}^{i} and c_{j+1}^{i} are both incident to $c_{j^{\prime}}^{i}$, then c_{j}^{i} and c_{j+1}^{i} share a vertex.

Proof. Without loss of generality assume that $d_{\square}\left(a_{j}, b_{j}\right)<d_{\square}\left(a_{j+1}, b_{j+1}\right)$. Assume for the sake of a contradiction that $a_{j^{\prime}}=a_{j}$ and $b_{j^{\prime}}=b_{j}$. See Figure 3.12b. Since there is exactly one edge of C_{i-1} between c_{j}^{i} and c_{j+1}^{i}, the edge c_{j}^{i} appears between $c_{j^{\prime}-1}^{i-1}$ and $c_{j^{\prime}}^{i-1}$, and the edge c_{j+1}^{i} appears between $c_{j^{\prime}}^{i-1}$ and $c_{j^{\prime}+1}^{i-1}$. On the other hand, by Observation 3.3.5 $d_{\square}\left(a_{j}, a_{j+1}\right)<d_{\square}\left(a_{j+1}, b_{j+1}\right)$. Consider $Q_{a}=\mathcal{C}\left(a_{j}, a_{j+1}\right)$ and $Q_{b}=\mathcal{C}\left(b_{j}, b_{j+1}\right)$. By Lemma 3.3.7 a_{j+1} has the lowest y-coordinate in $c h_{a_{j^{\prime}}}$ and b_{j} has the largest y-coordinate in $c h_{b_{j^{\prime}-1}}$. Hence, there is no edge separating a_{j} from a_{j+1} in Q_{a} and there is no edge separating
b_{j} from b_{j+1} in Q_{b}. Then, by Lemma 3.1.3, there exists an $a_{j} a_{j+1}$-path P_{a} of $D G_{\square}\left(T_{i-1}\right)$ in Q_{a} and a $b_{j} b_{j+1}$-path P_{b} of $D G_{\square}\left(T_{i-1}\right)$ in Q_{b}. Therefore, there is an $a_{j+1} b_{j+1}$-path in $P_{a} \cup a_{j} b_{j} \cup P_{b}$ that solely consists of edges shorter than c_{j+1}^{i}, which contradicts Property. 3.1.1.

Note that if for each pair of consecutive constraints c_{j}^{i+1} and c_{j+1}^{i+1} in C_{i+1} there are at least two constraints in C_{i} between c_{j}^{i+1} and c_{j+1}^{i+1}, then we obtain at most $\frac{\left|C_{i}\right|}{2}$ constraints in C_{i+1} that appear between consecutive pairs of constraints in C_{i}. Hence, $\left|C_{i+1}\right| \leq \frac{\left|C_{i}\right|}{2}$.
Observation 3.3.9. If for each pair of consecutive constraints in C_{i+1} there are at least two constraints C_{i} in between them, then $\left|C_{i+1}\right| \leq \frac{\left|C_{i}\right|}{2}$.

Also note that there cannot appear any constraint $c=a b$ in T_{i+1} crossing t such that c crosses t in either the line segment $u\left(c_{1}^{i} \cap t\right)$ or $\left(c_{m}^{i} \cap t\right) v$ where $\left|C_{i}\right|=m$. Otherwise, without loss of generality we assume c crosses the line segment $u\left(c_{1}^{i} \cap t\right)$. Then, by similar arguments to those in Theorem 3.2.1, there exist an $a u$-path P_{a} and an $u b$-path P_{b} such that $P_{a} \cup P_{b}$ contains an $a b$-path that solely consists of shorter edges than c, which contradicts Property 3.1.1. Therefore, we only need to focus on the edges that appear between pairs of consecutive constraints in C_{i}.

Proposition 3.3.10. If for each pair of consecutive constraints in C_{i} there appears exactly one edge in C_{i+1} between them such that $c_{1}^{i+1} \cup c_{2}^{i+1} \cup \ldots \cup c_{m-1}^{i+1}$ defines a path P in T_{i+1} with $|P| \geq 2$. Then, $\left|C_{i+2}\right| \leq \frac{\left|C_{i}\right|}{2}$.

Proof. Since C_{i+1} consists of edges in a path P and exactly one edge appear per pair of consecutive constraints in C_{i}, it follows that $\left|C_{i+1}\right|=\left|C_{i}\right|-1$. Since for each consecutive pair of constraints c_{j}^{i+1} and c_{j+1}^{i+1} there was exactly one constraint in C_{i} between c_{j}^{i+1} and c_{j+1}^{i+1}, then if there appears one edge of C_{i+2} in between them, from Lemma 3.3.7 it follows that such edge has to have both endpoints in $\left\{a_{j}, b_{j}, a_{j+1}, b_{j+1}\right\}$. Since c_{j}^{i+1} and c_{j+1}^{i+1} are incident, then the new edge has to be exactly one of c_{j}^{i+1} and c_{j+1}^{i+1}. Thus, $\left|C_{i+2}\right| \leq \frac{\left|C_{i}\right|}{2}$.

We say that a set of consecutive pairs of constraints in C_{i} is of type 1 if it satisfies the hypothesis from Observation 3.3.9. We say that a set of consecutive pairs of constraints in C_{i} is of type 2 if it satisfies the hypothesis from Proposition 3.3.10.

Theorem 3.3.11. $\left|C_{i+3}\right| \leq \frac{2}{3}\left|C_{i}\right|$.
Proof. Let k_{1} be the number of consecutive pairs of constraints in C_{i} in a set of type 1. Let k_{2} be the number of consecutive pairs of constraints in C_{i} in a
set of type 2. Let k_{3} the number of remaining consecutive pairs of constraints in C_{i}. Notice that $\left|C_{i}\right|=k_{3}+k_{1}+k_{2}+1$.

Thus, by Obs 3.3.9 and Proposition 3.3.10 $\left|C_{i+2}\right| \leq k_{3}+\frac{k_{1}+k_{2}}{2}$.
Now, let us count the remaining constraints. So, we get k_{3} different constraints of C_{i+1} in each of the remaining consecutive pairs of constraints in C_{i} that are not in sets of type 1 and 2 . Let c_{j}^{i+1} and c_{j+1}^{i+1} be a pair of these types of pairs. Since there was exactly one edge from C_{i} in between c_{j}^{i+1} and c_{j+1}^{i+1}, by Lemma 3.3.7 if there is one constraint c from C_{i+2} in between c_{j}^{i+1} and c_{j+1}^{i+1}, then either one of these happens: (1) c is one of c_{j}^{i+1} and c_{j+1}^{i+1} or (2) c shares a vertex with both c_{j}^{i+1} and c_{j+1}^{i+1}. If a pair of consecutive constraints in C_{i+2} are disjoint such that both are in case (1), we will call these pairs type 3-1, and if one of the pair of consecutive constraints is of the case (1) and the other is of case (2), then we will call these pairs type 3-2. See Figure 3.13 for a complete example.

Hence, by Proposition 3.3.8 we get a set of paths and disjoint constraints in C_{i+2}. So, we have a new set of type 1 and 2 consecutive pairs of constraints in C_{i+2} and a set of consecutive pairs of constraints that are disjoint of type 3-1 and 3-2 in C_{i+2}. Let $k_{3}^{\prime \prime}$ denote the number of consecutive constraints of type 1 and 2 in C_{i+1} and let k_{3-1}^{\prime} and k_{3-2}^{\prime} the number of pairs of consecutive constraints in C_{i+2} of type $3-1$ and $3-2$, respectively. Note that for each pair of type $3-1$ there is a partition of a subset of pairs in C_{i+1} where 4 consecutive pairs of constraints contain exactly one pair of consecutive constraints from C_{i+2} (the pair of type 3-1). Refer to Figure 3.13. Also, for each pair of type 3-2 there is a partition of the pairs of consecutive constraints of C_{i+1} where 3 consecutive pairs contain exactly one pair of consecutive constraints from C_{i+2} (the pair of type 3-2 in C_{i+2}). See Figure 3.13. Thus, we obtained that $k_{3}=2 k_{3-1}^{\prime}+\frac{3}{2} k_{3-2}^{\prime}+k_{3}^{\prime \prime}$.

Therefore, by Proposition 3.3.10 and Observation 3.3.9 this forms at most $k_{3-1}^{\prime}+k_{3-2}^{\prime}+\frac{1}{2} k_{3}^{\prime \prime} \leq \frac{2}{3} k_{3}$ new constraints in C_{i+3} from the k_{3} remaining pairs to count. This gives us,

$$
\left|C_{i+3}\right| \leq \frac{2}{3}\left(k_{3}\right)+\frac{1}{2}\left(k_{1}+k_{2}\right) \leq \frac{2\left|C_{i}\right|}{3}-1
$$

As a consequence of Theorem 3.3.11 we obtain that there are a constant number of edges crossing t after $i=O(\log n)$ steps. From Lemma 3.3.6 we have that $\left|C_{i-1}\right| \leq\left|C_{i}\right|-1$. Thus, we obtain the following corollary.

Corollary 3.3.12. Let $|S|=n$. Let $T \in \mathcal{S} \mathcal{T}(S)$ such that T crosses the edges from $M S T_{\square}(S)$ by only vertical constraints. Then, the length of the canonical sequence of T is $O(\log n)$.

Figure 3.13: The gray edges represent the constraints in C_{i+1} that do not appear in C_{i+2} and the black edges are constraints in $C_{i+1} \cap C_{i+2}$. The red edges represent the constraints in C_{i+1} that share vertices with two different consecutive constraints from C_{i+1}. Here, we make a partition of pairs of two consecutive constraints in C_{i+1} by pair of consecutive constraints of type 1, 2, 3-1 and 3-2. Note that the number of edges of type 2 drops by half in the next iteration, C_{i+3}.

3.4 Conclusions

For an arbitrary convex \mathcal{C}, we have extended the convergence of the canonical sequence of crossing-free spanning trees for the Euclidean metric [5] to the \mathcal{C} distance. We have also given a linear upper bound for the length of the canonical sequence. For the particular case when the convex is a square, we give a $\Omega(\log n)$ and an upper bound of $O(\log n)$ where for each edge of the d_{\square}-minimum spanning tree, the constraints in the initial tree only cross opposite sides of at least one of the smallest squares containing such edge.

In order to show this for any tree in the d_{\square}-distance we considered both cases, when the constraints cross opposite sides of a smallest square containing an edge from $M S T_{\square}(S)$ or the constraints cross consecutive sides of such square. When dealing with constraints crossing consecutive sides, most of the ingredients for the proof of Theorem 3.3.11 can be generalized with the exception of Lemma 3.3.7. So, the main open question is how to close the gap between $O(n)$ and $\Omega(\log n)$ for $d_{\square \text {-distances. We believe that the right answer should }}$ be $O(\log n)$. However, it seems that a different approach is needed. Perhaps something using the constrained $R N G_{\square}$, similar to the upper bound of $O(\log n)$ for Euclidean distance given in [5], yet it is not clear how to use their approach since they use a lot of properties from circles that do not hold for squares.

An even more general open problem is whether there exists a convex shape where the length of the canonical sequence is actually linear.

Convex shape Delaunay graphs and Hamiltonicity

Shamos [93] conjectured that the Delaunay triangulation contains a Hamiltonian cycle. This conjecture sparked a flurry of research activity. Although Dillencourt [48] disproved this conjecture, he showed that Delaunay triangulations are almost Hamiltonian [49], that is, they are 1-tough. ${ }^{1}$ Focus then shifted on determining how much to loosen the definition of the Delaunay triangulation to achieve Hamiltonicity. Chang et al. [39] showed that $19-R N G$ is Hamiltonian. ${ }^{2}$ Abellanas et al. [2] proved that $15-G G$ is Hamiltonian. Currently, the lowest known upper bound is by Kaiser et al. [67] who showed that 10-GG is Hamiltonian. All of these results are obtained by studying properties of bottleneck Hamiltonian cycles. Given a planar point set, a bottleneck Hamiltonian cycle is a Hamiltonian cycle whose maximum edge length is minimum among all Hamiltonian cycles of the point set. Biniaz et al. [22] showed that there exist point sets such that its $7-G G$ does not contain a bottleneck Hamiltonian cycle, implying that this approach cannot yield an upper bound lower than 8. Despite this, it is conjectured that $1-D G$ is Hamiltonian [2].

As for Hamiltonicity in convex shape Delaunay graphs, not much is known. Bonichon et al. [24] proved that every plane triangulation is Delaunay-realizable where homothets of a triangle act as the empty convex shape. This implies that there exist triangle- $D G$ graphs that do not contain Hamiltonian paths or cycles. Biniaz et al. [21] showed that $7-D G_{\triangle}$ contains a bottleneck Hamiltonian cycle and that there exist points sets where $5-D G_{\triangle}$ does not contain a bottleneck Hamiltonian cycle. Ábrego et al. [3] showed that the $D G_{\square}$ admits a Hamiltonian path, while Saumell [92] showed that the $D G_{\square}$ is not necessarily 1-tough, and

[^4]| Type of shape \mathcal{C} | $k \leq$ | $k \geq$ | Bottleneck- $k \geq$ |
| :--- | :--- | :--- | :--- |
| Circles | $10[67]$ | $1[48]$ | $8[22]$ |
| Equilateral triangles | $7[21]$ | $1[21]$ | $6[21]$ |
| Squares | 7 [Thm. 4.3.3] | 1 [92] | 3 [Lemma 4.4.1] |
| Regular hexagons | 11 [Thm. 4.3.6] | 1 [Lemma 4.5.1] | 6 [Lemma 4.4.2] |
| Regular octagons | 12 [Thm. 4.3.8] | 1 [Lemma 4.5.1] | - |
| Regular t-gons | 11 [Thm. 4.3.7] | - | - |
| $(t$ even, $t \geq 10)$ | | | |
| Regular t-gons | $24[$ Thm. 4.1.7] | $1[$ Thm. 4.5.2] | - |
| $(t=3 m$ with m odd, $m \geq 3)$ | | | - |
| Point-symmetric convex | 15 [Thm. 4.2.4] | - | - |
| Arbitrary convex | 24 [Thm. 4.1.7] | - | - |

Table 4.1: Bounds on the minimum k for which $k-D G_{\mathcal{C}}(S)$ is Hamiltonian and for which $k-G G_{\mathcal{C}}(S)$ contains a $d_{\mathcal{C}}$-bottleneck Hamiltonian cycle.
therefore does not necessarily contain a Hamiltonian cycle.
Our contributions. We generalize the above results by replacing the disk with an arbitrary convex shape \mathcal{C}. We show that the k-Gabriel graph, and hence also the k-Delaunay graph, is Hamiltonian for any convex shape \mathcal{C} when $k \geq 24$. Furthermore, we give improved bounds for point-symmetric shapes, as well as for even-sided regular polygons. Table 4.1 summarizes the bounds obtained. Finally, we provide some lower bounds on the existence of a Hamiltonian cycle for an infinite family of regular polygons, and bottleneck Hamiltonian cycles for the particular cases of hexagons and squares. Together with the results of Bose et al. [33], our results are the first results on graph-theoretic properties of generalized Delaunay graphs that apply to arbitrary convex shapes.

Our results rely on the use of normed metrics and packing lemmas. In fact, in contrast to previous work on Hamiltonicity for generalized Delaunay graphs, our results are the first to use properties of normed metrics to obtain simple proofs for various convex shape Delaunay graphs.

4.1 Hamiltonicity for general convex shapes

In this section we show that the 24 -order \mathcal{C}-Gabriel graph is Hamiltonian for any point set S in general position.

In this chapter we let S be a set of points in the plane satisfying the following general position assumption: For each pair $p, q \in S$, any minimum homothet of \mathcal{C} having p and q on its boundary does not contain any other point of S on its boundary.

Let \mathcal{H} be the set of all Hamiltoninan cycles of the point set S. Define the $d_{\hat{\mathcal{C}}}$-length sequence of $h \in \mathcal{H}$, denoted $d s_{\mathcal{C}}(h)$, as a sequence of edges of h

Figure 4.1: (a) Example of U in $\mathcal{C}(a, b)$. (b) $D_{\mathcal{C}}(u, r)$ is contained in $D_{\mathcal{C}}\left(u^{\prime}, d_{\mathcal{C}}\left(u^{\prime}, p\right)\right)$ where $u^{\prime}=\lambda u$ with $\lambda>1$.
sorted in decreasing order with respect to the $d_{\hat{\mathcal{C}}}$-metric. Sort the elements of \mathcal{H} in lexicographic order with respect to their $d_{\hat{\mathcal{C}}}$-length sequence, breaking ties arbitrarily. This order is strict. For $h_{1}, h_{2} \in \mathcal{H}$, if h_{1} is smaller than h_{2} in this order, we write $h_{1} \prec h_{2}$.

Let h be the minimum element in \mathcal{H}, often called bottleneck Hamiltonian cycle. The approach we follow to prove our bounds, which is similar to the approach in $[2,39,67]$, is to show that h is contained in $k-G G_{\mathcal{C}}(S)$ for a small value of k. The strategy for proving that h is contained in $24-G G_{\mathcal{C}}(S)$ is to show that for every edge $a b \in h$ there are at most 24 points in the interior of any $\mathcal{C}(a, b)$. In order to do this, we associate each point in the interior of an arbitrary fixed $\mathcal{C}(a, b)$ to another point. Later, we show that the $d_{\hat{\mathcal{C}}^{\text {-distances }}}$ between such associated points and a is at least $d_{\hat{\mathcal{C}}}(a, b)$. Finally, we use a packing argument to show that there are at most 24 associated points, which leads to a maximum of 24 points contained in $\mathcal{C}(a, b)$.

Let $a b \in h$; we assume without loss of generality that $d_{\hat{\mathcal{C}}}(a, b)=1$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be the set of points in S different from a and b that are in the interior of an arbitrary fixed $\mathcal{C}(a, b) .{ }^{3}$ When traversing h from b to a, we visit the points of U in the order u_{1}, \ldots, u_{k}. For each point u_{i}, define s_{i} to be the point preceding u_{i} in h. See Figure 4.1a.

Note that if a point p is in the interior of $\mathcal{C}(a, b)$, then for any q on the boundary of $\mathcal{C}(a, b)$ there exists a \mathcal{C}-disk (not necessarily diametral) through p and q contained in $\mathcal{C}(a, b)$. Moreover, any diametral disk through p and q has size smaller than or equal to the size of this \mathcal{C}-disk. Therefore, $d_{\hat{\mathcal{C}}}\left(a, u_{i}\right)<1$ and $d_{\hat{\mathcal{C}}}\left(b, u_{i}\right)<1$ for any $i \in\{1, \ldots, k\}$. Furthermore, we have the following:
Claim 4.1.1. Let $1 \leq i \leq k$. Then $d_{\hat{\mathcal{C}}}\left(a, s_{i}\right) \geq \max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), 1\right\}$

[^5]

Figure 4.2: $\mathcal{C}(a, b)$ has radius $1, D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ is the $\hat{\mathcal{C}}$-disk with radius 1 centered at \bar{o} and $D_{\hat{\mathcal{C}}}(\bar{o}, 2)$ is the $\hat{\mathcal{C}}$-disk with radius 2 centered at \bar{o}. The points s_{i}^{\prime} and s_{j}^{\prime} are projections of s_{i} and s_{j} on $\partial D_{\hat{\mathcal{C}}}(\bar{o}, 2)$, respectively. The dashed $\hat{\mathcal{C}}$-disk is centered at s_{j}^{\prime} and has radius 1 .

Proof. If $s_{1}=b$, then $d_{\hat{\mathcal{C}}}\left(a, s_{1}\right)=1$ and $d_{\hat{\mathcal{C}}}\left(s_{1}, u_{1}\right)<1$. Otherwise, define $h^{\prime}=\left(h \backslash\left\{a b, s_{i} u_{i}\right\}\right) \cup\left\{a s_{i}, u_{i} b\right\}$. For sake of a contradiction suppose that $d_{\hat{\mathcal{C}}}\left(a, s_{i}\right)<\max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), 1\right\}$. It holds that $d_{\hat{\mathcal{C}}}\left(a, s_{i}\right)<\max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), d_{\hat{\mathcal{C}}}(a, b)\right\}$ since $d_{\hat{\mathcal{C}}}(a, b)=1$. Also, $d_{\hat{\mathcal{C}}}\left(u_{i}, b\right)<1$ since $u_{i} \in \mathcal{C}(a, b)$. Thus, $\max \left\{d_{\hat{\mathcal{C}}}\left(a, s_{i}\right)\right.$, $\left.d_{\hat{\mathcal{C}}}\left(u_{i}, b\right)\right\}<\max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), d_{\hat{\mathcal{C}}}(a, b)\right\}$. Therefore $h^{\prime} \prec h$, which contradicts the definition of h.

Claim 4.1.1 implies that, for each $i \in\{1, \ldots, k\}, s_{i}$ is not in the interior of $\mathcal{C}(a, b)$.
Claim 4.1.2. Let $1 \leq i<j \leq k$. Then $d_{\hat{\mathcal{C}}}\left(s_{i}, s_{j}\right) \geq \max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), d_{\hat{\mathcal{C}}}\left(s_{j}, u_{j}\right), 1\right\}$.
Proof. For sake of a contradiction suppose that $d_{\hat{\mathcal{C}}}\left(s_{i}, s_{j}\right)<\max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right)\right.$, $\left.d_{\hat{\mathcal{C}}}\left(s_{j}, u_{j}\right), 1\right\}$. Consider the Hamiltonian cycle $h^{\prime}=h \backslash\left\{(a, b),\left(s_{i}, u_{i}\right),\left(s_{j}, u_{j}\right)\right\} \cup$ $\left\{\left(s_{i}, s_{j}\right),\left(u_{i}, a\right),\left(u_{j}, b\right)\right\}$. As in Claim 4.1.1 we have that $d_{\hat{\mathcal{C}}}\left(u_{i}, a\right)<1$ and $d_{\hat{\mathcal{C}}}\left(u_{j}, b\right)<1$. So, $\max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, s_{j}\right), d_{\hat{\mathcal{C}}}\left(u_{i}, a\right), d_{\hat{\mathcal{C}}}\left(u_{j}, b\right)\right\}<\max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), d_{\hat{\mathcal{C}}}\left(s_{j}, u_{j}\right)\right.$, $\left.d_{\hat{\mathcal{C}}}(a, b)\right\}$. Therefore, $h^{\prime} \prec h$ which contradicts the minimality of h.

The $d_{\mathcal{C}^{-}}$-distance from a point v to a region C is given by the minimum $d_{\mathcal{C}^{-}}$ distance from v to any point u in C. Notice that if $v \notin C$, then the $d_{\mathcal{C}}$-distance from v to C is defined by a point on ∂C. This can be seen by taking an $\varepsilon \in \mathbb{R}^{+}$
small enough such that $D_{\mathcal{C}}(v, \varepsilon)$ does not intersect C, and making ε grow until $D_{\mathcal{C}}(v, \varepsilon)$ hits C.

Observation 4.1.3. Let $u \notin D_{\mathcal{C}}(\bar{o}, r)$ for some $r \in \mathbb{R}^{+}$and let p be the intersection point of $\left.\partial D_{\mathcal{C}}(\bar{o}, r)\right)$ and line segment $\bar{o} u$. Then, the $d_{\mathcal{C}}$-distance from u to $D_{\mathcal{C}}(\bar{o}, r)$ is $d_{\mathcal{C}}(u, p)$.

Proof. Since p is in $\partial D_{\mathcal{C}}(\bar{o}, r)$ and $u \notin D_{\mathcal{C}}(\bar{o}, r)$, the vector $u=\lambda p$ for some $\lambda>1 \in \mathbb{R}$. In addition, the $d_{\mathcal{C}}$-distance from u to $D_{\mathcal{C}}(\bar{o}, r)$ is al least $d_{\mathcal{C}}(u, p)$. For the sake of a contradiction suppose that the $d_{\mathcal{C}}$-distance from u to $D_{\mathcal{C}}(\bar{o}, r)$ is less than $d_{\mathcal{C}}(u, p)$. Thus, there exists a point $v \in \partial D_{\hat{\mathcal{C}}}(\bar{o}, r)$ such that $d_{\hat{\mathcal{C}}}(u, v)<$ $d_{\hat{\mathcal{C}}}(u, p)$, and $r \lambda=d_{\hat{\mathcal{C}}}(\bar{o}, u) \leq d_{\hat{\mathcal{C}}}(\bar{o}, v)+d_{\hat{\mathcal{C}}}(v, u)<d_{\hat{\mathcal{C}}}(\bar{o}, v)+d_{\hat{\mathcal{C}}}(p, u)=r+r \lambda-$ $r=r \lambda$, which is a contradiction.

Without loss of generality assume that a is the origin \bar{o}. Since for any point u in $\mathcal{C}(a, b), d_{\hat{\mathcal{C}}}(\bar{o}, u)=d_{\hat{\mathcal{C}}}(a, u) \leq 1$, we have that $D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ contains $\mathcal{C}(a, b)$. Also, from Claim 4.1.1, we have that s_{i} is not in the interior of $D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ for all $i \in\{1, \ldots, k\}$. Let $D_{\hat{\mathcal{C}}}(\bar{o}, 2)$ be the $\hat{\mathcal{C}}$-disk centered at $\bar{o}=a$ with radius 2 . For each $s_{i} \notin D_{\hat{\mathcal{C}}}(\bar{o}, 2)$, define s_{i}^{\prime} as the intersection of $\partial D_{\hat{\mathcal{C}}}(\bar{o}, 2)$ with the ray $\overrightarrow{\bar{o}}_{i}$. Let $s_{i}^{\prime}=s_{i}$ when s_{i} is inside $D_{\hat{\mathcal{C}}}(\bar{o}, 2)$. See Figure 4.2.
Observation 4.1.4. If $s_{j} \notin D_{\hat{\mathcal{C}}}(\bar{o}, 2)$ (with $\left.1 \leq j \leq k\right)$, the $d_{\hat{\mathcal{C}}^{-}}$-distance from s_{j}^{\prime} to $D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ is 1 .

Proof. Since $s_{j} \notin D_{\hat{\mathcal{C}}}(\bar{o}, 2), s_{j}^{\prime}$ is on the boundary of $D_{\hat{\mathcal{C}}}(\bar{o}, 2)$ and $d_{\hat{\mathcal{C}}}\left(\bar{o}, s_{j}^{\prime}\right)=2$. Let p be the intersection point of $\partial D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ and $\bar{o} s_{j}$. Then $d_{\hat{\mathcal{C}}}(\bar{o}, p)=1$. By Observation 4.1.3 the $d_{\hat{\mathcal{C}}}$-distance from s_{j}^{\prime} to $D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ is $d_{\hat{\mathcal{C}}}\left(s_{j}^{\prime}, p\right)=d_{\hat{\mathcal{C}}}\left(p, s_{j}^{\prime}\right)=$ $d_{\hat{\mathcal{C}}}\left(\bar{o}, s_{j}^{\prime}\right)-d_{\hat{\mathcal{C}}}(\bar{o}, p)=2-1=1$.

The following claim is needed to prove our key lemma. Intuitively, this claim shows that if there is a point-symmetric \mathcal{C}-disk C of radius r centered at a point u such that $r \leq d_{\mathcal{C}}(u, \bar{o})$, then C is contained in any \mathcal{C}-disk with $\partial C \cap \overrightarrow{\bar{o} u}$ on its boundary such that its center u^{\prime} lies on the ray $\bar{o} u$ and is farther to \bar{o} than u. For an example, see Figure 4.1b.

Claim 4.1.5. Let \mathcal{C} be a point-symmetric convex shape. Let u be a point in the plane different from the origin \bar{o}. Let $r<d_{\mathcal{C}}(u, \bar{o})$. Let p be the intersection point of $\partial D_{\mathcal{C}}(u, r)$ and line segment $\bar{o} u$. Let $u^{\prime}=\lambda u$, with $\lambda>1 \in \mathbb{R}$, be a point defined by vector u scaled by a factor of λ. Then $D_{\mathcal{C}}(u, r) \subset D_{\mathcal{C}}\left(u^{\prime}, d_{\mathcal{C}}\left(u^{\prime}, p\right)\right)$. (See Figure 4.1b.)

Proof. Let $q \in D_{\mathcal{C}}(u, r)$; then $d_{\mathcal{C}}(u, q) \leq d_{\mathcal{C}}(u, p)$. Since u is on the line segment $u^{\prime} p$, we have that $d_{\mathcal{C}}\left(u^{\prime}, p\right)=d_{\mathcal{C}}\left(u^{\prime}, u\right)+d_{\mathcal{C}}(u, p)$. Hence $d_{\mathcal{C}}\left(u^{\prime}, q\right) \leq d_{\mathcal{C}}\left(u^{\prime}, u\right)+$
$d_{\mathcal{C}}(u, q) \leq d_{\mathcal{C}}\left(u^{\prime}, u\right)+d_{\mathcal{C}}(u, p)=d_{\mathcal{C}}\left(u^{\prime}, p\right)$. Therefore, $D_{\mathcal{C}}(u, r)$ is contained in $D_{\mathcal{C}}\left(u^{\prime}, d_{\mathcal{C}}\left(u^{\prime}, p\right)\right)$.

Using the previous claims we can prove a key lemma stating that for every pair of points s_{i}^{\prime} and s_{j}^{\prime}, we have that $d_{\hat{\mathcal{C}}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq 1$. From this lemma we can conclude that any pair of $\hat{\mathcal{C}}$-disks with radius $\frac{1}{2}$ centered at s_{i}^{\prime} and s_{j}^{\prime} are internally disjoint, which allows us to bound $|U|$ via a packing argument.
Lemma 4.1.6. For any pair s_{i} and s_{j} with $i \neq j$, we have that $d_{\hat{\mathcal{C}}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq 1$.
Proof. If both s_{i} and s_{j} are in $D_{\hat{\mathcal{C}}}(\bar{o}, 2)$, then from Claim 4.1.2 we have that $d_{\hat{\mathcal{C}}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right)=d_{\hat{\mathcal{C}}}\left(s_{i}, s_{j}\right) \geq 1$. Otherwise, we assume, without loss of generality, that $d_{\hat{\mathcal{C}}}\left(\bar{o}, s_{j}\right) \geq d_{\hat{\mathcal{C}}}\left(\bar{o}, s_{i}\right)$. Then, $s_{j} \notin D_{\hat{\mathcal{C}}}(\bar{o}, 2)$. Since s_{j}^{\prime} is on the line segment $\bar{o} s_{j}$, we have $s_{j}=\lambda s_{j}^{\prime}$ for some $\lambda>1$. Let p be the intersection point of $\partial D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ and $\bar{o} s_{j}$. Since $d_{\hat{\mathcal{C}}}$ defines a norm, we have $d_{\hat{\mathcal{C}}}\left(\lambda s_{j}^{\prime}, \bar{o}\right)=\lambda d_{\hat{\mathcal{C}}}\left(s_{j}^{\prime}, \bar{o}\right)$. By Observation 4.1.4 we have that $d_{\hat{\mathcal{C}}}\left(s_{j}, p\right)=d_{\hat{\mathcal{C}}}\left(s_{j}, \bar{o}\right)-d_{\hat{\mathcal{C}}}(p, \bar{o})=\lambda d_{\hat{\mathcal{C}}}\left(s_{j}^{\prime}, \bar{o}\right)-1=$ $2 \lambda-1$. From Observation 4.1.3 it follows that the $d_{\hat{\mathcal{C}}}$-distance from s_{j} to $D_{\hat{\mathcal{C}}}(\bar{o}, 1)$ is equal to $d_{\hat{\mathcal{C}}}\left(s_{j}, p\right)$. Further, $d_{\hat{\mathcal{C}}}\left(s_{j}, s_{j}^{\prime}\right)=d_{\hat{\mathcal{C}}}\left(s_{j}, \bar{o}\right)-d_{\hat{\mathcal{C}}}\left(s_{j}^{\prime}, \bar{o}\right)=2 \lambda-2$. Let us prove that $d_{\hat{\mathcal{L}}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq 1$. For sake of a contradiction suppose that $d_{\hat{\mathcal{C}}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right)<1$. Let $D_{s_{j}^{\prime}}=D_{\hat{\mathcal{C}}}\left(s_{j}^{\prime}, 1\right)$. By Observation 4.1.4, $d_{\hat{\mathcal{C}}}\left(s_{j}^{\prime}, p\right)=1$. Therefore, p is on $\partial D_{s_{j}^{\prime}}$. Now, we consider two cases:
Case 1) $s_{i} \in D_{\hat{\mathcal{C}}}(\bar{o}, 2)$. Then $d_{\hat{\mathcal{C}}}\left(\bar{o}, s_{i}\right) \leq 2$. Since $d_{\hat{\mathcal{C}}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right)<1$, we have $s_{i} \in D_{s_{j}^{\prime}}$. From Claim 4.1.5 it follows that $D_{s_{j}^{\prime}}$ is contained in $D_{\hat{\mathcal{C}}}\left(s_{j}, d_{\hat{\mathcal{L}}}\left(s_{j}, p\right)\right)$. Thus, $s_{i}^{\prime} \in D_{\hat{\mathcal{C}}}\left(s_{j}, d_{\hat{\mathcal{C}}}\left(s_{j}, p\right)\right)$ and $d_{\hat{\mathcal{C}}}\left(s_{j}, s_{i}^{\prime}\right)=d_{\hat{\mathcal{L}}}\left(s_{j}, s_{i}\right) \leq d_{\hat{\mathcal{C}}}\left(s_{j}, p\right)$. Since S is in general position, u_{j} is in the interior of $D_{\hat{\mathcal{C}}}(\bar{o}, 1)$. Hence, $d_{\hat{\mathcal{C}}}\left(s_{j}, s_{i}\right) \leq d_{\hat{\mathcal{C}}}\left(s_{j}, p\right)<$ $d_{\hat{\mathcal{C}}}\left(s_{j}, u_{j}\right)$, which contradicts Claim 4.1.2.
Case 2) $s_{i} \notin D_{\hat{\mathcal{C}}}(\bar{o}, 2)$. Then $d_{\hat{\mathcal{C}}}\left(\bar{o}, s_{i}\right)>2$. Thus, $s_{i}=\delta s_{i}^{\prime}$ for some $\delta>1 \in \mathbb{R}$. Moreover, since $d_{\hat{\mathcal{L}}}\left(\bar{o}, s_{j}\right) \geq d_{\hat{\mathcal{C}}}\left(\bar{o}, s_{i}\right)$ and $s_{i}^{\prime}, s_{j}^{\prime}$ are on $\partial D_{\hat{\mathcal{C}}}(\bar{o}, 2), \delta \leq \lambda$. Hence, s_{i} is on the line segment $s_{i}^{\prime}\left(\lambda s_{i}^{\prime}\right)$. Let $D_{s_{j}}=D_{\hat{\mathcal{C}}}\left(s_{j}, 2 \lambda-1\right)$. Note that $\lambda<$ $2 \lambda-1$ because $\lambda>1$. Since $d_{\hat{\mathcal{C}}}$ defines a norm, $d_{\hat{\mathcal{L}}}\left(s_{j}, \lambda s_{i}^{\prime}\right)=d_{\hat{\mathcal{L}}}\left(\lambda s_{j}^{\prime}, \lambda s_{i}^{\prime}\right)=$ $\lambda d_{\hat{\mathcal{C}}}\left(s_{j}^{\prime}, s_{i}^{\prime}\right)<\lambda<2 \lambda-1$. Hence, $\lambda s_{i}^{\prime} \in D_{s_{j}}$. In addition, since $d_{\hat{\mathcal{C}}}\left(s_{j}, p\right)=2 \lambda-1$, from Claim 4.1.5 it follows that $D_{s_{j}^{\prime}} \subseteq D_{s_{j}}$. Therefore, $s_{i}^{\prime} \in D_{s_{j}}$. Thus, the line segment $s_{i}^{\prime}\left(\lambda s_{i}^{\prime}\right)$ is contained in $D_{s_{j}}$. Hence, $s_{i} \in D_{s_{j}}$. Then, $d_{\hat{\mathcal{C}}}\left(s_{j}, s_{i}\right) \leq$ $2 \lambda-1=d_{\hat{\mathcal{C}}}\left(s_{j}, p\right)<d_{\hat{\mathcal{C}}}\left(s_{j}, u_{j}\right)$ which contradicts Claim 4.1.2.

Theorem 4.1.7. For any set S of points in general position and convex shape \mathcal{C}, the graph $24-G G_{\mathcal{C}}(S)$ is Hamiltonian.

Proof. For each s_{i} we define the $\hat{\mathcal{C}}$-disk $D_{i}=D_{\hat{\mathcal{C}}}\left(s_{i}^{\prime}, \frac{1}{2}\right)$. We also set $D_{0}:=$ $D_{\hat{\mathcal{C}}}\left(\bar{o}, \frac{1}{2}\right)$ (recall that we can assume without loss of generality that $a=\bar{o}$). By Lemma 4.1.6, each pair of $\hat{\mathcal{C}}$-disks D_{i} and $D_{j}(0<i<j \leq k)$ are internally disjoint. Note that, if s_{i}^{\prime} is on $\partial D_{\hat{\mathcal{C}}}(\bar{o}, 2)$, then D_{0} and D_{i} are internally disjoint.

Figure 4.3: The $\hat{\mathcal{C}}$-disks D_{0}, D_{i}, D_{j} and D_{t} of radius $\frac{1}{2}$ are centered at $a, s_{i}^{\prime}, s_{j}^{\prime}$ and s_{t}^{\prime}, respectively. Such $\hat{\mathcal{C}}$-disks are contained in the $\hat{\mathcal{C}}$-disk $D_{\hat{\mathcal{C}}}\left(\bar{o}, \frac{5}{2}\right)$.

On the other hand, if s_{i}^{\prime} is in the interior of $D_{\hat{\mathcal{C}}}(\bar{o}, 2)$, then by definition $s_{i}^{\prime}=s_{i}$. Thus, by Claim 4.1.1 D_{0} is internally disjoint from D_{i}. See Figure 4.3. Since $s_{i}^{\prime} \in D_{\hat{\mathcal{C}}}(\bar{o}, 2)$ for all i, each disk D_{i} is inside $D_{\hat{\mathcal{C}}}\left(\bar{o}, \frac{5}{2}\right)$. In $D_{\hat{\mathcal{C}}}\left(\bar{o}, \frac{5}{2}\right)$, there can be at most $\frac{\operatorname{Area}\left(D_{\hat{\mathcal{C}}}\left(\bar{o}, \frac{5}{2}\right)\right)}{\operatorname{Area}\left(D_{0}\right)}=\frac{\left(\frac{5}{2}\right)^{2} \operatorname{Area}(\hat{\mathcal{C}})}{\left(\frac{1}{2}\right)^{2} \operatorname{Area}(\hat{\mathcal{C}})}=25$ internally disjoint disks of type D_{i}. Thus, since D_{0} is centered at a, there are at most 24 points s_{i}^{\prime} in $D_{\hat{\mathcal{C}}}(\bar{o}, 1)$. As a consequence, there are at most 24 points of S in the interior of $\mathcal{C}(a, b)$, and the bottleneck Hamiltonian cycle of S is contained in 24-GG (S).

4.2 Hamiltonicity for point-symmetric convex shapes

In this section we improve Theorem 4.1.7 for the case where \mathcal{C} is convex and point-symmetric. We use similar arguments to those in Section 4.1.

Consider h defined as before, i.e., h is the minimum Hamiltonian cycle in \mathcal{H}. Let $a b$ be an edge in h and consider an arbitrary fixed $\mathcal{C}(a, b)$. In this section it will be more convenient to assume without loss of generality that $d_{\mathcal{C}}(a, b)=$ 2 and that $\mathcal{C}(a, b)$ is centered at the origin \bar{o}. Thus, $\mathcal{C}(a, b)=D_{\mathcal{C}}(\bar{o}, 1)$, see Figure 4.4. Consider again the set $U=\left\{u_{1}, \ldots, u_{k}\right\}$ defined as in Section 4.1, and let s_{i} be the predecessor of u_{i} in h.

Using that $d_{\mathcal{C}}(a, b)=2 d_{\hat{\mathcal{C}}}(a, b)$ when \mathcal{C} is point-symmetric, we can prove the
following claims.
Claim 4.2.1. $d_{\mathcal{C}}\left(s_{i}, a\right) \geq \max \left\{d_{\mathcal{C}}\left(s_{i}, u_{i}\right), 2\right\}$.
Proof. By Claim 4.1.1 we have that $d_{\mathcal{C}}\left(s_{i}, a\right)=2 d_{\hat{\mathcal{C}}}\left(s_{i}, a\right) \geq 2 \max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), 1\right\}=$ $\max \left\{2 d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), 2\right\}=\max \left\{d_{\mathcal{C}}\left(s_{i}, u_{i}\right), 2\right\}$.

Claim 4.2.2. Let $1 \leq i<j \leq k$, then $d_{\mathcal{C}}\left(s_{i}, s_{j}\right) \geq \max \left\{d_{\mathcal{C}}\left(s_{i}, u_{i}\right), d_{\mathcal{C}}\left(s_{j}, u_{j}\right), 2\right\}$.
Proof. By Claim 4.1.2 we have that $d_{\mathcal{C}}\left(s_{i}, s_{j}\right)=2 d_{\hat{\mathcal{C}}}\left(s_{i}, s_{j}\right) \geq 2 \max \left\{d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right)\right.$, $\left.d_{\hat{\mathcal{C}}}\left(s_{j}, u_{j}\right), 1\right\}=\max \left\{2 d_{\hat{\mathcal{C}}}\left(s_{i}, u_{i}\right), 2 d_{\hat{\mathcal{C}}}\left(s_{j}, u_{j}\right), 2\right\}=\max \left\{d_{\mathcal{C}}\left(s_{i}, u_{i}\right), d_{\mathcal{C}}\left(s_{j}, u_{j}\right), 2\right\}$.

Figure 4.4: $\mathcal{C}(a, b)$ has radius 1 and it is centered at \bar{o}. The point s_{j} is not in $D_{\mathcal{C}}(\bar{o}, 3)$, so s_{j}^{\prime} is the intersection point of $\bar{o} s_{j} \cap \partial D_{\mathcal{C}}(\bar{o}, 3)$. The dotted \mathcal{C}-disk is centered at s_{j}^{\prime} and has radius 2 .

From Claim 4.2.1, we have that s_{i} is not in the interior of $D_{\mathcal{C}}(\bar{o}, 1)=\mathcal{C}(a, b)$ for all $i \in\{1, \ldots, k\}$. Let $D_{\mathcal{C}}(\bar{o}, 3)$ be the \mathcal{C}-disk centered at \bar{o} with radius 3 . For each $s_{i} \notin D_{\mathcal{C}}(\bar{o}, 3)$, define s_{i}^{\prime} as the intersection of $\partial D_{\mathcal{C}}(\bar{o}, 3)$ with the ray $\overrightarrow{\bar{o} s_{i}}$. We let $s_{i}^{\prime}=s_{i}$ when s_{i} is inside $D_{\mathcal{C}}(\bar{o}, 3)$. See Figure 4.4.

The following lemma is similar to Lemma 4.1.6. We show that every pair s_{i}^{\prime} and s_{j}^{\prime} are at $d_{\mathcal{C}}$-distance at least 2 . This lemma allows us again to reduce our problem to a packing problem.
Lemma 4.2.3. For any pair s_{i} and s_{j} with $i \neq j$, we have that $d_{\mathcal{C}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq 2$. Moreover, if at least one of s_{i} and s_{j} is not in $D_{\mathcal{C}}(\bar{o}, 3)$, then $d_{\mathcal{C}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right)>2$.

Proof. If both s_{i} and s_{j} are in $D_{\mathcal{C}}(\bar{o}, 3)$, then from Claim 4.2 .2 we have that $d_{\mathcal{C}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right)=d_{\mathcal{C}}\left(s_{i}, s_{j}\right) \geq 2$. Otherwise, assume without loss of generality that $d_{\mathcal{C}}\left(\bar{o}, s_{j}\right) \geq d_{\mathcal{C}}\left(\bar{o}, s_{i}\right)$. Then $s_{j} \notin D_{\mathcal{C}}(\bar{o}, 3)$ and s_{j}^{\prime} is on the line segment $\bar{o} s_{j}$.

Thus, $s_{j}=\lambda s_{j}^{\prime}$ for some $\lambda>1$. Let p be the intersection point of $\partial \mathcal{C}(a, b)$ and $\bar{o} s_{j}$. By Observation 4.1.3 the $d_{\mathcal{C}}$-distance from s_{j}^{\prime} to $\mathcal{C}(a, b)$ is $d_{\mathcal{C}}\left(s_{j}^{\prime}, p\right)=$ $d_{\mathcal{C}}\left(s_{j}^{\prime}, \bar{o}\right)-d_{\mathcal{C}}(p, \bar{o})=2$. Since $d_{\mathcal{C}}$ defines a norm, $d_{\mathcal{C}}\left(s_{j}, p\right)=d_{\mathcal{C}}\left(s_{j}, \bar{o}\right)-d_{\mathcal{C}}(p, \bar{o})=$ $\lambda d_{\mathcal{C}}\left(s_{j}^{\prime}, \bar{o}\right)-1=3 \lambda-1$, and this corresponds to the $d_{\mathcal{C}}$-distance from s_{j} to $\mathcal{C}(a, b)$. Further, $d_{\mathcal{C}}\left(s_{j}, s_{j}^{\prime}\right)=d_{\mathcal{C}}\left(s_{j}, \bar{o}\right)-d_{\mathcal{C}}\left(s_{j}^{\prime}, \bar{o}\right)=3 \lambda-3$. For sake of contradiction we suppose that $d_{\mathcal{C}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \leq 2$. Thus, s_{i}^{\prime} is in $D_{\mathcal{C}}\left(s_{j}^{\prime}, 2\right)$. We consider the following two cases.
Case 1) $s_{i} \in D_{\mathcal{C}}(\bar{o}, 3)$. Then $d_{\mathcal{C}}\left(\bar{o}, s_{i}\right) \leq 3$. Since $d_{\mathcal{C}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \leq 2, s_{i}=s_{i}^{\prime} \in$ $D_{\mathcal{C}}\left(s_{j}^{\prime}, 2\right)$. From Claim 4.1.5 follows that $D_{\mathcal{C}}\left(s_{j}^{\prime}, 2\right) \subset D_{\mathcal{C}}\left(s_{j}, 3 \lambda-1\right)$. Thus, $s_{i} \in$ $D_{\mathcal{C}}\left(s_{j}, 3 \lambda-1\right)$. Hence, $d_{\mathcal{C}}\left(s_{j}, s_{i}^{\prime}\right)=d_{\mathcal{C}}\left(s_{j}, s_{i}\right) \leq d_{\mathcal{C}}\left(s_{j}, p\right)$. Since S is in general position, u_{j} is in the interior of $\mathcal{C}(a, b)$. Therefore, $d_{\mathcal{C}}\left(s_{j}, s_{i}\right) \leq d_{\mathcal{C}}\left(s_{j}, p\right)<$ $d_{\mathcal{C}}\left(s_{j}, u_{j}\right)$, which contradicts Claim 4.2.2.
Case 2) $s_{i} \notin D_{\mathcal{C}}(\bar{o}, 3)$. Then $s_{i}^{\prime} \in \partial D_{\mathcal{C}}(\bar{o}, 3)$ and $s_{i}=\delta s_{i}^{\prime}$ for some $\delta>1$. Moreover, since $d_{\mathcal{C}}\left(\bar{o}, s_{j}\right) \geq d_{\mathcal{C}}\left(\bar{o}, s_{i}\right)$ and $s_{i}^{\prime}, s_{j}^{\prime}$ are on the boundary of $D_{\mathcal{C}}(\bar{o}, 3)$, $\delta \leq \lambda$. Hence, s_{i} is on the line segment $s_{i}^{\prime}\left(\lambda s_{i}^{\prime}\right)$. Note that $2 \lambda<3 \lambda-1$ because $\lambda>1$. Since $d_{\mathcal{C}}$ defines a norm, $d_{\mathcal{C}}\left(s_{j}, \lambda s_{i}^{\prime}\right)=\lambda d_{\mathcal{C}}\left(s_{j}^{\prime}, s_{i}^{\prime}\right) \leq 2 \lambda<3 \lambda-1$. Hence, $\lambda s_{i}^{\prime} \in D_{\mathcal{C}}\left(s_{j}, 3 \lambda-1\right)$. In addition, from Claim 4.1.5 it follows that $D_{\mathcal{C}}\left(s_{j}^{\prime}, 2\right) \subseteq D_{\mathcal{C}}\left(s_{j}, 3 \lambda-1\right)$. Thus, $s_{i}^{\prime} \in D_{\mathcal{C}}\left(s_{j}, 3 \lambda-1\right)$ and the line segment $s_{i}^{\prime}\left(\lambda s_{i}^{\prime}\right)$ is contained in $D_{\mathcal{C}}\left(s_{j}, 3 \lambda-1\right)$. Then, $s_{i} \in D_{\mathcal{C}}\left(s_{j}, 3 \lambda-1\right)$ and $d_{\mathcal{C}}\left(s_{j}, s_{i}\right) \leq$ $3 \lambda-1=d_{\mathcal{C}}\left(s_{j}, p\right)<d_{\mathcal{C}}\left(s_{j}, u_{j}\right)$, which contradicts Claim 4.2.2.

Theorem 4.2.4. For any set S of points in general position and point-symmetric convex shape \mathcal{C}, the graph $15-G G_{\mathcal{C}}(S)$ is Hamiltonian.

Proof. For each $s_{i} \in S$ we define the \mathcal{C}-disk $D_{i}=D_{\mathcal{C}}\left(s_{i}^{\prime}, 1\right)$. We also set $D_{0}:=$ $D_{\mathcal{C}}(a, 1)$. From Lemma 4.2.3, each pair of \mathcal{C}-disks D_{i} and D_{j} are internally disjoint, for $0<i<j \leq k$. Note that, if s_{i}^{\prime} is on $\partial D_{\mathcal{C}}(\bar{o}, 3)$, then D_{0} and D_{i} are internally disjoint. On the other hand, if s_{i}^{\prime} is in the interior of $D_{\mathcal{C}}(\bar{o}, 3)$, then by definition $s_{i}^{\prime}=s_{i}$. Thus, by Claim 4.2.1 D_{0} is internally disjoint from D_{i}. Consider $D_{\mathcal{C}}(\bar{o}, 4)$. Since, $s_{i}^{\prime} \in D_{\mathcal{C}}(\bar{o}, 3)$ for all $i \in\{1, \ldots k\}$, then each disk D_{i} is inside $D_{\mathcal{C}}(\bar{o}, 4)$. Hence, in $D_{\mathcal{C}}(\bar{o}, 4)$ there can be at most $\frac{\operatorname{Area}\left(D_{\mathcal{C}}(\bar{o}, 4)\right)}{\operatorname{Area}(\mathcal{C})}=$ $\frac{4^{2} \operatorname{Area}(\mathcal{C})}{\operatorname{Area}(\mathcal{C})}=16$ internally disjoint disks of type D_{i}. Since D_{0} is centered at a, there are at most 15 points s_{i}^{\prime} in $D_{\mathcal{C}}(\bar{o}, 3)$. Therefore, there are at most 15 points of S in $\mathcal{C}(a, b)$, and the bottleneck Hamiltonian cycle of S is contained in $15-G G_{\mathcal{C}}(S)$.

4.3 Hamiltonicity for regular polygons

An important family of point-symmetric convex shapes is that of regular evensided polygons. When \mathcal{C} is a regular polygon \mathcal{P}_{t} with t sides, for t even, we
can improve the previous bound by analyzing the properties of the shape for different values of t.

4.3.1 Hamiltonicity for squares

Figure 4.5: Lines $x=-1, x=1, y=-1$, and $y=1$ split $D_{\square}(3, \bar{o})$ into nine unit squares: $\mathcal{C}(a, b), D_{0}, \ldots, D_{7}$.

First, we consider the case when the polygon is a square. In this case, we divide $D_{\square}(\bar{o}, 3)$ into 9 disjoint squares of radius 1 and show that there can be at most one point of $\left\{a, s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}$ in each such square. We use lines $x=-1, x=$ $1, y=-1$, and $y=1$ to split $D_{\square}(\bar{o}, 3)$ into 9 squares of radius 1 . Refer to Figure 4.5. Let $D_{0}, D_{1}, \ldots, D_{7}$ be the squares of radius 1 in $D_{\square}(\bar{o}, 3)$ different from $C(a, b)$, ordered clockwise, and where D_{0} is the top-right corner square. In the following lemma we prove that there is at most one point of $\left\{a, s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}$ in each D_{i}. Let indices be taken modulo 8 . Note that each D_{i} shares a side with D_{i-1}, and for each odd i, D_{i} shares a side with $\mathcal{C}(a, b)$. Moreover, there exists a D_{i} that contains a on its boundary. We will associate any point in $D_{\square}(\bar{o}, 3)$ (not in the interior of $\mathcal{C}(a, b)$) to a unique square D_{i} in the following way: Let p be a point in D_{i}. If p does not lie on the shared boundary of D_{i} and some other D_{j}, then p is associated to D_{i}. If i is odd and p is the intersection point $D_{i} \cap D_{i-1} \cap D_{i-2}$, then p is associated to $D_{i-2}(p$ can be a or $b)$. Otherwise, if p is on the edge $D_{i} \cap D_{i-1}$, then p is associated to D_{i-1}.

Observation 4.3.1. Any two points at d_{\square}-distance 2 in a unit square must be on opposite sides of the square.
Lemma 4.3.2. There is at most one s_{j}^{\prime} associated to each D_{i}. Moreover, the D_{i} containing the point a on its boundary has no s_{j}^{\prime} associated to it.
Proof. Suppose that there are two points s_{j}^{\prime} and s_{m}^{\prime} associated to D_{i}. From Lemma 4.2.3 we have that $d_{\square}\left(s_{j}^{\prime}, s_{m}^{\prime}\right) \geq 2$. Also, since D_{i} is a unit square,

Figure 4.6: Cases (a) and (b) contradict Claim 4.2.2. Case (c) contradicts our general position assumption. In case (d) only one point, s_{j}, is associated to D_{7}.
$d_{\square}\left(s_{j}^{\prime}, s_{m}^{\prime}\right) \leq 2$. Therefore, $d_{\square}\left(s_{j}^{\prime}, s_{m}^{\prime}\right)=2$. Then Lemma 4.2.3 implies that s_{j} and s_{m} must be inside $D_{\mathcal{C}}(\bar{o}, 3)$. In addition, by Observation 4.3.1, the points s_{j} and s_{m} are on opposite sides of the boundary of D_{i}. For simplicity we will assume that $d_{\square}\left(\bar{o}, s_{j}\right) \geq d_{\square}\left(\bar{o}, s_{m}\right)$. If i is even, then the d_{\square}-distance of s_{j} to $\mathcal{C}(a, b)$ is exactly 2 . We refer to Figure 4.6 a and 4.6 b . Recall that, by our general position assumption, u_{j} is in the interior of $\mathcal{C}(a, b)$. Thus, the d_{\square}-distance from s_{j} to $\mathcal{C}(a, b)$ is less than $d_{\square}\left(s_{j}, u_{j}\right)$, i.e., $d_{\square}\left(s_{j}, u_{j}\right)>2$. Hence, $d_{\square}\left(s_{j}, s_{m}\right)=2<d_{\square}\left(s_{j}, u_{j}\right)$ which contradicts Claim 4.2.2. Therefore, if i is even, there is at most one point in D_{i}, which is associated to it.
If i is odd, then s_{j} is either on $D_{i} \cap D_{i-1}$ or $D_{i} \cap D_{i+1}$, or on $D_{i} \cap \partial D_{\mathcal{C}}(\bar{o}, 3)$ (see Figure 4.6 c and 4.6 d$)$. If s_{j} is on $D_{i} \cap D_{i-1}$ or $D_{i} \cap D_{i+1}$, then only one of s_{j} and s_{m} is associated to D_{i}. If s_{j} is on $D_{i} \cap \partial D_{\mathcal{C}}(\bar{o}, 3)$, then by Observation 4.3.1, s_{m} is on $\mathcal{C}(a, b)$, which by our general position assumption implies that $s_{m}=b$, since $s_{m} \neq a$. Thus, $d_{\square}\left(s_{j}, u_{j}\right)>2=d_{\square}\left(s_{j}, s_{m}\right)$, which contradicts Claim 4.2.2. Therefore, there is only one point associated to D_{i}.

Finally, if D_{i} contains a, then there is no point s_{j}^{\prime} in D_{i}. Indeed, assume for sake of a contradiction that $s_{j}^{\prime} \in D_{i}$. Then, s_{j} is not in D_{i}, otherwise, $d_{\square}\left(a, s_{j}\right)<$ $d_{\square}\left(s_{j}, u_{j}\right)$, contradicting Claim 4.2.1. Thus, s_{j}^{\prime} is on $D_{i} \cap \partial D_{\square}(\bar{o}, 3)$ and $s_{j}=\lambda s_{j}^{\prime}$ for some $\lambda>1$. Hence, $d_{\square}\left(s_{j}^{\prime}, a\right)=2$, which means that $a \in D_{\square}\left(s_{j}^{\prime}, 2\right)$. Let p be the point $\bar{o} s_{j}^{\prime} \cap \partial \mathcal{C}(a, b)$. By Claim 4.1.5, $D_{\square}\left(s_{j}^{\prime}, 2\right) \subset D_{\square}\left(s_{j}, d_{\square}\left(s_{j}, p\right)\right)$. So, $a \in D_{\square}\left(s_{j}, d_{\square}\left(s_{j}, p\right)\right)$ and $d_{\square}\left(s_{j}, a\right)<d_{\square}\left(s_{j}, u_{j}\right)$, contradicting Claim 4.2.1.

Theorem 4.3.3. For any set S of points in general position, the graph 7$G G_{\square}(S)$ is Hamiltonian.

Proof. From Lemma 4.3.2 we have that for each $0 \leq i \leq 7$ there is at most one point of $\left\{a, s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}$ associated to D_{i}, and any square containing a has no s_{i}^{\prime} associated to it. Since there is at least one D_{i} containing a, there are at most 7 points s_{j}^{\prime} in $D_{\square}(\bar{o}, 3)$. Therefore, there are at most 7 points of S in the interior of $\mathcal{C}(a, b)$, and the bottleneck Hamiltonian cycle of S is contained in
$7-G G_{\square}(S)$.

4.3.2 Hamiltonicity for regular hexagons

Figure 4.7: The bold hexagon is the boundary of $D_{\mathcal{P}_{6}}(\bar{o}, 3)$. Such hexagon is divided into 13 interior-disjoint regions: 6 quadrangles-a third of a unit \mathcal{P}_{6} -disk-and 7 unit \mathcal{P}_{6}-disks.

The analysis for the case of hexagons is similar to the previous one. First we divide the hexagon $D_{\mathcal{P}_{6}}(\bar{o}, 3)$ into 13 different regions $\mathcal{C}(a, b), D_{0}, \ldots, D_{5}$, Q_{0}, \ldots, Q_{5}, shown in Figure 4.7. Let indices be taken modulo 6. We will associate a point in $D_{\mathcal{P}_{6}}(\bar{o}, 3)$ (not in the interior of $\mathcal{C}(a, b)$) to a region D_{i} or Q_{i} in the following fashion. If a point is in the interior of D_{i} or Q_{i} we say that such point is associated to D_{i} or Q_{i}, respectively. If a point is on the edge $D_{i} \cap D_{i-1}$ or edge $D_{i} \cap Q_{i-1}$, then such point is associated to D_{i-1} and Q_{i-1}, respectively. In the case when a point is the vertex $D_{i} \cap D_{i-1} \cap Q_{i-1}$, we say that such point is associated to D_{i-1}. When a point is on the edge $D_{i} \cap Q_{i}$ then we associate it with D_{i}. See Figure 4.8.

Figure 4.8: The dashed boundary of D_{5} is associated to D_{4} and the dotted one is associated to Q_{4}. The rest of D_{5} is associated to D_{5}.

Observation 4.3.4. Any two points at $d_{\mathcal{P}_{6}}$-distance 2 in a unit hexagon D must be on opposite sides of D.

In the following lemma we show that the hexagon $D_{\mathcal{P}_{6}}(\bar{o}, 3)$ contains at most 11 points $s_{1}^{\prime}, \ldots, s_{k}^{\prime}$.
Lemma 4.3.5. There is at most one point s_{j}^{\prime} associated to each region of type D_{i} or Q_{i}. Moreover, there is no point s_{j}^{\prime} in the hexagon D_{i} that contains a.

Proof. If a point is in the interior of D_{i} or Q_{i} then by Observation 4.3.4 there is no other point in the same region.

Note that if Q_{i} contains two points at $d_{\mathcal{P}_{6}}$-distance 2 , then by Observation 4.3.4 such points are exactly $D_{i} \cap Q_{i} \cap \partial D_{\mathcal{P}_{6}}(\bar{o}, 3)$ and $D_{i+1} \cap Q_{i} \cap \partial D_{\mathcal{P}_{6}}(\bar{o}, 3)$. Since the points on $D_{i} \cap Q_{i}$ are associated to D_{i}, the intersection point $D_{i} \cap Q_{i} \cap$ $\partial D_{\mathcal{P}_{6}}(\bar{o}, 3)$ is not associated to Q_{i}. Thus, there is at most one point associated to Q_{i}.

If D_{i} contains a point s_{j}^{\prime} that is on $D_{i} \cap \partial D_{\mathcal{P}_{6}}(\bar{o}, 3)$, then there cannot be another $s_{m}^{\prime} \in D_{i}$: Otherwise, by Observation 4.3.4, s_{m}^{\prime} would be on the boundary of $\mathcal{P}_{6}(a, b)$, in which case $s_{m}^{\prime}=b$ due to our general position assumption. Since, $d_{\mathcal{P}_{6}}\left(s_{j}^{\prime}, s_{m}^{\prime}\right)=2$, it follows from Lemma 4.2.3 that s_{j} would be in $D_{\mathcal{P}}(\bar{o}, 3)$. Thus, $d_{\mathcal{P}_{6}}\left(s_{j}, s_{m}\right)=2<d_{\mathcal{P}_{6}}\left(s_{j}, u_{j}\right)$ which contradicts Claim 4.2.2. Consequently, if D_{i} contains two points s_{j}^{\prime} and s_{m}^{\prime} then by Observation 4.3.4 either: 1) one is on the edge $D_{i} \cap Q_{i}$ and the other is on the edge $D_{i} \cap D_{i-1}$ (see Figure 4.9a); or 2) one is on the edge $D_{i} \cap D_{i+1}$ and the other is on the edge $D_{i} \cap Q_{i-1}$ (see Figure 4.9 b). In either case, just one point is associated to D_{i}.

Figure 4.9: In both, (a) and (b), D_{5} contains exactly two points at $d_{\mathcal{P}_{6}}$-distance 2.

Finally, if D_{i} contains a, then there is no point s_{j}^{\prime} in D_{i}. Indeed, suppose for sake of contradiction that $s_{j}^{\prime} \in D_{i}$. Then, s_{j} is not in D_{i} because, by Claim 4.2.1, $d_{\mathcal{P}_{6}}\left(a, s_{j}\right) \geq d_{\mathcal{P}_{6}}\left(s_{j}, u_{j}\right)$. Thus, s_{j}^{\prime} is on $D_{i} \cap \partial D_{\mathcal{P}_{6}}(\bar{o}, 3)$ and $s_{j}=\lambda s_{j}^{\prime}$ for some $\lambda>1$. Hence, $d_{\mathcal{P}_{6}}\left(s_{j}^{\prime}, a\right)=2$ and $a \in D_{\mathcal{P}_{6}}\left(s_{j}^{\prime}, 2\right)$. Let p be the intersection point $\bar{o} s_{j}^{\prime} \cap \partial \mathcal{P}_{6}(a, b) . \quad$ By Claim 4.1.5, $D_{\mathcal{P}_{6}}\left(s_{j}^{\prime}, 2\right) \subset D_{\mathcal{P}_{6}}\left(s_{j}, d_{\mathcal{P}_{6}}\left(s_{j}, p\right)\right)$ and,

Figure 4.10: The incircle of the octagon \mathcal{P}_{8} has Euclidean radius 1. The octagon \mathcal{P}_{8} is inscribed in a circle of Euclidean radius $\frac{3}{\cos \left(\frac{\pi}{8}\right)}$; such circle is also known as the circumcircle of \mathcal{P}_{8}.
thus, $a \in D_{\mathcal{P}_{6}}\left(s_{j}, d_{\mathcal{P}_{6}}\left(s_{j}, p\right)\right)$. We obtain that $d_{\mathcal{P}_{6}}\left(s_{j}, a\right)<d_{\mathcal{P}_{6}}\left(s_{j}, u_{j}\right)$, which again contradicts Claim 4.2.1.

The following theorem holds.
Theorem 4.3.6. For any set S of points in general position, the graph 11$G G_{\mathcal{P}_{6}}(S)$ is Hamiltonian.

4.3.3 Hamiltonicity for regular even-sided t-gons where $t \geq 8$

For the remaining regular polygons with an even number of sides, we use the circumcircle ${ }^{4}$ of $D_{\mathcal{P}_{t}}(\bar{o}, 3)$ in order to give an upper bound on the number of points in $D_{\mathcal{P}_{t}}(\bar{o}, 3)$ at pairwise Euclidean distance at least 2. Without loss of generality we assume that the incircle ${ }^{5}$ of the unit \mathcal{P}_{t}-disk has Euclidean radius 1. See Figure 4.10.

In this section we will first treat the case $t \geq 10$, and afterwards the case $t=8$.

Theorem 4.3.7. For any set S of points in general position and regular polygon \mathcal{P}_{t} with even $t \geq 10$, the graph 11-GG $\mathcal{P}_{t}(S)$ is Hamiltonian.

Proof. Let \mathcal{P}_{t} be a polygon with $t \geq 10$ sides and t even. Then $D_{\mathcal{P}_{t}}(\bar{o}, 3)$ is inscribed in a circle of radius $r=\frac{3}{\cos \left(\frac{\pi}{t}\right)}$. Since the function $\cos \left(\frac{\pi}{t}\right)$ is an increasing function for $t \geq 2$, we have that $r \leq \frac{3}{\cos \left(\frac{\pi}{10}\right)}$. Therefore, $D_{\mathcal{P}_{t}}(\bar{o}, 3)$ is

[^6]inside the circumcircle of a decagon with incircle of radius 3 . In addition, from Lemma 4.2 .3 we know that for any pair of points $s_{i}^{\prime}, s_{j}^{\prime}$ in $D_{\mathcal{P}_{t}}(\bar{o}, 3), d_{\mathcal{P}_{t}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq$ 2. Since the incircle of the 2 -unit \mathcal{P}_{t}-disk has Euclidean radius 2, we have that $d\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq 2$. Hence, it suffices to show that there are at most 12 points in $D_{\mathcal{P}_{t}}(\bar{o}, 3)$ at pairwise Euclidean distance at least 2. Fodor [56] proved that the minimum radius R of a circle having 13 points at pairwise Euclidean distance at least 2 is $R \approx 3.236$, which is greater than $\frac{3}{\cos \left(\frac{\pi}{10}\right)} \approx 3.154$. Thus, $D_{\mathcal{P}_{t}}(\bar{o}, 3)$ contains at most 12 points at pairwise $d_{\mathcal{P}_{t}}$-distance at least 2 . Since a is also at $d_{\mathcal{P}_{t}}$-distance at least 2 from all s_{i}^{\prime} 's, there are at most 11 points of S inside $\mathcal{P}_{t}(a, b)$.

For the case of octagons, the radius of the circumcircle of $D_{\mathcal{P}_{8}}(\bar{o}, 3)$ is greater than 3.236, so we cannot use the result in [56]. However, we can use a similar result from Fodor [57] to prove an analogous theorem:

Theorem 4.3.8. For any set S of points in general position, the graph 12$G G_{\mathcal{P}_{8}}(S)$ is Hamiltonian.

Proof. From Lemma 4.2 .3 we know that, for any pair of points $s_{i}^{\prime}, s_{j}^{\prime}$ in $D_{\mathcal{P}_{8}}(\bar{o}, 3)$, $d_{\mathcal{P}_{8}}\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq 2$. Since the incircle of the 2 -unit \mathcal{P}_{8}-disk has Euclidean radius 2 , we have that $d\left(s_{i}^{\prime}, s_{j}^{\prime}\right) \geq 2$. Hence, it suffices to show that there are at most 13 points in $D_{\mathcal{P}_{8}}(\bar{o}, 3)$ at pairwise Euclidean distance at least 2. The regular octagon $D_{\mathcal{P}_{8}}(\bar{o}, 3)$ is inscribed in a circle of radius $r=\frac{3}{\cos \left(\frac{\pi}{8}\right)} \approx 3.247$. By a result of Fodor [57], the smallest radius R of a circle containing 14 points at pairwise Euclidean distance at least 2 is $R \approx 3.328$. Hence, $D_{\mathcal{P}_{8}}(\bar{o}, 3)$ contains at most 13 points at pairwise Euclidean distance at least 2 . Since a is also at $d_{\mathcal{P}_{8}}$-distance at least 2 from all s_{i}^{\prime} 's, there are at most 12 points of S inside $\mathcal{P}_{8}(a, b)$.

4.4 Bottleneck Hamiltonian cycles in $k-G G_{\square}$ and k $G G_{\mathcal{P}_{6}}$

In this section we give lower bounds on the minimum values of k for which the graphs $k-G G_{\square}$ and $k-G G_{\mathcal{P}_{6}}$ contain a bottleneck Hamiltonian cycle. This is useful to understand to what extent we can use the bottleneck Hamiltonian cycle for showing Hamiltonicity in a $k-G G_{\mathcal{C}}$ in order to improve the known upper bounds on k. The proofs are very similar to those in [22, 21, 67].

Lemma 4.4.1. There exists a point set S with $n \geq 17$ points such that 2$G G_{\square}(S)$ does not contain any d_{\square}-bottleneck Hamiltonian cycle of S.

Figure 4.11: The diagonal-pattern square is a $\mathcal{C}(a, b)$ with a as a vertex, and the gray-filled square is a $\mathcal{C}(a, b)$ with b as vertex. The union of both squares contains all the possible $\mathcal{C}(a, b)$. The bold edges belong to h in the proof of Lemma 4.4.1.

Proof. Consider the point set S in Figure 4.11. The length of edge $a b$ is $d_{\square}(a, b)=1$, and the two dashed squares have radius 1 and are centered at a and b. Notice that any $\mathcal{C}(a, b)$ contains at least 3 points from $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, so $a b \notin 2-G G_{\square}(S)$.

Let $R=\left\{r_{1}, r_{2}, r_{3}, r_{4}, t_{1}, \ldots t_{7}\right\}$. For each point in R there is a red square centered at such point with radius $1+\varepsilon$, where ε is a small positive value. Thus, $d_{\square}\left(r_{i}, u_{i}\right)=1+\varepsilon, d_{\square}\left(r_{i}, a\right)>1+\varepsilon, d_{\square}\left(r_{i}, b\right)>1+\varepsilon$ and $d_{\square}\left(r_{i}, r_{j}\right)>1+\varepsilon$, for $i \neq j$. The cycle $h=\left(a, b, u_{1}, r_{1}, u_{2}, r_{2}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, r_{3}, u_{3}, r_{4}, u_{4}, a\right)$ is Hamiltonian and the maximum length of its edges in the d_{\square}-distance is $1+\varepsilon$. Hence, any d_{\square}-bottleneck Hamiltonian cycle of S has at most $1+\varepsilon$ maximum edge d_{\square}-length.

We will show that the edge $a b$ is in every $d_{\square \text {-bottleneck }}$ Hamiltonian cycle of S. Let h^{\prime} be a $d_{\square-\text {-bottleneck }}$ Hamiltonian cycle. Since the d_{\square}-distance from a and b to any point in R is greater than $1+\varepsilon$, in h^{\prime}, a and b can only be connected between each other or to the points in U. Note that u_{2} has to be connected to r_{1} and r_{2} in h^{\prime}, since otherwise r_{1} or r_{2} would be adjacent to an edge whose d_{\square}-length is greater than $1+\varepsilon$. Similarly, u_{3} has to be connected to r_{3} and r_{4} in h^{\prime}, since otherwise r_{3} or r_{4} would be adjacent to an edge of d_{\square}-length greater than $1+\varepsilon$. Finally, a and b have to be connected to each other, since otherwise both would be adjacent to u_{1} and u_{4}, which does not produce a Hamiltonian cycle.

In summary, $a b$ is included in any d_{\square}-bottleneck Hamiltonian cycle, and since $a b \notin 2-G G_{\square}(S)$, the lemma holds.

Figure 4.12: The gray hexagon is the unique $\mathcal{C}(a, b)$, and it contains 6 points of S. The bold edges belong to h in the proof of Lemma 4.4.2.

Lemma 4.4.2. There exists a point set S with $n \geq 22$ points such that 5 $G G_{\mathcal{P}_{6}}(S)$ does not contain any $d_{\mathcal{P}_{6}}$-bottleneck Hamiltonian cycle of S.

Proof. We proceed in the same fashion as in the previous proof. Consider the
point set S in Figure 4.12. The length of edge $a b$ is $d_{\mathcal{P}_{6}}(a, b)=1$, and the dashed hexagons have radius 1 and are centered at a and b. Notice that there is exactly one $\mathcal{C}(a, b)$, and it contains all points from $U=\left\{u_{1}, \ldots, u_{6}\right\}$. Therefore, $a b \notin 5-G G_{\mathcal{P}_{6}}(S)$. Let $R=\left\{r_{1}, \ldots, r_{6}, t_{1}, \ldots t_{8}\right\}$. For each point in R there is a red regular hexagon centered at such point with radius $1+\varepsilon$, where ε is a small positive value. Thus, $d_{\mathcal{P}_{6}}\left(r_{i}, u_{i}\right)=1+\varepsilon, d_{\mathcal{P}_{6}}\left(r_{i}, a\right)>1+\varepsilon, d_{\mathcal{P}_{6}}\left(r_{i}, b\right)>1+\varepsilon$ and $d_{\mathcal{P}_{6}}\left(r_{i}, r_{j}\right)>1+\varepsilon$, with $i \neq j$. The cycle $h=\left(a, b, u_{1}, r_{1}, u_{2}, r_{2}, u_{3}, r_{3}, t_{1}, t_{2}, \ldots\right.$, $\left.t_{8}, r_{4}, u_{4}, r_{5}, u_{5}, r_{6}, u_{6}, a\right)$ is Hamiltonian, and the maximum length of its edges in the $d_{\mathcal{P}_{6}}$-distance is $1+\varepsilon$.

Let h^{\prime} be a $d_{\mathcal{P}_{6}}$-bottleneck Hamiltonian cycle. Let us show that $a b \in h^{\prime}$. Since the $d_{\mathcal{P}_{6}}$-distance from a and b to any point in R is greater than $1+\varepsilon$, in h^{\prime}, a and b can only be connected between each other or to the points in U. Note that u_{3} has to be adjacent to r_{2} and r_{3}; otherwise, r_{2} or r_{3} would be adjacent to an edge of $d_{\mathcal{P}_{6}}$-length greater than $1+\varepsilon$. Similarly, u_{2}, u_{4}, u_{5} have to be adjacent to r_{2} and r_{3}, to r_{4} and r_{5}, and to r_{5} and r_{6}, respectively. Finally, a and b have to be connected to each other, otherwise both would be adjacent to u_{1} and u_{6} which does not produce a Hamiltonian cycle. Therefore, $a b$ is included
 holds.

4.5 Non-Hamiltonicity for regular polygons

Until now we have discussed upper and lower bounds for k, so that $k-G G_{\mathcal{C}}$ contains a bottleneck Hamiltonian cycle. As mentioned in Section 1.4, k $G G_{\mathcal{C}} \subseteq k$ - $D G_{\mathcal{C}}$, thus all upper bounds given in the previous sections hold for k-order \mathcal{C}-Delaunay graphs as well, but not the lower bounds. In this section we present point sets for which $D G_{\mathcal{P}_{t}}$ is not Hamiltonian. For $t=4$, Saumell [92] showed that for any $n \geq 9$ there exists a point set S such that $D G_{\square}(S)$ is non-Hamiltonian, so we focus on $t \geq 5$.

First, we present particular cases of $t \geq 5$ for which $D G_{\mathcal{P}_{t}}$ is non-Hamiltonian. Later on, we present a generalization of these point sets and show the nonHamiltonicity for an infinite family of $D G_{\mathcal{P}_{t}}$.

4.5.1 Non-Hamiltonicity for regular polygons with small number of sides

In this section we prove that $D G_{\mathcal{P}_{t}}$ fails to be Hamiltonian for every point set when $t=5,6, \ldots, 11$ (see Figure 4.13).
Lemma 4.5.1. For any $n \geq 7$ and any $t \in\{5,6, \ldots, 11\}$, there exists an n-point set S such that $D G_{\mathcal{P}_{t}}(S)$ is non-Hamiltonian.

Figure 4.13: For each $t \in\{5,6,7,8,9,10,11\}$ the graph $D G_{\mathcal{P}_{t}}(S)$ is nonHamiltonian.

Proof. Let $t \in\{5,6, \ldots, 11\}$. Consider the graph $D G_{\mathcal{P}_{t}}(S)$ in Figure 4.13 for such t. Note that such graph is indeed a \mathcal{P}_{t}-Delaunay graph, since for each edge there exists a \mathcal{P}_{t}-disk that contains its vertices on its boundary and is empty of other points of S. Also, note that some edges from the convex hull of S do not appear in such graphs. Finally, notice that there exists an area r that is not contained in any of the \mathcal{P}_{t}-disks associated to the edges of the outer face or the triangle $\triangle p_{1} p_{2} p_{3}$. Such area can have an arbitrary number of points in its interior, say $n-6$. Now, let $G^{\prime}=D G_{\mathcal{P}_{t}}(S) \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$. The graph G^{\prime} consists of 4 connected components, so $D G_{\mathcal{P}_{t}}(S)$ is not 1-tough. Since every Hamiltonian graph is 1-tough, $D G_{\mathcal{P}_{t}}(S)$ is non-Hamiltonian.

4.5.2 An infinite family of regular polygons such that $D G_{\mathcal{P}_{t}}$ is non-Hamiltonian

Based on the point sets given in the previous section, we construct an n-point set S, with $n \geq 7$, such that the following theorem holds.

Theorem 4.5.2. Let \mathcal{P}_{t} be a regular t-gon, where $t>3$ and t is an odd number and multiple of three. For any $n \geq 7$, there exists an n-point set S such that $D G_{\mathcal{P}_{t}}(S)$ is non-Hamiltonian.

Our construction is a generalization of the ones in the previous section. However, in order to be able to prove that $D G_{\mathcal{P}_{t}}(S)$ has the desired structure for arbitrary large values of t, we have to define it in a very precise way.

Before we proceed to prove Theorem 4.5.2, we need some new definitions and a few auxiliary claims.

Let \mathcal{P}_{t} be a regular t-gon, where $t=3(2 m+1)$ for some positive integer m. Without loss of generality, we assume that \mathcal{P}_{t} is oriented so that its bottom side is horizontal. We also assume that its vertices are given in counterclockwise order.

Figure 4.14: An equilateral triangle pointing downwards.

Consider three points p_{1}, p_{2} and p_{3} in the plane that define an equilateral triangle T as in Figure 4.14. Let c be the circumcenter of the triangle T. Let C_{1}, C_{2} and C_{3} be three circles circumscribing the triangles $\triangle p_{1} p_{2} c, \triangle p_{2} p_{3} c$ and $\triangle p_{3} p_{1} c$, respectively. These three circles are Johnson circles, ${ }^{6}$ they have the same radius r, and they intersect at c. Let c_{1}, c_{2} and c_{3} be the centers of C_{1}, C_{2} and C_{3}, respectively. Notice that the line segments $p_{2} c_{2}$ and $c_{3} p_{1}$ are vertical, and that $\angle c c_{i} p_{i+1}=\frac{\pi}{3}$ and $\angle p_{i} c_{i} c=\frac{\pi}{3}$, for all i modulo 3. See Figure 4.15.

Figure 4.15: The circles C_{1}, C_{2}, C_{3} contain triangles $\triangle p_{1} p_{2} c, \triangle p_{2} p_{3} c$ and $\triangle p_{3} p_{1} c$, respectively. The big triangle $T^{\prime}=\triangle p_{4} u v$ is the anticomplementary triangle of T.

Consider the anticomplementary triangle ${ }^{7} T^{\prime}=\triangle p_{4} u v$ of T defined as in

[^7]Figure 4.15. Let $\mathcal{P}_{t}^{1}, \mathcal{P}_{t}^{2}$ and \mathcal{P}_{t}^{3} be the three t-gons inscribed in C_{1}, C_{2} and C_{3}, respectively. See Figure 4.16.

Figure 4.16: Inscribed t-gons for $t=9$. The angles α and α^{\prime} are less than $\frac{\pi}{9}$.

Claim 4.5.3. The points p_{1}, p_{2} and p_{3} are on $\partial \mathcal{P}_{t}^{3} \cap \partial \mathcal{P}_{t}^{1}, \partial \mathcal{P}_{t}^{1} \cap \partial \mathcal{P}_{t}^{2}$ and $\partial \mathcal{P}_{t}^{2} \cap$ $\partial \mathcal{P}_{t}^{3}$, respectively.

Proof. Recall that $t=3(2 m+1)$ with $m>0$. Let $a_{1} b_{1}$ be the bottom side of $\partial \mathcal{P}_{t}^{1}$. Since the line segment $c_{1} c$ is vertical, $c_{1} c$ bisects $a_{1} b_{1}$. Thus, the angle formed by $c_{1} c$ and the i-th vertex of $\partial \mathcal{P}_{t}^{1}$ is given by $\frac{\pi}{t}+\frac{2(i-1) \pi}{t}$. In particular, for $i=m+1$ we obtain $\frac{2 m \pi}{t}+\frac{\pi}{t}=\frac{(2 m+1) \pi}{3(2 m+1)}=\frac{\pi}{3}$, which is precisely $\angle c c_{1} p_{2}$. Hence, $p_{2} \in \partial \mathcal{P}_{t}^{1}$. The proof for $p_{1} \in \partial \mathcal{P}_{t}^{1}$ is symmetric.

Since the bottom sides of $\partial \mathcal{P}_{t}^{2}$ and $\partial \mathcal{P}_{t}^{3}$ are horizontal, the top-most vertices of $\partial \mathcal{P}_{t}^{2}$ and $\partial \mathcal{P}_{t}^{3}$ are p_{2} and p_{1}, respectively. Therefore $p_{1} \in \partial \mathcal{P}_{t}^{1} \cap \partial \mathcal{P}_{t}^{3}$ and $p_{2} \in \partial \mathcal{P}_{t}^{1} \cap \partial \mathcal{P}_{t}^{2}$.

On the other hand, since the top-most point of $\partial \mathcal{P}_{t}^{2}$ is p_{2}, the angle formed by $p_{2} c_{2}$ and the i-th vertex of $\partial \mathcal{P}_{t}^{2}$ is given by $\frac{2 i \pi}{t}$. In particular, for $i=2 m+1$ we obtain $\frac{2(2 m+1) \pi}{3(2 m+1)}=\frac{2 \pi}{3}$, which is precisely $\angle p_{2} c_{2} p_{3}$. Thus, $p_{3} \in \partial \mathcal{P}_{t}^{2}$. Similarly, we can show $p_{3} \in \partial \mathcal{P}_{t}^{3}$.

Given points a and b, we next show how to define a polygon which we call the \mathcal{P}_{t}-of-influence of a and b. Recall that the vertices v_{1}, \ldots, v_{t} of \mathcal{P}_{t} are oriented counterclockwise, where v_{1} is the top-most one. The i-th oriented edge of \mathcal{P}_{t} is defined by $e_{i}=\overrightarrow{v_{i} v_{i+1}}$. We define the oriented line ℓ_{i} as the supporting line of the edge e_{i} with the same orientation as e_{i}. For each ℓ_{i}, we consider two oriented lines parallel to ℓ_{i}, one passing through a and another through b. Among all these lines, we only take those having a and b on its left or on the line. Now,

[^8]

Figure 4.17: The dashed area next to each line represents the half-plane with points on the left of the line. (a) The bold polygon is the \mathcal{P}_{9}-of-influence of p_{5} and p_{6}. (b) The points p_{5} and p_{3} are on the left of $\ell_{5}^{p_{6}}$ and on the right of $\ell_{4}^{p_{6}}$.
consider the left half-planes defined by such oriented lines; the intersection of these half-planes defines the $\mathcal{P}_{t^{-} \text {-of-influence of } a \text { and } b \text {. See Figure 4.17a. Since }}^{\text {. }}$ a point p is in a $\mathcal{P}_{t^{-}}$disk if p is on the left of each supporting line ℓ_{i} or on ℓ_{i}, any \mathcal{P}_{t}-disk containing a and b contains their \mathcal{P}_{t}-of-influence.

Let p_{5} and p_{6} be two points on the boundary of \mathcal{P}_{t}^{2} and \mathcal{P}_{t}^{3}, respectively, such that $\alpha=\angle p_{5} p_{3} u<\frac{\pi}{t}$ and $\alpha^{\prime}=\angle v p_{3} p_{6}<\frac{\pi}{t}$. See Figure 4.16.

Claim 4.5.4. Any $\mathcal{P}_{t^{-}}$-disk containing p_{5} and p_{6} on its boundary contains p_{3} in its interior.

Proof. Note that if p_{3} is in the interior of the \mathcal{P}_{t}-of-influence of p_{6} and p_{5} then the claim follows. Let us show first that p_{3} is in the \mathcal{P}_{t}-of-influence of p_{6} and p_{5} (but not necessarily in its interior). We denote by ℓ_{i}^{p} the parallel line to ℓ_{i} passing through point p. Without loss of generality assume that p_{5} is above the horizontal line passing through p_{6}. Note that α^{\prime} is equal to the inner angle at p_{6} formed by the horizontal line passing through p_{6} and edge $p_{6} p_{3}$, and this angle is less than $\frac{\pi}{t}$. Also, note that for $h=\frac{t-1}{2}+1, \ell_{h}$ is horizontal. Finally, observe that the angle formed by consecutive ℓ_{i}^{p} and ℓ_{i+1}^{p} is $\frac{2 \pi}{t}$. Then, p_{3} is contained in the wedge defined by $\ell_{h}^{p_{6}}$ and $\ell_{h-1}^{p_{6}}$ with inner angle $\frac{2 \pi}{t}$ that lies above $\ell_{h}^{p_{6}}$. Refer to Figure 4.17b. Since $\alpha^{\prime}<\frac{\pi}{t}$, this wedge contains the wedge defined by edge $p_{6} p_{3}$ and $\ell_{h}^{p_{6}}$, which contains p_{5}. Thus, p_{5} is on the left of $\ell_{h}^{p_{6}}$ and on the right of $\ell_{h-1}^{p_{6}}$. The lines of the form $\ell_{i}^{p_{6}}$ that have p_{5} on its left are the ones encountered when rotating $\ell_{h}^{p_{6}}$ along p_{6} counterclockwise until it hits p_{5}; the total angle of rotation is π minus the inner angle formed by $p_{5} p_{6}$ and

Figure 4.18: The gray area A_{c} is contained in the interior of $C_{1} \backslash\left(C_{2} \cup C_{3}\right)$ and is not contained in \mathcal{P}_{9}^{1}.
$\ell_{h}^{p_{6}}$. Therefore, these lines are $\ell_{h}^{p_{6}}, \ell_{h+1}^{p_{6}}, \ldots, \ell_{t}^{p_{6}}$. Since the wedge defined by $\ell_{h}^{p_{6}}$ and $\ell_{t}^{p_{6}}$ containing p_{5} has angle $\frac{\pi}{t}, p_{3}$ also lies on such wedge and p_{3} is on the left of $\ell_{t}^{p_{6}}$. Moreover, the angle of the cone containing p_{5} formed by $\ell_{h}^{p_{6}}$ and $\ell_{i}^{p_{6}}$, for any $i \in\{h+1, \ldots, t\}$, is at least $\frac{\pi}{t}$. Hence, p_{3} lies on the left of $\ell_{i}^{p_{6}}$ for all $i \in\{h, \ldots, t\}$. Similarly, we show that $\ell_{i}^{p_{5}}$ has p_{6} on its left if and only if $i=\left\{1, \ldots, \frac{t-1}{2}\right\}$, and these lines also have p_{3} on its left. Thus, p_{3} is in the \mathcal{P}_{t}-of-influence of p_{5} and p_{6}. Moreover, since p_{3} is strictly on the left of all the mentioned relevant lines, p_{3} is in the interior of the \mathcal{P}_{t}-of-influence of p_{5} and p_{6}. Therefore, p_{3} is in the interior of any \mathcal{P}_{t}-disk containing p_{5} and p_{6}.

Now, we proceed to prove Theorem 4.5.2.
Proof of Theorem 4.5.2. Since the bottom side e_{b} of \mathcal{P}_{t}^{1} is horizontal and the intersection of the three circles C_{1}, C_{2}, C_{3} is only the point c, there is an empty space in C_{1} bounded by e_{b} and the circular arcs of C_{2} and C_{3} with endpoints c and the intersection points $e_{b} \cap C_{2}$ and $e_{b} \cap C_{3}$. Let us call such area A_{c}. See Figure 4.18. Let S^{\prime} be a set of $n-6$ points in general position contained in A_{c}. Let $S=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\} \cup S^{\prime}$.

Since for $i=1,2,3$ the $\mathcal{P}_{t^{-}}$disk \mathcal{P}_{t}^{i} contains no point of S in its interior, from Claim 4.5.3 it follows that the edges $p_{1} p_{2}, p_{2} p_{3}, p_{3} p_{1}$ are in $D G_{\mathcal{P}_{t}}(S) .{ }^{8}$ Also, since for each of the edges $p_{5} p_{2}, p_{2} p_{4}, p_{4} p_{1}, p_{1} p_{6}, p_{6} p_{3}$ and $p_{3} p_{5}$, its endpoints lie on $\partial \mathcal{P}_{t}^{i}$ for some fixed $i \in\{1,2,3\}$, such edges are in $D G_{\mathcal{P}_{t}}(S)$. By Claim 4.5.4, $p_{5} p_{6} \notin D G_{\mathcal{P}_{t}}(S)$. Hence, the outerface of $D G_{\mathcal{P}_{t}}(S)$ is given by the edges $p_{5} p_{2}, p_{2} p_{4}, p_{4} p_{1}, p_{1} p_{6}, p_{6} p_{3}$ and $p_{3} p_{5}$.

[^9]The graph $D G_{\mathcal{P}_{t}}(S)$ is not 1-tough because $D G_{\mathcal{P}_{t}}(S) \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$ consists of four connected components, namely, $\left\{p_{4}\right\},\left\{p_{5}\right\},\left\{p_{6}\right\}$ and $D G_{\mathcal{P}_{t}}\left(S^{\prime}\right)$. Therefore, $D G_{\mathcal{P}_{t}}(S)$ is not Hamiltonian.

4.6 Conclusions

In this chapter we have presented the first general results on Hamiltonicity for higher-order convex-shape Delaunay and Gabriel graphs. By combining properties of metrics and packings, we have achieved general bounds for any convex shape, and improved bounds for point-symmetric shapes, as well as for even-sided regular polygons. For future research, we point out that our results are based on bottleneck Hamiltonian cycles, in the same way as all previously obtained bounds [2, 39, 67]. However, in several cases, as we show in Section 4.4, this technique is reaching its limit. Therefore a major challenge to effectively close the existing gaps will be to devise a different approach to prove Hamiltonicity of Delaunay graphs.

An Affine Delaunay TRIANGULATION AND MORE

Affine invariance of various geometric structures is an important property in areas like graphics and computer aided geometric design. In the context of triangulations, consider a triangulation algorithm T, which given a point set S computes a triangulation $T(S)$. We say that T is affine invariant if and only if for any invertible affine transformation α (see Section 5.1 for a formal definition), the triangulations $\alpha(T(S))$ and $T(\alpha(S))$ are the same; i.e., triangle $\triangle p q r$ is in $T(S)$ if and only if triangle $\triangle \alpha(p) \alpha(q) \alpha(r)$ is in $T(\alpha(S))$. Note that α is not known to the triangulation algorithm.

Besides the Delaunay triangulation, another famous triangulation is the minimum weight triangulation, denoted $M W T$, which minimizes the sum of the Euclidean-length of its edges. The Delaunay triangulation may fail to be a minimum weight triangulation by a factor of $\Theta(n)$ where n is the size of S [69]. It is easy to see that neither the Delaunay triangulation nor the minimum weight triangulation is affine invariant in general (see Figure 5.1). This is because nonuniform stretching can make a point previously outside of a circumcircle become inside, or edge lengths can increase non-uniformly.

Affine invariance is also important in the analysis and visualization of data, to guarantee for instance that different units of measurement do not influence the geometric structure, such as a triangulation that is computed. For this reason, Nielson [85] defined an affine invariant normed metric A_{S} of a point set S, denoted A_{S}-norm, where for each point $v \in S$ and any affine transformation $\alpha, A_{S}(x)=A_{\alpha(S)}(\alpha(x))$. The A_{S}-norm produces ellipses (see Figure 5.2) as the boundary of the A_{S}-norm disk and using this notion Nielson [86] defined an A_{S}-Delaunay triangulation that is affine invariant. Nielson's approach does not distinguish if the point set is rotated or reflected. While this is not an issue to obtain an affine invariant Delaunay triangulation, it makes the method

Figure 5.1: The points on the left correspond to an affine transformation of the points on the right, where each point is mapped to the point with the same color. The $D T$ and $M W T$ (equal in this case) differ between the left and right points, hence they are not affine invariant.
unsuitable to construct other triangulations or geometric objects, like the ones discussed in Section 5.3. Surprisingly the whole topic of affine invariant geometric constructions has gone virtually unnoticed in the computational geometry literature. Note that the use of the title "Affine invariant triangulations" have also been used by Haesevoets et al. [64], but with different meaning, to study affine invariant triangulation methods of the union of given triangles at different times (two triangles can overlap in different regions).

Our contributions. We revisit the A_{S}-norm and explain the geometry behind it in order to understand how the A_{S}-Delaunay triangulation behaves. We show that such triangulations have a spanning ratio related to the spanning ratio of the standard Delaunay triangulation, and that the hierarchy of subgraphs of the Delaunay triangulation, such as the minimum spanning tree [102] or the relative neighborhood graph [102] is also affine invariant. In addition, we show how to use the A_{S}-norm to compute different affine invariant orderings of a point set (radial order, sweep line ordering, and a polygon traversal ordering). Using these affine invariant orderings as subroutines, we can adapt standard geometric algorithms for computing a triangulation of a point set or a polygon to become affine invariant.

5.1 Preliminaries

An affine transformation $\alpha: X \rightarrow Y$ is a function of the form $\alpha(v)=M v+$ b where X and Y are affine space mapped, M is a linear transformation on each vector in X, and b is a vector in Y. In this chapter we will work in \mathbb{R}^{2}, i.e., $X=Y=\mathbb{R}^{2}, M$ is a matrix in $\mathbb{R}^{2} \times \mathbb{R}^{2}$ and b is a vector in \mathbb{R}^{2}. For the rest of this chapter we will not distinguish a point from a vector unless notation is confusing, and we will assume that α is invertible, i.e., it is a nondegenerate function and $\operatorname{det}(M) \neq 0$. Let S be a point set, we denote $\alpha(S)$ the

Figure 5.2: Point set S^{\prime} is an affine transformation of S. Each color of the ellipses represents the corresponding boundary of the $A_{S^{-}}$and $A_{S^{\prime}}$-disk centered at the red point (mean) and containing the corresponding point of each transformation.
set $\{\alpha(v): v \in S\}$. The following proposition states some well-known properties of affine transformations.

Proposition 5.1.1. [38] Let $\alpha(v)=M v+b$ be an affine invertible transformation on the affine space X and let S be a point set in X. Then function α :

1. maps lines (resp., line segments) to lines (resp., line segments),
2. preserves parallelism between lines and line segments,
3. maps a simple n-gon to a simple n-gon,
4. preserves the ratio of lengths of two parallel segments,
5. preserves the ratio of areas of two object, and
6. maps the mean of S to the mean of $\alpha(S)$.

Let $S=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a point set in the plane of size n. The order type of S is a mapping that assigns to each ordered triple $i, j, k \in\{1, \ldots, n\}$ the orientation of p_{i}, p_{j} and p_{k} (either clockwise or counterclockwise). It can be shown that order types are preserved up to a change of sign, by checking for each triple $p_{i}, p_{j}, p_{k} \in S$ the signed area of the triangles $\triangle p_{i} p_{j} p_{k}$ and $\triangle \alpha\left(p_{i}\right) \alpha\left(p_{j}\right) \alpha\left(p_{k}\right)$ given by the following cross product $\alpha\left(p_{i}-p_{j}\right) \times \alpha\left(p_{k}-p_{j}\right)=$ $\operatorname{det}(M)\left(\left(p_{i}-p_{j}\right) \times\left(p_{k}-p_{j}\right)\right)$.

We denote the coordinates of each point p_{i} in S by $\left(p_{i_{x}}, p_{i_{y}}\right)$. Nielson [85] defines an affine invariant normed metric, that we call A_{S}-norm, in the following way.

Let

$$
\begin{gathered}
\mu_{x}=\frac{\sum_{i=1}^{n} p_{i_{x}}}{n}, \quad \mu_{y}=\frac{\sum_{i=1}^{n} p_{i_{y}}}{n}, \quad \sigma_{x}^{2}=\frac{\sum_{i=1}^{n}\left(p_{i_{x}}-\mu_{x}\right)^{2}}{n} \\
\sigma_{y}^{2}=\frac{\sum_{i=1}^{n}\left(p_{i_{y}}-\mu_{y}\right)^{2}}{n}, \quad \sigma_{x y}=\frac{\sum_{i=1}^{n}\left(p_{i_{x}}-\mu_{x}\right)\left(p_{i_{y}}-\mu_{y}\right)}{n} .
\end{gathered}
$$

Note that the mean $\mu=\left(\mu_{x}, \mu_{y}\right)$ is the barycenter of S. The covariance matrix of a point set S is defined as $\Sigma=\left(\begin{array}{cc}\sigma_{x}^{2} & \sigma_{x y} \\ \sigma_{x y} & \sigma_{y}^{2}\end{array}\right)$ and its inverse as $\Sigma^{-1}=\frac{1}{\sigma_{x}^{2} \sigma_{y}^{2}-\sigma_{x y}^{2}} \cdot\left(\begin{array}{cc}\sigma_{y}^{2} & -\sigma_{x y} \\ -\sigma_{x y} & \sigma_{x}^{2}\end{array}\right)$.

The matrix Σ^{-1} is also known as the concentration matrix [51], which defines a norm with respect to the normal (Gaussian) distribution defined by S. The eigenvectors of Σ and Σ^{-1} are the same and these vectors define the principal orthogonal directions of how spread the point set is with respect to its mean (barycenter) μ. In other words, if we compute the Gaussian manifold defined by the bivariate normal distribution given by the point set S and then cut the Gaussian manifold with a plane parallel to the plane $z=0$, then we obtain an ellipse. See Figure 5.2. Such an ellipse has principal orthogonal axes defined by the eigenvectors of Σ^{-1}. Thus, the boundary of an A_{S}-disk will be defined by a homothet of the resulting ellipse. In addition, the boundary of the unit A_{S}-disk will be represented by the ellipse with principal axes being parallel to the eigenvectors of Σ^{-1}, and the magnitude of each principal axis will be given by the square root of the eigenvalue of the corresponding unit eigenvector.

Throughout this chapter, we say that a point set S is in general position if no three points are collinear and all points in S are at different A_{S}-norm distance from the mean μ. Since the boundary of the $A_{S^{-}}$disk is an ellipse, Nielson computes the A_{S}-Delaunay triangulation, denoted $D T_{A_{S}}(S)$, where an edge $u v$ is in $D T_{A_{S}}(S)$ provided that it satisfies the A_{S}-disk empty property, and shows the following.

Theorem 5.1.2 (Nielson [86]). The triangulation represented by $D T_{A_{S}}(S)$ is affine invariant.

5.2 The A_{S}-Delaunay triangulation revisited

In this section we discuss the connection between the standard Delaunay triangulation and the A_{S}-Delaunay triangulation.

Let S be a point set in \mathbb{R}^{2} in general position. Consider the $2 \times n$ matrix N such that for each point p in S there is one column in N represented by the vector $\overline{p-\mu}$. Then, one can check that $\Sigma=\frac{1}{n} N N^{T}$. If a point set $S^{\prime}=\alpha(S)$ and $\alpha(\bar{p})=M \bar{p}+b$ with $p \in S$, is an affine transformation of the point set S, then its mean is given by $\alpha(\mu)$ and the covariance matrix Σ^{\prime} of S^{\prime} is given by $\Sigma^{\prime}=M \Sigma M^{T}$, recall that M is a 2×2 matrix in \mathbb{R}^{2} with $\operatorname{det}(M) \neq 0$.

Since S is in general position, $\operatorname{det}(\Sigma) \neq 0$. Thus, Σ is invertible. Moreover, since Σ is a square symmetric matrix, $\Sigma=Q \Lambda Q^{T}$ where Q is the matrix of eigenvectors of Σ, Λ is the diagonal matrix of eigenvalues and $Q^{-1}=Q^{T}$. Recall that if a matrix M is diagonal, then $M=M^{T}$ and that M^{t} with $t \in \mathbb{R}^{+}$has entries $M_{i, j}^{t}$. Therefore, we can also rewrite the covariance matrix as $\Sigma=\left(Q \Lambda^{\frac{1}{2}}\right)\left(Q \Lambda^{\frac{1}{2}}\right)^{T}$. Furthermore, Q represents a rotation matrix and $\Lambda^{\frac{1}{2}}$ represents the scaling factor of a point set where the covariance matrix is the identity matrix \mathbb{I}. Looking carefully at this representation of Σ and Σ^{\prime} above, we obtain that $\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S$ is an affine transformation of S with \mathbb{I} as its covariance matrix. We refer to the point set $\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S$ as the point set S normalized. Note that the unit $A_{\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S}$-disk is the Euclidean unit disk. This implies that the $A_{\left(Q \Lambda^{\frac{1}{2}}\right)^{-1}(S)}$-Delaunay triangulation of $\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S$ is given by the Delaunay triangulation of $\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S$, which together with Theorem 5.1.2 proves the following proposition.
Proposition 5.2.1. Let S be a point set in general position in \mathbb{R}^{2} and let $\Sigma=Q \Lambda Q^{T}$ be its covariance matrix where Q is the matrix of eigenvectors of Σ and Λ is the diagonal matrix of eigenvalues. Then, $D T\left(\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S\right)=D T_{A_{S}}(S)$.

Let $S^{\prime}=\alpha(S)$ be an affine transformation of the point set S with covariance matrix $\Sigma^{\prime}=Q^{\prime} \Lambda^{\prime} Q^{\prime T}$. Notice that even though the point sets $\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S$ and $\left(Q^{\prime} \Lambda^{\prime \frac{1}{2}}\right)^{-1} S^{\prime}$ have the Euclidean metric as the A_{S}-norm, both point sets can be different, since the unit eigenvectors are the ones mapped to the unit base $\{(1,0),(0,1)\}$. In other words, $\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S$ and $\left(Q^{\prime} \Lambda^{\frac{1}{2}}\right)^{-1} S^{\prime}$ are the same point set up to rotations and reflections.

For instance, in Figure 5.3 we have on the left a point set that defines the Euclidean metric as its A_{S}-norm, in the middle we have the point set resulted from a rotation and scaling of the point set on the left. Finally, the point set on the right is a normalization of the point set in the middle. Note that the two point sets on the right and left are different by a rotation.

Figure 5.3: (left) Point set with A_{S}-norm the Euclidean metric, (middle) an affine transformation of point set in the left, (right) a resulting point set when normalizing the point set in the middle.

Another example is depicted in Figure 5.4, where we have two point sets in the middle that can be transformed into each other by an affine transformation - one is a reflection of the other by the x-axis. When we normalize each of the two middle point sets, we obtain the point set on the extreme left and right, respectively. Note that such these two point sets are different. Moreover, the point sets on the left and right have different order type.

On the other hand, a nice implication of Proposition 5.2.1 is that the $A_{S^{-}}$ Delaunay triangulation behaves in many ways like a standard Delaunay triangulation. For instance, from the results given by Dillencourt [49], it follows that the $D T_{A_{S}}(S)$ contains a perfect matching when $|S|$ is even, and that it is 1-tough.

It is known that the standard Delaunay triangulation is a spanner, see [50, $68,108]$. The following theorem shows that $D T_{A_{S}}(S)$ is also a spanner whose spanning ratio is a constant factor times the spanning ratio of the standard Delaunay triangulation. The constant factor depends on the eigenvalues of the co-variance matrix.

Figure 5.4: The two point sets in the middle are the initial point sets, one is an affine transformation of the other one. The point set on the left is the obtained point set when normalizing the left-middle point set and the point set on the right is the obtained point set when normalizing the right-middle point set.

Theorem 5.2.2. Let S be a point set in general position and let $\Sigma=Q \Lambda Q^{T}$ be the covariance matrix of S. Let $\lambda_{\max }$ and $\lambda_{\min }$ be the maximum and minimum eigenvalues of Σ, respectively. Then,

$$
\operatorname{sr}\left(D T_{A_{S}}(S)\right) \leq\left(\frac{\lambda_{\max }}{\lambda_{\min }}\right)^{\frac{1}{2}} \cdot \operatorname{sr}\left(D T\left(\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S\right)\right)
$$

Proof. Let $S^{\prime}=\left(Q \Lambda^{\frac{1}{2}}\right)^{-1} S$. The triangulation $D T\left(S^{\prime}\right)$ is a standard Delaunay triangulation. For every pair of points $u, v \in S^{\prime}$ let $\delta_{u v}$ be a shortest path from u to v contained in $D T\left(S^{\prime}\right)$. By definition the spanning ratio $\frac{\sum_{\left(p_{i}, p_{j}\right) \in \delta_{u v}} d\left(p_{i}, p_{j}\right)}{d(u, v)} \leq$ $\operatorname{sr}\left(D T\left(S^{\prime}\right)\right)$.

Note that the only thing that changes the spanning ratio is when the graph $D T\left(S^{\prime}\right)$ is stretched with different scaling factors in the x - and y-coordinates. As discussed previously, such scaling is defined by the square root of the eigenvalues of Σ given in the diagonal matrix Λ. Hence, for any $u, v \in S^{\prime}$ we have $d\left(\Lambda^{\frac{1}{2}} u, \Lambda^{\frac{1}{2}} v\right) \leq \lambda_{\text {max }}^{\frac{1}{2}} \cdot d(u, v)$ and $d\left(\Lambda^{\frac{1}{2}} u, \Lambda^{\frac{1}{2}} v\right) \geq \lambda_{\text {min }}^{\frac{1}{2}} \cdot d(u, v)$. Therefore, $\operatorname{sr}\left(D T_{A_{S}}(S)\right) \leq\left(\frac{\lambda_{\max }}{\lambda_{\min }}\right)^{\frac{1}{2}} \cdot \operatorname{sr}\left(D T\left(S^{\prime}\right)\right)$.

5.3 Primitives for other affine invariant geometric constructions

A natural line of study to follow is to consider other geometric objects with affine invariant construction algorithms, such as algorithms for triangulating a point set besides the A_{S}-Delaunay triangulation, triangulating a simple polygon, or computing a k-angulation of a point set, among others. In this section we identify some ingredients for defining such methods.

At first sight, when such constructions rely on a metric, then the A_{S}-norm can be used, for instance to compute an affine invariant Delaunay triangulations or a minimum weight triangulation. In general, these types of algorithms can be split into two categories: (1) based on an empty disk property, and (2) based on the rank of the length of the $\binom{n}{2}$ edges of a point set. Later we present different examples of algorithms that result to be affine invariant using the A_{S}-norm.

However, this does not always work. Many algorithmic techniques rely on the given order of the points, such as a radial order or the order obtained by sweeping the point set in a given direction. If we can use the A_{S}-norm in order to normalize S by mapping all of its points to a point set S^{\prime} where the $A_{S^{\prime}}$-norm is the Euclidean distance, then we can apply the standard algorithms in S^{\prime} for obtaining an affine invariant radial order or sweep-line order. Yet, as noted in Section 5.2 , this is not enough. This only solves the scaling factors on the x and y-coordinates, but it does not solve rotations or reflections. For instance,
if S is a point set such that A_{S}-norm is the Euclidean distance and S^{\prime} is a rotation of S, then the boundary of the $A_{S^{\prime}}$-disk is also defined by a circle, and there is no transformation needed. However, the resulting order of a sweep-line with respect to the x-coordinates for S and S^{\prime} will not necessarily be the same. Another simple example is when P is a simple polygon with vertex set S, such that S has as $A_{S^{\prime}}$-disk the Euclidean disk. Consider point set S^{\prime} obtained by reflecting P with respect to the x-axis, and the resulting polygon P^{\prime}. Again, S^{\prime} will have as $A_{S^{\prime}}$-disk the Euclidean disk. However, the clockwise order of S and S^{\prime} might be different.

Thus, the next question is, what do we need in order to create affine invariant sorting methods? For any sorting method, we always need to define which point is the initial point, so, we have to be able to choose a point \wp in the point set S, such that for any affine transformation α, we always choose $\alpha(\wp)$ as the initial point. Second, for the cases of radial order and sweep-line we need a ray $\overrightarrow{\wp \mu}$ and a line ℓ_{\wp}, respectively, such that for any affine transformation α, we always choose $\overrightarrow{\alpha(\wp) \alpha(\mu)}$ and line $\alpha\left(\ell_{\wp}\right)$, respectively. Finally, since there might be reflections, which change clockwise for counterclockwise and left for right of a ray, we need to be able to choose the right orientation (clockwise or counterclockwise, right or left) whether there is a reflection or not. We can solve this problem if we are able to choose a point δ, such that for any affine transformation α, we always choose $\alpha(\delta)$. Then the direction is given depending on which side of the plane $\alpha(\delta)$ lies with respect to $\overrightarrow{\alpha(\wp) \alpha(\mu)}$.

We say that a function f of S is affine invariant if and only if $\alpha(f(S))=$ $f(\alpha(S))$ for any affine transformation α. For instance, the median $f(S)=\mu$ is an affine invariant function. Hence, note that if we manage to define affine invariant functions that compute a point, a ray, and an oriented line, there is no need for mapping S to a point set S^{\prime} with $A_{S^{\prime}}$-norm as the Euclidean metric.

Let S be a point set in general position. Let u, v be two points in S. We say that point u is on the right of $\overrightarrow{w z}$ if the signed area of $\triangle z w u$ is positive. Otherwise, u is on the left of $\overrightarrow{w z}$. Let $\alpha(x)=M x+b$ be an affine transformation of \mathbb{R}^{2}. Using that $\alpha(w-z) \times \alpha(w-u)=\operatorname{det}(M)((w-z) \times(w-u))$ one can check that if $\operatorname{det}(M)<0$, then the orientation of $\alpha(u)$ with respect to $\overrightarrow{\alpha(w) \alpha(z)}$ changes. Otherwise, the orientation remains the same. We say that u and v lie on the same side of a directed line segment $\overrightarrow{w z}$ if $\operatorname{sign}((w-z) \times(w-u))=$ $\operatorname{sign}((w-z) \times(w-v))$.

Observation 5.3.1. Let $\overrightarrow{w z}$ be a directed line segment in \mathbb{R}^{2} and let v, u be two points in S. Let α be an affine transformation. The points u and v are on the same side of $\overrightarrow{w z}$ if and only if $\alpha(u)$ and $\alpha(v)$ are on the same side of $\overrightarrow{\alpha(w) \alpha(z)}$.

Figure 5.5: The bold polygons define the convex hull of two point sets that can be transform into each other by an affine transformation. Equal color indicate pairs of points and their affine transformations. The triangle defined by the points μ, black and purple is the triangle with largest area. In addition, the triangle defined by the points μ, yellow and green is the triangle with second largest area.

Proof. Since u and v are on the same side of $\overrightarrow{w z}, \operatorname{sign}((w-z) \times(w-u))=$ $\operatorname{sign}((w-z) \times(w-v))$. Hence,
$\operatorname{sign}(\alpha(w)-\alpha(z)) \times(\alpha(w)-\alpha(u)))=\operatorname{sign}(\operatorname{det}(M)) \operatorname{sign}((w-z) \times(w-u))=$ $\operatorname{sign}(\operatorname{det}(M)) \operatorname{sign}((w-z) \times(w-v))=\operatorname{sign}((\alpha(w)-\alpha(z)) \times(\alpha(w)-\alpha(v)))$.

Note that there may be several ways of implementing affine invariant functions that compute the desired primitives for sorting: a point $\wp \in S$, a ray $\overrightarrow{\wp \mu}$ and a point δ that defines an orientation with respect to $\overrightarrow{\wp \mu}$. In the rest of this section we provide two different procedures for defining the desired primitives.

In the following observation, we use the convex hull and the barycenter of S in order to compute the primitives.

Observation 5.3.2. Let S be a point set in general position in the plane. Let μ be the mean of S and let $C H(S)$ be the convex hull of S. For each edge $p_{i} p_{i+1} \in C H(S)$, consider the triangle $p_{i} p_{i+1} \mu$. Assume that the areas of these triangles are pairwise different. Let ϑ and δ be the barycenters of the triangles with largest and second largest area, respectively, denoted $\triangle_{B_{1}}$ and $\triangle_{B_{2}}$, respectively. Consider the ray $\overrightarrow{\mu \vartheta}$. If δ is on the left of $\overrightarrow{\mu \vartheta}$, then let \wp be the vertex of $\triangle_{B_{1}}$ that is on the left of $\overrightarrow{\mu \vartheta}$. Otherwise, let \wp be the vertex of $\triangle_{B_{1}}$ that is on the right of $\overrightarrow{\mu \vartheta}$. The functions $f_{1}(S)=\vartheta, f_{2}(S)=\delta$ and $f_{3}(S)=\wp$ are affine invariant. See Figure 5.5.

Proof. Let $S^{\prime}=\alpha(S)$ be an affine transformation of S. Consider the convex hull $C H\left(S^{\prime}\right)$ of S^{\prime} and for each edge $p_{i}^{\prime} p_{i+1}^{\prime}$ of $C H\left(S^{\prime}\right)$ we consider the triangles $\triangle p_{i}^{\prime} p_{i+1}^{\prime} \alpha(\mu)$. Let $\triangle_{B_{1}}^{\prime}$ and $\triangle_{B_{2}}^{\prime}$ be the triangles with largest and second largest
area of the triangles defined by the edges of $C H\left(S^{\prime}\right)$ and $\alpha(\mu)$. Let $f_{1}\left(S^{\prime}\right)=\vartheta^{\prime}$ and $f_{2}\left(S^{\prime}\right)=\delta^{\prime}$ be the barycenters of $\triangle_{B_{1}}^{\prime}$ and $\triangle_{B_{2}}^{\prime}$, respectively. If δ^{\prime} is on the left of $\overrightarrow{\alpha(\mu) \vartheta}$, then let $f_{3}\left(S^{\prime}\right)=\wp^{\prime}$ be the vertex in $\triangle_{B_{1}}^{\prime}$ that is on the left of $\overrightarrow{\alpha(\mu) \vartheta^{\prime}}$. Otherwise, let $f_{3}\left(S^{\prime}\right)=\wp^{\prime}$ be the vertex $\triangle_{B_{1}}^{\prime}$ that is on the right of $\overrightarrow{\alpha(\mu) \vartheta^{\prime}}$.

Let us show that $\alpha\left(f_{1}(S)\right)=\alpha(\vartheta)=\vartheta^{\prime}=f_{1}\left(S^{\prime}\right), \alpha\left(f_{2}(S)\right)=\alpha(\delta)=\delta^{\prime}=$ $f_{2}\left(S^{\prime}\right)$ and $\alpha\left(f_{3}(S)\right)=\alpha(\wp)=\wp^{\prime}=f_{3}\left(S^{\prime}\right)$. From Proposition 5.1.1(6) the mean of S^{\prime} is $\alpha(\mu)$. From Proposition 5.1.1(3) the convex hull of S is mapped to the convex hull S^{\prime}. Also, from Proposition 5.1.1(3), for each edge $p_{i} p_{i+1} \in C H(S)$, the triangle $\triangle p_{i} p_{i+1} \mu$ is mapped to $\triangle \alpha\left(p_{i}\right) \alpha\left(p_{i+1}\right) \alpha(\mu)$. Let \triangle be a triangle defined by the endpoints of an edge in $C H(S)$ and μ, that is different from $\triangle_{B_{1}}$. Since $\operatorname{Area}\left(\triangle_{B_{1}}\right)>\operatorname{Area}(\triangle), \frac{\operatorname{Area}\left(\triangle_{S}\right)}{\operatorname{Area}(\triangle)}>1$. From Proposition 5.1.1(5) $\frac{\operatorname{Area}\left(\alpha\left(\triangle_{B_{1}}\right)\right)}{\operatorname{Area}(\alpha(\triangle))}=\frac{\operatorname{Area}\left(\triangle_{B_{1}}\right)}{\text { Area }(\triangle)}>1$. Thus, $\operatorname{Area}\left(\alpha\left(\triangle_{B_{1}}\right)\right)>\operatorname{Area}(\alpha(\triangle))$. Therefore, $\alpha\left(\triangle_{B_{1}}\right)=\triangle_{B_{1}}^{\prime}$. By the same arguments, $\alpha\left(\triangle_{B_{2}}\right)=\triangle_{B_{2}}^{\prime}$. Hence, ϑ^{\prime} and δ^{\prime} are the barycenters of $\alpha\left(\triangle_{B_{1}}\right)$ and $\alpha\left(\triangle_{B_{2}}\right)$, respectively. From Proposition 5.1.1(6) follows that $\alpha(\vartheta)=\vartheta^{\prime}$ and $\alpha(\delta)=\delta^{\prime}$. From Proposition 5.1.1(1) we have that $\overrightarrow{\mu \vartheta}$ is mapped to $\overrightarrow{\alpha(\mu) \vartheta^{\prime}}$. From Observation 5.3.1 follows that $\alpha(\wp)=\wp^{\prime}$.

Under the assumption that the area of the triangles defined by each edge of the $C H(S)$ and μ are pairwise different, we can define affine invariant functions that compute a point \wp of S, a ray $\overrightarrow{\wp \mu}$, a line defined by μ and any of \wp and ϑ; and a direction defined by a ray $\overrightarrow{\wp \mu}$ and point δ. On the other hand, notice that using the area of a triangle formed by the mean μ of S and any pair of points, we obtain an affine invariant order of the edges of the complete graph of S such that each edge has weight equal to the area of the triangle formed by its endpoints and μ. Under the assumption that pairwise triangles have different area, we can also obtain affine invariant algorithms that are based on the rank of the edges of the complete graph.

We will say that a point u is the A_{S}-closest point to μ if u minimizes the A_{S}-distance to μ. Using the fact that $A_{S^{-n o r m}}$ is affine invariant, we observe that there is another method for distinguishing the desired primitives for affine invariant radial and sweep-line ordered.

Observation 5.3.3. Let S be a point set in general position and let μ be the mean of S and let $\alpha(S)$ be an affine transformation of S with mean μ^{\prime}. The k-th A_{S}-closest point to μ is mapped to the k-th $A_{\alpha(S)}$-closest point to μ^{\prime}.

Proof. Since S is in general position, all of the points in S are at different A_{S}-distance to μ. Hence, we can order the points in S in increasing order with respect to the A_{S}-distance from each point to μ. Since A_{S} is an affine

Figure 5.6: An affine invariant ordering of the point sets S (left) and its affine transformation $S^{\prime}=\alpha(S)$ (right).
invariant norm, the points in $\alpha(S)$ are also at different $A_{\alpha(S)}$-distance to the mean $\alpha(\mu)=\mu^{\prime}$. This again defines an order of $\alpha(S)$. Since the A_{S}-distance is invariant under affine transformations, it follows that the increasing order with respect to the A_{S}-distance from each point to μ is affine invariant. Thus, the k-th A_{S}-closest point to μ is mapped to the $A_{\alpha(S)}$-closest point to μ^{\prime}.

From Observation 5.3.3 it follows that we can also use the A_{S}-norm in order to define affine invariant functions $f_{1}(S)$ and $f_{2}(S)$, such that each function computes a point in the following fashion. Let μ be the mean of $S, f_{1}(S)=\wp$ be the A_{S}-closest point to μ. Let $f_{2}(S)=\delta$ be the second A_{S}-closest point to μ if it is not on the line defined by μ and \wp. Otherwise, let $f_{2}(S)=\delta$ be the third A_{S}-closest point to μ.

5.4 Affine invariant sorting algorithms of a point set

In this section we present two different sorting algorithms that together with the affine invariant primitives we defined before result into two different affine invariant sorting methods.

5.4.1 Affine invariant radial ordering

Let μ, δ and \wp be three non-collinear points, such that \wp is in S. Consider the following radial sorting procedure of S.

RADIALLYSORT (S, μ, δ, \wp) : Sort points radially around \wp in the direction of δ, starting from μ. See Figure 5.6.

Using Observations 5.3 .1 and 5.3 .3 we can prove that the radial order produced by RadiallySort is affine invariant.

Figure 5.7: (a) p_{i}^{\prime} is not in $T=\triangle p_{i-1}^{\prime} \wp^{\prime} \alpha\left(p_{i}\right)$ and u is the intersecting point of $\wp^{\prime} p_{i}^{\prime}$ and $\alpha\left(p_{i}\right) p_{i-1}^{\prime}$. (b) p_{i}^{\prime} is in the interior of $T=\triangle v \wp^{\prime} \alpha\left(p_{i}\right)$ and the Euclidean distance from \wp^{\prime} to v is the same from \wp^{\prime} to p_{i-1}^{\prime}.

Theorem 5.4.1. Let S be a point set in general position and let $f_{1}(S)=$ $\mu, f_{2}(S)=\delta$ and $f_{3}(S)=\wp$ be three affine invariant functions such that μ, δ, \wp are three non-collinear points and $\wp \in S$. Then, RADIALLYSORT (S, μ, δ, \wp) computes an affine invariant radial order.

Proof. Let α be an affine transformation. Let $p_{0}=\wp, p_{2}, \ldots, p_{n-1}$ be the order of S given by $\operatorname{RadialLySort}(S, \mu, \delta, \wp)$ and let $p_{0}^{\prime}=\wp^{\prime}, p_{2}^{\prime}, \ldots, p_{n-1}^{\prime}$ be the order of $\alpha(S)$ given by RadiallySort $\left(\alpha(S), f_{1}(\alpha(S))=\mu^{\prime}, f_{2}(\alpha(S))=\right.$ $\left.\delta^{\prime}, f_{3}(\alpha(S))=\wp^{\prime}\right)$, respectively. Then, $\alpha\left(p_{0}\right)=\alpha(\wp)=\wp^{\prime}=p_{0}, \alpha(\mu)=\mu^{\prime}$ and $\alpha(\delta)=\delta^{\prime}$. It remains to show that $p_{i}^{\prime}=\alpha\left(p_{i}\right)$ for all $1 \leq i \leq n-1$. If p_{1} is on the ray $\overrightarrow{\wp \mu}$, then $\alpha\left(p_{1}\right)$ is on the ray $\overrightarrow{\wp^{\prime} \mu^{\prime}}$. Thus, $p_{1}^{\prime}=\alpha\left(p_{1}\right)$. Assume that p_{1} is not on $\overrightarrow{\wp \mu}$.

Assume by induction that the order is affine invariant for the first $i-1$ points and let us show $\alpha\left(p_{i}\right)=p_{i}^{\prime}$. Assume for the sake of a contradiction that $\xrightarrow{\alpha\left(p_{i}\right)} \neq p_{i}^{\prime}$. First, let us show that p_{i}^{\prime} is on the same side as $\alpha\left(p_{i}\right)$ with respect to $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$ (we consider the ray $\overrightarrow{\wp^{\prime} \mu^{\prime}}$ when $i=1$). Without loss of generality assume that δ^{\prime} is to the right of $\overrightarrow{\wp^{\prime} \mu^{\prime}}$, since the other case is symmetric. If $\alpha\left(p_{i}\right)$ is to the right of $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$, then p_{i}^{\prime} has to be to the right of $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$ since p_{i}^{\prime} is hit first while rotating $\xrightarrow[\wp^{\prime} p_{i-1}^{\prime}]{ }$ counterclockwise. If $\alpha\left(p_{i}\right)$ is to the left of $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$, then by Observation 5.3.1 p_{i} is to the left (resp., to the right) of $\overrightarrow{\wp p_{i-1}}$ if δ is to the right (resp., to the left) of $\overrightarrow{\wp \mu}$. Thus, there is no point of S to the right (resp., to the left) of $\overrightarrow{\wp \mu}$ if δ is to the left (to the right) of $\overrightarrow{\wp \mu}$. Hence, by Observation 5.3.1, there is no point to the left of $\overline{\wp^{\prime} p_{i-1}^{\prime}}$, in particular, p_{i}^{\prime} cannot be on that side.

Therefore, $\alpha\left(p_{i}\right)$ and p_{i}^{\prime} lie on the same side with respect to $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$.
Let ℓ be the line containing \wp^{\prime} and p_{i-1}^{\prime} and let v be the point on ℓ on opposite direction of $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$ with respect to \wp^{\prime}, such that the length from \wp^{\prime} to v is the same as the length from \wp^{\prime} to p_{i-1}^{\prime}. See Figure 5.7b.

We define a triangle T in the following fashion.

- If $\alpha\left(p_{i}\right)$ and p_{i}^{\prime} are to the right of $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$, then $T=\triangle p_{i-1}^{\prime} \wp^{\prime} \alpha\left(p_{i}\right)$.
- If $\alpha\left(p_{i}\right)$ and p_{i}^{\prime} are to the left of $\overrightarrow{\wp^{\prime} p_{i-1}^{\prime}}$, then $T=\Delta v \wp^{\prime} \alpha\left(p_{i}\right)$

Then, either p_{i}^{\prime} is in T or not. See Figure 5.7. Again, if p_{i}^{\prime} is contained in T then from Proposition $5.1 .1(3), \alpha^{-1}\left(p_{i}^{\prime}\right)$ is contained in T, which contradicts that p_{i} appears immediately after p_{i-1} when sorting S around \wp. On the other hand, if p_{i}^{\prime} is not in T, then line segment $\wp^{\prime} p_{i}^{\prime}$ intersects T on the edge opposite to \wp^{\prime}. Let u be the intersection point of $\wp^{\prime} p_{i}^{\prime}$ and the edge of T opposite to \wp^{\prime}. The point u is in triangle T and in line segment $\wp^{\prime} p_{1}^{\prime}$. Thus, by Properties 1 and 3 of Proposition 5.1.1, $\alpha^{-1}(u)$ is in $\alpha(T)$ and on line segment $\wp \alpha^{-1}\left(p_{i}^{\prime}\right)$, which again contradicts the fact that p_{i} appears first while ordering S around \wp. Therefore, $p_{i}^{\prime}=\alpha\left(p_{i}\right)$.

5.4.2 Affine invariant sweep-line ordering

Let μ, δ and \wp be three non-collinear points, such that \wp is in S. Consider the following sweep-line order method.
$\operatorname{SweepLine}(S, \mu, \delta, \wp)$: Let ℓ^{\perp} be the line containing μ and \wp. Let t and b be a farthest point from the line ℓ^{\perp} that lies on the same and opposite side of δ with respect to ℓ^{\perp}, respectively. Then, sort the vertices in S by sweeping with lines parallel to ℓ^{\perp} from t towards b. If two vertices u, v lie on the same line parallel to ℓ^{\perp}, we say that v appears before u if and only if δ is on the left of $\overrightarrow{\wp \mu}$ and v is on the left of $\overrightarrow{u \mu}$.

Note that a consequence of Observation 5.3.1 is that if two vertices of P lie on the same side with respect to ℓ^{\perp}, then the corresponding vertices in $\alpha(P)$ lie again on the same side with respect to $\alpha\left(\ell^{\perp}\right)$.
Observation 5.4.2. Let ℓ be a line in \mathbb{R}^{2} and let v, u be two points in S. Let α be an affine transformation. If u and v are on the same side of ℓ, then $\alpha(u)$ and $\alpha(v)$ are on the same side of $\alpha(\ell)$.

The following theorem shows that such ordering is affine invariant when the primitives are affine invariant. See Figure 5.8.

Figure 5.8: Each colored line is a line parallel to the black line containing the corresponding $f_{3}(S)=\wp$ and $f_{1}(S)=\mu$. Each color corresponds to the same line in the transformation α. SweepLine (S, μ, δ, \wp) is affine invariant.

Theorem 5.4.3. Let S be a point set in general position and let $f_{1}(S)=$ $\mu, f_{2}(S)=\delta$ and $f_{3}(S)=\wp$ be three affine invariant functions such that μ, δ, \wp are three non-collinear points and $\wp \in S$. Then, $\operatorname{SweepLine}(S, \mu, \delta, \wp)$ computes an affine invariant sweep-line of S.

Proof. Let $\alpha(x)=M x+b$ be an affine transformation. Let $f_{1}(\alpha(S))=\mu^{\prime}$, $f_{2}(\alpha(S))=\delta^{\prime}, f_{3}(\alpha(S))=\wp^{\prime}$. Then, $\alpha(\mu)=\mu^{\prime}, \alpha(\wp)=\wp^{\prime}, \alpha(\delta)=\delta^{\prime}$. Let $p_{0}, p_{1}, \ldots, p_{n-1}$ be the resulting order of $\operatorname{SweepLine}(S, \mu, \delta, \wp)$ and let p_{0}^{\prime}, $p_{1}^{\prime}, \ldots, p_{n-1}^{\prime}$ be the resulting order of $\operatorname{SweepLine}\left(\alpha(S), \mu^{\prime}, \delta^{\prime}, \wp^{\prime}\right)$. Let us show that $\alpha\left(p_{i}\right)=p_{i}^{\prime}$ for all $i \in\{0,1, \ldots, n-1\}$.

Let $\ell^{\prime \perp}$ be the line containing μ^{\prime} and \wp^{\prime}. From Proposition 5.1.1(1), $\alpha\left(\ell^{\perp}\right)=$ $\ell^{\prime \perp}$. We denote by $\ell_{v}^{\prime \perp}$ the line parallel to $\ell^{\prime \perp}$ containing the point $v \in S$. Let $t^{\prime} \in \alpha(S)$ be a farthest point from $\ell^{\prime \perp}$ that lies on the same side of δ^{\prime} with respect to $\ell^{\prime \perp}$ and let b^{\prime} be a farthest point from $\ell^{\prime \perp}$ that lies on the opposite side of δ^{\prime} with respect to $\ell^{\prime \perp}$. Thus, all points of $\alpha(S)$ that are not on $\ell_{t^{\prime}}^{\prime \perp}$ lie on the same side of $\ell_{t^{\prime}}^{\prime \perp}$. Also, all points of $\alpha(S)$ that are not on $\ell_{b^{\prime}}^{\prime \perp}$ lie on the same side of $\ell_{b^{\prime}}^{\prime \perp}$.

On the other hand, t and δ are on the same side of ℓ^{\perp}. Thus, by Observation 5.4.2, $\alpha(t)$ and δ^{\prime} are on the same side of $\ell^{\prime \perp}$. Since all points of S that are not on ℓ_{t}^{\perp} lie on the same side of ℓ_{t}^{\perp}, by Observation 5.4.2 it follows that all points of $\alpha(S)$ that are not on $\ell_{\alpha(t)}^{\prime \perp}$ lie on the same side of $\ell_{\alpha(t)}^{\prime \perp}$. Since both $\alpha(t)$ and t^{\prime} lie on the same side of δ^{\prime} with respect to $\ell^{\prime \perp}$, it follows that both lines $\ell_{t^{\prime}}^{\prime \perp}$ and $\ell_{\alpha(t)}^{\prime \perp}$ lie on the same side with respect to $\ell^{\prime \perp}$. Finally, since there
is exactly one line parallel to $\ell^{\prime \perp}$ on the same side of δ^{\prime} with respect to $\ell^{\prime \perp}$ that passes through a point of S such that all points of S that are not in such line are on the same side, it follows that $\ell_{\alpha(t)}^{\prime \perp}=\ell_{t^{\prime}}^{\prime \perp}$.

Similarly, since all points of S that are not on ℓ_{b}^{\perp} lie on the same side of $\ell \frac{\perp}{b}$, by Observation 5.4.2 it follows that all points of $\alpha(S)$ that are not on $\ell_{\alpha(b)}^{\prime \perp}$ lie on the same side of $\ell_{\alpha(b)}^{\perp}$. In addition, since b is not on $\ell_{t}^{\perp}, \alpha(b)$ is not on $\ell_{t^{\prime}}^{\prime \perp}$. Therefore, $\ell_{\alpha(b)}^{\prime \perp}=\ell_{b^{\prime}}^{\prime \perp}$. Thus, the initial and the final lines while sweeping S with lines parallel to ℓ^{\perp} are preserved under affine transformations. Assume that the order of the lines parallel to ℓ^{\perp} up to the $(i-1)$-th line while sweeping S is preserved under affine transformations. Let ℓ_{i}^{\perp} be the i-th line parallel to ℓ^{\perp} while sweeping S. From Observation 5.4 .2 it follows that for each point v of S that lies on the same side of ℓ_{i}^{\perp} as $t, \alpha(v)$ lies on the same side of $\alpha\left(\ell_{i}^{\perp}\right)$ as t^{\prime}. Since all points of S that are on the same side of ℓ_{i}^{\perp} as t have been swept by the first $i-1$ lines parallel to ℓ^{\perp}, it follows that $\alpha\left(\ell_{i}^{\perp}\right)$ is the i-th line parallel to $\ell^{\prime \perp}$ while sweeping $\alpha(S)$.

It remains to prove that if two points v and u of S lie on the same line parallel to ℓ^{\perp}, then the order given is affine invariant. Let v and u be two points in S that lie on the same line parallel to ℓ^{\perp} such that v appears before u while ordering S. From Proposition 5.1.1(1), $\alpha(u)$ and $\alpha(v)$ lie on the same line parallel to $\ell^{\prime \perp}$. Assume δ is on the left of $\overrightarrow{\wp \mu}$, then v is on the left of $\overrightarrow{u \mu}$. Consider the following cases.

Case 1) If $\operatorname{det}(M)>0$, then δ^{\prime} is on the left of $\overrightarrow{\gamma^{\prime} \mu^{\prime}}$ and $\alpha(v)$ is on the left of $\overrightarrow{\alpha(u) \mu^{\prime}}$. Therefore, $\alpha(v)$ appears before $\alpha(u)$.

Case 2) If $\operatorname{det}(M)<0$, then δ^{\prime} is on the right of $\overrightarrow{\wp^{\prime} \mu^{\prime}}$ and $\alpha(v)$ is on the right of $\overrightarrow{\alpha(u) \mu^{\prime}}$. Therefore, $\alpha(v)$ appears before $\alpha(u)$.

The case when δ is on the right of $\overrightarrow{\gamma \mu}$ is symmetric.

5.5 Applications to affine invariant geometric objects

In this section we give different application of the A_{S}-norm and methods given in Section 5.4 that result in affine invariant algorithms.

5.5.1 Affine invariant algorithms based on A_{S}-norm

Consider a norm $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$. In this section we mention different geometric objects of a point set S constructed using the ρ-legth of all possible $\binom{n}{2}$ edges in S. Using the fact that the A_{S}-norm is affine invariant, we have that the order of the edges between each pair of points in S given by the A_{S}-norm is also
affine invariant. Therefore, using such ordering gives us a set of affine invariant algorithms for computing geometric objects.

The first object is the MWT of S that we already defined, which minimizes the sum of the ρ-length of its edges. The Greedy triangulation of S is a triangulation that adds at each step an edge in strict increasing order of the N-length of the edges provided that the new edge cannot intersect in the interior of a previously inserted edge. The ρ-minimum spanning tree of S, denoted $M S T_{\rho}(S)$, is a spanning tree of G with minimum total edge length. The ρ-closest pair of S computes the edge with lowest ρ-length. The k - ρ-nearest neighbor graph of S, denoted $k-N N G_{\rho}(S)$, is the graph with vertex set S and an edge $u v \in k-N N G_{\rho}(S)$ provided that the ρ-distance between u and v is the k-th smallest ρ-distance from u to any other point in S.

Consider an affine transformation α, since $A_{S}(u-v)=A_{\alpha(S)}(\alpha(u)-\alpha(v))$, we obtain that if $A_{S}(u-v) \leq A_{S}\left(u^{\prime}-v^{\prime}\right)$, then $A_{\alpha(S)}(\alpha(u)-\alpha(v)) \leq A_{\alpha(S)}\left(\alpha\left(u^{\prime}\right)-\right.$ $\left.\alpha\left(v^{\prime}\right)\right)$. Hence, the increasing and decreasing order of the A_{S}-length of the edges in S and $\alpha(S)$ is the same.
Observation 5.5.1. There exists an affine invariant order of the $\binom{n}{2}$ edges in any point set in general position.

Therefore, any greedy algorithm defined by the A_{S}-length of the edges of S is affine invariant, i.e., geometric objects that can be obtained by the rank of its edges with respect to the A_{S}-norm. In particular, the $M S T_{A_{S}}(S)$ is one of them.

Finally, since the A_{S}-disks are affine invariant, we obtain that the empty A_{S}-disk property is affine invariant.

Corollary 5.5.2. Let S be a point set in general position. Then, the following objects are affine invariant: $G G_{A_{S}}(S), R N G_{A_{S}}(S), k-D G_{A_{S}}(S), k-G G_{A_{S}}(S)$, $k-R N G_{A_{S}}(S)$.

In general, any object constructed based on the empty region property defined by the A_{S}-disk, will result affine invariant.

Note that, from Aurenhammer and Paulini [15] it follows that $M S T_{A_{S}}(S) \subset$ $G G_{A_{S}}(S) \subset G G_{A_{S}}(S) \subset D T_{A_{S}}(S)$.

5.5.2 An affine invariant Graham triangulation

One of the most popular algorithms for computing the convex hull of a point set S is Graham's scan [60]. A nice property of this algorithm is that a modification of the algorithm can also produce a triangulation, sometimes called the Graham triangulation [55]. In this section we present an affine invariant version of Graham's scan using the A_{S}-norm metric.

Our method is based on the algorithm for Graham triangulation [103]. The
method consists in first choosing a point p and then radially sorting the remaining points around p, say p_{1}, \ldots, p_{n-1}. Once the points are sorted, the algorithm adds edge $p p_{i}$ for all $i \in\{1, \ldots, n-1\}$. Finally, the algorithm visits each remaining point p_{i} in order, and adds edge $p_{i} p_{j}$ if and only if p_{j} is visible from p_{i}, for all $j>i$.

The Graham triangulation can be computed in linear time when S is given radially ordered. Moreover, since the edges of the triangulation are added according to the radial sort of S, it follows that if the radial order is affine invariant, then the triangulation is affine invariant.

The following result is an implication of Theorem 5.4.1.
Corollary 5.5.3. There exists an affine invariant Graham triangulation for any point set S in general position.

5.5.3 An affine invariant Hamiltonian triangulation

When the point set S has at least one point in the interior of its convex hull, then S can be triangulated by the insertion method, which consists of computing the convex hull of S and then inserting points from the interior in arbitrary order. Every time a point v is inserted, the edges connecting v with the points defining the face that contains v are added.

Note that since the convex hull of a point set is preserved under affine transformations, it follows that if the points that are in the interior of the convex hull are inserted in an affine invariant order, then the insertion method computes an affine invariant triangulation of S. Hence, applying the insertion method to S such that the interior points in the convex hull of S are inserted in the order given by RADIALLYSORT computes an affine invariant triangulation.

Corollary 5.5.4. There exists an insertion method that computes an affine invariant triangulation for any point set in general position.

These triangulations are Hamiltonian, i.e., their duals ${ }^{1}$ contain a Hamiltonian path, and are of interest for fast rendering in computer graphics [10, 55].

Corollary 5.5.5. There exist methods that compute affine invariant triangulations that are Hamiltonian for any point set in general position.

[^10]
5.5.4 An affine invariant triangulation of a polygon by ear clipping

In this section we define a traversal of a polygon that is affine invariant.
An ear of a polygon is a triangle formed by three consecutive vertices p_{1}, p_{2} and p_{3} such that the line segment $p_{1} p_{3}$ is a diagonal ${ }^{2}$ of the polygon. It is a well-known fact that every simple polygon contains two ears (see Meisters [81]). By recursively locating and chopping an ear, one can triangulate any simple polygon. This method is known as ear clipping.

It follows from Properties 1 and 3 of Proposition 5.1.1 that the diagonals of a simple polygon are preserved under affine transformations. Thus, the ears of a simple polygon are also preserved. Hence, if the ear clipping procedure locates an ear by traversing the polygon in an affine invariant order, then such procedure computes an affine invariant triangulation. The traversal of the polygon in an affine invariant order depends only on finding an affine invariant starting point, and on deciding correctly whether to traverse it clockwise or counterclockwise. The latter depends only on whether the affine transformation contains an odd number of reflections.

Let P be a simple polygon with vertex sequence $S:=\left\{v_{1}, \ldots, v_{n}\right\}$, such that S is in general position. Let μ, δ and \wp be three non-collinear points such that \wp is in S. Consider the following traversal of P.

Traversal (P, μ, δ, \wp) : If δ is on the left of $\overrightarrow{\mu \wp}$, then order S by traversing P from \wp in counterclockwise order. Otherwise, order S by traversing P from \wp in clockwise order. See Figure 5.9.

Using arguments similar to the ones used to prove Theorem 5.4.1, we show that Traversal is affine invariant.

Theorem 5.5.6. Let P be a simple polygon with vertex sequence $S:=\left\{v_{1}, \ldots\right.$, $\left.v_{n}\right\}$, such that S is in general position. Let $f_{1}(S)=\mu, f_{2}(S)=\delta$ and $f_{3}(S)=\wp$ be three affine invariant functions such that μ, δ, \wp are three non-collinear points and $\wp \in S$. Then, Traversal (P, μ, δ, \wp) traverses P in an affine invariant order.

Proof. Let $\alpha(P)$ be an affine transformation of P. The vertices of $\alpha(P)$ are $\alpha(S)$. Consider Traversal $\left(\alpha(P), f_{1}(\alpha(S))=\mu^{\prime}, f_{2}(\alpha(S))=\delta^{\prime}, f_{3}(\alpha(S))=\wp^{\prime}\right)$. Ву definition, we have that $\alpha(\mu)=\mu^{\prime}, \alpha(\wp)=\wp^{\prime}, \alpha(\delta)=\delta^{\prime}$.

Let $p_{0}=\wp, p_{1}, \ldots, p_{n-1}$ be the resulting order of $\operatorname{TraVERSAL}(P, \mu, \delta, \wp)$ and let $p_{0}^{\prime}=\wp^{\prime}, p_{1}^{\prime}, \ldots, p_{n-1}^{\prime}$ be the resulting order of Traversal $\left(\alpha(P), \mu^{\prime}, \delta^{\prime}, \wp^{\prime}\right)$. Let us show that $\alpha\left(p_{i}\right)=p_{i}^{\prime}$ for all $i \in\{0,1, \ldots, n-1\}$.

[^11]

Figure 5.9: An affine invariant traversal of two simple polygons with point set S and $\alpha(S)$ from Figure 5.2.

Since the ordering is defined while traversing the simple polygon, it suffices to show that $\alpha\left(p_{0}\right)=p_{0}^{\prime}$ and that the vertices are traversed in the same order. By definition, $p_{0}^{\prime}=\wp^{\prime}=\alpha(\wp)=\alpha\left(p_{0}\right)$. In addition, the orientation of the points of P changes in $\alpha(P)$ when there is an odd number of reflections in α. Hence, if the orientation of the points of P changes, then δ^{\prime} is on the opposite direction of $\overrightarrow{\wp^{\prime} \mu^{\prime}}$ as δ from $\overrightarrow{\wp \mu}$. Therefore, Traversal (P, μ, δ, \wp) traverses P in the opposite direction of Traversal $\left(\alpha(P), \mu^{\prime}, \delta^{\prime}, \wp^{\prime}\right)$ traverses P^{\prime} if the orientation of the points in P is changed in $\alpha(P)$. Thus, the vertices are traversed in the same order if the orientation of the points in P is opposite to the one in $\alpha(P)$. Otherwise, if the orientation does not change, then Traversal $\left(\alpha(P), \mu^{\prime}, \delta^{\prime}, \wp^{\prime}\right)$ traverses the points clockwise (resp., counterclockwise) if and only if TraVER$\operatorname{SAL}(P, \mu, \delta, \wp)$ traverses the points clockwise (resp., counterclockwise).

The following result is an implication of Theorem 5.5.6.
Corollary 5.5.7. There exists an affine invariant ear clipping triangulation for any simple P with vertex set in general position.

5.5.5 An affine invariant triangulation of a polygon by sweep-line

In this section we give another affine invariant triangulation algorithm for any simple polygon.

A simple polygon P is monotone with respect to a line ℓ if for any line ℓ^{\perp} perpendicular to ℓ, the intersection of P with ℓ^{\perp} is connected. A line ℓ divides the plane into two half planes, and we say that two points lie on the same side of ℓ if they lie on the same half plane. Let v be a vertex of P and ℓ_{v} be the

Figure 5.10: Each colored line is a line parallel to the black line. The red diagonals partition the simple polygon into monotone polygons. Each diagonal contains a cusp with respect to the black line. Each color corresponds to the same line in the transformation.
line containing v that is parallel to ℓ. We say that v is an ℓ-cusp if v is a reflex vertex of P and its neighbors in P lie on the same side of ℓ_{v}. A characterization of a monotone polygon is stated in the following property.

Property 5.5.8 (Edelsbrunner [54]). A polygon is ℓ-monotone if and only if it does not contain an ℓ^{\perp}-cusp.

An ℓ-monotone polygon can be triangulated by sweeping its vertices with line ℓ^{\perp} (see, e.g., Garey et. al. [59]).

If P is not ℓ-monotone, then one can split P into ℓ-monotone subpolygons by adding diagonals in order to break all ℓ^{\perp}-cusps. Then each resulting ℓ-monotone polygon can be triangulated independently. The way to add these diagonals is due to Lee et. al. [76] and also uses a sweep line of ℓ^{\perp}. For each vertex v in P take the line ℓ_{v}^{\perp} and partition P into trapezoids defined by the intersection of the ℓ_{v}^{\perp} lines and the edges of P. If a vertex v is an ℓ^{\perp}-cusp, add the diagonal of P to the vertex u that is not in the same side as the neighbors of v with respect to ℓ_{v}^{\perp} and u is the opposite vertex in a trapezoid containing v. See Figure 5.10.

Using Observation 5.4.2, we show that ℓ^{\perp}-cusps are preserved under affine transformations.

Lemma 5.5.9. Let $\alpha(P)$ be an affine transformation of P. Each ℓ^{\perp}-cusp of P is mapped to an $\alpha\left(\ell^{\perp}\right)$-cusp in $\alpha(P)$.

Proof. Let v be an ℓ^{\perp}-cusp of P. Let us show that $\alpha(v)$ is an $\alpha\left(\ell^{\perp}\right)$-cusp in
$\alpha(P)$. Let v^{-}and v^{+}be the neighbors of v in P. If v^{-}and v^{+}are on the same side of $\ell \frac{\perp}{v}$ then by Observation 5.4.2 $\alpha\left(v^{+}\right)$and $\alpha\left(v^{-}\right)$lie on the same side of ℓ_{v}^{\perp}. Moreover, the triangle $\triangle v^{-} v v^{+}$is not in P. From Proposition 5.1.1(3) follows that the triangle $\triangle \alpha\left(v^{-}\right) \alpha(v) \alpha\left(v^{+}\right)$is not in $\alpha(P)$. Hence, the interior angle of $\alpha(v)$ in $\alpha(P)$ is greater than π. So, $\alpha(v)$ is an $\alpha\left(\ell^{\perp}\right)$-cusp in $\alpha(P)$.

Therefore, if P is ℓ-monotone and ℓ^{\perp} is perpendicular to ℓ, then $\alpha(P)$ is ℓ^{*}-monotone where ℓ^{*} is perpendicular to $\alpha\left(\ell^{\perp}\right)$.

Thus in order to compute an affine invariant triangulation of P it remains to give an affine invariant sweep-line order of its vertices. Therefore, from Theorem 5.4.3 we obtain the following corollary.

Corollary 5.5.10. There exists an affine invariant algorithm for triangulating a polygon P with vertex set in general position using a SWEEPLINE preprocessing of its vertices.

5.6 Conclusions

In this chapter we initiated the study of affine invariant geometric algorithms, a topic absent in the computational geometry literature. We revisited Nielson's affine invariant norm, whose unit disk represents how spread the point set is with respect to its mean. We also proposed affine invariant point sorting methods, which are necessary for other affine invariant geometric constructions. Our methods heavily rely on being able to distinguish three points. To this end, we gave two methods for distinguishing such points in Section 5.3. However, for this we had to require that the points are in certain general position. Otherwise, the point set becomes highly symmetric, which introduces a problem of indistinguishability. In particular, an interesting open question is to what extent such restriction can be removed, while still being able to distinguish rotations and reflections. Finally, we believe that finding affine invariant methods to construct other geometric objects is a promising direction for future research.

Concluding Remarks

In this thesis we presented different contributions in the study of generalized Delaunay graphs. Each chapter presents a different problem in a specific generalization of the Delaunay graph. At the end of each chapter we presented different future lines of study to follow in each particular problem. We devote this last chapter to introduce a few other different open problems related to generalized Delaunay graphs.

In Chapter 4 we have shown upper bounds on the minimum k for which the k-order convex shape Delaunay graph is Hamiltonian. Restricting the triangulation in its connectivity, a long-standing open problem is whether 3-connected Delaunay triangulations are Hamiltonian [48]. By loosening slightly the cycle property, the next question is whether the Delaunay triangulation always contains a Hamiltonian path. This question was answered in the affirmative when the convex distance is the square distance (L_{∞}-metric) [3]. An interesting problem in this setting, is to determine for which convex shapes this is also true (in particular, circles).

A closely related problem is the one of perfect matchings. Using the fact that Delaunay triangulations are 1-tough, Dillencourt [49] showed that the Delaunay triangulation always contains a perfect matching. When focus shifted to convex shape Delaunay graphs, Ábrego et al. [3] proved that the \square-Delaunay graph always contains a perfect matching. However, not all convex shape Delaunay graphs have a perfect matching. At least that is the case for triangles, since any triangulation is triangle-Delaunay-realizable [24]. Biniaz et al. [21] proved that the 2 -order \triangle-Delaunay graph (i.e., when the triangle is equilateral) always contains a perfect matching. Our results on Hamiltonicity in Chapter 4 imply bounds for the minimum k for which the k-order convex shape Delaunay graph contains a perfect matching. However, we think that it must be possible to generalize the 1-toughness result of Dillencourt for point-symmetric convex shape Delaunay graphs and thus the containment of a perfect matching. In particular, the short proof given recently by Biniaz [19] gives some hope to believe this is true.

If we consider the k-order Delaunay graphs, any of the graph-theoretic properties have been studied by Abellanas et al. [2] and Bose et. al [34]. In particular,

Worst-case possible values for the studied properties. $S R, D, \kappa, \chi$, and θ_{c} denote the spanning ratio, diameter, connectivity, chromatic number, and constrained geometric thickness, respectively. The results hold for specific ranges of k; see the complete statements throughout the paper.

Gabriel graphs	Delaunay graphs
$\Theta\left(\sqrt{\frac{n}{k}}\right) \leqslant \max _{\|S\|=n} S R(k-\mathrm{GG}(S)) \in O(\sqrt{n})$	$1.5931 \leqslant \max _{\|S\|=n} S R(k-\mathrm{DG}(S)) \leqslant 1.998$
$\left\lceil\frac{n-1}{k+1}\right\rceil \leqslant \max _{\|S\|=n} D(k-\mathrm{GG}(S)) \leqslant \frac{n-2}{k+1}+1$	$\left\lfloor\frac{n}{2(k+1)}\right\rfloor \leqslant \max _{\|S\|=n} D(k-\mathrm{DG}(S)) \leqslant \frac{n-2}{2(k+1)}+1$
$\min _{\|S\|=n} \mathrm{~K}(k-\mathrm{GG}(S))=k+1$	$\min _{\|S\|=n} \mathrm{~K}(k-\mathrm{DG}(S))=2(k+1)$
$3(k+1) \leqslant \max _{\|S\|=n} \chi(k-\mathrm{GG}(S)) \leqslant 6(k+1)$	$4(k+1) \leqslant \max _{\|S\|=n} \chi(k-\mathrm{DG}(S)) \leqslant 6(k+1)$
$3 \leqslant \max _{\|S\|=n} \theta_{c}(1-\mathrm{GG}(S)) \leqslant 4$	$3 \leqslant \max _{\|S\|=n} \theta_{c}(1-\mathrm{DG}(S)) \leqslant 4$
$\frac{3 k}{2} \leqslant \max _{\|S\|=n} \theta_{c}(k-\mathrm{GG}(S)) \leqslant 18 k^{2}+3 k$	$\frac{3 k}{2} \leqslant \max _{\|S\|=n} \theta_{c}(k-\mathrm{DG}(S)) \leqslant 18 k^{2}+3 k$

Figure 5.11: This table appears as Table 1 in Bose et al. [34].

Bose et. al [34] gave several bounds for the spanning ratio, diameter, chromatic number and constrained geometric thickness, in both: k-Delaunay graphs and k-Gabriel graphs. However, most of these bounds have gaps that need to be closed. See Figure 5.11. Thus, the question is which are the correct bounds? or can we get better bounds for each: lower and upper bounds? A different but related line of study concerns the bounds in [34]. Which of these bounds are preserved for k-order \mathcal{C}-Delaunay graphs? For instance, we believe that the bounds given for the diameter of the $k-D G(S)$ must hold for k-order \mathcal{C}-Delaunay graphs, since their proof does not use a particular property of a circle but properties of homothets of a circle.

Other properties of study are the ones given by Biniaz et al. [21], in which they studied the k-order \triangle-Delaunay graphs. More precisely, they showed bounds on the minimum k for which the $k-D G_{\triangle}(S)$ contains a d_{\triangle}-bottleneck of the following settings: biconnected spanning graph, Hamiltonian cycle and perfect matching. In Chapter 4 we gave bounds for the minimum k in which the k-order \mathcal{C}-Delaunay graph contains a $d_{\mathcal{C}}$-bottleneck Hamiltonian cycle. Yet, besides trying to improve such bounds, there is the line of what happens with $d_{\mathcal{C}}$-bottleneck biconnected spanning graphs and perfect matchings. Particularly, we believe that the bounds given by Biniaz et al. [21] on d_{\triangle}-bottleneck biconnected spanning graphs should also easily be generalized to any \mathcal{C}-distance.

In summary, generalized Delaunay graphs are of great interest, with a vast sea of open questions. Thus, we invite everyone interested in Delaunay graphs to dive into this sea in order to find some solutions and, most likely, come up with more new questions waiting to be answered.

Bibliography

[1] Yusuke Abe and Yoshio Okamoto. On algorithmic enumeration of higherorder Delaunay triangulations. In Proceedings of the 11th Japan-Korea Joint Workshop on Algorithms and Computation (WAAC), pages 19-20, 2008. - Cited on pages 32, 34, and 54.
[2] Manuel Abellanas, Prosenjit Bose, Jesús García, Ferran Hurtado, Carlos M. Nicolás, and Pedro Ramos. On structural and graph theoretic properties of higher order Delaunay graphs. International Journal of Computational Geometry and Applications, 19(06):595-615, 2009. - Cited on pages $32,43,52,53,54,79,81,102$, and 125.
[3] Bernardo M. Ábrego, Esther M. Arkin, Silvia Fernández-Merchant, Ferran Hurtado, Mikio Kano, Joseph S.B. Mitchell, and Jorge Urrutia. Matching points with squares. Discrete $\& \mathcal{S}$ Computational Geometry, 41(1):77-95, 2009. - Cited on pages 79 and 125.
[4] Oswin Aichholzer, Franz Aurenhammer, Siu-Wing Cheng, Naoki Katoh, Günter Rote, Michael Taschwer, and Yin-Feng Xu. Triangulations intersect nicely. Discrete \& Computational Geometry, 16(4):339-359, 1996. - Cited on page 16.
[5] Oswin Aichholzer, Franz Aurenhammer, and Ferran Hurtado. Sequences of spanning trees and a fixed tree theorem. Computational Geometry, $21(1): 3-20,2002$. - Cited on pages $57,58,65,66$, and 77.
[6] Oswin Aichholzer, Franz Aurenhammer, Hannes Krasser, and Peter Brass. Pseudotriangulations from surfaces and a novel type of edge flip. SIAM Journal on Computing, 32(6):1621-1653, 2003. - Cited on page 57.
[7] Oswin Aichholzer, Thomas Hackl, David Orden, Pedro Ramos, Günter Rote, André Schulz, and Bettina Speckmann. Flip graphs of bounded degree triangulations. Graphs and Combinatorics, 29(6):1577-1593, 2013. - Cited on page 31.
[8] Oswin Aichholzer and Klaus Reinhardt. A quadratic distance bound on sliding between crossing-free spanning trees. Computational geometry, $37(3): 155-161,2007 .-$ Cited on page 57.
[9] Greg Aloupis, Luis Barba, Stefan Langerman, and Diane L. Souvaine. Bichromatic compatible matchings. Computational geometry, 48(8):622633, 2015. - Cited on page 57.
[10] Esther M. Arkin, Martin Held, Joseph S.B. Mitchell, and Steven S. Skiena. Hamiltonian triangulations for fast rendering. The Visual Computer, 12:429-444, 1996. - Cited on page 119.
[11] Elena Arseneva, Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Flips in higher order Delaunay triangulations. In 36th European Workshop on Computational Geometry: extended abstracts (EuroCG), 2020. - Cited on page 27 .
[12] Elena Arseneva, Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Flips in higher order Delaunay triangulations. In Proceedings of the 14 th Latin American Theoretical Informatics Symposium (LATIN), to appear, 2020. - Cited on page 27.
[13] Tetsuo Asano, Binay Bhattacharya, Mark Keil, and Frances Yao. Clustering algorithms based on minimum and maximum spanning trees. In Proceedings of the 4 th Annual Symposium on Computational geome$\operatorname{try}(S o C G)$, pages $252-257,1988$. - Cited on page 20.
[14] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay triangulations. World Scientific Publishing Company, 2013. - Cited on pages 17, 21, 23, and 26.
[15] Franz Aurenhammer and Günter Paulini. On shape Delaunay tessellations. Information Processing Letters, 114(10):535-541, 2014. - Cited on pages 24, 26, and 118.
[16] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65(1-3):21-46, 1996. - Cited on pages 32, 53, 54, and 57.
[17] Marc Benkert, Joachim Gudmundsson, Herman Haverkort, and Alexander Wolff. Constructing interference-minimal networks. In International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), pages 166-176. Springer, 2006. - Cited on page 22.
[18] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. Computing in Euclidean geometry, 1:23-90, 1992. - Cited on page 16 .
[19] Ahmad Biniaz. A short proof of the toughness of Delaunay triangulations. In Symposium on Simplicity in Algorithms, pages 43-46. SIAM, 2020. Cited on page 125.
[20] Ahmad Biniaz and Gholamhossein Dastghaibyfard. Slope fidelity in terrains with higher-order Delaunay triangulations. In 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pages 17-23. Václav Skala-UNION Agency, 2008. Cited on page 32.
[21] Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Higher-order triangular-distance Delaunay graphs: Graph-theoretical properties. Computational Geometry, 48(9):646-660, 2015. - Cited on pages 79, 80, 93, 125, and 126.
[22] Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Bottleneck matchings and Hamiltonian cycles in higher-order Gabriel graphs. In Proceedings of the 32nd European Workshop on Computational Geometry (EuroCG), pages 179-182, 2016. - Cited on pages 79, 80, and 93.
[23] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with applications, volume 290. Citeseer, 1976. - Cited on page 18.
[24] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. Connections between theta-graphs, Delaunay triangulations, and orthogonal surfaces. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 266-278. Springer, 2010. - Cited on pages 79 and 125.
[25] Houman Borouchaki and Paul Louis George. Delaunay triangulation and meshing: Application to finite elements. Hermes, Paris, 1998. - Cited on pages 17 and 21.
[26] Otakar Borůvka. O jistém problému minimálním. Práce Mor. Prırodved. Spol. v Brne (Acta Societ. Scienc. Natur. Moravicae), 3(3):37-58, 1926. - Cited on page 20.
[27] Otakar Borůvka. Prıspevek k rešenı otázky ekonomické stavby elektrovodnıch sitı (contribution to the solution of a problem of economical construction of electrical networks). Elektronickỳ obzor, 15:153-154, 1926. - Cited on page 20.
[28] Prosenjit Bose, Pilar Cano, Maria Saumell, and Rodrigo I. Silveira. Hamiltonicity for convex shape Delaunay and Gabriel graphs. In Proceedings of the 16th Algorithms and Data Structures Symposium (WADS), pages 196-210. Springer, 2019. - Cited on page 28.
[29] Prosenjit Bose, Pilar Cano, Maria Saumell, and Rodrigo I. Silveira. Hamiltonicity for convex shape Delaunay and Gabriel graphs. In 35th European Workshop on Computational Geometry: extended abstracts (Euro $C G$), 2019. - Cited on page 29.
[30] Prosenjit Bose, Pilar Cano, Maria Saumell, and Rodrigo I. Silveira. Hamiltonicity for convex shape Delaunay and Gabriel graphs. Computational Geometry, to appear, 2020. - Cited on page 28.
[31] Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Sequences of spanning trees for L_{∞}-Delaunay triangulations. In 34 th European Workshop on Computational Geometry: extended abstracts (EuroCG), 2018. - Cited on page 28.
[32] Prosenjit Bose, Pilar Cano, and Rodrigo I. Silveira. Affine invariant triangulations. In 31st Canadian Conference in Computational Geometry ($C C C G$), pages 250-256, 2019. - Cited on page 29.
[33] Prosenjit Bose, Paz Carmi, Sébastien Collette, and Michiel Smid. On the stretch factor of convex Delaunay graphs. Journal of Computational Geometry, 1(1), 2010. - Cited on pages 23, 24, and 80.
[34] Prosenjit Bose, Sébastien Collette, Ferran Hurtado, Matias Korman, Stefan Langerman, Vera Sacristán, and Maria Saumell. Some properties of k-Delaunay and k-Gabriel graphs. Computational Geometry, 46(2):131139, 2013. - Cited on pages 125 and 126.
[35] Prosenjit Bose, Jean-Lou De Carufel, and André van Renssen. Constrained generalized delaunay graphs are plane spanners. Computational Geometry, 74:50-65, 2018. - Cited on page 24.
[36] Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geometry, 42(1):60-80, 2009. - Cited on pages 31 and 57.
[37] Peter A. Burrough, Rachael McDonnell, Rachael A. McDonnell, and Christopher D. Lloyd. Principles of geographical information systems. Oxford university press, 2015. - Cited on page 21.
[38] Owen Byer, Felix Lazebnik, and Deirdre L. Smeltzer. Methods for Euclidean geometry, volume 37. MAA, 2010. - Cited on page 105.
[39] Maw-Shang Chang, Chuan Yi Tang, and Richard C.T. Lee. 20relative neighborhood graphs are Hamiltonian. Journal of Graph Theory, 15(5):543-557, 1991. - Cited on pages 79, 81, and 102.
[40] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1-4):97-108, 1989. - Cited on page 21.
[41] L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal of Computer System Sciences, 39(2):205-219, 1989. - Cited on pages 21 and 24 .
[42] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group, 1976. - Cited on page 20.
[43] Mark de Berg, Marc J. van Kreveld, Otfried Schwarzkopf, and Mark Overmars. Computational geometry algorithms and applications. Springer, 2000. - Cited on page 18.
[44] Leila De Floriani. Surface representations based on triangular grids. The Visual Computer, 3(1):27-50, 1987. - Cited on pages 16 and 21.
[45] Thierry De Kok, Marc J. van Kreveld, and Maarten Löffler. Generating realistic terrains with higher-order Delaunay triangulations. Computational Geometry, 36(1):52-65, 2007. - Cited on page 32.
[46] Boris N. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7(793-800):1-2, 1934. - Cited on page 17 .
[47] René Descartes. Principia Philosophiae. Ludovicus Elzervirius, Amsterdam, 1644. - Cited on page 16.
[48] Michael B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay triangulation. Information Processing Letters, 25(3):149-151, 1987. - Cited on pages 79,80 , and 125.
[49] Michael B. Dillencourt. Toughness and Delaunay triangulations. Discrete 65 Computational Geometry, 5:575-601, 1990. - Cited on pages 79, 108, and 125.
[50] David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are almost as good as complete graphs. Discrete 8 Computational Geometry, 5(4):399-407, 1990. - Cited on page 108.
[51] Yadolah Dodge and Daniel Commenges. The Oxford dictionary of statistical terms. Oxford University Press on Demand, 2006. - Cited on page 106.
[52] Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth. Bounds on the maximum multiplicity of some common geometric graphs. SIAM Journal on Discrete Mathematics, 27(2):802-826, 2013. - Cited on page 16.
[53] R.D. Düppe and H.H. Gottschalk. Automatische interpolation von isolinien bei willkürlichen stützpunkten. Allgemeine Vermessungsnachrichten, 77:423-426, 1970. - Cited on page 16.
[54] Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a monotone subdivision. SIAM Journal on Computing, 15(2):317-340, 1986. - Cited on page 122.
[55] Ruy Fabila-Monroy and Jorge Urrutia. Graham triangulations and triangulations with a center are Hamiltonian. Information Processing Letters, 93:295-299, 2005. - Cited on pages 118 and 119.
[56] Ferenc Fodor. The densest packing of 13 congruent circles in a circle. Contributions to Algebra and Geometry, 44(2):431-440, 2003. - Cited on page 93.
[57] Ferenc Fodor. Packing of 14 congruent circles in a circle. Studies of the University of Zilina. Mathematical Series, 16:25-34, 2003. - Cited on page 93.
[58] Steven Fortune. Voronoi diagrams and Delaunay triangulations. In Computing in Euclidean geometry, pages 225-265. World Scientific, 1995. Cited on pages 31 and 33.
[59] Michael R. Garey, David S. Johnson, Franco P. Preparata, and Robert E. Tarjan. Triangulating a simple polygon. Information Processing Letters, $7(4): 175-179,1978$. - Cited on page 122.
[60] Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1:132-133, 1972. Cited on page 118.
[61] Ronald L. Graham and Pavol Hell. On the history of the minimum spanning tree problem. Annals of the History of Computing, 7(1):43-57, 1985. - Cited on page 20.
[62] Joachim Gudmundsson, Mikael Hammar, and Marc J. van Kreveld. Higher order Delaunay triangulations. Computational Geometry, 23(1):85-98, 2002. - Cited on pages $22,43,52$, and 53.
[63] Joachim Gudmundsson, Herman J. Haverkort, and Marc J. van Kreveld. Constrained higher order Delaunay triangulations. Computational Geometry, 30(3):271-277, 2005. - Cited on pages 21 and 32.
[64] Sofie Haesevoets, Bart Kuijpers, and Peter Z. Revesz. Affine-invariant triangulation of spatio-temporal data with an application to image retrieval. ISPRS International Journal of Geo-Information, 6(4):100, 2017. - Cited on page 104.
[65] Michael E. Houle, Ferran Hurtado, Marc Noy, and Eduardo RiveraCampo. Graphs of triangulations and perfect matchings. Graphs and Combinatorics, 21(3):325-331, 2005. - Cited on page 31.
[66] Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete \& Computational Geometry, 22(3):333-346, 1999. - Cited on page 31.
[67] Tomáš Kaiser, Maria Saumell, and Nico Van Cleemput. 10-Gabriel graphs are Hamiltonian. Information Processing Letters, 115(11):877-881, 2015. - Cited on pages 79, 80, 81, 93, and 102.
[68] J. Mark Keil and Carl A. Gutwin. The Delaunay triangulation closely approximates the complete Euclidean graph. In Proceedings of the 1st Workshop on Algorithms and Data Structures (WADS), pages 47-56. Springer, 1989. - Cited on page 108.
[69] David G. Kirkpatrick. A note on Delaunay and optimal triangulations. Information Processing Letters, 10:127-128, 1980. - Cited on page 103.
[70] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society, 7(1):48-50, 1956. - Cited on page 20.
[71] Philip M. Lankford. Regionalization: theory and alternative algorithms. Geographical Analysis, 1(2):196-212, 1969. - Cited on page 20.
[72] Charles L. Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365-372, 1972. - Cited on page 31.
[73] Charles L. Lawson. Software for C1 surface interpolation. In Mathematical software, pages 161-194. Elsevier, 1977. - Cited on pages 16 and 31.
[74] Der-Tsai Lee. Proximity and reachability in the plane. Technical report, Iillinois University at Urbana-Champaign coordinated Science Lab, 1978. - Cited on page 21.
[75] Der-Tsai Lee and Arthur K. Lin. Generalized Delaunay triangulation for planar graphs. Discrete \mathcal{G} Computational Geometry, 1(3):201-217, 1986. - Cited on page 21.
[76] Der-Tsai Lee and Franco P. Preparata. Location of a point in a planar subdivision and its applications. SIAM Journal on Computing, 6(3):594606,1977 . - Cited on page 122.
[77] Errol Lynn Lloyd. On triangulations of a set of points in the plane. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science (SFCS), pages 228-240. IEEE, 1977. - Cited on page 16.
[78] Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is np-complete. Computational Geometry, 49:17-23, 2015. - Cited on page 31.
[79] Lihong Ma. Bisectors and Voronoi diagrams for convex distance functions. PhD thesis, Citeseer, 2000. - Cited on page 23.
[80] Dana N. Mackenzie. Triquetras and porisms. The College Mathematics Journal, 23(2):118-131, 1992. - Cited on page 98.
[81] Gary H. Meisters. Polygons have ears. The American Mathematical Monthly, 82:648-651, 1975. - Cited on page 120.
[82] Dieter Mitsche, Maria Saumell, and Rodrigo I. Silveira. On the number of higher order Delaunay triangulations. Theoretical Computer Science, 412(29):3589-3597, 2011. - Cited on page 32.
[83] Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NPhard. Journal of the ACM (JACM),55(2):1-29, 2008. - Cited on page 16.
[84] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete mathematics, 233(1-3):3-36, 2001. - Cited on page 20.
[85] Gregory M. Nielson. Coordinate free scattered data interpolation. In Topics in multivariate approximation, pages 175-184. Elsevier, 1987. Cited on pages 103 and 105.
[86] Gregory M. Nielson. A characterization of an affine invariant triangulation. In Geometric modelling, pages 191-210. Springer, 1993. - Cited on pages 29, 103, and 106.
[87] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial tessellations: concepts and applications of Voronoi diagrams, volume 501. John Wiley \& Sons, 2009. - Cited on pages 17 and 21.
[88] Alexander Pilz. Flip distance between triangulations of a planar point set is apx-hard. Computational Geometry, 47(5):589-604, 2014. - Cited on page 31.
[89] Franco P Preparata and Michael I. Shamos. Computational geometry: an introduction. Springer Science \& Business Media, 2012. - Cited on page 18.
[90] Robert Clay Prim. Shortest connection networks and some generalizations. The Bell System Technical Journal, 36(6):1389-1401, 1957. - Cited on page 20 .
[91] Natalia Rodríguez and Rodrigo I. Silveira. Implementing Data-Dependent triangulations with higher order Delaunay triangulations. ISPRS International Journal of Geo-Information, 6(12):390, 2017. - Cited on pages 22 and 54.
[92] Maria Saumell Mendiola. Some problems on proximity graphs. PhD thesis, Universitat Politècnica de Catalunya, 2011. - Cited on pages 79, 80, and 96.
[93] Michael Ian Shamos. Computational Geometry. PhD thesis, Yale University, 1978. - Cited on page 79.
[94] Micha Sharir and Adam Sheffer. Counting triangulations of planar point sets. The Electronic Journal of Combinatorics, 18(1), 2011. - Cited on page 16 .
[95] Jonathan Shewchuk, Tamal K. Dey, and Siu-Wing Cheng. Delaunay mesh generation. Chapman and Hall/CRC, 2016. - Cited on pages 16, 17, and 21.
[96] Robin Sibson. Locally equiangular triangulations. The Computer Journal, 21(3):243-245, 1978. - Cited on pages 16, 31, 33, 43, and 52.
[97] Rodrigo I. Silveira and Marc J. van Kreveld. Optimal higher order Delaunay triangulations of polygons. Computational Geometry, 42(8):803-813, 2009. - Cited on pages $22,32,44$, and 53.
[98] Rodrigo I. Silveira and Marc J. van Kreveld. Towards a definition of higher order constrained Delaunay triangulations. Computational Geometry, 42(4):322-337, 2009. - Cited on page 32.
[99] Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, triangulations, and hyperbolic geometry. Journal of the American Mathematical Society, 1(3):647-681, 1988. - Cited on page 31.
[100] Tung-Hsin Su and Ruei-Chuan Chang. The k-Gabriel graphs and their applications. In International Symposium on Algorithms, pages 66-75. Springer, 1990. - Cited on page 22.
[101] Alfred H. Thiessen. Precipitation averages for large areas. Monthly weather review, 39(7):1082-1089, 1911. - Cited on page 16.
[102] Godfried T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern recognition, 12(4):261-268, 1980. - Cited on pages 20, 21, and 104.
[103] Godfried T. Toussaint and David Avis. On a convex hull algorithm for polygons and its application to triangulation problems. Pattern Recognition, 15(1):23-29, 1982. - Cited on page 118.
[104] Marc J. van Kreveld, Maarten Löffler, and Rodrigo I. Silveira. Optimization for first order Delaunay triangulations. Computational Geometry, 43(4):377-394, 2010. - Cited on page 32.
[105] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik, 134:198-287, 1908. - Cited on page 17.
[106] Eugene Wigner and Frederick Seitz. On the constitution of metallic sodium. Physical Review, 43(10):804, 1933. - Cited on pages 16 and 20.
[107] Johnson William and Robert Mehl. Reaction kinetics in processes of nucleation and growth. Transactions of the American Institute for Mining and Metallurgical Engineering, 135:416-442, 1939. - Cited on page 16.
[108] Ge Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal on Computing, 42(4):1620-1659, 2013. - Cited on pages 17, 60, and 108.
"So long, and thanks for all the fish."

[^0]: ${ }^{1}$ A homothet of \mathcal{C} is obtained by scaling \mathcal{C} with respect to the origin, followed by a translation.

[^1]: ${ }^{2}$ A shape \mathcal{C} is point-symmetric with respect to a point $x \in \mathcal{C}$ provided that for every point $p \in \mathcal{C}$ there is a corresponding point $q \in \mathcal{C}$ such that $p q \in \mathcal{C}$ and x is the midpoint of $p q$.

[^2]: ${ }^{3}$ The Minkowski sum of two sets A and B is defined as $A \oplus B=\{a+b: a \in A, b \in B\}$.

[^3]: ${ }^{1}$ A planar graph G is called plane when $V(G)$ is mapped to a set of points in the plane and edges are mapped to segments whose interiors do not intersect. A plane graph refers to the planar embedding of a planar graph.

[^4]: ${ }^{1}$ Recall that a graph G is 1 -tough if removing any k vertices from G results in $\leq k$ connected components.
 ${ }^{2}$ According to the definition of $k-R N G$ in [39], they showed Hamiltonicity for $20-\mathrm{RNG}$.

[^5]: ${ }^{3}$ Since S is in general position, only a and b can lie on the boundary of $\mathcal{C}(a, b)$.

[^6]: ${ }^{4}$ The circumcircle of a polygon \mathcal{P} is the smallest circle that contains \mathcal{P}.
 ${ }^{5}$ The incircle of a polygon \mathcal{P} is the largest circle in the interior of \mathcal{P} that is tangent to each side of \mathcal{P}.

[^7]: ${ }^{6}$ A set of Johnson circles is a set of three circles of the same size that mutually intersect each other in a single point. For a survey about the properties of Johnson circles, we refer the reader to the Johnson Theorem [80].
 ${ }^{7}$ Let C be the circle with center $C_{1} \cap C_{2} \cap C_{3}$ and radius $2 r$. The anticomplementary

[^8]: triangle of T has as vertices the three tangent points of C with the Johnson circles.

[^9]: ${ }^{8}$ Notice that each of the \mathcal{P}_{t}^{i} satisfies the following property: For any two of the three points of S on its boundary, the \mathcal{P}_{t}-disk can be slightly perturbed so that the two chosen points remain on its boundary and the third point lies in the exterior of the \mathcal{P}_{t}-disk.

[^10]: ${ }^{1}$ The dual of a graph G has as vertices the faces of G and an edge between vertices is added if and only if the two faces share an edge in G.

[^11]: ${ }^{2}$ A diagonal of a polygon is a line segment between two non-consecutive vertices that is totally contained inside the polygon.

