
ALGORITHMS FOR SAMPLING SPANNING

TREES UNIFORMLY AT RANDOM

A Degree Thesis Submitted to the Faculty of Mathematics and Statistics of the

Universitat Politècnica de Catalunya by

Lucia Costantini

In Partial Fulfillment of the Requirements for the Master Degree in Advanced

Mathematics and Mathematical Engineering

Supervised by:

Dr. Guillem Perarnau

1

Contents

1 Introduction 5

2 Preliminaries 7

2.1 Spanning Trees . 7

2.2 Matrix Tree Theorem . 11

2.3 Markov Chains . 13

2.4 Closed classes . 15

2.5 Random walks on graphs . 17

3 Exact sampling of spanning trees through exact counting 19

3.1 Multigraphs . 19

3.2 Reduction from sampling to counting 20

3.3 Time complexity . 21

4 Aldous-Broder Algorithm 22

4.1 Backward and forward tree chains . 23

4.2 Correctness . 27

4.3 Time complexity . 27

5 Wilson’s algorithm 30

5.1 Loop-erased random walks . 30

5.2 Stacks . 31

5.3 Colouring . 32

5.4 Correctness . 32

5.5 Time complexity . 34

6 Partial Rejection Sampling Algorithm. 36

2

6.1 Lovász local lemma . 36

6.2 Construction . 39

6.3 Correctness . 41

6.4 Time complexity . 44

7 Conclusion 52

3

Acknowledgements

First of all, I would like to offer my special thanks to Dr. Perarnau for the valuable

help he provided with this research project. Despite the obstacles that this unusual

spring has brought upon us, his willingness to give his time and his constructive

suggestions have been vital in the completion of this thesis.

Secondly, I would like to express my gratitude to Dr. Serra, who, throughout

a semester of lectures on Graph Theory, has managed to engage me to the point of

inspiring me to explore the subject further.

4

Chapter 1

Introduction

Spanning trees play a fundamental role in a variety of contexts. Finding a spanning

tree of a graph means finding an object which reaches every point in the original,

possibly enormous graph, with the minimum amount of edges possible. Indeed, the

key to the relevance of spanning trees in many fields lies in the fact that they are

capable of somehow capturing important characteristics of a large, intricate graph

in the most rudimentary way possible. It is not surprising then that spanning

trees are largely utilised in network analysis [3] and design [18], statistical physics

and mechanics [10], random maze construction [12], graph sparsfication [7], graph

expanders [6], and many other areas. Throughout this paper, we are going to mainly

be looking at different ways that these spanning trees can be sampled uniformly at

random.

The first chapter is going to focus on the background information we are going

to need: we discuss some important notions and theorems from graph theory and

related to Markov chains and random walks. We introduce some important definition

and, through the Matrix Tree Theorem, provide the formula for counting the number

of spanning trees of any given graph. We also explain how to define a Markov chain

on a graph and the way we can use the probabilistic results in the construction of

algorithms for uniform spanning trees.

In the second chapter, we talk about the relation between exact counting and

exact sampling of spanning trees. We give the necessary intuition to recursively

quantify the number of spanning trees of a given graph in terms of that of two other

5

graphs, which we obtain using deletion and contraction of edges. This will give us a

way to express the probability of a given spanning tree occurring using the number

of spanning trees of said graphs. Then we can use a count tree in order to show

how the counting and sampling of these trees relate to each other and reduce the

problem of sampling uniformly at random to merely calculating the eigenvalues of

the Laplacian matrix of a graph. This method is a straight-forward application of the

Matrix Tree Theorem, though it is not very efficient, as it takes O(m · n3) = O(n5)

time.

In the third chapter, we are going to introduce the Aldous-Broder algorithm.

We begin by introducing the notions of forward and backward tree and observing

that the tree output by the algorithm is indeed a forward tree. We use the Markov

chain tree theorem for proof of correctness of the algorithm to show the distribution

of the outputs is indeed uniform. Since the time it takes for it to run is the same

as the cover time, we deduce that we can sample a uniformly distributed spanning

tree with the Aldous-Broder algorithm in O(mn) = O(n3) time.

The fourth chapter will look at Wilson’s algorithm, which uses the ideas of

popping cycles and loop-erased random walks in order to construct a uniform span-

ning tree. We will make use of the notion of stacks to describe the visible graph at

any stage in the algorithm and we will explain how to remove the cycles as they arise

using random walks. The procedure will prove to be independent of any arbitrary

choices of ordering we may make. The time complexity of Wilson’s algorithm is

going to be given by the mean hitting time of the graph, which is only as big as

the cover time in the worst possible case. So, again, Wilson’s algorithm will take at

most O(n3) to run.

Lastly, in the fifth chapter, we are going to use an algorithmic version of the

Lovász local lemma to give a new interpretation of Wilson’s algorithm. The cycles

of a dependency graph will be characterised as the ”bad” events which we want

to avoid. The famous combinatorial lemma by Lovász will show that the complete

avoidance of these events is indeed possible. Then we will construct the algorithm

for sampling trees under the important condition that any dependent events be

disjoint, so that when a bad event occurs, we can safely resample the corresponding

variables.

6

Chapter 2

Preliminaries

2.1 Spanning Trees

A tree can be simply defined as a connected graph with no cycles. Then, given a

connected graph G = (V,E), a spanning tree T is a cycle-free subgraph of G which

covers its entire vertex set. Then any spanning tree T = (VT , ET) of G has vertex

set VT = V and edge set ET ⊂ E such that ET = |V | − 1.

Any tree can be defined as two sub-trees connected by a single edge. In this

way, we can define spanning trees recursively, where the base case scenario is joining

a single vertex with the empty tree by an edge.

A natural question arises: how many spanning trees are there for a generic

graph and how can we choose one uniformly at random? In order to answer this,

let us first define a few matrices that can be constructed from a graph G.

Definition 2.1.1. The adjacency matrix A of an undirected graph G = (V,E) is a

square symmetric binary matrix with entries defined as follows:

Aij =

1, if (i, j) ∈ E

0, otherwise
. (2.1)

For directed graphs, this translates into a matrix with entry Aij corresponding to

the number of directed edges going from i to j.

7

Definition 2.1.2. The incidence matrix of an undirected graph G with n vertices

and m edges is the n×m matrix Q with entries

Qij =

1, if vertex i is an endpoint of edge j

0, otherwise.
(2.2)

The entries can be slightly modified in the case of directed graphs. Let there be a

directed edge in the graph going from x to y; then we define x to be the tail of the

edge, and y to be its head. Then for a directed graph, the incidence matrix is

Qij =

−1, if vertex i is the tail of j

1, if i is the head of j

0, otherwise.

(2.3)

Definition 2.1.3. Let the degree of a vertex i ∈ V for an undirected graph be

defined by

d(i) = |{j ∈ V | (i, j) ∈ E}|. (2.4)

In other words, d(i) gives the number of neighbours of vertex i.

For a directed graph we have the out-degree defined by

d(i) = |{j ∈ V | [i, j]}, (2.5)

where [i, j] is the edge with tail i and head j.

Definition 2.1.4. The Laplacian matrix L of a graph G is L = D − A, where D

is the Degree matrix, that is the diagonal matrix whose entries are the degrees of

the vertices corresponding to each column/row, and A is defined as above. In other

words its entries are computed as follows:

Lij =

d(i), if i = j

−1, if i 6= j and (i, j) form a (un)directed edge

0, otherwise.

(2.6)

Equivalently, the Laplacian matrix can be written as L = QQT , where Q is

the incidence matrix defined above.

8

Note that, by construction, any row or column of the matrix sums up to 0.

Indeed, in every row or column i we have d(i) in exactly one (the i = j) position,

and −1 in d(i) position, once for every neighbour of i. It follows that all the nonzero

entries cancel each other out.

Same as with any matrix, one can compute the eigenvectors of the Laplacian

matrix, that is the vectors vi which satisfy

L · vi = λi · vi, (2.7)

where the λi’s are some ordered scalars such that λ1 ≥ λ2 ≥ ... ≥ λn = 0. We say

that the λi are the eigenvalues of the matrix.

Before stating the theorem that allows us to count the spanning trees of a

given graph, let us first state and prove an important formula we are going to need

in order to calculate the determinant of a product of matrices.

Let S ⊂ {1, 2, ...,m} and T ⊂ {1, 2, ..., n}. From this point forward, given an

m × n matrix A, we are going to denote by A[S|T] the sub-matrix of A consisting

of the rows that correspond to the elements of S and the columns that correspond

to those of T .

Lemma 2.1.1. (Cauchy-Binet formula) Let m ≤ n and A and B be matrices of

size m× n and n×m, respectively. Then

det(AB) =
∑
T

det(A[{1, 2, ...,m} | T]) det(B[T | {1, 2, ...,m}]), (2.8)

where the sum runs over all subsets T ⊂ {1, ..., n} such that |T | = m. In the

case where m = n, this simply translates to

det(AB) = det(A)det(B). (2.9)

Proof. For simplicity, let us use the following notation

f(A,B) = det(AB) (2.10)

9

and

g(A,B) =
∑
T

det(AT)det(BT), (2.11)

where AT = A[{1, ...,m} | T] and BT = [T | {1, ...,m}].

Think of A and B as n-tuples in Rn. Then we can write equivalently

f(A,B) = f(A1, ..., An, B1, ..., Bn) (2.12)

and

g(A,B) = g(A1, ..., An, B1, ..., Bn). (2.13)

Our goal is to show that the two functions f and g change in the same way

when we modify A1, ..., An and B1, .., Bn, one vector at a time.

First we analyse what happens when we use multiply Ai or Bi by a real scalar

a. By properties of the determinant and the dot multiplication, we have:

• If Ai is replaced by a · Ai then

1. f(A,B) = a · f(A,B);

2. g(A,B) = a · g(A,B)

• If Bi is replaced by a ·Bi then

1. f(A,B) = a · f(A,B);

2. g(A,B) = a · g(A,B).

So f and g behave the same with respect to scalar multiplication.

Now let us see what happens to them when we turn one of the vectors into a

sum.

• Let Ai = A
′
i + A

′′
i . Then

1. f(A,B) = f(A
′
, B) + f(A

′′
, B);

2. g(A,B) = g(A
′
, B) + g(A

′′
, B) ,

where we denoted by A
′

and A
′′

the lists obtained by changing Ai into A
′
i and

into A
′′
i , respectively.

• Let Bi = B
′
i +B

′′
i . Then

10

1. f(A,B) = f(A,B
′
) + f(A,B

′′
;

2. g(A,B) = g(A,B
′
) + g(A,B

′′
),

where B
′
i and B

′′
i are defined analogously to A

′
i and A

′′
i .

Therefore f and g change in the same way even with respect to addition.

Suppose that Ai = Aj for some indices i and j. Then the determinant of AT

vanishes for all T , i.e. det(AT) = 0, and so does det(AB) since AB has a repeated

row. The same conclusions hold when Bi = Bj for some i and j. In these cases, the

desired result would hold trivially.

Then, without loss of generality, we can assume that there are no two identical

vectors in A or in B. Matrices that have this property are made up of n 1’s, while

all other entries are 0. Then all rows of matrix A are linearly independent, and so

are all columns of B.

This implies that there exist unique sets TA and TB of h elements such that

det(ATA) = det(BTB) = 1, and that for all other sets T , det(AT) = det(BT) = 0.

If TA = TB, then g(A,B) = 1 and AB is the identity matrix, so f(A,B) = 1; if

TA 6= TB, then g(A,B) = 0 and AB has at most n−1 nonzero entries, so f(A,B) = 0.

Then, in either case, f(A,B) = g(A,B).

2.2 Matrix Tree Theorem

The following theorem, by Kirchoff, is an essential tool in algebraic graph theory,

as it provides a way to count the number of spanning trees of any connected graph

[17].

Theorem 2.2.1. (Matrix Tree Theorem) Let λn = 0 and λ1 · λ2...λn−1 are the

nonzero eigenvalues of the Laplacian matrix, where λi > λi + 1 for all i. The

number of spanning trees τ(G) of an (un)directed graph G = (V,E) with |V | = n is

τ(G) =
1

n
λ1λ2...λn−1 = det(L0), (2.14)

where L0 is a principal minor of size n− 1.

Proof. Let G = (V,E) be a simple directed graph on n vertices and m edges. In the

alternative case where G is undirected, the result can be proved analogously.

11

Since the Laplacian matrix has the property that the entries of each row or

column adds to 0, we can turn any minor into a different minor by adding, inter-

changing or modifying the sign of the rows and columns. Consequently, no matter

which row and corresponding column we remove from L, the determinant of L0 will

not vary.

Therefore, without loss of generality, we can consider the case where L0 is

obtained by deleting row n and column n. We want to show that its determinant

counts the number of spanning trees of G.

Since L = QQT , we also have that L0 = Q̃Q̃T , where Q̃ is the (n − 1) × m
matrix obtained by removing the n-th row from Q. By the Cauchy-Binet formula

(2.8) for the determinant of a product of matrices, we have

det(L0) = det(Q̃Q̃T) =
∑
T

det(Q̃[{1, 2, ..., n− 1} | T]) det(Q̃[T | {1, 2, ..., n− 1}]) =∑
T

det(Q̃[{1, 2, ..., n− 1} | T])2,

(2.15)

where the summation runs over all subsets T ⊂ {1, ...,m} such that |T | = n − 1.

Note that this is equivalent to summing over all subgraphs on n− 1 edges.

Let H be the subgraph of G whose n − 1 edges are represented by T . To

prove that det(L0) indeed counts the number of spanning trees, it suffices to show

that det(Q̃[{1, 2, ..., n − 1} | T]) = ±1, whenever T induces a spanning tree, and

det(Q̃[{1, 2, ..., n− 1} | T]) = 0, otherwise.

Suppose H is a subgraph of G on which is not a spanning tree. Since H has n

vertices and n−1 edges, then it must be disconnected. Let us consider a component

H ′ of H, which does not contain vertex n.

By relabeling the vertices and edges of G, we can write Q̃[{1, 2, ..., n−1} | T] =

Q̃[{1, 2, ..., n− 1} | T] =

Q̃1 0

0 Q̃2

 , (2.16)

where Q̃1 is the incidence matrix of H ′, so the edges and vertices of H ′ all

appear in the first quadrant of the matrix. Now since Q̃1 has exactly two non-zero

12

entries per column, namely +1 and −1, all its rows when added are going to give

det(Q̃1) = 0, hence det(Q̃) = det(Q̃1) · det(Q̃2) = 0.

Now let H be a subgraph of G on with n − 1 vertices which is a tree and

T = {t1, ..., tn−1} be a subset of [m]. Since H is a tree, there are at least two vertices

in H with degree exactly 1.

Denote by vn the n-th vertex, whose row we previously removed. Then all

vertices ui 6= vn can be relabeled them as follows: consider u1 such that d(u1) = 1.

Then without loss of generality we can assign t1 to u1, and remove u1 from H. In

the resulting graph Y \ {u1}, select u2 such that d(u2) = 1 in Y , and let t2 be its

incident edge. We keep going until, by the end of this process we have all n − 1

vertices ui different from vn are assigned to the n − 1 edges in T . Another way of

picturing this is that we are ”trimming” one leaf a time, until we are left with no

tree, where a leaf is any vertex with degree 1.

The matrix P obtained by relabeling the vertices corresponds to a permutation

of Q[{1, 2, ..., n−1} | T], so the determinants of the two matrices must be the same.

By construction, ui is mapped to ti, for all i ∈ {1, 2, ..., n − 1}, thus all entries of

the diagonal are either 1 or −1 and it is lower triangular. We conclude that

det(Q[{1, 2, ..., n− 1} | T]) = det(P) = ±1. (2.17)

Corollary 2.2.1. Counting the spanning trees of a graph G can be done in O(n3)

time.

Proof. Since diagonalising an n× n-matrix by Gaussian elimination can be done in

O(n3) time, and multiplying the diagonal entries only takes constant time, the time

complexity of counting the spanning trees of a graph is O(n3).

2.3 Markov Chains

Markov chains are going to be an important tool for developing the algorithms we

need in order to generate spanning trees at random, so let us discuss a little bit

about them first [14].

13

Definition 2.3.1. A sequence of random variables (Xt)t≥0 with state space S is

a discrete-time Markov chain with transition matrix P if for all si, sj ∈ S, for all

t ≥ 1, and for all events Ht−1 =
⋂t−1
r=0{Xr = sir}, we have the so-called Markov

property:

Pr{Xt+1 = sj|Ht−1 ∩ {Xt = si}} = Pr{Xt+1 = sj|Xt = si} = Pij. (2.18)

In (2.18), the variable t keeps track of the repetitions of this random process,

while Ht−1 can be regarded as the history or the sequence of states that occurred

before a particular stage.

We say that the Markov chain is finite if its state space is finite-dimensional.

In other words, the Markov property requires that the conditional probability

of going from one state, say x, to another, say y, to remain invariant under the

different possible sequences of states that precede x. This implies that in a Markov

chain, the future events only depend on the present, and never on the past.

Let us expand a bit more on the transition matrix P in the definition. This

is a |S| × |S| matrix such that entry pij gives the probability that, given that we

are starting at state si, the next state is going to be sj. Note all these transition

probabilities are therefore fixed, and P is stochastic. Indeed, all its entries are

non-negative and all its rows add up to 1, since every row ri gives the probability

distribution conditional on si being the current state.

For any time t ≥ 1, we can store the information about the distribution in a

vector of the form

µt = (Pr{Xt = s1|X0 = si}, P r{Xt = s2|X0 = si}, ..., P r{Xt = sk|X0 = si}),
(2.19)

where k = |S|. Notice how we do not need to include the states that the

random variables between X0 and Xt took on, as this does not affect the probability.

It is easy to see that for t = 0, the row vector µ0 is the indicator vector of the

initial state. This observations yields the following recursive formula: for all t ≥ 1,

µt = µt−1P, (2.20)

14

which in turn implies that we can compute any vector µt using the transition matrix

and the initial distribution µ0 in this way:

µt = µ0P
t, (2.21)

for any t ≥ 0.

Definition 2.3.2. We say that a Markov chain (Xt)t≥0 is irreducible if for any two

states x, y ∈ S we can find a t such that P t(x, y) > 0. In other words, the Markov

chain has only one closed class, and we can reach any state from any other through

finitely many steps.

Definition 2.3.3. For a Markov chain (Xt)t≥0, we define the hitting time for a state

x to be

h(x) := min{t ≥ 0 : Xt = x}, (2.22)

that is the first time that we encounter state x starting at initial state X0.

In the case where X0 = x is the initial state and therefore the hitting time is

trivial, we might be interested in knowing the first return time instead:

h+(x) := min{t > 0 : Xt = x}. (2.23)

Definition 2.3.4. We define the cover time of the Markov chain to be the time it

requires for all possible states to be visited, so

C := maxx∈S h(x). (2.24)

By definition, all states of any irreducible chain the cover time is finite.

2.4 Closed classes

Given a graphG = (V,E), a walk of length r is a sequence of r+1 vertices v0, v1, ..., vr

such that the edge vi−1, vi is in G for all i with 1 ≤ i ≤ r.

Then we can define the relation ∼ between two vertices: for two vertices

u, v ∈ V , we write that u ∼ v if and only if there exists a walk from u to v and a

walk from v to u. This is an equivalence relation, for if we have u, v, w ∈ V then

15

• u ∼ u, since there exists a walk of length zero from vertex u to itself; so the

relation is reflexive;

• u ∼ v implies that v ∼ u; so the relation is symmetric;

• u ∼ v and v ∼ w implies that u ∼ w; so it is also transitive.

This equivalence relation forms equivalence classes on the vertex set V , which

we call strongly connected components. A strongly connected component is called

a closed class when there are no outgoing edges. The vertices in a closed class are

said to be recurrent, while the others are transient [13].

Then we can rephrase the definition of irreducible for a Markov chain by just

saying it only has one closed class.

Lemma 2.4.1. For every graph G = (V,E) and starting at any vertex in V , we can

construct a walk that terminates in a closed class. In particular, any graph has at

least one closed class.

Proof. Select any vertex v in G, and let C1 be the corresponding strongly connected

component. If C1 is a closed class, then we are done, because there exists a walk of

length zero from v to itself.

Then suppose that C1 is not a closed class. It follows that there is at least one

outgoing edge connecting a vertex u1 ∈ C1 to another vertex u2 in another strongly

connected component, say C2. Since v and u1 are both in C1, there is a walk going

from v to u1. Then by transitivity, since (u1, u2) ∈ E we have a walk going from v

to u2 ∈ C2. If C2 is a closed class, then we have a walk starting at v and terminating

in a closed class, so we are done.

Again, suppose this is not the case. Then there is a walk connecting u2 to

another vertex u3 ∈ C3. We can concatenate the walks again to form one that takes

v to C3.

Continuing with this process, we construct a sequence of strongly connected

components C1, C2, ... such that for all i, Ci 6= Ci+1 and for another index j ≥ i there

exists a walk going from vi ∈ Ci which ends up in Cj. Then, since the number of

components is finite, we have two options: either we end up in a component which

we have already seen, or we eventually terminate in a closed class.

16

Let us analyse the first case, where we have a sequence C1, C2, ..., Cn such that

Cn = Ci for some i < n − 1. Note that there exists a walk from vertex vi in Ci to

vertex vi+1 in Ci+1, and one from vertex vi+1 in Ci+1 to vn in Cn, because n > i+ 1.

Since Cn = Ci, we have another walk from vn to vi, so by concatenation we get one

also going from vi+1 to vi. Since the walk exists in both directions between vi and

vi+1, this implies that vi ∼ vi+1. By definition of strongly connected components, the

two vertices should then belong in the same one, giving Ci = Ci+1. This contradicts

our assumption, so we can rule out the possibility that the sequence will return to

a previously visited component. Hence we conclude that the sequence terminates in

a closed class, so any graph G has at least one closed class.

2.5 Random walks on graphs

Let us explain exactly how we are going to apply the notions we discussed to the

graphs whose spanning trees we want to find [8].

Let G = (V,E) be a connected, finite graph of n vertices and m edges. A

simple random walk on G can be described to be a trajectory along the vertices of

G, where from any vertex Xt = vi at time t, the next position Xt+1 = vj is chosen

uniformly at random from the set of neighbours of vi. More generally, for a weighted

graph, we have a function w : E → (0,∞) which assigns a number to every edge in

E. Then the successor Xt+1 = vj of vi is chosen with probability proportional to

the weight of the edge connecting vi to vj.

From any Markov chain we can construct a random walk in the following way.

Let (Xt)t≥0 be a Markov chain on V with transition matrix P . Let π : V → [0, 1]

be the stationary distribution with respect to which the chain is reversible. Then

for each pair of vertices u, v ∈ V , we associate the weight

w(u, v) = π(u)puv. (2.25)

It follows that the weight function is symmetric, i.e. it satisfies the detailed balance

equations w(u, v) = w(v, u) for all pairs of vertices u, v ∈ V . Therefore we can

express the transition probabilities in terms of the weights by

puv =
w(u, v)

W (u)
, (2.26)

17

where W (u) is the weighted outdegree of u defined by W (u) :=
∑

v∈V w(u, v) for all

vertices u ∈ V .

It follows that the entries of the transition matrix of a Markov chain associated

to G are

(puv) =

1

d(u)
, if (u, v) ∈ E

0, otherwise,
(2.27)

when G is unweighted, so when w(u, v) = 1
m

for all pairs (u, v) ∈ E. If instead G is

weighted, these entries are

(puv) =

w(u,v)
W (u)

, if (u, v) ∈ E

0, otherwise.
(2.28)

We are mainly going to be focusing on unweighted graphs, so that the spanning

trees that we sample follow the uniform distribution. The proofs can be adapted

by substituting the transition probabilities defined in (2.28) to show that, in the

weighted case, the distribution depends on the weight of a given tree.

18

Chapter 3

Exact sampling of spanning trees

through exact counting

In this section, we are going to show that the problem of sampling uniform spanning

trees of a given graph G = (V,E) can be reduced to that of merely counting the

spanning trees of G, which as we have seen can be done in polynomial time in |V |.

3.1 Multigraphs

Definition 3.1.1. A multigraph is a graph in which we allow multiple edges between

vertices, so edges which share both endpoints.

Definition 3.1.2. For a graph G = (V,E), we call edge deletion the operation that

simply removes a given edge e = (u, v) from the graph. This leaves the vertex set

V unchanged, while the edge set E is replaced with E \ {e}.

Definition 3.1.3. The operation of edge contraction consists in removing e = (u, v)

and simultaneously joining the two incident vertices u and v into a new vertex w.

We keep all the other edges of the original graph, including ones that are repeated.

The resulting graph is a multigraph and has one less element in both the vertex set

and the edge set.

Let G1 = (V,E \ {e}) be the graph obtained by deleting e = (u, v) from G,

and G2 = (Ṽ , Ẽ) be the graph obtained by contracting e = (u, v) in G.

19

Consider the latter graph G2. The contraction of e may cause the graph to

turn into a multigraph, in the case where u and v share one or more neighbours.

For example, say u, v, and another vertex w have edges connecting all of them

in a cycle. then merging u and v into new vertex x will cause w and x to be connected

by two distinct edges.

More generally, in the case where G was a multigraph to begin with, the

number of edges between w and x in G2 will be the sum of the number of edges

between w and u and those between w and v. Note that the Matrix tree theorem can

be adapted to hold for multigraphs as well: one only needs to modify the Laplacian

matrix L of the graph, by taking entries lij = −k, where k is the number of edges

connecting vertex i to vertex j in the graph. Moreover, the degree of a given vertex

takes into accounts all loops.

3.2 Reduction from sampling to counting

The key realisation in order to understand the link between exact counting and

exact sampling lies in the fact that the set of spanning trees of the original graph G

can be partitioned into two disjoint subsets: the spanning trees that contain edge e,

and those which do not.

This can be done by observing that the number of spanning trees of G not

containing e in their edge set, is equivalent to the number of spanning trees in G1,

say τ(G1). On the other hand, the number of spanning trees of G which do contain e

can be viewed as the number of spanning trees of G2, say τ(G2), where two spanning

trees are considered distinct if they have a different edge connecting w with x.

It follows that we can express the total number of spanning trees in G as a

sum in this way:

τ(G) = τ(G1) + τ(G2). (3.1)

Now let T be a uniformly random spanning tree in G. One can calculate the

probability of a particular edge e being in the edge set of T by using the above

observation. We have that

20

Pr(e ∈ T) =
τ(G2)

τ(G1) + τ(G2)
, (3.2)

where we have the number of spanning trees containing e on the numerator, and the

total number of spanning trees in the denominator.

So we can use this to construct T recursively by considering one edge at a time

using a count tree. We start with the root of the tree r and label it with the whole

graph G. Then r has two children, say x and y, which we label by G1 and G2, defined

as above. We assign 0 and 1, to the edges connecting r to x and y, respectively.

At the next step, both children of r are going to have children of their own. The

children of x are going to be labeled by the graph obtained by edge deletion from

G1 and the graph obtained by edge contraction of G1, while the children of y are

going to be labeled analogously using G2. As before, the edges connecting x and y

to their children are assigned 0 or 1, depending on whether we deleted or contracted

the edge. This process goes on until we are left with no edges. The count tree is

constructed so that its leaves correspond to the spanning trees of the G.

3.3 Time complexity

Since counting the spanning trees of any multigraph can be done in O(n3) time, as

we have seen in Corollary 2.2.1, we can use this count tree to sample spanning trees

uniformly at random in O(n5) time.

Indeed, by (3.1), each time we decide whether a particular edge is present or

not we count the spanning trees of graph G1 and G2, which we know can be done in

O(n3) time by calculating the determinants of the corresponding Laplacian matrices.

Since there is a total of m = |E| edges, the total time complexity is O(n5).

21

Chapter 4

Aldous-Broder Algorithm

Given a connected finite graph G = (V,E), the Aldous-Broder algorithm outputs a

uniformly distributed random spanning tree of G.

Algorithm 1: Aldous-Broder

Input : G = (V,E) finite, connected

Output: Spanning tree T of G

Initialisation: Choose initial state X0 and run simple random walk with state

space V and transition probability as in (2.27);

while not all vertices have been hit do

if vertex hit at time t has not yet been visited then

add the edge leading to said vertex to T .;

else
do not record the edge

The idea is to arbitrarily pick a vertex at which to start and run the simple

random walk on G. As we move along the vertices, we add to the set of edges T .

We only record those edges that terminate in a vertex which has not been visited

before, as to avoid the formation of cycles [11].

Since the graph G is connected, from any given vertex we can reach any other

through a finite number of edges, so the Markov chain is irreducible and the cover

time is finite. This means that the algorithm will terminate with probability 1.

22

The edges which we record during the algorithm can be written as the set

T ⊂ E = {{Xh(v)−1, Xh(v)} | v ∈ V \ {X0}}, (4.1)

where h(v) is the hitting time of v as defined in the previous chapter. Note that the

set T has the following properties:

• T has no cycles: we only add the edges that bring us to vertices not yet visited;

• T is connected: by construction, since we apply the Markov chain repeat-

edly updating the initial state (or vertex) with the endpoint of the last edge

considered;

• T visits every vertex in V : we run the algorithm until we hit all vertices.

Hence the edges in T form a spanning tree of G by definition. Now we have

left to show that the spanning trees produced by the algorithm are uniformly dis-

tributed, or, in the case on weighted tree, distributed proportionally according to

their weights.

4.1 Backward and forward tree chains

Let t represent the time stages of a Markov chain. Then

It =
⋃

0≤j≤t

{Xj} (4.2)

is the set of states or, in the case of a Markov chain on a graph, vertices visited by

the chain in all steps up to and including stage t.

We denote by l(i, t) the largest index in [0, ..., t] such that at which vertex i ∈ I
is hit. Then we can define a backward tree rooted at Xt by

Bt = {(Xl(i,t), Xl(i,t)+1) | i ∈ I \ {Xt}}. (4.3)

If t exceeds the cover time then the set of edges in Bt form a spanning tree of G.

The random walk Xt induces a Markov chain (Bt)t≥0, the backward tree chain.

Similarly, we can define a forward tree by letting f(i, t) be the first index in

[0, ..., t] to hit vertex i, and setting

Ft = {(Xf(i,t), Xf(i,t)−1) | i ∈ I \ {Xt}}. (4.4)

23

Observe that, unlike the backward tree chain which keeps on changing, the

forward tree chain stays the same after t exceeds the cover time, i.e. for all steps

t ≥ C, we have that Ft = FC . Then Aldous-Broder algorithm described above

outputs the spanning tree FC .

Lemma 4.1.1. The distributions of backward tree BT and the forward tree FT are

the same.

Proof. One can construct a backward tree from X0, X1, ..., Xt by reversing the chain

Xt, Xt−1, ..., X0 and then computing the forward tree of the reversed chain. Since

the distribution of a walk and its reverse are the same, we conclude that BT and FT

also have equal distribution.

Lemma 4.1.2. The set of spanning trees T of the graph G is the unique closed class

of Bt.

Proof. Let G = (V,E) be a graph with |V | = n, and let T = (VT , ET) be a non-

spanning tree, then |VT | ≤ n− 1.

Suppose that Pr(Bt+1 = T ′ | Bt = T) > 0, for some spanning tree T ′ =

(V ′T , E
′
T), and some time step t. Since the steps in a backward tree chain never

make the tree smaller, we know that |V ′T | ≥ |VT |.

Let z ∈ V \ VT be a vertex not in T . By irreducibility, we can go from Xt to

z in a finite number of steps, so there exists some spanning tree T ′ with |V ′T | > |VT |
and

Pr(BS = T ′ for some s > t | Bt = T) > 0, (4.5)

equivalently

Pr(BS = T for some s > t | Bt = T) < 1, (4.6)

so the probability to remain in the set of non-spanning trees is < 1, and the class is

not closed. Hence a non-spanning tree in BT is transient.

Now we want to show that for any pair of directed spanning trees of G, say

(T, T ′), we have a path of s spanning trees starting at one and terminating at the

other

T ′ = T0, T1, ..., Ts = T, (4.7)

24

and that for all i ∈ [1, s],

Pr(Bt+1 = Ti | Bt = Ti−1) > 0. (4.8)

In order to show this, consider the set of leaves of T , denoted by L, and let r

and r′ be the roots of T and T ′, respectively. For any leaf l ∈ L, Pl,r is the unique

path travelling from l to the root r in T . Similarly, we can define the reverse path

Pr,l.

Notice that, with an appropriate choice of edges to travel, one can obtain T

from T ′. Indeed, suppose the two roots are distinct, r 6= r′. Then we can start the

path by going from r′ to r. Then for every leaf l, we take Pr,l, followed by Pl,r.

The path terminates in r, so the tree is rooted at r. Once we have completed this

process, the backward tree will be T .

Since this holds for any pair of directed spanning trees, we conclude that the

set which contains all of them T is a closed class.

Corollary 4.1.1. Bt has a unique stationary distribution supported on spanning

trees.

Proof. This follows immediately from Lemma 4.1.2, as an irreducible chain has a

positive stationary distribution if and only if all states are in the same closed class,

so all the states are recurrent and Bt has a unique stationary distribution.

Theorem 4.1.1. (Markov Chain-Tree) The stationary distribution of Bt is propor-

tional to the weight of the tree, for every T ∈ T ,

π(T) =
w(T)∑
T ′∈T w(T)

(4.9)

Proof. For all vertices i ∈ V ,

κ(i) := lim
N→∞

1

N

N∑
t=1

Pr(Xt = i) = lim
N→∞

1

N
Pr(Bt is rooted at i) =

∑
T∈Ti

π(T),

(4.10)

where Ti is the set of spanning trees of G rooted at i. Let T (i) ∈ Ti, and suppose

that Bt+1 = T (i). If T ′ precedes T (i) in the backward chain, then

• there exists a vertex j such that i 6= j and (i, j) ∈ T ′;

25

• there exists another vertex k such that k is the root of T ′ and the vertex

preceding i in the path from j to i in T (i).

Observe that at any time step t of the backward chain, the tree Bt is rooted at k.

Then we can define T ′ from T (i) by writing

T ′ = T (i) − (k, i) + (i, j). (4.11)

Since, given i and j, k is fixed and we can compute the stationary distribution

of T (i) by summing over all its choices:

π(T (i)) =
∑
T ′∈T

π(T ′)Pr(Bt+1 = T (i) | Bt = T ′) =

=
∑

j∈V,(i,j)∈E

π(T (i) − (k, i) + (i, j))Pr(Xt+1 = i | Xt = k).
(4.12)

Since T has root k, its weight is

w(T ′) =
∏

x∈V,x6=k

1

d(x)
. (4.13)

Moreover, by definition of the transition probabilities,

Pr(Xt+1 = i | Xt = k) = pik =
1

d(k)
. (4.14)

Then we have that∑
j∈V,(i,j)∈E

w(T (i) − (k, i) + (i, j))Pr(Xt+1 = i | Xt = k) =

∑
j∈V,(i,j)∈E

∏
x∈V

1

d(x)
= d(i)

∏
x∈V

1

d(x)
=

∏
x∈V,x6=i

1

d(x)
= w(T (i)).

(4.15)

Combining (4.12) and (4.15), we see that, for some constant c,

π(T) = c · w(T). (4.16)

Since π(T) is a probability distribution,
∑

T∈T π(T) = 1, so the constant is

c =
1∑

T∈T w(T)
, (4.17)

hence ∑
T∈T

π(T) =
∑
T∈T

w(T)∑
T ′∈T w(T ′)

= 1, (4.18)

which gives

π(T) =
w(T)∑

T ′∈T w(T ′)
, (4.19)

as required.

26

Corollary 4.1.2. The stationary distribution of Ft is also proportional to the weight.

Proof. This is a trivial consequence of Theorem 4.1.1 and Lemma 4.1.1.

4.2 Correctness

Theorem 4.2.1. The Aldous-Broder algorithm outputs a uniformly distributed span-

ning tree.

Proof. Since the algorithm chooses the initial state s arbitrarily, we cannot directly

apply Corollary 4.1.2 here. Nonetheless, this can be easily fixed.

Suppose we start from s instead of a π-random vertex and let Ts be the set of

all spanning trees starting at s. Since the weight

w(T) =
∏
e∈ET

w(e) =
∏

v∈VT ,v 6=s

1

d(v)
(4.20)

is the same for all directed trees in T ∈ Ts, then

Pr(FC = T) =

w(T)∑

T ′∈T w(T ′)
=

1

|Ts|
, if T ∈ Ts

0, otherwise.

(4.21)

Moreover, to any directed tree in Ts corresponds exactly one undirected spanning

tree, as we can simply disregard the orientation of the edges and the root. Similarly,

to any undirected spanning tree corresponds a directed tree from Ts, which we can

obtain by rooting the tree at s and directing all the edges towards the root. This

shows there is a bijection between Ts and the set of all undirected spanning trees of

a graph, so for any undirected spanning tree T , we have

Pr(FC = T) =
1

|T |
, (4.22)

so all spanning trees are equally likely.

4.3 Time complexity

Let us denote by ηi,j the expected number of transitions needed to reach vertex j

from vertex i. When i = j, we say that ηi,i is the mean recurrence time. Moreover,

we define the mean commute time to be the sum ηi,j + ηj,i [2].

27

Lemma 4.3.1. For a random walk on a graph on n vertices and m edges, the mean

recurrence time is ηi,i = 2m
d(i)

for all i.

Proof. Let π(i) be the stationary probability of vertex i. Then the vector of proba-

bility

π = (π(1), π(2), ..., π(n)) (4.23)

is such that πP = π and
∑n

i=1 π(i) = 1.

By substitution, since the entries of P are pij = 1
d(i)

, we have that π(i) = d(i)
2m

.

Notice that on average a chain visits i once every ηi,i time, so the mean recurrence

time of a state is the reciprocal of the stationary probability of said state [19], that

is

ηi,i =
1

π(i)
=

2m

d(i)
. (4.24)

Lemma 4.3.2. Let G = (V,E) be a graph on m edges. If (i, j) ∈ E, then mean

commute time of i and j is

ηi,j + ηj,i ≤ 2m. (4.25)

Proof. We are now looking at the expected number of transitions in a round trip,

from i to j and then back to i. All transitions are such that they happen with

the same long-run frequency, that is to say that for a very long random walk on

the graph, we expect that every edge is traversed in each direction every 2|E| = m

steps. Then it follows that if we start on vertex i, and j is adjacent to i, then we

expect to to pass through edge (j, i) within 2m time steps. Therefore,

ηi,j + ηj,i ≤ 2m. (4.26)

More generally, for a pair of vertices which are not necessarily adjacent, we

have the following bound.

Lemma 4.3.3. Let G = (V,E) be a graph. For any two vertices i, j ∈ V such that

i 6= j,

ηi,j + ηj,i ≤ 2m ·∆(i, j), (4.27)

where ∆(i, j) is the distance between vertices i and j.

28

Proof. We prove this by induction on ∆(i, j). Let ∆(i, j) = 1 for the base case.

Then (4.27) holds by Lemma 4.3.2. Now suppose the result holds for all (i, j) with

∆(i, j) ≤ r, and consider the case where ∆(i, j) = r + 1.

There exists another vertex k ∈ V such that k is adjacent to j, i.e. (j, k) ∈ E,

and ∆(i, k) = r. Then

ηi,j + ηj,i ≤ ηi,k + ηk,i + ηj,k + ηk,j ≤ 2m · r + 2m = 2m(r + 1), (4.28)

where we used the inductive hypothesis and Lemma 4.3.2 again.

Theorem 4.3.1. Let G = (V,E) be a graph on n vertices and m edges. The cover

time satisfies

C ≤ 2m(n− 1). (4.29)

Proof. Let T = (VT , ET) be a spanning tree of G. Then T has exactly n − 1 edges

and there exists a walk i = i0, i1, ..., i2n−2 = i which travels through all the edges of

T exactly once in each direction.

The cover time is clearly less than the time it takes the Markov chain to visit

all vertices in the walk we have constructed. Therefore

C ≤ ηi0,i1 + ηi1,i2 + ...+ ηi2n−3,i2n−2 =
∑

(i,j)∈ET

ηi,j + ηj,i = 2m(n− 1), (4.30)

by Lemma 4.3.3.

Since the Aldous-Broder algorithm runs within the cover time of the given

graph, its time complexity is O(mn) or, equivalently O(n3) [5].

However, the time is only as bad as O(n3) in the worst possible case. It can

be shown that the cover time is as small as O(n logn) whenever the second largest

eigenvalue of the transition matrix P is bounded away from 1. As it turns out, this

happens for almost all graphs [4].

29

Chapter 5

Wilson’s algorithm

In this section we present an algorithm due to Wilson which, for a directed graph

G = (V,E), produces a rooted spanning tree (T, r) uniformly at random. Note that,

since for any given tree we can pick a root arbitrarily, sampling a rooted tree is no

different to sampling an unrooted one, so this algorithm can be used for undirected

graphs as well. We only fix a root for simplicity, since the algorithm generates an

oriented tree.

5.1 Loop-erased random walks

An important concept we need in order to understand Wilson’s algorithm is that of

loop erased random walks. Let X0 = x,X1, X2, ... be a simple random walk on the

graph G; a loop erased random walk from vertex x ∈ V to A ⊂ V can be constructed

in the following way: we first consider the path

γ = (X0, X1, ..., XTA), (5.1)

where TA is the stopping time defined by

TA = min{n ≥ 0 | Xn ∈ A}. (5.2)

Walking along γ, every time we visit a vertex that we have already seen, we erase the

cycle, or ’loop’, which we just gave rise to. Then all loops are erased chronologically,

in the order in which they appear. When all loops are erased at the end of this

process, we are left with a self-avoiding path from x to A, that is with a path that

does not intersect itself at any point. This path is the loop-erased path LE(x,A).

30

Algorithm 2: Wilson

Input : G = (V,E) finite, connected

Output: Spanning tree T of G

Initialisation: T (0) = {r} and choose an ordering {v1, v2, ..., vn} of the

remaining vertices. Assume that at any stage i, T (i) is known;

while T (i) 6= V do

take the first vertex vj not in T (i) and start a random walk at vj;

if the random walk hits some vertex in T (i) then

let [vj, T (i)] be the walk from vj to T (i) and set

T (i+ 1) = T (i) ∪ LE([vj, T (i)])

else
keep going

5.2 Stacks

Before proving the correctness of Wilson’s algorithm, we introduce the notion of

stacks, which helps with the visualisation of the construction of the tree in this

specific algorithm. We define the stacks to be the random variables

(Sx,i | x ∈ V \ {r}, i ∈ N), (5.3)

which are all independent from one another and have probability

Pr(Sx,i = y) = pxy. (5.4)

so the stack points at a random neighbour of x, for all vertices x.

The idea is to construct a simple random walk using these stacks. We choose

as the initial state X0 a vertex v1 6= v0, and use the corresponding stack Sv1,1 to

find a random neighbour of v1, say w. We draw a directed edge from v1 to w, set

X1 = w, and discard the value Sv1,1, so that now the top element of the stack is

Sv1,2. We use Sw,1 to select another neighbour, which is going to become X2, pop

the stack which pointed us to that neighbour, and continue until we hit the already

constructed tree.

At any time in the walk, the top items of the stacks form a directed graph,

which we refer to as the visible graph. If no cycles arise in the process, then by the

31

end we will have a spanning tree. If instead we hit a vertex which we have already

visited, we know a cycle is formed, so we select all the edges of the visible graph at

this time and we replace Sx,i with Sx,i+1 for every x in the cycle. This is what we

call ’popping a cycle’. We keep popping all cycles until they are all gone and we are

left with a spanning tree of G.

5.3 Colouring

To keep track of what level of the stacks each directed edge comes from, we are

going to assign a colour to all of them. So to an edge which is identified by vertex

x and stack Sx,i, we are going to give colour i, for all x ∈ V . We call coloured cycles

those which have all edges of the same colour. In the first step of this popping cycles

algorithm, all edges have colour 1, so any cycles which may appear will be coloured.

However, as we progress, we will get cycles whose edges come from different levels

and which therefore are not monochromatic.

With this idea of loop erasure described by using stacks and then popping the

cycles, we can prove the theorem of correctness of Wilson’s algorithm [15].

5.4 Correctness

Theorem 5.4.1. Wilson’s algorithm terminates with probability 1, returning a span-

ning tree of G uniformly at random, or if the edges are weighted with probability

proportional to its weight as in (2.25).

Proof. Building on our previous characterisation of Wilson’s algorithm using the

notion of popping cycles, we want to show that the resulting spanning tree is in-

variant under the order in which the cycles are popped. Let C1, ..., Cn be a se-

quence of coloured cycles, which can be popped in this order to get a tree, and let

D1, D2, ..., Dm be another sequence of cycles that can be popped.

By induction we are going to show that the new sequence cannot possibly be

made up by different cycles from the first, even if they are ordered differently. If

n = 0, the result is trivial, as there are no cycles to be popped and both sequences

are empty. For m ≥ 1, let us assume that the statement is true when the length of

32

the first sequence is less than n. Take the first cycle Di which shares a vertex with

C1, and consider x ∈ Di∩C1. Since Di is the first cycle in the second sequence that

intersects C1, x is not contained in D1, ..., Di−1. Hence the edge in Di starting at x

also has colour 1 and it ends at the same vertex y as in C1. A similar reasoning applies

to y, and all subsequent vertices. Therefore Di and C1 represent the same cycle.

Then popping D1, D2, ..., Dm gives rise to the same tree as C1, D1, ..., Di−1, Di+1,

Once Di = C1 is popped, we can use the induction hypothesis and conclude that

the two sequences uncover the same spanning tree.

Then since our algorithm can be seen as a method of popping the cycles in a

particular order, it will result into the same tree distribution as any other method.

Let us show that for an unweighted tree, the distribution of the rooted trees is

uniform. First, define the descendant D(x, T), that is the nearest vertex to x in the

unique path from x to the root of the tree r. Now fix a spanning tree T = (VT , ET)

for G. Then the probability of seeing that given tree T on top of the stacks is

Pr(T) =
∏
x 6=r

Pr(Sx,1 = D(x, T)) =
∏
x 6=r

1

d(x)
= d(r)

∏
x∈VT

1

d(x)
, (5.5)

where we used the transition probability as defined in (2.27), and independence of

the random variables Sx,i. Observe that the final term does not at all depend on

the tree we chose, and call this quantity pG.

We can also calculate the probability of a particular labelled cycle appearing.

Let v0 = r be the root of the spanning tree, and

C = (v0, i0), (v1, i1), ..., (vk, ik), (5.6)

with Svj ,ij = vj+1 for all j. The probability of this cycle C to be formed is the

product of probabilities of all edge of C occurring:

Pr(C) = Pr(v0, v1) ·Pr(v1, v2) · ... ·Pr(vk, v0) =
k−1∏
j=0

Pr(vj, vj+1) =
k−1∏
j=0

1

d(vj)
. (5.7)

As we showed above, the resulting tree of the algorithm is independent of the

order in which the cycles are popped, so the probability of popping a set of cycles

33

C = C1, C2, ..., Cn and uncovering vertex T is given by

Pr(T | Ci) =
n∏
i=1

Pr(Ci) · Pr(T) = Pr(C) · pG. (5.8)

Since the probability is the same for all spanning trees, then they are uniformly

distributed and all equally likely to appear.

In the case where we consider a weighted graph, the proof can be constructed

analogously by substituting the transition probability from (2.27) with that of (2.28).

Then the probability of a tree appearing, given that the cycles Ci have been popped

is proportional to the weight of the tree T = (VT , ET), i.e.

Ψ(T) =
∏

(u,v)∈ET

puv =

∏
(u,v)∈ET

c(u, v)∏
x∈V,x6=root(T) π(x)

. (5.9)

5.5 Time complexity

Let ηi,j be the expected number of steps it takes to go from vertex i to vertex j

as before. Since ηi,j ≤ C for all pairs i, j, the mean commute time can always be

bounded above by twice the cover time.

Let π be the stationary distribution. We define the mean hitting time ζ as the

expected time it takes to go from a π-random vertex to another π-random vertex

ζ =
∑
i,j

π(i)π(j)ηi,j. (5.10)

We want to know how many times we expect to have to use that stacks to select

a random neighbour. Since we have shown that the ordering of the cycle-popping is

irrelevant to the resulting tree, suppose we start at vertex u. The expected number

of times that the random walk returns to u before reaching the root r is given by

π(u)(ηu,r + ηr,u), (5.11)

where the number of times includes time t = 0 [1]. So the number of times we expect

to use the stacks in Wilson’s algorithm is the sum over all u ∈ V :∑
u∈V

π(u)(ηu,r + ηr,u) = 2ζ (5.12)

34

Moreover, the time it takes to create the loop-erasure of a path and connect the

vertices to make the tree is ζ, therefore the whole algorithm runs in O(ζ) time.

Note that

ζ =
∑
i,j

π(i)π(j)ηi,j ≤ maxi,j(ηi,j + ηj,i) ≤ 2C, (5.13)

so in most instances, Wilson’s algorithm returns a uniform spanning tree more

quickly than the previous two algorithms.

The worst case scenario for the time complexity of Wilson’s algorithm is the

one where we have a barbell graph: this is a graph which consists of two cliques of

size n
3
, connected by a path of length n

3
. In this case the mean hitting time will

coincide with the cover time and it will take us O(n3) time to run the algorithm.

35

Chapter 6

Partial Rejection Sampling

Algorithm.

The task of uniform sampling trees of a graph can be interpreted as that of avoidance

of a finite sequence of “bad”” events, when we consider said events to be cycles in

the graph we generate [9].

6.1 Lovász local lemma

First, we are interested in seeing whether the complete avoidance of all these events

is even possible.

For instances where the sequence of bad events A1, A2, ..., An is such that

n∑
i=1

Pr(Ai) < 1 (6.1)

or those where all events in the sequence are independent, then of course this can

be done with probability strictly larger than 0.

However, in most cases the sum of probabilities of events in the sequence is

going to exceed 1, and the events may depend on one another, so we want to know

whether all bad events can still be avoided in these cases.

Definition 6.1.1. The dependency graph is a graph which represents the depen-

dency relations between some given events. In other words, if we assign the event

36

Ai to vertex i for all i, then we have that Ai is mutually independent of the set of

events {Aj | (i, j) /∈ E, i 6= j}.

Theorem 6.1.1. (Lovász local lemma.) Suppose we have a sequence A1, A2, ..., Am

of “bad” events and let D = (V,E) be their dependency directed graph. If there

exists a real vector (x1, x2, ..., xm) ∈ [0, 1)m such that for all i ∈ [s]

Pr(Ai) ≤ xi
∏

(i,j)∈E

(1− xj), (6.2)

then we have

Pr

(m⋂
i=1

Āi

)
≥

m∏
i=1

(1− xi) > 0. (6.3)

Proof. In order to simplify the notation of the proof a little, for a subset S ∈ [m],

let

P̄S := Pr

(⋂
i∈S

Āi

)
, (6.4)

and take P̄∅ := 1.

We are going to show by induction that, for all S ∈ [m], and all k ∈ S,

P̄S ≥ (1− xk) · P̄S\{k} > 0. (6.5)

For the base case, this holds trivially, since we have

P̄{k}

P̄∅
= Pr(Āk) ≥ 1− xk

∏
(a,j)∈E

(1− xj) ≥ 1− xk. (6.6)

Now assume that (6.5) holds for all subsets S ′ ∈ [m], with |S| ≤ r, and let

S ∈ [m] be of size r + 1. We define the neighbourhood of k ∈ S

N(k) := {l ∈ V : (k, l) ∈ E}, (6.7)

and its closure

N+(k) := {k} ∪N(k). (6.8)

37

Then for k ∈ S fixed, we have

P̄S =Pr

(⋂
i∈S

Āi

)
= Pr

(⋂
i∈S\{k}

Āi

)
− Pr

(
Ak ∩

⋂
i∈S\{k}

Āi

)

≥ Pr

(⋂
i∈S\{k}

Āi

)
− Pr

(
Ak ∩

⋂
i∈S\N+(k)

Āi

)
= P̄S\{k} − Pr(Ak)P̄S\N+(a),

(6.9)

where the last equality is due to mutual independence between Ak and the set of

events with indices which are distinct from k nor they are in its neighbourhood, i.e.

k, {Ai | i /∈ N+(k)}.

Dividing through by P̄S\{k} in (6.9), we get

P̄S
P̄S\{k}

≥ 1− Pr(Ak) ·
P̄S\N+(k)

P̄S\{k}
. (6.10)

Since S \ {k} has size r, then by inductive hypothesis, P̄S\{k} > 0. Now consider

intersection N(k) ∩ S = {b1, b2, ..., bd}, where d ≥ 0. We can write

P̄S\N+(k)

P̄S\{k}
=
P̄S\{k,b1}

P̄S\{k}
·
P̄S\{k,b1,b2}

P̄S\{k,b1}
· ... ·

P̄S\{k,b1,b2,...,bd}

P̄S\{k,b1,b2,...,bd−1}
. (6.11)

Now, by inductive hypothesis we know that all terms on the right hand side are

strictly positive and are bounded by 1
1−xbi

, so

P̄S\N+(k)

P̄S\{k}
≤ 1

1− xb1
· 1

1− xb2
· ... · 1

1− xbd
. (6.12)

By hypothesis of the lemma, Pr(Ai) ≤ xi
∏

b∈N+(k)(1− xb), hence, substituting this

in our previous inequality (6.10),

P̄S
P̄S\{k}

≥ (1− xk)
∏

b∈N(k)

(1− xb)
∏

c∈N(k)∩S

1

1− xc
≥ 1− xk > 0. (6.13)

Now we have proved that
P̄S

P̄S\{k}
≥ 1− xk (6.14)

for all S ∈ [m] and k ∈ S, we can easily see that this implies the Lovász local lemma

holds, since

Pr

(m⋂
i=1

Āi

)
= P̄[m] ≥ (1− xm) P̄[m−1] = (1− xm)(1− xm−1) P̄[m−2] ≥ ...

... ≥
m∏
i=1

(1− xi) > 0,

(6.15)

as desired.

38

6.2 Construction

Let us first look at the intuition behind how one can construct a partial rejection

algorithm for a generic case where we want to avoid some given events, drawing

samples from a product distribution µ(·) of all random variables.

Indeed, in this chapter, we will only be considering product spaces, that is

cases where we have mutually independent random variables X1, X2, ..., Xn and the

events A1, A2, ..., Am depend on a subset of them, namely var(Ai).

Since the avoidance of bad events is attainable under the condition of Theorem

6.1.1, we could think about using this to generate scenarios free of the undesired

events in this way:

• Initialise the variables randomly using the respective distributions.

• If no bad events occur, then we are done. If one or multiple bad events Ai

occur, arbitrarily pick one of the bad events and resample all var(Ai), where

var(Ai) is the index set of all random variables that the corresponding bad

event depends on.

• Output the new assignment.

• Repeat until the output includes no bad events.

The issue with this procedure is that in general the outcome will not be uni-

formly distributed, as it will be inevitably biased if there are elements which belong

to var(Ai) for more than one i.

In order to achieve the conditioned product distribution we want, we need to

add a crucial condition.

Condition 6.2.1. We require the intersection of any two dependent bad events

to be empty. That is, if (i, j) is an edge in the dependency graph, then we have

Pr(Ai ∩ Aj) = 0. We define cases where this condition is satisfied as extremal.

If this condition is satisfied, then the occurring of bad events forms an inde-

pendent set on the dependency graph and therefore we can resample in a parallel

fashion. This observation leads to the following improved algorithm:

39

Algorithm 3: General Partial Rejection Sampling

Input : Random variables X1, X2, ..., Xn with respective distributions;

Output: Assignment of variables which avoid all bad events Ai;

Initialisation: Draw independent samples of all variables X1, X2, ..., Xn from

their respective distributions:

while there is at least one event Ai occurring; do
find the independent set I of occurring Ai’s on dependency graph and

independently resample all the variables in
⋃
i∈I var(Ai);

We will see later that this revisited version of the original algorithm gives us

the distribution needed: this is because, as soon as we require any two bad events

to be disjoint, we automatically get that var(Ai)∩var(Aj) is empty for any i, j ∈ I,

where I is defined as above. So we can resample safely the variables of one event,

without interfering with any other in the process.

This can be adapted to the specific case in which we are given a graph with

root r and we want to sample uniformly at random a spanning tree rooted at r.

We let the state space be the vertex set V of the graph G, and we take the random

variables X1, X2, ..., Xn as a choice of neighbour for any vertex in V . In this case,

we consider the appearance of cycles to be the events we want to avoid, and define

two cycles to be dependent with one another if they share one or more vertices.

Call AC the event that cycle C is formed. Then var(AC) = VC , where C =

(VC , EC). Let us show that the cycles satisfy the condition of extremal events.

Suppose there are two distinct cycles C and C ′ present, and let v ∈ VC ∩ V ′C be

a shared vertex. Then we can start from v and follow an arrow Xv from v to v′.

Since both cycles are present, it must be the case that v′ ∈ VC ∩ V ′C . We can keep

following arrows until at some point we get back to v. This implies that C = C ′, a

contradiction, so Pr(AC ∩ AC′) = 0 unless C = C ′ and the condition is satisfied.

For every vertex v other than the root, let us assign a random variable, which

we can think of as an arrow pointing to one of the neighbours. Then the following

algorithm give us a way to sample spanning trees uniformly.

40

Algorithm 4: Partial Rejection Sampling for Spanning Trees

Input : G = (V,E) finite, connected;

Output: Uniformly chosen spanning tree T of G;

Initialisation: Set T = ∅ and choose r uniformly at random. For every vertex

v 6= r choose a neighbour u randomly and add [v, u] to T :

while there is at least one cycle in T ; do
remove from T all edges of all cycles and for the vertices whose edges are

removed, randomly choose a neighbour again and add the corresponding

edge to T ;

6.3 Correctness

The procedure of the partial rejection algorithm can be described using a resam-

pling table. Suppose for each of the bad event, we have a processor looking at the

random variables associated with that particular event in order to decide whether

the event has occurred or not. If the event has occurred, we want to resample the

corresponding variables. The way we do this is by assigning an infinite stack of ran-

dom values {Xi,1, Xi,2, ...} to each variable Xi. Observe how this idea is equivalent

to the cycle-popping procedure we used for Wilson’s algorithm.

The resampling table is going to have i rows, one for every random variable

Xi and an infinite amount of columns, which we are going to move across (to the

right) when needing to select a different random value. Let t represent the round of

the algorithm, and suppose that at time t, the random variable Xi takes on value

Xi,ji,t . Then the set

σt = {Xi,ji,t | 1 ≤ i ≤ n} (6.16)

contains the information about the current assignments and therefore determines

which events happen. By Condition 6.2.1, the set of events It happening at any

round forms an independent set of G, so one can resample the variables associated

to the events by doing

ji,t+1 =

ji,t + 1, if there is l such that i ∈ var(Al)

ji,t, otherwise
(6.17)

From this, we see that any event occurring in round t + 1 must have at least

41

one variable in common with an event from It. In other words, It+1 ⊂ N+(It), where

N+ denotes the closure of the set.

Definition 6.3.1. We say that a list S = S1, S2, ..., Sl of independent sets in G is

an independent set sequence if, for all i ∈ [1, l − 1], Si 6= ∅ and Si+1 ⊂ N+(Si).

Definition 6.3.2. Let l ≥ 1. We define the log of running the algorithm on the

resampling table up to round l to be the sequence I1, I2, ..., Il of independent sets

created in the process.

Then the sequence given by the log gives an independent set sequence, as

defined in Definition 6.3.1.

Definition 6.3.3. We call a assignment σ valid whenever none of the bad events

Ai happen where i /∈ N+(Sl).

Take T to be the round at which the algorithm terminates, and let σ(t) = σ(T)

for all t ≥ T .

Lemma 6.3.1. Suppose condition 6.2.1 holds and let log S = S1, S2, ..., Sl of length

l ≥ 1. Condition on seeing the events in log S, σl+1 is a random sample from

µ

(
·
∣∣∣∣ ⋂
i∈[m]\N+(Sl)

Āi

)
, (6.18)

the product distribution conditioned on the avoidance of the bad events whose indices

are not in the closure of Sl.

Proof. Sl is the set of events occurring at round l, so σl+1 is valid.

We can shorten the resampling table of the algorithm to a table

M = {Xi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ ji,l+1}, (6.19)

since we are only interested in the first l − 1 columns. Let us now define another

table

M ′ = {X ′i,k | 1 ≤ i ≤ n, 1 ≤ k ≤ ji,l+1} (6.20)

where the random values X ′i,j only change in the final round l + 1 and exclusively

to another valid assignment, so we have Xi,k = X ′i,k for all k ≤ ji,l.

We claim that M and M ′ generate the same log S. Suppose this is not the

case and let t0 be the first round where the resampling is different. Without loss

42

of generality, we can take A to be the event occurring in St0 for table M but not

table M ′. For the two runs to be different, we need there to be some nonempty set

of variables Y ⊂ var(A) with corresponding values (Xi,ji,l+1
). Since the resampling

does not change before round t0, in M ′, Y is assigned to (X ′i,ji,l+1
) at time t0. Then

we have one of two possible cases:

• Y = var(A): since A holds in the run generated by M ′, then A ∈ N+(Sl). It

follows that an event occurs in the run generated by M such that it intersects

A. But then the algorithm would need access to columns beyond the final

round of the table in order to replace the variables which the two events share.

So this is a contradiction.

• Y 6= var(A): then there is a nonempty set Z = var(A) \ Y . Any variable

in this set is not attained in the final round, so it must be resampled in the

M run. Let us take Xj to be the first variable to be resampled at or after

round t0. Since A cannot occur, there must be a distinct event A′ 6= A which

causes Xj to be resampled by the algorithm. Then var(A) ∩ var(A′) 6= ∅,
so we can take a variable Xk, where k ∈ var(A) ∩ var(A′), which due to A′

occurring, is resampled at or after round t0 in the M run. Then for any such

k, Xk ∈ Z. Since A′ is by construction the first resampling event involving

Z at or after stage t0, we know that Xk has not been resampled until A′

occurs. This shows that we can find a assignment to variables contained in

the intersection var(A) ∩ var(A′) allowing both A and A′ to happen, which

can be then extended to a full assignment. This is a contradiction to condition

6.2.1, since A and A′ share the random variable Xj and their intersection is

nonempty.

Since both possible scenarios lead to contradictions, we conclude that the claim

is true, that is that the algorithms running on M ′ and M generate the same log S.

This implies that every possible table conditioned on the log S such that σl+1

is a valid assignment has one-to-one correspondence to another table where σl+1 is

another valid assignment. So for any valid assignments, say σ, σ′, there is a bijection

between the resampling tables that induce them. Moreover, we have that the ratio

between the probability of the two tables is equivalent to that of the probabilities

of σ and σ′ under the product distribution of all random variables µ(·). This shows

43

in turn that any two valid assignments are proportional to their own probability of

occurring in µ(·), and therefore σl+1 has the desired distribution.

Theorem 6.3.1. When condition 6.2.1 holds and the algorithm terminates, the

output is

µ

(
·
∣∣∣∣ ⋂
i∈[m]

Āi

)
, (6.21)

the product distribution conditioned on avoiding all bad events.

Proof. Let S = S1, S2, ..., Sl be the log of a successful run. Then Sl = ∅. By the

previous Lemma 6.3.1, conditioned on S, the resulting assignment is

µ

(
·
∣∣∣∣ ⋂
i∈[m]\N+(Sl)

Āi

)
= µ

(
·
∣∣∣∣ ⋂
i∈[m]

Āi

)
. (6.22)

This holds for any possible log, so the result follows.

6.4 Time complexity

Let pi := Pr(Ai) for all i ∈ [1,m], and let I denote the set of independent sets of

the graph G. We define the weighted independent polynomial qI by

qI(p) :=
∑

J∈I,I⊂J

(−1)|J |−|I|
∏
i∈J

pi, (6.23)

for p = (p1, p2, ..., pm).

In order to simplify the notation, let A(S) =
⋂
i∈S Ai be the conjunction of

all events indexed by S. Let Prµ denote the probability space with respect to

the product distribution µ. For set I in the dependency graph, we can write the

probability that all events indexed by I happen as

pI = Prµ(A(I)) =

∏

i∈I pi, if I is independent

0, otherwise,
(6.24)

where the first case follows from the fact that any two sets in an independent

set are independent, and the second is due to Condition 6.2.1. Note that this

probability does not exclude the scenarios where other events aside from those in I

also happen.

44

Let us compute the probability that only the events in I happen. The inclusion-

exclusion principle states that for a finite set of events A1, A2, ..., Am, their union

can be calculated using the formula∣∣∣∣ ⋃
i∈[m]

Ai

∣∣∣∣ =
∑

J⊂[m],J 6=∅

(−1)|J |+1

∣∣∣∣ ⋂
j∈J

Aj

∣∣∣∣. (6.25)

This comes from the fact that when the intersection are non-trivial between

the events, the repeated inclusion of the elements lying in those intersections will

need to be compensated.

Denote the whole space of events by Ω. Then using (6.25) and the De Morgan’s

laws, we get ∣∣∣∣ ⋂
i∈[m]

Āi

∣∣∣∣ =

∣∣∣∣Ω− ∑
J⊂[m],J 6=∅

(−1)|J |+1

∣∣∣∣ ⋂
j∈J

Aj

∣∣∣∣∣∣∣∣. (6.26)

By applying (6.26) to both the intersection of events and the intersection of

their negations, we have

Prµ

(⋂
i∈I

Ai ∩
⋂
i/∈I

Āi

)
=
∑
J⊃I

(−1)|J\I|pJ =
∑

J∈I,I⊂J

(−1)|J |−|I|
∏
i∈J

pi, (6.27)

since the cases where J is not independent are 0 and do not contribute to the

summation. Note that this is exactly the definition of qI , so

Prµ

(⋂
i∈I

Ai ∩
⋂
i/∈I

Āi

)
= qI . (6.28)

Since for any two distinct sets I, the events

(⋂
i∈I

Ai∩
⋂
i/∈I

Āi

)
have trivial intersection,

we have that ∑
I∈I

qI = 1. (6.29)

Additionally, A(I) is the union of the events

(⋂
i∈I

Ai ∩
⋂
i/∈I

Āi

)
over all sets J ⊃ I,

which implies

pI = Prµ(A(I)) =
∑

J∈I,J⊃I

qJ . (6.30)

Definition 6.4.1. For an independent set I ∈ I, we define

• the boundary δ(I) := N+(I) \ I, the set of events that depend on I but are

not in I;

45

• the exterior Ie := [m] \N+(I), the set of events which are independent of all

events in I;

• the complement Ic := [m] \ I, the set of events which are not in I.

Then the complement of I can also be written in as the union of the other two, i.e.

Ic = δ(I) ∪ Ie.

Lemma 6.4.1. If Condition 6.2.1 holds, and S = (S1, S2, ..., Sl) is an independent

set sequence, then

Pr(log is S up to round l) = qSl

l−1∏
t=1

pSt (6.31)

in the algorithm.

Proof. We can assume without loss of generality that qSl
> 0, for if it was equivalent

to 0, then the sequence would not occur.

Let A(S) be as defined above, and B(S) =
⋂
i∈S Āi. By Definition 6.4.1 and

by De Morgan’s laws, we have that

B(Ic) = B(δ(I)) ∩B(Ie). (6.32)

Then we can rephrase the probability qI that exactly the events in I and no other

occur using B(·):
qI = Prµ(A(I) ∩B(Ic)). (6.33)

Again by Definition 6.4.1, we have

Prµ(B(Ie) | A(I)) = Prµ(B(Ie)). (6.34)

Moreover, by Condition 6.2.1,

A(I) ∩B(δ(I)) = A(I). (6.35)

This implies then that for every set I ∈ I,

qI = Prµ(A(I) ∩B(Ic)) = Prµ(A(I) ∩B(δ(I) ∩B(Ie)) =

= Prµ(A(I) ∩B(Ie)) = Prµ(A(I))Prµ(B(Ie)),
(6.36)

where we used (6.35) for the penultimate equality, and (6.34) for the last.

46

We show the result by induction on the rounds l. For the base case, l = 1

and the lemma holds trivially. Now suppose that l > 1. By Definition 6.3.1 of

independent set sequence, we know that Sl ⊂ N+(Sl−1), and

B(Scl) ∩B(Scl−1) = B(Scl), (6.37)

because we do not resample any of the random variables associated with the events

Ai when i ∈ Sl−1e .

Using Lemma 6.3.1, we have that, conditioned on Sl−1, the distribution of the

random sample σl at round l is the product distribution conditioned on none of the

events outside of N+(Sl−1) happening.

Let PrPRS denote the probability space with respect to the partial rejection

sampling algorithm. Then the probability of having Sl at round l is

PrPRS(A(Sl) ∩B(Scl)) holds at l | prior log isS1, S2, ..., Sl−1)

= Prµ(A(Sl) ∩B(Scl) | B(Scl−1))

=
Prµ(A(Sl) ∩B(Scl) ∩B(Sel−1))

Prµ(B(Sel−1))

=
Prµ(A(Sl) ∩B(Scl))

Prµ(B(Sel−1))

=
qSl

Prµ(B(Sel−1))
,

(6.38)

where the penultimate equation holds by (6.37) and the last by (6.33).

Now we can apply the inductive hypothesis and see that

PrPRS(log is S up to l) =
qSl

Prµ(B(Sel−1))
· qSl−1

l−2∏
t=1

pSt = qSl

l−2∏
t=1

pSt = qSl

l−1∏
t=1

pSt ,

(6.39)

where the last equality is due to (6.36).

Corollary 6.4.1. Let S = S1, S2, ..., Sl be an independent set sequence and I be an

independent set of the dependency graph. If Condition 6.2.1holds and q∅ > 0, then∑
S:S1=I

pSq∅ = qI . (6.40)

47

Proof. By Lemma 6.3.1 it follows that the distribution of σl conditioned on S at

round l is µ(· | B(Sel−1)). Then the probability of getting the assignment that we

want is

µ(B([m]) | B(Sl−1)) =
µ(B([m]))

µ(B(Sel−1))
≥ µ(B[m]) = q∅. (6.41)

This goes to show that the probability of the algorithm terminating at round

t is bounded above by (1− q∅)t, which tends to 0, as t tends to infinity. This in turn

implies that whenever q∅ > 0 the algorithm terminates with probability 1.

Let S be an independent set sequence with final independent set Sl = ∅. Then,

by Lemma 6.4.1,

pSq∅ = Pr(log is S up to round l), (6.42)

and
∑
S:S1=I

pSq∅ is the sum of probabilities of all halting logs that have their first

independent set equal to I. This is just the probability of having exactly I as the

first independent set, which is qI by definition.

Lemma 6.4.2. If Condition 6.2.1 holds and q∅ > 0, then for all i ∈ [m] and for all

z ∈ [0, 1],

q∅(p1, p2, ..., piz, ..., pm) > 0. (6.43)

Proof. Since, by hypothesis q∅ > 0, we want to show that

q∅(p1, p2, ..., piz, ..., pm) > q∅. (6.44)

Recall that by definition we have

q∅ = q∅(p) =
∑
I∈I

(−1)|I|
∏
i∈I

pi, (6.45)

so, splitting the sum into sets that do and do not contain i, we get

q∅(p1, p2, ..., piz, ..., pm) =
∑

I∈I,i/∈I

(−1)|I|
∏
j∈I

pj + z
∑

I∈I,i∈I

(−1)|I|
∏
j∈I

pj. (6.46)

Since qi(p), the probability of event Ai and no other occurring, is given by

qi(p) =
∑

I∈I,i∈I

(−1)|I|−1
∏
j∈I

pj, (6.47)

it follows that the second summation term (6.46) is

z
∑

I∈I,i∈I

(−1)|I|
∏
j∈I

pj = z(−qi(p) = −zqi(p) ≥ 0, (6.48)

48

since z is non-negative, and qi(p) is positive. Then

q∅(p1, p2, ..., piz, ..., pm) ≥ q∅ > 0, (6.49)

by hypothesis.

Theorem 6.4.1. Let Ri be the number of resamplings of event Ai and R =
∑

i∈[m]Ri

be the total number of resamplings for all the bad events. If Condition 6.2.1 holds,

and q∅ > 0, then the expected number of resamplings is E(R) =
∑

i∈[m]
qi
q∅

.

Proof. We first show that E(Ri) = q∅

(
1

q∅(p1, p2, ..., piz, ..., pm)

)′∣∣∣∣
z=1

.

Since pSq∅ gives a probability distribution, we should have that the some of all

such probabilities adds up to 1. Then, using this observation and Corollary 6.4.1,∑
S

pSq∅ =
∑
I∈I

∑
S:S1=I

pSq∅ =
∑
I∈I

qI = 1. (6.50)

We can rearrange the equations to get that∑
S

pS =
1

q∅
. (6.51)

Let Ri(S) be the total number of resamplings of Ai in S, i.e. the number of times

event Ai occurs in the independent set sequence S. By Lemma 6.4.2 and 6.50, we

have ∑
S

pSz
Ri(S) =

1

q∅(p1, p2, ..., piz, ..., pm)
. (6.52)

The derivative with respect to z gives∑
S

Ri(S)pSz
Ri(S)−1 =

(
1

q∅(p1, p2, ..., piz, ..., pm)

)′
, (6.53)

which evaluated at z = 1 is∑
S

Ri(S)pS =

(
1

q∅(p1, p2, ..., piz, ..., pm)

)′∣∣∣∣
z=1

(6.54)

Since E(Ri) =
∑
S PrPRS(log is S)Ri(S) by definition,

E(Ri) =
∑
S

pSq∅Ri(S) = q∅

(
1

q∅(p1, p2, ..., piz, ..., pm)

)′∣∣∣∣
z=1

(6.55)

Now we claim that q∅

(
1

q∅(p1, p2, ..., piz, ..., pm)

)′∣∣∣∣
z=1

=
qi
q∅

.

49

Take the derivative of (6.46) with respect to z. Then

q′∅(p1, p2, ..., piz, ..., pm) =
∑

I∈I,i∈I

(−1)|I|
∏
j∈I

pj = −qi. (6.56)

Then, by the derivative rule for inverse functions,(
1

q∅(p1, p2, ..., piz, ..., pm)

)′
=
q′∅(p1, p2, ..., piz, ..., pm)

q∅(p1, p2, ..., piz, ..., pm)2
=

qi
q∅(p1, p2, ..., piz, ..., pm)2

.

(6.57)

Setting z = 1, the claim holds. Since E(R) =
∑

i∈[m] E(Ri), by linearity of expecta-

tion the theorem follows.

The results discussed thus far in this section apply to a generic scenario of

partial rejection sampling under extremal instances. Let us narrow things down to

the case of sampling rooted spanning trees of a graph G. The expected number

E(Ri) of resamplings of event Ai is now the expected number of times that a cycle

Ci arises in the dependency graph, so the number of times we expect to have to pop

cycle Ci. Denote by Z0 the number of assignments of arrows to the vertices of G

which result in a directed tree with root r, and by Z1 those that yield a subgraph

with one cycle, or a unicyclic subgraph. Then the

E(R) =
Z1

Z0

. (6.58)

The following theorem gives a bound on the ratio between these two quantities.

Theorem 6.4.2. Let G = (V,E) be a graph with |V | = n, |E| = m. Then Z1

Z0
≤ mn.

Proof. Consider an assignment that yields a unicyclic subgraph. Then this assign-

ment can be partitioned into two components, one of which is a directed tree with

root r and the other is a directed cycle. By removing the second component we

would get a graph with edge set size one smaller than the vertex set, i.e. a spanning

tree. Therefore, in the unicyclic component we have some subtrees rooted on the

cycle.

By connectivity of G, any pair of vertices in G has a path which connects it.

In particular, there exists an edge in G between the two components, say {v0, v1},
with v0 in the tree component and v1 in the unicyclic component. We can extend

50

this edge to a path v0, v1, ..., vl which follows the arrows until we reach a vertex vl

that lies on the cycle. Then we have arrows v0 → v1, v1 → v2, ..., vl−1 → vl. Now

let vl → vl+1 and reassign the arrows by vl → vl−1, vl−1 → vl−2, ..., v1 → v0. The

resulting subgraph is a directed tree rooted at r.

Now that we have seen how we can obtain a directed rooted tree from a uni-

cyclic graph, we want to look at how many unicyclic subgraphs can be associated

with a given directed tree. The edge {vl, vl+1} in the procedure is undirected. How-

ever, vl is the closer vertex to r, so there is no ambiguity. The other vertices

vl−1, vl, ..., v0 can be easily recovered if we have edge vl, vl+1, since the path from vl

to v0 is unique. Then the unicyclic subgraph can be recovered by just reassigning

the arrows to the vertices in this way: v1 → v2, v2 → v3, ..., vl → vl+1. It follows

that in order to reverse the procedure, all we need is to know one edge, vl, vl+1, and

one vertex, v0. Since we have m edges and n vertices in G, for a given directed tree

rooted at r we have at most mn unicyclic graphs associated with it.

Then by Theorem 6.4.2 and (6.58), the expected number of popped cycles in

the partial rejection sampling algorithm is

E(R) ≤ mn. (6.59)

Then the time complexity of the algorithm is O(mn) = O(n3), as expected

since it is equivalent to Wilson’s algorithm.

51

Chapter 7

Conclusion

Throughout this thesis we have seen how the task of sampling spanning trees of a

graph uniformly at random can be tackled using different approaches and exploiting

different results, both of algebraic and probabilistic nature.

Here is a table of comparison for the time complexity of the algorithms which

we have discussed, along with the corresponding references.

Algorithms for sampling uniform spanning trees

Name of algorithm Main technique Time complexity Reference

Exact sampling (1847) Reduction to exact

counting

O(n3 ·m) = O(n5) [16] [20]

Aldous-Broder (1989) Markov chain tree the-

orem

O(n3) [4]

Wilson (1996) Loop-erasure and pop-

ping cycles

O(ζ) [21]

Partial rejection sam-

pling (2017)

Lovász local lemma

and extremal cases

O(ζ) [9]

Table 7.1: Algorithms for sampling uniform spanning trees of a graph

52

Starting with a perhaps more obvious approach, we first introduced a classical

method in the sampling of uniform spanning trees that follows intuitively from Kir-

choff’s Matrix Tree Theorem. Later on, we analysed some more efficient procedures,

building on well known results and concepts which allow us to optimise the running

time and which apply to more generic contexts as well.

As mentioned earlier, spanning trees can be extremely helpful in various fields.

A particularly interesting application in the direction of which this research could be

extended is that of the use of spanning trees in order to expand a graph. Expanding

a graph can be a crucial aspect in the subject of network design: by doing so, we

create enough alternative and disjoint paths in order to ensure that a network will

most likely recover from random failures. Indeed, the path diversity of the graph will

reduce the probability of a congestion happening. In [6], it is shown that the union

of two uniformly distributed spanning trees of a graph approximates an expansion

of the graph to withing a factor of O(logn).

Another reason why we might want to deepen our understanding of spanning

trees of a graph is for graph sparsification purposes. We say a graph is dense when

the number of edges is close to the maximum possible number of edges it can contain.

If the graph is not dense, we say it is sparse. Then a sparsifier G′ of a graph G is a

sparse subgraph which retains some properties of the original graph. We can use this

idea to approximate a dense graph G with a sparsifier, which is easier to work with

and encloses the characteristics of G that we care about. This substitution enables us

to decrease the time complexity of the algorithms that we may want to implement,

which often depends on the number of edges. Since spanning trees contain the

minimum possible number of edges, they are a great example of a sparsifier of a

graph. Instead of sampling the edges of a graph independently, we can pick a

uniformly random spanning tree, which preserves the connectivity of the original

graph [7].

53

Bibliography

[1] David Aldous and James Allen Fill. Reversible markov chains and random

walks on graphs, 2002. Unfinished monograph, recompiled 2014, available at

http://www.stat.berkeley.edu/∼aldous/RWG/book.html.

[2] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and

Charles Rackoff. Random walks, universal traversal sequences, and the com-

plexity of maze problems. 20th Annual Symposium on Foundations of Computer

Science (sfcs 1979), 1979.

[3] Luca Avena, Fabienne Castell, Alexandre Gaudillière, and Clothilde Mélot.

Random forests and networks analysis. Journal of Statistical Physics, 173(3-

4):985–1027, Aug 2018.

[4] A. Broder. Generating random spanning trees. 30th Annual Symposium on

Foundations of Computer Science, 1989.

[5] Andrei Z. Broder and Anna R. Karlin. Bounds on the cover time. Journal of

Theoretical Probability, 2(1), 1989.

[6] Alan Frieze, Navin Goyal, Luis Rademacher, and Santosh Vempala. Expanders

via Random Spanning Trees. 1 2014.

[7] Wai Shing Fung and Nicholas J. A. Harvey. Graph sparsification by edge-

connectivity and random spanning trees, 2010.

[8] Geoffrey Grimmett. Probability on graphs. 2009.

[9] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the

lovasz local lemma. Proceedings of the 49th Annual ACM SIGACT Symposium

on Theory of Computing - STOC 2017, 2017.

54

[10] Olle Häggström. Random-cluster measures and uniform spanning trees.

Stochastic Processes and their Applications, 59(2):267 – 275, 1995.

[11] Antal A. Járai. The uniform spanning tree and related models. Dec 2009.

[12] Paul Hyunjin Kim. Intelligent maze generation. Graduate Program in Depart-

ment of Computer Science and Engineering.

[13] Alex Kruckman, Amy Greewald, and John Wicks. An elementary proof of the

markov chain tree theorem. Department of Computer Science, Aug 2010.

[14] David Asher Levin, Yuval Peres, Elizabeth L. Wilmer, James Propp, and

David B. Wilson. Markov chains and mixing times. American Mathematical

Society., 2017.

[15] Russell Lyons and Y. Peres. Probability on trees and networks. Cambridge

University Press, 2016.

[16] István Miklós. p-complete counting problems. Computational Complexity of

Counting and Sampling, page 165–216, 2019.

[17] Evans Doe Ocansey. The matrix-tree theorem. 2011.

[18] G.r. Raidl and B.a. Julstrom. Edge sets: an effective evolutionary cod-

ing of spanning trees. IEEE Transactions on Evolutionary Computation,

7(3):225–239, 2003.

[19] Karl Sigman. Communication classes and irreducibility for markov chains.

MCII, 2006.

[20] Eric Vigoda. Relationship between counting and sampling. Markov Chain

Monte Carlo Methods, 2006.

[21] David Bruce Wilson. Generating random spanning trees more quickly than

the cover time. Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing - STOC 96, 1996.

55

