
 

 

Title:Second Species Periodic Solutions For the Three Body Problem 
 
Author: José Lamas Rodríguez 
 
Advisor: Marcel Guardia Munarriz, María Teresa Martínez Seara-
Alonso 
 
Department: Departament de Matemàtiques 
 
Academic year: 2019-2020 

Master of Science in 
 Advanced Mathematics and 
Mathematical Engineering 



Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estadística

Master in Advanced Mathematics and
Mathematical Engineering

Master thesis

Second Species Periodic Solutions
For The Three Body Problem

Author: José Lamas Rodríguez

Supervisor: Prof. Marcel Guardia Munarriz

Supervisor: Prof. María Teresa Martínez-Seara Alonso

At: Departament de Matemàtiques

Barcelona, June 24, 2020



Abstract

We are going to explain the construction of second-species periodic solutions
for the Restricted Planar Circular 3-Body Problem. These solutions, whose ex-
istence had been conjectured by Poincaré, are referred to periodic solutions that
travel near singular points.

To do that, we will study two different papers, one written by S.V. Bolotin and
R.S. Mackay [1], and the other one written by Jean-Pierre Marco and Laurent Nie-
derman [2]. Although they have much in common, the first one gives a variational
approach of the problem (using Lagrangian systems and the Principle of Least Ac-
tion), while the other one gives a geometrical approach (defining isolated blocks
and perturbative methods). We will explain and expand these approaches, to sum
up with a briefly comparison between them.

For their study, we will take as a reference the particular case of the Restricted
3-Body Problem corresponding to the Sun, Jupiter and an asteroid, whose singular
point will be the collision between these last two bodies.

Resumen

Vamos a explicar la construcción de soluciones periódicas de segunda especie
para el Problem Circular Restringido de 3 Cuerpos. Estas soluciones, cuya exis-
tencia había conjeturado Poincaré, son soluciones periódicas que pasan cerca de
puntos singulares.

Para ello, estudiaremos dos trabajos diferentes, uno llevado a cabo por S.V.
Bolotin y R.S. Mackay [1], y otro por Jean-Pierre Marco y Laurent Niederman [2].
Aunque tienen mucho en común, el primero aporta un punto de vista variacional
(usando sistemas Lagrangianos y el Principio de Mínima Acción), mientras que el
otro aporta un punto de vista geométrico (definiendo bloques aislados y métodos
perturbativos). Explicaremos y expandiremos sus aportaciones, para acabar con
una breve comparación entre ellos.

Para su estudio, tomaremos como referencia el caso particular del problema
restringido de 3 cuerpos correspondiente a el Sol, Júpiter y un asteroide, cuya
singularidad será la colisión entre estos dos últimos cuerpos.





Contents

1 Introduction 1

2 Context 3
2.1 The N-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The 2-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The Kepler Problem . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Description of the elliptic orbits . . . . . . . . . . . . . . . . . 11

2.2 Planar 3-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Equilibrium and Central Configurations . . . . . . . . . . . . 19

2.3 Restricted 3-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Planar Restricted 3-Body Problem in rotating coordinates . . 22

3 Main Results 25
3.1 Second-species solutions in the Restricted Planar Circular 3-Body

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 S.V. Bolotin and R.S. Mackay Results . . . . . . . . . . . . . . . . . . . 27

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Formulation of the general theorem . . . . . . . . . . . . . . . 29
3.2.3 Application to the Planar Circular Restricted 3-Body Problem 32
3.2.4 Construction of Collision Orbits . . . . . . . . . . . . . . . . . 34

3.3 Jean-Pierre Marco and Laurent Niederman Results . . . . . . . . . . 43
3.3.1 Description and equations of the problem . . . . . . . . . . . 43
3.3.2 Kepler problem in the rotating frame . . . . . . . . . . . . . . 48
3.3.3 Regularization of the system . . . . . . . . . . . . . . . . . . . 53

3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Variational Approach 63
4.1 A Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Shadowing Collision Orbits . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Regularisation of Collisions . . . . . . . . . . . . . . . . . . . . . . . . 71

i



5 Geometrical Approach 87
5.1 Homoclinic solutions and Second Species solutions . . . . . . . . . . 87

5.1.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . 87
5.1.2 Existence and density of homoclinic solutions . . . . . . . . . 89

5.2 Construction of second species solutions . . . . . . . . . . . . . . . . 94
5.2.1 Definitions and notations . . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Construction of second species solutions . . . . . . . . . . . . 96
5.2.3 Local analysis at the neighborhood of the origin . . . . . . . . 98

5.3 Conditions of existence of generatrix solutions . . . . . . . . . . . . . 106

6 Conclusions and future work 131

7 Annex 133
7.1 Lagrangian & Hamiltonian formalism . . . . . . . . . . . . . . . . . . 133

7.1.1 Hamiltonian Equations . . . . . . . . . . . . . . . . . . . . . . 133
7.1.2 Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Coordinate Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.1 Jacobi Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.2 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 145



Chapter 1

Introduction

For years the study of the cosmos was a challenge for those who wanted to
describe the phenomena present in nature. Since Ptolemy all the astronomical
models were based on the pure observation of the stars and planets surrounding
us. It was not until the arrival of the first telescope when some of the most impor-
tant scientists, such as Newton, Kepler or Galileo, were able to get a better view of
these phenomena. Due to their research, important laws, such as the Newtonian
Gravitational law and the Kepler’s laws, came out as the way to describe more
precisely the movement of the planets conforming the Solar System.

However, whilst these laws worked well when studying the orbits of one planet
around the Sun, they lost accuracy when other objects (such as Asteroids, satellites
or other planets), with their correspondent gravitational force, came into play.
Although these forces could have been considered negligible (the mass of these
objects with respect to the Sun is almost none) they can produce deviations and
errors needed to be taken into account.

It was Henry Poincaré who began to give some light in the resolution of this
kind of problems. In his work [3], he starts by looking for periodic solutions of
problems with 3 bodies, where two of them have negligible masses with respect
to the third one (for example, this could be the case when one of the bodies is the
Sun, and the other two are planets). Later on, these solutions were named periodic
solutions of “first species”.

It is also in his work where he expands his results by stating, for example, that
the periodic solutions of the general 3-Body problem can be found by perturbing
those ones with singularities of the problem before (i.e., singularities correspond-
ing to the collisions with these two particles), and predicting the perturbation
of non-Kepler configurations. He named these periodic solutions as solutions of
“second species”. However, the proof given by Poincaré about the existence of
such solutions is confusing and incomplete.
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The main goal of this work is to prove, in a more detailed way, the existence of
these second species periodic trajectories for the planar restricted circular 3-Body
Problem, which we will explain along this work. In order to do that, we will
introduce the general N-Body Problem and finally it presents the problem we will
work with, the Planar 3-Body Problem, and more concretely, the Restricted Planar
3-Body Probelm. First we will explain the approach made by S.V. Bolotin and
R.S. Mackay, which relies on variational techniques [1]. Then, we will explain the
approach made by Jean-Pierre Marco and Laurent Niederman [2], which is based
on geometrical shadowing techniques. To sum up, we will compare both results
in order to get a general view of the proof.

Specifically this goal can be broken down into the following parts:

1. Studying the Kepler equations to understand the 2-Body Problem structure
and its solutions. This will help us to get a better view of the topology when
we deal with the 3-Body Problem.

2. Explain the model we study, that is the Restricted 3-Body Problem in detail
as well as the different reference frames that one can consider for this model.

3. Prove the existence of second species periodic orbits using the variational
approach made by S.V. Bolotin and R.S. Mackay.

4. Prove the existence of second species periodic orbits using the geometrical
approach made by Jean-Pierre Marco and Laurent Niederman.

5. Compare both results to look for similarities in the reasoning of both ap-
proaches, to better understand how one can go from the variational approach
to the geometrical one.

This work is structured as follows: Chapter 2 describes in detail the Ke-
pler problem as the simplest scenario, as well as it introduces different reference
frames. Chapter 3 introduces the main results of both papers and explains the
background to prove them, and ends up with a comparison between both ap-
proaches. Chapter 4 explains the proof made in the variational approach given in
the first paper [1]. Chapter 5 explains the proof made in the geometrical approach
given in the other one [2]. Chapter 6 ends with the conclusions and the future
work.



Chapter 2

Context

In this chapter we introduce the N-Body Problem and describe some of its
features. We also analyze its simplest setting, the 2-Body Problem. Finally, we
describe the Planar Restricted 3-Body Problem, the model we will use for the rest
of the work.

2.1 The N-Body Problem

Let us consider N point masses moving in a Newtonian reference system, R3,
with the only force acting on them being their mutual gravitation attraction. For

each mass mi associated with each particle, we define Qi =

Qi1

Qi2

Qi3

 ∈ R3 associ-

ated with each mi its position in the space.
The equation to model the forces acting on these particles come from Newton’s

law of universal gravitation, which can be written as:

miQ̈i =
N

∑
i=1

Fi = G
N

∑
j=1,j 6=i

mjmi
Qj −Qi

||Qi −Qj||3
=

∂U
∂Qi

(2.1)

where G is the gravitational constant with value G = 6.674× 10−11 m3

s2/kg and U is
the self-potential (or the negative of the potential), with expression:

U = ∑
1≤i<j≤N

Gmimj

||Qi −Qj|| (2.2)

Let Q = (Q1, · · · , QN) ∈ R3N and let M be the 3n × 3n diagonal matrix M =

diag(m1, m1, m1, · · · , mN , mN , mN); thus Equation (2.1) is of the form

3



MQ̈− ∂U
∂Q

= 0 (2.3)

Let ∆ be the subset of R3N where Qi = Qj for some i 6= j, the collision set. It
is clear that Equations (2.1) and (2.3) are systems of second order equations in
R3N \ ∆, the position space.

Let us pass to the Hamiltonian formalism. We define P = (P1, · · · , PN) ∈ R3N

by P = MQ̇, so Pi = miQ̇i is the momentum of the ith particle. The equations of
motion become:

Q̇i =
Pi

mi
=

∂H
∂Pi

Ṗi =
N

∑
i=1

Gmimj(Qj −Qi)

||Qi −Qj||3
= − ∂H

∂Qi
(2.4)

where the Hamiltonian is

H(P, Q) = T(P) + U(Q) (2.5)

and T is the kinetic energy:

T(P) =
N

∑
i=1

||Pi||2
2mi

=
1
2

PT M−1P
(
=

1
2

mi||Q̇i||2
)

(2.6)

The Hamiltonian (2.5) and the Hamiltonian equations (2.4) are defined on the
phase space R6N \ ∆.

Constants of Motion

The N-Body Problem is a system of 6N first-order equations, so, a complete
solution would require 6N − 1 time-independent first integrals plus one depen-
dent first integral. It is clear that for N > 2, it is too optimistic to expect so many
global integrals. However, for all N there are ten integrals for the system.

Let
L = P1 + · · ·+ PN

be the total linear momentum. From (2.4) it follows that L̇ = 0, because each term
in the sum appears twice with opposite sign. This gives ¨CM = 0, where

CM = m1Q1 + · · ·+ mNQN

is the center of mass of the system because ˙CM = L. Thus the total linear mo-
mentum is constant, and the center of mass of the system moves with uniform
rectilinear motion. Integrating the center of mass equation gives CM = L0t + C0,
where L0 and C0 are constants of integration. L0 and C0 are functions of the initial



conditions, and thus they are integrals of motion. Thus we have six constants of
motion or integrals, namely, the three components of L0 and the three components
of C0.

Let

A = Q1 × P1 + · · ·+ QN × PN

be the total angular momentum of the system. Then

dA
dt

=
N

∑
1
(Q̇i × Pi + Qi × Ṗi) =

N

∑
1

Qi ×miQi +
N

∑
1

N

∑
1
G

mimjQi × (Qj −Qi)

||Qi −Qj||3
= 0

The first sum above is zero because Qi × Pi = 0. In the second sum, one can use
that Qi × (Qj − Qi) = Qi × Qj and then observe that each term in the remaining
sum appears twice with opposite sign. Thus the three components of angular
momentum are constants of the motion or first integrals too. Finally, the energy H
is also an first integral, so we have found the ten classical integrals of the N-Body
Problem.

Note that, since the total angular momentum is constant, we can ensure that
if the motion of the particles takes place on a plane, it will remain on the same
plane. This fact gives rise to the idea of studying the planar problem, which has 6
integrals of motion instead of 10.

2.1.1 The 2-Body Problem

Before dealing with the more general 3-Body Problem we will look at the 2-
Body Problem in detail since it is the only one completely solvable.

First we take a look at the equations

m1Q̈1 = Gm1m2
(Q2 −Q1)

||Q2 −Q1||3

m2Q̈2 = Gm1m2
(Q1 −Q2)

||Q2 −Q1||3

Add and subtract these equations to get

m1Q̈1 + m2Q̈2 = 0, Q̈1 − Q̈2 = −G(m1 + m2)
(Q1 −Q2)

||Q1 −Q2||3

or
¨CM = 0, ü = −µ

u
||u||3 ,



where, as we saw before, CM = m1Q1 +m2Q2, u = Q1−Q2, and µ = G(m1 +m2).
The first equation integrates to CM = L0t + C0, where L0 and C0 are integration
constants, and the second equation is what is called the Kepler problem.

Let us now sketch how the Hamiltonian formalism can be used also to solve
this problem, introducing the Jacobi coordinates (g, u, G, v):

g = ν1Q1 + ν2Q2, G = P1 + P2

u = Q2 −Q1, v = −ν2P1 + ν1P1,

with
ν1 =

m1

m1 + m2
, ν2 =

m2

m1 + m2
, ν = m1 + m2, M =

m1m2

m1 + m2
.

So g is the center of mass, G is the total linear momentum, u is the position of the
particle 2 relative to particle 1, and v is the associated momentum.

By a direct computation one sees that this is a linear symplectic change of
variables, so it preserves the Hamiltonian character.

The Hamiltonian (2.5) in the new variables is

H(g, u, G, v) =
||G||2

2ν
+
||v||2
2M

− m1m2

||u||

and, as well, the equations of motion (2.4) become

ġ =
∂H
∂G

=
G
ν

, Ġ = −∂H
∂g

= 0,

u̇ =
∂H
∂v

=
v
M

, v̇ = −∂H
∂u

= −m1m2u
||u||3

This implies that total linear momentum G is an integral and the center of mass
g moves with constant linear velocity. By taking g = G = 0 as initial conditions
we are reduced to a problem in the u, v variables alone. The equations then get
reduced to

ü =
G(m1 + m2)u
||u||3 ,

which is just the Kepler problem we will discuss in the next section. This means
that the motion of one body, e.g. the Earth, when viewed from another, e.g. the
Sun, is as if the Sun were a fixed body with mass m1 + m2 and the Earth were
attracted to the Sun by a central force.

2.1.2 The Kepler Problem

Consider a two body problem where the first body is so massive (like the Sun)
that its position is fixed to the first approximation and the second body has mass



1. In this case, the equations describing the motion of the second body are

Q̈ = − µQ
||Q||3 , (2.7)

where Q ∈ R3 is the position vector of the second body and µ is the constant
Gm, where G is the universal gravitational constant and m is the mass of the first
body fixed at the origin. In this case, by defining P = Q̇, this equation becomes
Hamiltonian with

H(Q, P) =
||P||2

2
− µ

||Q||
(2.8)

and its respective equations of motion described as

Q̇ = P, Ṗ = − µQ
||Q||3 . (2.9)

Equations (2.7) or Hamiltonian (2.8) defines the Kepler Problem. As we have just
seen, the 2-body problem can be reduced to this one.

Let A = Q× P be the angular momentum, and note

Ȧ = Q̇× P + Q× Ṗ = P× P + Q×
(
− µQ
||Q||3

)
= 0 (2.10)

so A is constant along the solutions, and the three components of A are first
integrals.

We need to state the following Lemma in order to make computations with A.

Lemma 2.1.
d
dt

(
Q
||Q||

)
=

(Q× Q̇)×Q
||Q||3

(
=

A×Q
||Q||3

)
Proof.
We get the following results

||Q|| =
√

Q2
1 + Q2

2 + Q2
3

so that
d
dt
||Q|| = Q · Q̇

||Q||
and we have the following property:

(A× B)× C = (C · A)B− (C · B)A



Assuming u = Q
||Q|| then we have

Q = u||Q|| =⇒ Q̇ = ˙||Q||u + ||Q||u̇ =
Q · Q̇
||Q|| ·

Q
||Q|| + ||Q||u̇

obtaining the result we wanted

d
dt

(
Q
||Q||

)
= u̇ =

Q̇
||Q|| −

(Q · Q̇)Q
||Q||3 =

(Q ·Q)Q̇− (Q · Q̇)Q
||Q||3 =

(Q× Q̇)×Q
||Q||3

If A = 0, then

d
dt

(
Q
||Q||

)
=

(Q× Q̇)×Q
||Q||3 =

A×Q
||Q||3 = 0 (2.11)

The first equality above is a vector identity, so, if the angular momentum is zero,
the motion is collinear. Letting the line of motion be one of the coordinate axes
makes the problem a one-degree freedom problem and thus solvable.

However, if A 6= 0, then both Q and P = Q̇ are orthogonal to A; and so the
motion takes place on the plane orthogonal to A, known as the invariant plane. In

this case, we can change the reference system in such a way that A =
(

0 0 c
)T

,
so the motion takes place on the orthogonal plane (i.e., in the plane Q3 = 0). Then,
the equations of motion on this coordinate plane have the same form as (2.9),
but Q ∈ R2. In the planar problem only the component of angular momentum
perpendicular to the plane is nontrivial; so the problem is reduced to two degrees
of freedom with one integral. Such a problem is solvable “up to quadrature”. It
turns out that the problem is solvable in terms of elementary functions, as we
show below.

To do that, we must firstly make a change into polar coordinates, so that we
have

Q = (Q1, Q2, 0) =⇒ Q = (r cos θ, r sin θ, 0)

Q̇ = (ṙ cos θ − r sin θθ̇, ṙ sin θ + r cos θθ̇, 0),

and we obtain the value of A in these polar coordinates:

A = Q× Q̇ =

 0
0

c = r2θ̇

 (2.12)

We also must take into account in order to make the computations later is the
following lemma:



Lemma 2.2. For the value of the angular momentum obtained before, the rate at which
the area is swept out by a radius vector is 1

2 r2θ̇.

Proof. We just need to compute the area swept out by a particle

Area(S) =
∫

S
dS =
∗1

θ2∫
θ1

r(θ)∫
0

r dr =
θ2∫
θ1

r2(θ)

2
dθ =
∗2

t2∫
t1

r2θ̇

2
dt =
∗3

c
2
(t2 − t1) (2.13)

∗1: Jacobian change from cartesian to polar coordinates.
∗2: We can put the angle θ as θ = θ(t) such that dθ = θ̇ dt.

∗3 : A =
(

0 0 c = r2θ̇
)T

.

Now we are prepared to solve the Kepler problem.
First of all, we multiply the first equation in (2.11) by a factor of −µ to get

−µ
d
dt

(
Q
||Q||

)
= A× −µQ

||Q||3 = A× Ṗ

Now we integrate this expression with respect of the time (taking into account
that A is constant):

−µQ
||Q|| = A× P + µε

where µε is a constant 3-dimensional vector. This expression can be written as

µ

(
ε +

Q
||Q||

)
= P× A (2.14)

Then, since A · Q = 0 (A = Q× Q̇) and we calculate the scalar product of (2.14)
with Q:

µ(ε ·Q + ||Q||) = Q · (P× A)

and multiply by A

µ

(
ε · A +

Q · A
||Q||

)
= (P× A) · A

Using again that Q · A = 0, we obtain that ε · A = 0. Thus, if A 6= 0, then ε lies
in the invariant plane. Otherwise, if A = 0, then by (2.14) we have ε = − Q

||Q|| and
then ε lies on the line of motion and it has length 1.

Let A 6= 0 for the rest of this section. Then we have

µ(ε ·Q + ||Q||) = Q · (P× A) =
de f inition

det(Q, P, A) = det(A, Q, P)

= A · (Q× P) = A · A = ||A||2 = c2



Figure 2.1: The elements of a Kepler motion [4].

so

ε ·Q + ||Q|| = c2

µ
(2.15)

If ε = 0, then ||Q|| = c2

µ is constant. As we saw before, c = r2θ̇, so θ̇ = µ2

c3 . Thus
when ε = 0, the particle moves on a circle with constant angular velocity.

Now suppose that ε 6= 0, and denote e = ||ε||. Let the plane of motion be
illustrated in Figure 2.1. Let r, θ be the polar coordinates of the particle with angle
θ measured from the positive Q1 axis. The angle from the positive Q1 axis to
ε is denoted by g, and the difference of these two angles by f = θ − g. Thus,
ε ·Q = er cos f and Equation (2.15) becomes

r =
c2/µ

1 + e cos f
(2.16)

which corresponds with the equation of a conic in polar coordinates. Thus, de-
pending on the value of e, also called the eccentricity of the conic, we can obtain
different geometries

• e = 0: This implies that r is constant, so we have a circle.

• e < 1: We would obtain an ellipse.

• e = 1: We would obtain a parabola.

• e > 1: We would obtain an hyperbola.

It is also important to notice that r is at its minimum when f = 0 and so ε points
to the point of closest approach. This point is called the perihelion if the Sun is at
the origin. The angle g is called the argument of the perihelion and the angle f is
called the true anomaly.



Consider the line d illustrated in Figure 2.1 that is at a distance of c2

µe from the
origin and perpendicular to ε as illustrated. Equation (2.16) can be rewritten as

r = e
(

c2

µe
− r cos f

)
which implies that the distance of the particle from the origin is equal to e times
its distance from the line d. This results into Kepler’s first law: the particle moves
on a conic section of eccentricity e with one focus at the origin.

2.1.3 Description of the elliptic orbits

Before entering in the description of the 3-Body Problem, we are going to
describe the most relevant elements of the ellipse, as we are going to work mainly
with them along the project.

Figure 2.2: Portion of an ellipse and the correspondent circle with center C and
radius AC.

Since it would be an important result for later on, and it allows us to introduce
the characteristic elements of the ellipse, we are going to compute the area of a
sector of the ellipse from the focus (area in orange in Figure 2.2).

To do this computation, the main idea is to transform the problem of obtaining
the area of a sector of the ellipse (in orange) to obtain the one of the corresponding
circle (in yellow).



Transforming coordinates

First of all, the polar parametrization of an (axis-aligned) ellipse from its focus
is given by the following lemma:

Lemma 2.3. In polar coordinates (r, θ), the parametrization of the ellipse can be expressed
by

r =
a(1− e2)

1 + e cos θ
(2.17)

Proof. We are going to consider an ellipse aligned with the axis in such a way that
the angle g in Figure 2.1 becomes 0, and then we have that f = θ.

From (2.16), we only need to prove that c2

µ = a(1− e2).
The following picture describes the motion of one particle of mass m around a

virtual body of mass M.

Figure 2.3: Motion of two particles with masses M and m in an elliptic orbit.

The modulus of the angular momentum A is defined, as we saw in (2.12) :

c = r2θ̇

related to the radius r0 (see Figure 2.3) as (see 2.15):

r0 =
c2

µ

so we only need to see that r0 = a(1− e2).
The relation between these terms can be seen in the following picture



Figure 2.4: Relation between the semi-major axis, the eccentricity and r0.

So applying Pythagoras and the fact that in an ellipse we have that d + r0 = 2a
and we obtain:

(2a− r0)
2 = 4a2e2 + r2

0

so
r0 = a(1− e2)

proving that c2

µ = a(1− e2).
So we can write the radius as

r =
a(1− e2)

1 + e cos θ

Then, one obtains:

FP = r(θ) =
a(1− e2)

1 + e cos θ

where a is, as we said before, the semi-major axis and e is the eccentricity. We
recall that, as g = 0, the true anomaly, denoted by f , is in this case f = θ. Spelled
out in coordinates, this is

FP =

(
r(θ) cos θ

r(θ) sin θ

)
Now we stretch everything in the direction of its minor axis by a factor of

a
b
=

CA
CB

=
1√

1− e2
,

where b is the semi-minor axis. The result will be a circle of radius a. The origin
is still the point that used to be focus. The distance between that point and the



center is CF = ae (called linear eccentricity or focal distance). Now we add that to x
coordinates to move the origin into the center. Together you now have

CQ =

(
r(θ) cos θ + ae

a
b r(θ) sin θ

)
=

a
1 + e cos θ

(
(1− e2) cos θ + e + e2 cos θ√

1− e2 sin θ

)

Eccentric anomaly

After the computation of the vector CQ, one can obtain now the angle for the
point Q against the horizontal axis. This angle, called the eccentric anomaly E,
satisfies the following relation:

tan E =

√
1− e2 sin θ

(1− e2) cos θ + e + e2 cos θ

Using the Weierstrass substitution, one can turn this result into the following

2 tan E
2

1− tan2 E
2

=

√
1− e2 2 tan θ

2

(1− e2)(1− tan2 θ
2 ) + e(1 + tan2 θ

2 ) + e2(1− tan2 θ
2 )

=
2
√
(1 + e)(1− e) tan θ

2

(1 + e)− (1− e) tan2 θ
2

=
2
√

1+e
1−e tan θ

2

1− 1−e
1+e tan2 θ

2

.

Comparing both sides one can see

tan
E
2
=

√
1− e
1 + e

tan
θ

2

and so we obtain

E = 2 arctan

(√
1− e
1 + e

tan
θ

2

)

except for the special case when θ = ±π, which yields an infinite tangent but
results in E = ±π as well.

Area of circular sector

Now we know that the area of a circular sector is proportional to the angle, so
for a circle of radius a this would be 1

2 a2E. That is the yellow and cyan areas in
Figure 2.2, i.e, the sector ACQ.



From center back to focus

But that area is subtended by the center, not by the focus. Therefore one can
substract a triangle of base ae and height a sin E (the cyan triangle 4FCQ in Fig-
ure 2.2) and we get the area subtended by the focus (AFQ colored yellow):

1
2

a2E− 1
2

a2e sin E =
1
2

a2(E− e sin E)

Back to the ellipse

This is still an area in the circle. To get back to the original ellipse, we have
to undo the scaling, i.e., scale the y direction by b

a . This scales areas by the same
factor. Thus the area we were seeking for (AFP in red in Figure 2.2) would be

1
2

ab(E− e sin E)

Mean anomaly

As we vary θ from 0 to 2π, the above area will vary from 0 to abπ. Since equal
areas are swept in equal time, this is closely related to the mean anomaly, which
sweeps from 0 to 2π in constant time:

M = E− e sin E,

so in terms of the mean anomaly, the area will be:

1
2

abM

Period

We want to derive the relationship between the semi-major axis a and the
period of the orbit T. To do that, we recall the definition of the area swept out by
a particle (2.13)

S =
c
2
(t2 − t1)

This means that one can obtain the following result

dS
dt

=
c
2

By definition, the period T is the time that a particle needs to swept out the com-
plete ellipse. Since the area of the total ellipse is πab, we have

S =
1
2

cT



To obtain a relation between the constant c and the semi-major axis a, one can
evaluate Equation (2.16) at the perihelion, so f = 0 and r = a(1− e), obtaining

a(1− e) =
c2

1 + e

and then
a(1− e)2 = c2

Finally, one can relate the semi-major axis a with the semi-minor axis b as follows

b = a
√

1− e2

So putting everything together, we have

2πa2
√

1− e2 = Tc =⇒ 4π2a4(1− e2) = T2c2 −→ 4π2a3 = P2 =⇒ T = 2πa
3
2

so the relation between the period T and the semi-major axis a is given by:

T = 2πa
3
2 (2.18)

2.2 Planar 3-Body Problem

Now that we have explained and solved the Kepler Problem, we are ready to
describe the model that we will analyze in the forthcoming sections: the Restricted
Circular Planar 3-Body Problem. To do that, we will start by giving the definition
of the more general 3-Body Problem as a particular case of the N-Body Problem
we saw before. Then, we will perform and justify the necessary changes in the
reference system to go from this general 3-Body scenario to the restricted case.

Let us begin by giving the complete expression of both the equations of motion:
m1

d2Q1
dt2 = G m1m2(Q2−Q1)

||Q2−Q1||3
+ G m1m3(Q3−Q1)

||Q3−Q1||3

m2
d2Q2
dt2 = G m2m1(Q1−Q2)

||Q1−Q2||3 + G m2m3(Q3−Q2)
||Q3−Q2||3

m3
d2Q3
dt2 = G m3m1(Q1−Q3)

||Q1−Q3||3 + G m3m2(Q2−Q3)
||Q2−Q3||3

(2.19)

and the Hamiltonian (2.5) when N = 3:

H(Q, P) =
||P1||2
2m1

+
||P2||2
2m2

+
||P3||2
2m3

− G m1m2

||Q1 −Q2||
− G m1m3

||Q1 −Q3||
− G m2m3

||Q2 −Q3||

(2.20)



This Hamiltonian equation has 6 degrees of freedom. To reduce it, one can change
the reference frame from the Cartesian coordinates to the Jacobi coordinates (see
Section 7.2.1) in a similar way as we did in the 2-Body Problem:

g3 =
m1Q1 + m2Q2 + m3Q3

m1 + m2 + m3

u2 = Q2 −Q1

u3 = Q3 −
m1Q1 + m2Q2

m1 + m2

with the associated momenta G3 = P1 + P2 + P3, v2, v3.
The Hamiltonian in these new variables (g3, u2, u3, G3, v2, v3) is:

K(g3, u2, u3, G3, v2, v3) =
||G3||2

2µ3
+
||v2||2
2M2

+
||v3||2
2M3

− Gm1m2

||u2||
− G m1m3

||u3 + α0u2||
− G m2m3

||u3 − α1u2||
,

where

M2 =
m1m2

m1 + m3
, M3 =

m3(m1 + m2)

m1 + m2 + m3

α0 =
m2

m1 + m2
, α1 =

m1

m1 + m2

Notice that α0 + α1 = 1, and they are introduced so that

g2 =
m1Q1 + m2Q2

m1 + m2
=

m1Q1 + m2Q1 −m2Q1 + m2Q2

m1 + m2

= Q1 + α0u2 = Q2 − α1u2

so

||Q2−Q3|| = ||Q1− g2 + g2−Q3|| = ||−u3− α0u2|| = ||u3 + α0u2|| = ||u3− α1u2||

One can see now that K does not depend on the variable g3, and so we can ignore
it. This means that Ġ3 = ∂K

∂g3
= 0 (7.29), which implies that G3 is a constant of

motion.
We can take, without lose of generality, g3 = G3 = 0, and so now K depends

only on (u2, u3, v2, v3), having 4 degrees of freedom instead of the initial 6.

K(u2, u3, v2, v3) =
||v2||2
2M2

+
||v3||2
2M3

− Gm1m2

||u2||

− G m1m3

||u3 + α0u2||
− G m2m3

||u3 − α1u2||

(2.21)



Even though we reduce the degrees of freedom, we are still far from being able
to give a solution of the 3-Body Problem. However, we can still perform more
changes in order to keep reducing its complexity.

To do that, we apply now a polar change of coordinates in the following way
(see Section 7.2.2): {

u2 = r1(cos θ1, sin θ1)

u3 = r2(cos θ2, sin θ2)

In order to have a symplectic change, we must also transform the momenta as
follows:

v2 =

(
cos θ1 − sin θ1

sin θ1 cos θ1

)(
R1
Θ1
r1

)

v3 =

(
cos θ2 − sin θ2

sin θ2 cos θ2

)(
R2
Θ2
r2

)
The Hamiltonian K in these new variables (r, θ, R, Θ) takes the form (shifting the
index 1, 2, 3 to 0, 1, 2)

K̃(r, θ, R, Θ) =
1

2M1

(
R2

1 +
Θ2

1

r2
1

)
+

1
2M2

(
R2

2 +
Θ2

2

r2
2

)
− Gm0m1

r1

− G m0m2√
r2

2 + 2α0r1r2 cos(θ2 − θ1) + α2
0r2

1

− G m1m2√
r2

2 − α1r1r2 cos(θ2 − θ1) + α2
1r2

1

To get rid of the terms θ2− θ1, we perform a symplectic change in angle variables:(
θ

Θ

)
=

(
Z 0
0 Z−T

)(
φ

Φ

)
,

with Z =

(
1 1
2 1

)
. Applying these new changes, we obtain what is called the

Hamiltonian function in polar coordinates:

H(r, φ, R, Φ) =
1

2M1

(
R2

1 +
(2Φ2 −Φ1)

2

r2
1

)
+

1
2M2

(
R2

2 +
(Φ1 −Φ2)2

r2
2

)
− Gm0m1

r1
− G m0m2√

r2
2 + 2α0r1r2 cos φ1 + α2

0r2
1

− G m1m2√
r2

2 − 2α1r1r2 cos φ1 + α2
1r2

1

(2.22)



Once again, we find that the new Hamiltonian does not depend on φ2, so it can be
ignored. Since Φ̇2 = ∂K̃

∂φ2
= 0, Φ2 is a constant of motion.

In fact, the previous change shows us that Φ2 = Θ1 + Θ2, which is the same
as Φ2 = u2 × v2 + u3 × v3. This is the definition of the total angular momentum,
which is preserved as it is one of the 10 constants of motion for the general N-Body
Problem (since we are dealing with the planar setting, the angular momentum is
just a scalar). Since the total angular momentum is constant, we can ensure that if
the motion takes place on a plane, it will remain in the same plane, as it happened
in the Kepler problem we solved before.

2.2.1 Equilibrium and Central Configurations

The N-Body Problem is not integrable, so we cannot compute the general so-
lution. However, over the years many special types of solutions have been found
using various mathematical techniques. The simplest type of solution one might
look for is equilibrium or rest solutions.

Equilibrium Solutions

For (2.1), an equilibrium solution would have to satisfy

∂U
∂Qi

= 0 for i = 1, . . . , N. (2.23)

However, U is homogeneous of degree −1, so by Euler’s Theorem on homoge-
neous functions,

∑
i

Qi
∂U
∂Qi

= −U. (2.24)

Because U is the sum of positive terms, it is positive. If (2.23) were true, then the
left side of (2.24) would be zero, which gives a contradiction. Thus there are no
equilibrium solutions of the N-Body Problem.

Central Configurations

For a second type of solutions to (2.1), try Qi(t) = φ(t)ai, where the a′is are
constant vectors and φ(t) is a scalar-valued function. Substituting into (2.1) and
rearranging yields

|φ|3φ−1φ̈miai =
N

∑
j=1,j 6=i

G
mimj(aj − ai)

||aj − ai||3
(2.25)



Because the right side is constant, the left side must be constant too; let this value
be λ. Therefore, (2.25) has a solution if there exists a scalar function φ(t), a constant
λ, and constant vectors ai such that

φ̈ = − λφ

|φ|3 , (2.26)

−λmiai =
N

∑
j=1,j 6=i

G
mimj(aj − ai)

||aj − ai||3
, i = 1, . . . , N. (2.27)

Equation (2.26) is a simple ordinary differential equation (in fact it is the one-
dimensional Kepler problem) and so it has many solutions.

Now consider the planar N-Body Problem, where all the vectors lie in R2.
Identify R2 with the complex plane C by considering Qi, Pi complex numbers.
Seek a homographic solution of (2.1) by letting Qi(t) = φ(t)ai, where the a′is are
constant complex numbers and φ(t) is a time-dependent complex-valued function.
Geometrically, multiplication by a complex number is a rotation followed by a
dilation or expansion, i.e., a homography. Thus we seek a solution such that
the configuration of the particles is always homographically equivalent to a fixed
configuration. Substituting into (2.1) will give us the same equations (2.25), and
the same arguments gives Equations (2.26) and (2.27), but now (2.26) is the two-
dimensional Kepler problem. That is, if you have a solution of (2.27) where the a′is
are planar, then there is a solution of the N-Body Problem of the form Qi = φ(t)ai,
where φ(t) is any solution of the planar Kepler problem, e.g., circular, elliptic, etc.

A configuration of the N particles given by constant vectors a1, . . . , aN satis-
fying the second equation (2.27) for some λ is called a central configuration. In
the special case when the a′is are coplanar, a central configuration is also called
a relative equilibrium because, as we show, they become equilibrium solutions in
a rotating coordinate system. Moreover, central configurations are important in the
study of the total collapse of the system because it can be shown that the limiting
configuration of a system as it tends to a total collapse is a central configuration [5].

2.3 Restricted 3-Body Problem

Once we gave some insight about the 3-Body Problem, it is time to focus on the
restricted case. To do that, we will start by assuming, without loss of generality,
that the three bodies are:

• The Sun, whose position will be denoted by QS, its momenta by PS and its
mass by mS.



• Jupiter, whose position will be denoted by QJ , its momenta by PJ and its
mass by mJ .

• An Asteroid, whose position will be denoted by QA, its momenta by PA and
its mass by mA.

We will also assume that the mass of the Asteroid is infinitesimal compared with
the other two, and therefore we set mA = 0. Substituting in the equations of
motion of the 3-Body Problem (2.19), we obtain the following result:

d2QS
dt2 = G mJ(QJ−QS)

||QJ−QS||3
d2QJ
dt2 = G mS(QS−QJ)

||QS−QJ ||3
d2QA

dt2 = G mS(QS−QA)
||QS−QA||3

+ G mJ(QJ−QA)
||QJ−QA||3

(2.28)

One can notice after this simplification that the motion of the bodies QS and QJ

(called primaries) is not affected by the particle QA. This implies that the QJ and
QS forms a separated 2-Body Problem, which is solvable as we saw before (see
Section 2.1.2).

Once we get the solutions QS(t) and QJ(t) of this separated problem, we can
put them in the equation of QA and study its motion:

d2QA

dt2 = GmS(QS(t)−QA)

||QS(t)−QA||3
+ GmJ(QJ(t)−QA)

||QJ(t)−QA||3
(2.29)

This is what is called the Restricted 3-Body Problem (R3BP). In particular, for the
problem we are going to analyse along the paper, we will assume that the motion
of QA takes place in the plane of rotation of the other two bodies, and so instead
of being in the R3BP, we are now in the Restricted Planar 3-Body Problem (RP3BP).

Moreover, we will also assume that the two primaries QS(t) and QJ(t) move
on circles, obtaining what is called the Restricted Planar Circular 3-Body Problem
(RPC3BP), where usually the masses of the primaries are normalized to mS = 1−µ

and mJ = µ, where µ =
mJ

mS+mJ
, mS ≥ mJ . We also normalize the value of G to be

1. Substituting all these values in (2.29) we obtain the equation of motion for the
massless particle QA = Q = (Q1, Q2) ∈ R2:

d2Q
dt2 =

(1− µ)(QS(t)−Q)

||QS(t)−Q||3 +
µ(QJ(t)−Q)

||QJ(t)−Q||3,
(2.30)

where now QS(t) and QJ(t) are the known position of the primaries, which move
in a circular orbit:

QS(t) = −µ(cos t, sin t), QJ(t) = (1− µ)(cos t, sin t)



Denoting PA = P = (P1, P2) = dQ
dt one obtains a system of 4-dimensional non-

autonomous differential equations:
dQ
dt = P
dQ
dt = (1−µ)(QS(t)−Q)

||QS(t)−Q||3 +
µ(QJ(t)−Q)
||QJ(t)−Q||3

(2.31)

This new system can be written as a Hamiltonian system:{
dQ
dt = ∂H

∂P (Q, P, t; µ)
dP
dt = − ∂H

∂Q (Q, P, t; µ)
(2.32)

where H is the following Hamiltonian function:

H(Q, P, t; µ) =
P2

1 + P2
2

2
− (1− µ)√

(Q1 + µ cos t)2 + (Q2 + µ sin t)2

− µ√
(Q1 − (1− µ) cos t)2 + (Q2 − (1− µ) sin t)2

(2.33)

The RCP3BP has a first integral, named Jacobi Constant and denoted by C, with
the following expression:

C =− 2(H− G) = −(P2
1 + P2

2 ) + 2(Q1P2 −Q2P1)

+ 2
(1− µ)√

(Q1 + µ cos t)2 + (Q2 + µ sin t)2

+ 2
µ√

(Q1 − (1− µ) cos t)2 + (Q2 − (1− µ) sin t)2

(2.34)

where G denotes the modulus of the angular momentum in the restricted 3-Body
Problem. To understand the behaviour of the body Q = (Q1, Q2), now we have to
deal with 4 dimensional, non-linear and non-autonomous differential equations.

2.3.1 Planar Restricted 3-Body Problem in rotating coordinates

Since we are working assuming that both the Sun and Jupiter describes a cir-
cular motion, we are going to express the RPC3BP in rotating coordinates, as it
allows us to fix the positions QS and QJ .

To make this change into the rotating frame, let’s consider

J =

[
0 1
−1 0

]
, exp(Jt) =

[
cos t sin t
− sin t cos t

]
(2.35)



be a 2× 2 matrix. Now we introduce a set of coordinates that corresponds to put
the three bodies in a rotating coordinate frame.

x = exp(Jt)Q, y = exp(Jt)P (2.36)

Because J is skew-symmetric, exp(Jt) is orthogonal for all t, so the change of
variables is symplectic, with a remainder term of xT Jy, and so the Hamiltonian of
the Planar Circular Restricted 3-body problem in rotating coordinates is

H(x, y) =
1
2
||y||2 − xT Jy−U(x), (2.37)

where U(x) is the self-potential

U(x) =
µ

d1
+

1− µ

d2
,

with di the distance from the infinitesimal body to the ith primary, or

d2
1 = (x1 − 1 + µ)2 + x2

2, d2
2 = (x1 + µ)2 + x2

2.

The equations of motion can be written now asẋ = ∂H
∂y = y + Jx

ẏ = − ∂H
∂x = Jy + ∂U

∂x .
(2.38)

The term xT Jy in the Hamiltonian H reflects the fact that the coordinate system is
not an inertial frame, but a rotating one. It gives rise to what is called the Coriolis
force.

In much of the literature, the equations of motion for the restricted problem
are written as a second-order equation in the position variable x. Eliminating y
from Equation (2.38) gives

ẍ− 2Jẋ− x =
∂U
∂x

, (2.39)

that corresponds to the Euler-Lagrange given by the Lagrangian associated with
the Hamiltonian H. The Hamiltonian H becomes the first integral:

F =
1
2
||ẋ||2 − 1

2
||x||2 −U(x) (2.40)

Finally, the Jacobi constant C in the rotating frame is described as

C = −2F + µ(1− µ) (2.41)



Substituting H by the previous expression in (2.40), one obtains

C = ||x||2 + 2U(x) + µ(1− µ)− ||ẋ||2

and one refers to
W(x) = ||x||2 + 2U(x) + µ(1− µ) (2.42)

as the Amended Potential for the Restricted 3-Body Problem.
The amended potential is positive and it tends to infinity as x → ∞ or when x

tends to a primary (and therefore to a collision).

Discrete Symmetry

The Hamiltonian of the restricted problem (2.37) has the following symmetry:

H(x1, x2, y1, y2) = H(x1,−x2,−y1, y2) (2.43)

It follows that to any solution (x1(t), x2(t), y1(t), y2(t)) there corresponds another
solution (x1(−t),−x2(−t),−y1(−t), y2(−t)). The second is the reflection of the
first in the (x1, y2)-plane with the time reversed.

An orbit is symmetric if it its own reflection. That means that somewhere along
the orbit there is a point such that x2 = y1 = 0, i.e, at some time it crosses the x1

axis perpendicularly. If there are two such points the orbit is periodic.
There is another symmetry involving the parameter µ of the problem. A sym-

metry with respect to the x2-axis exchanges µ and (1− µ). One can take advantage
of this symmetry and restrict the range of the parameter µ to the interval (0, 1

2 ].
Note that for µ = 1

2 , there is a second symmetry of the phase space; namely

H(x1, x2, y1, y2) = H(−x1, x2, y1,−y2)

This implies that to any solution (x1(t), x2(t), y1(t), y2(t)) there corresponds an-
other solution (−x1(−t), x2(−t), y1(−t),−y2(−t)).



Chapter 3

Main Results

In this chapter, we are going to look for second-species periodic solutions in the
RCP3BP (2.33), i.e., periodic orbits that travel close to collision with Jupiter. To do
that, we will explain the main results given by S.V. Bolotin and R.S. Mackay [1],
where they make a variational approach of the problem, and the results given
by Jean-Pierre Marco and Laurent Niederman [2], who make a more geometrical
approach.

3.1 Second-species solutions in the Restricted Planar Circu-
lar 3-Body Problem

To find the second-species periodic solutions, we are going to explain the re-
sults stated and proved by S.V. Bolotin and R.S. Mackay [1], as well as the ones of
Jean-Pierre Marco and Laurent Niederman [2].

We will divide the method given by S.V. Bolotin and R.S. Mackay in two parts:

• First of all, they are going to consider the Restricted Planar 3-Body Problem
for µ = 0 (which is the same as consider the Kepler’s problem between the
Asteroid and the Sun). In this model, they will study the collisions given by
the Asteroid and Jupiter.

For each collision, the elliptic orbit given by the Asteroid will be a solution
to this Kepler’s problem. For each elliptic orbit, they are going to consider
the section corresponding to the part between one collision and the follow-
ing one. Bolotin and Mackay will build then an infinite sequence of such
sections, related by the collisions, and they will denote it as a chain.

• Finally, from this chain, they will prove the existence and uniqueness of a
trajectory of the restricted 3-Body Problem (for a Jacobi Constant C), with
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µ = ε small enough, that travels close to this chain, generated in such a way
that it converges to it as ε→ 0. They will say that this trajectory shadows the
chain. Therefore, if the chain is periodic, this trajectory will be periodic too,
and so they will obtain a second-species periodic solution to the problem.
They claim this result in form of the following theorem.

Theorem 3.1. In the planar circular restricted 3-body problem with masses 1− ε, ε, 0,
for all values of the Jacobi constant C ∈ (−

√
8,+3) there exists a dense subset SC of

rationals in the set AC of allowed frequencies for Kepler ellipses crossing the unit circle,
such that for all finite subsets T ⊂ SC there exists ε0 > 0 such that for any sequence
σ = (Ωn = mn

kn
)n∈Z in T and 0 < ε < ε0 there is a unique trajectory of Jacobi Constant

C near to a chain of collision trajectories formed by transforming ellipses of frequencies Ωn

traversed mn times to the rotating frame, and it converges to the chain as ε→ 0.

Corollary 3.2. If the chain of collision trajectories is periodic, the shadowing trajectory
will be periodic too. This trajectory will be then a second-species periodic solution of the
restricted planar 3-Body Problem.

Jean-Pierre Marco and Laurent Niederman give a different proof of the ex-
istence of second-species periodic solutions. They will start by considering, as
Bolotin and Mackay did, the Kepler’s problem corresponding to the restricted
3-Body Problem for µ = 0. In this model, they will take only a part of a particu-
lar periodic chain, corresponding to two symmetric sections of elliptic trajectories
which collide at one point.

These two trajectories, denoted by

ϕs : (−tc, tc)→ C

t 7→ ϕs(t)

ϕu : (tc, tc + l)→ C

t 7→ ϕu(t)

where tc is such that ϕs(−tc) = ϕs(tc) = ϕu(tc) = ϕu(tc + l) = P, being P the
collision point (Jupiter). They will be two solutions of the Kepler’s problem, and
therefore they will have an associated momentum, denoted as σs and σu, which
will be bounded by an interval defined as (σ−, σ+) (see Section 5.1.1). By symme-
try arguments (2.43), Jean-Pierre Marco and Laurent Niederman will be able to
ensure that the trajectory of the Asteroid can be reduced to the union of these two
trajectories.

From these two solutions, whose union will be denoted by ϕ, they introduce
the following concept:



Definition 3.3. We will call a family of second-species periodic solution associated to ϕs

and ϕu to a family (ϕµ), defined for µ > 0 in a neighborhood of 0, of periodic solutions for
every µ of the Hamiltonian H defined in (2.37), such that it converges to ϕ when µ→ 0.

If such a family exists, we will say that ϕs and ϕu are generatrices.

These family of solutions (ϕµ) will be, in fact, the second-species solutions we
are seeking for. They claim its existence in the following theorem.

Theorem 3.4. Let σ1 < σ2 be two values in the interval (σ−, σ+). For every η > 0,
there exists two generatrix solutions ϕs and ϕu of the Hamiltonian H defined in (2.37)
for µ = 0, of respective angular momentums a1 and a2, such that |a1 − σ1| < η and
|a2 − σ2| < η.

Now, before entering in the proofs of both theorems, we are going to explain in
detail all the previous results needed to understand them. In these terms, we will
be focusing our attention on the two papers we referred before, taking a deeper
look into those concepts that could be more confusing.

3.2 S.V. Bolotin and R.S. Mackay Results

First of all, the procedure made by S.V. Bolotin and R.S. Mackay can be divided
in four different parts

• To begin with, they will give an introduction to the Hamiltonian and La-
grangian formalism they are going to use along their approach. This is ex-
plained in section 3.2.1 of this work.

• Then, they will assume that, for the unperturbed system, there exists a chain
as we defined in the previous section. From this assumption, they will come
back to the perturbed case, where they will define and prove the existence
and uniqueness of a trajectory that shadows the chain. This is explained in
section 3.2.2 of this work.

• In the third part, they apply the general case study to a concrete scenario,
the RCP3BP. This is explained in section 3.2.3 of this work.

• Finally, they will build a sequence of collision trajectories from the Kepler’s
problem (and therefore, in the unperturbed system) to generate a chain. This
is explained in section 3.2.4 of this work.



3.2.1 Introduction

Let Q be a smooth manifold containing the particle’s position as we did in the
previous chapter and P = {p1, · · · , pn} a finite set in Q corresponding to those
points where the collision takes place. Let us start by considering the following
perturbation of the natural Lagrangian system defined in the configuration space
Q \ P , as it will be easier to work with this function for the later results:

Lε(q, q̇) = L(q, q̇)− εV(q), (3.1)

where L(q, q̇) is the Lagrangian:

L(q, q̇) = T(q, q̇) + 〈ω(q), q̇〉 −W(q), (3.2)

where 〈ω(q), q̇〉 is the Coriolis term, T(q, q̇) is the kinetic energy, W(q) is the po-
tential energy, and V is the perturbation of this latter potential, which is a function
with singularities at the collision set P . We will assume that, in a neighborhood
of any point pi of P , the potential V(q) is defined as

V(q) = − fi(q)
dist(q, pi)

, (3.3)

where fi is a C4 function on Ui ⊂ Q, with fi(pi) > 0.
Notice that, as these equations do not involve the time explicitly, the kinetic

energy T is a quadratic function of the q̇i
′s

T =
1
2
〈A(q)q̇, q̇〉, (3.4)

with A(q) a metric tensor. Then, T can be seen as a Riemannian metric on Q, and
so the distance dist(q, pi) in (3.3) is defined by means of this new metric.

Lemma 3.5. With the notation above, the corresponding Hamiltonian function can be
expressed as

Hε = H + εV

with
H(q, q̇) = T(q, q̇) + W(q)

Proof. We can use directly the Legendre Transformation (see Section 7.1.2)

Hε = q̇
∂Lε

∂q̇
− Lε

So we have



Hε = q̇
[

∂

∂q̇
(L(q, q̇)− εV(q))

]
− (L(q, q̇)− εV(q)) = q̇

(
∂L(q, q̇)

∂q̇

)
− L(q, q̇) + εV(q)

=
∗

2T(q, q̇) + 〈ω(q), q̇〉 − T(q, q̇)− 〈ω(q), q̇〉+ W(q)

= T(q, q̇) + W(q) + εV(q) =
∗∗

H(q, q̇) + εV(q)

* Computation of ∂L(q,q̇)
∂q̇ :

∂L(q, q̇)
∂q̇

=
∂

∂q̇
(T(q, q̇) + 〈ω(q), q̇〉 −W(q)) =

∂

∂q̇

(
1
2
〈A(q)q̇, q̇〉+ 〈ω(q), q̇〉

)
=

1
2
(〈A(q), q̇〉+ 〈A(q)q̇,1〉) + 〈ω(q),1〉.

Then

q̇
∂L(q, q̇)

∂q̇
=

1
2
(〈q̇A(q), q̇〉+ 〈A(q)q̇, q̇〉) + 〈ω(q), q̇〉

=
Equation 3.4

2T(q, q̇) + 〈ω(q), q̇〉

** From Equation (2.5)

Note that there is an abuse of notation here. The Lagrangian function is defined
on the tangent bundle TQ (see Section 7.1.2), so naturally, q̇ belongs to the tan-
gent space TqQ. However, when going through the Legendre Transformation (see
Section 7.1.2), the corresponding Hamiltonian Hε must be defined on the cotan-
gent bundle T∗Q, and so instead of q̇, we must be referring to the corresponding
element in the cotangent space p ∈ T∗qQ (normally named the momentum, whose

relation is given by p = ∂Lε(q,q̇)
∂q̇ ), so Hε(q, q̇) should have been written as Hε(q, p).

However, we will preserve it as q̇ as it is the notation used in [1].

3.2.2 Formulation of the general theorem

We will start by giving a definition to some important concepts that we will
use constantly along this chapter.

We fix E such that the domain D = {q ∈ Q | W(q) < E} contains the set P
and we study the system (Lε) (3.1) on the energy level {Hε = E} ⊂ T(Q \ P).

Definition 3.6. We say that a trajectory γk : [0, τk]→ D, k ∈ K (a finite set) of energy E
is a collision trajectory if γk(0) = pαk , γk(τk) = pβk , and γk((0, τk)) ⊂ D \ P .

We suppose that the system (L) (3.2) has nondegenerate (definition to be re-
called shortly) collision trajectories. We define now the concept of chain.



Definition 3.7. Given a collision trajectory γk, an infinite sequence (ki ∈ K)i∈Z is called
a chain if γki(τki) = γki+1(0) and γ̇ki(τki) 6= ± ˙γki+1(0) for all i ∈ Z.

Finally, we can define the shadowing chain, which will be crucial to understand
in order to prove Theorem 3.4.

Definition 3.8. For each k ∈ K, let Wk ⊂ D be a neighbourhood of γk([0, τk]). We say
that a trajectory γ : R → D \ P shadows the chain (γki)i∈Z if there exists an increasing
sequence (ti)i∈Z such that γ([ti, ti+1]) ⊂Wki .

pαk0 pβk0
= pαk1

pβk1

Wk0

Wk1

γ(t0)

γ(t1)

γ(t2)

Figure 3.1: Example of a collision trajectory (in red), two neighborhoods Wk0 and
Wk1 , and one shadowing trajectory γ (in brown).

Now we are prepared to state the Theorem that claims the existence of second
species solutions, whose proof is the purpose of our work.

Theorem 3.9. There exists ε0 > 0 such that, for all ε ∈ (0, ε0] and any chain (γki)i∈Z:

• There exists a trajectory γ : R → D \ P of energy E for the system (Lε) (3.1)
shadowing the chain (γki)i∈Z and it is unique (up to a time shift) if the Wk are
chosen small enough.

• The orbit γ converges to the chain of collision orbits as ε → 0: There exists an
increasing sequence (ti)i∈Z such that

max
ti≤t≤ti+1

dist(γ(t), γki([0, τk])) ≤ Cε

where the constant C > 0 depends only on the set K of collision orbits.



• The orbit γ avoids collision by a distance of order ε: there exists a constant c ∈
(0, C), depending only on K such that

cε ≤ min
ti−1≤t≤ti+1

dist(γ(t), pαki
)

The proof of this Theorem in the Restricted Planar Circular 3-Body Problem,
which is the main goal of our work, will be described in Chapter 4. For now let
us clarify the definition of nondegenerate chain.

Nondegeneracy Chains

We devote this section to the concept of nondegenerate chains, as it appears
multiple times along this work. Although in [1], there are up to five equivalent
definitions, we will focus only on two of them, as they will be more suitable to use
for later computations (see Chapter 4).

• The first definition is variational. Let Ω = Ω(Q, pα, pβ) be the space of
W1,2 curves u : [0, 1] → Q such that u(0) = pα, u(1) = pβ. Any point
(u, τ) ∈ Ω×R+ defines a curve γ : [0, τ]→ Q by γ(t) = u( t

τ ). Let

F(u, τ) =
∫ τ

0
(L(γ(t), γ̇(t)) + E) dt (3.5)

be its action. Then F is a C2 functional on Ω × R+ and its critical points
correspond to trajectories (of the Euler-Lagrange equations associated to the
Lagrangian L (3.2)) of energy E connecting pα with pβ (the fact that u is
a curve in W1,2 is what makes it possible to use the integration-by-parts
theory and to be able to compute the critical points of this functional). The
reason why this action integral gives us this information was discussed in
the previous chapter (see Section 3.2).

A collision orbit γk : [0, τk] → D is nondegenerate if (u, τk), where u(t) =

γk(τk), is a nondegenerate critical point for F (i.e, the second variation is not
zero).

• The final definition is the most suitable one for verification in concrete ex-
amples: represent the general solution of the system (L) (3.2) as q = q(λ, t),
where λ is a parameter of dimension 2 dimQ. Then H(q(λ, t), q̇(λ, t)) = h(λ)
for some function h (this h can be found explicitly by means of the Legendre
Transformation (see Section 7.1.2) .



It is trivial then that collision orbits connecting pα with pβ with energy H = E
correspond to solutions of the system of equations

q(λ, 0) = pα

q(λ, τ) = pβ

h(λ) = E

(3.6)

in the variables λ, τ. The nondegeneracy condition is that the rank of this
system at the solution is maximal, i.e., equals 2 dimQ+ 1.

3.2.3 Application to the Planar Circular Restricted 3-Body Problem

To get a general idea of the problem we want to solve, let us consider the
planar restricted circular 3-body problem (see Section 2.3), where we had two
primaries and one body: the Sun, Jupiter and an Asteroid, with normalized masses
of mS = 1− µ, mJ = µ and mA = 0 respectively. Moreover, as we are working in
a rotating frame, we have the positions of the Sun and Jupiter fixed in such a way
that QS = (−µ, 0) and QJ = (1− µ, 0) respectively.

X

Y

CM
S

J

A

Figure 3.2: Configuration of the Sun (S), Jupiter (J) and Asteroid (A).

As one could see from this representation, the elliptic orbit described by the
Asteroid and the circular one described by Jupiter collides at least twice. These



collisions are the main point of our work, so in order to represent and explain
them accurately, we need to describe the Hamiltonian in (2.37). However, to make
it easier, we are going to perform firstly a classical change of coordinates that
involves moving the Sun at the origin, so the translation made from the previous
position of the Asteroid (x, y) to the new one, denoted by (q, p), would be

q1 = x1 + µ⇐⇒ x1 = q1 − µ

x2 = q2

y1 = p1

p2 = y2 + µ⇐⇒ y2 = p2 − µ

(3.7)

It is clear that this is a symplectic change, so, applying it in the Hamiltonian of the
rotating Planar Circular Restricted 3-Body Problem in Equation (2.37), we obtain
the following Hamiltonian function:

H̃(q, p) =
p2

1 + (p2 − µ)2

2
+ q2 p1 − (q1 − µ)(p2 − µ)

− µ√
(q1 − 1)2 + q2

2

− 1− µ√
q2

1 + q2
2

=
p2

1 + p2
2

2
+ q2 p1 − q1 p2

− µ√
(q1 − 1)2 + q2

2

− 1− µ√
q2

1 + q2
2

+ µq1 −
µ2

2

(3.8)

As we claimed before (see Section 2.3), constants have no meaning in the equation
of motion, so we can subtract − µ2

2 , and consider the remaining terms:

H̃ =
p2

1 + p2
2

2
+ q2 p1 − q1 p2 −

µ√
(q1 − 1)2 + q2

2

− 1− µ√
q2

1 + q2
2

+ µq1

By the Hamiltonian equations,

q̇1 =
∂H̃
∂p1

= p1 + q2 =⇒ p1 = q̇1 − q2

q̇2 =
∂H̃
∂p2

= p2 − q1 =⇒ p2 = q̇2 − q1



one can express the energy integral in terms of (q, q̇) as follows:

E =
(q̇1 − p2)2 + (q̇2 + q1)

2

2
+ q2(q̇1 − q2)− q1(q̇2 + q1)−

µ√
(q1 − 1)2 + q2

2

− 1− µ√
q2

1 + q2
2

+ µq1 =
1
2
(q̇1

2 + q̇2
2)− 1

2
(q2

1 + q2
2)−

µ√
(q1 − 1)2 + q2

2

− 1− µ√
q2

1 + q2
2

+ µq1 =
1
2
|q̇|2 − 1

2
|q|2 − µ

|q− (1, 0)| −
1− µ

|q| + µq1,

so we obtain
E =

1
2
|q̇|2 − 1

2
|q|2 − µ

|q− (1, 0)| −
1− µ

|q| + µq1, (3.9)

which is the similar to the first integral defined in (2.40) taking into account the
translation (3.7) performed. However, one can still have the relation E = −C

2 (we
get rid of the constant µ(1− µ) in (2.41) as it does not affect the dynamics), where
C is the Jacobi constant defined in Section 2.3.1.

Applying the Legendre transformation (7.24) to the first integral (3.9), we ob-
tain a Lagrangian system of the form (3.1) (considering that µ = ε), where L and V
are given by

L(q, q̇) =
1
2
|q̇|2 + q1q̇2 − q2q̇1 +

1
2
|q|2 + 1

|q| (3.10)

and

V(q) =
1
|q| −

1
|q− (1, 0)| + q1 (3.11)

Although L has a singularity at q = (0, 0), it is not important as we are going
to analyze domains that do not contain this singular point. Recall that we are
studying collisions with Jupiter which, in these coordinates, correspond to q =

(1, 0).
We will begin to prove now Theorem 3.1. To do it, we will construct now a set

of collision trajectories with the given value of C for the case ε = 0, check their
non-degeneracy and construct a non-trivial set of chains of collision that change
direction at each collision. These three things are most easily done in the non-
rotating frame, to which we shall now revert.

3.2.4 Construction of Collision Orbits

For the case µ = ε = 0, we will be studying the orbit made by the Asteroid
motion with the Sun at one of its focus. In the meantime, Jupiter will be in a
circular orbit around the center of mass, as we stated at the beginning. Thus, we



will determine which orbits of the Kepler problem (see Section 2.1) between the
Sun and the Asteroid cross the unit circle, as this is a necessary condition for a
collision orbit. We restrict attention to the elliptical ones as they will suffice for
our purposes.

Denote the semi-major axis of an ellipse by a and its eccentricity by e as we did
in Section 2.1.2. Then we can state and prove the following lemma.

Lemma 3.10. Under the previous notations and definitions (see Section 2.3.1), the Jacobi
Constant C (2.34) can be expressed as

C = a−1 ± 2
√

a(1− e2) (3.12)

Proof. First of all, we express the Hamiltonian of the Kepler’s problem between
the Sun and the Asteroid, which corresponds to Hamiltonian (2.8) with µ = 1,
that in symplectic polar coordinates (see Section 7.2.2) becomes:

P(r, θ, R, Θ) =
R2

2
+

Θ2

2r2 −
1
r

Now we recall the expression of r for the Kepler’s problem (2.17):

r =
a(1− e2)

1 + e cos f

where a is the semi-major axis of the ellipse, e the eccentricity and f is the eccentric
anomaly.

Since P is a first integral, it will remain the same for any value of r. For this
reason, we are going to consider r to be the perihelion, where we know that f = 0
(see Section 2.1.2), and so r = a(1− e). Moreover, we can compute R as follows:

R = ṙ =
a(1− e2)

(1 + e cos f )2 e sin f ḟ = 0

Apart from that, we can also compute the modulus of the angular momentum
Θ as a function of a and e (see proof of Lemma 2.3):

Θ2 = a(1− e2) (3.13)

Putting everything together, one can obtain the Hamiltonian P as a function of a
and e:

P̃(a, e) =
Θ2

2r2 −
1
r
=

a(1− e2)

2a2(1− e)2 −
1

a(1− e)
= − 1

2a
(3.14)



Once we have related the Hamiltonian with the semi-major axis, we can recall the
definition of the Jacobi constant (2.34) in polar coordinates:

C = −2(P̃ −Θ) =
Equation (3.13)

a−1 ± 2
√

a(1− e2)

proving the result.

We will say that the direction for the motion is the same as the rotation of the
Sun and Jupiter (prograde motion) when considering the + sign of (3.12), and in
the opposite direction (retrograde motion) when considering the − sign.

Thus instead of expressing the elliptic orbits of the Kepler problem as a func-
tion of the semi-major axis and the eccentricity, we can give (a−1, C) instead, and
deduce e ∈ [0, 1] from Equation (3.12) and obtain

e2 = 1− 1
4a

(C− a−1)2 (3.15)

The sense of motion is prograde if C > a−1, retrograde if C < a−1, and the case
C = a−1 has to be excluded because it gives degenerate ellipses of eccentricity 1
which corresponds to line segments through O.

In Section 2.1.2, we have described the general aspects of the possible elliptic
orbits that the Asteroid can take. Now, we will focus only on those ones that cross
with the circular motion of Jupiter. Thus, it is clear that these ellipses would be the
ones with a perihelion value r ∈ (0, 1) (as the Sun is the center of the circumference
of radius 1 of the circular orbit taken by Jupiter). Translating this into Equation
(2.17), we obtain that a(1− e2) must lie between (1− e) and (1 + e) (notice that
when we are considering the perihelion, we must take θ = 0).

If a(1 − e2) ∈ (1 − e, 1 + e), then it is clear that a−1 ∈ (1 − e, 1 + e). In the
variables (a−1, C), and by (3.15) we obtain

(C− a−1)2 < 8− 4a−1

which is represented in Figure 3.3:
Note the limiting cases of ellipses tangent of the unit circle ((C − a−1)2 =

8− 4a−1), line segments (C = a−1) and parabola (a−1 = 0).
The angular frequency Ω of the ellipse is given by

Ω = a−
3
2 (3.16)

From the picture it is easy to see then that, given C ∈ (−
√

8, 3), we obtain
a non-empty set AC of frequencies of ellipses that cross the unit circle, which
consists of one interval for C ∈ [2, 3) or (−

√
8, 0] and two intervals if C ∈ (0, 2),

proving the first statement of the Theorem 3.1.



What is left to prove is that we can obtain a subset of allowed frequencies SC

from which we can obtain a unique trajectory near a chain of collision trajectories.
In order to do that, we are going to explain now the strategy performed in [1].

Figure 3.3: The region (a−1, C) for which the Kepler ellipse crosses the unit cir-
cle [1].



To obtain a collision orbit of given C, we can choose a so that Ω is rational, say
Ω = m

k in lowest terms, and consider that Jupiter and the Asteroid start at either
of the two collision points (as one could see in Figure 3.3, the general behaviour is
that the ellipse crosses twice the unit circle), and let Jupiter make k complete revo-
lutions and the Asteroid m complete revolutions (in the direction corresponding to
the sign of C− a−1). Under these considerations, although it is true that they will
collide again at the start point, they might collide earlier at the other intersection
point. This would not be a great problem, as it generates a collision orbit, but it is
not so easy to see in these cases whether the orbit is degenerate or not.

To avoid this earlier collision, we will determine for each C, a set of rationals
(or allowed frequencies) where we can ensure that this behaviour will not take
place. Then we shall prove their non-degeneracy, and finally we shall construct
chains of these collision orbits for which the direction changes at each collision.
We will claim and prove these statements in three separated lemmas.

Lemma 3.11. For all C ∈ (−
√

8, 3) there is a dense set of SC of rational Ω in the allowed
set AC such that there is no early collision.

Lemma 3.12. For C ∈ (−
√

8, 3), the collision orbit at ε = 0 (in the model correspond-
ing to the Kepler’s problem between the Sun and the Asteroid) in the rotating frame,
corresponding to a whole number m of revolutions of an ellipse with rational frequency
m
k ∈ AC starting and ending at collision with Jupiter, is nondegenerate.

Lemma 3.13. Given any sequence (Ωn)n∈Z ∈ SC there exists an “orbite à chocs” consist-
ing of ellipses of frequency Ωn connecting collisions at Jupiter, which leave each collision
in neither the same nor the opposite direction as they arrive.

Now we are going to prove them separately:

• Proof of Lemma 3.11

Given (a−1, C) in the region where the ellipse crosses the unit circle, define
f ∈ [0, π] to be the angle between the perihelion and either of the intersec-
tions with the unit circle, and M ∈ [−π, π] to be 2π times the fraction of the
area of the ellipse swept out bu this angle f , signed + for the prograde and
− for the retrograde motion (see Figure 3.4)

Applying Kepler’s law of equal areas swept in equal times to both the second
and third masses, one sees that there is a collision some time at the other
intersection if and only if

2πm′ − 2M = (2πk′ − 2 f )Ω



Figure 3.4: Illustration of the angle f and the area defining M [1].

for some non-zero m′, k′ ∈ Z. We will explain this result.

Let us suppose that the direction of the motion of both objects is clockwise,
and call t0 = 0 the initial time when both Jupiter and the Asteroid are at
the first collision point (let us say that it is the upper one), and let them
going through the motion. At some time t, both objects collide at the second
collision point.

For Jupiter, it is clear that, when it is at the second collision point, the angle
swept out will be of 2πk′ − 2 f , for some k′ ∈ Z, where 2πk′ just represents
the number of revolutions that Jupiter made before colliding with the As-
teroid. Multiplying by the allowed angular frequency Ω, we will obtain the
area swept out by Jupiter before the collision happens.

Now let us consider the Asteroid. Similarly as the Jupiter motion, the area
swept out by the Asteroid would be the 2πm′ − 2M, for some m′ ∈ Z, where
2πm′ represents the number of revolutions that the Asteroid made before
the collision happens, and 2M represents the area swept out by the Asteroid
if the collision happened at the first revolution.

Finally, using the third Kepler’s law, we can ensure an equality between
these two areas, obtaining the relation we just saw.

Let

GC =
1
π
(M− f Ω) (3.17)

Then there is collision at the other intersection if and only if GC(Ω) = m′ −
k′Ω. For Ω = m

k (recall that m and k are the actual revolutions of the Asteroid
and Jupiter respectively), this implies that, in order to have another collision,
GC = (m′k−k′m)

k ∈ Z \ k. What is left to do is to find a dense set of rationals
where this is false.



Firstly, we notice that the function GC is analytic on AC. This is because
firstly the angle f ∈ [0, π] is given in terms of C and Ω by

e cos f =
1
4
(C− a−1)2 − 1 (3.18)

which came out just by computation of equations (2.17) and (3.12), as well
as knowing that the circular orbit has radius r = 1

C = a−1 ± 2
√

1 + e cos f =⇒ e cos f =
1
4
(C− a−1)2 − 1

For Ω ∈ AC, f avoids 0 and π so it is analytic in Ω.

Secondly, the angle M can be obtained via the “eccentric anomaly” E ∈
[−π, π] which is defined by

e cos E = 1− a−1

with sign + for prograde motion, − for retrograde. For Ω ∈ AC, E avoids
{0,±π} so is analytic on Ω. Then M is given by the Kepler equation

M = E− e sin E

so is analytic. As we can obtained GC(Ω) via all these formulas, we can
ensure that GC is analytic on AC.

Suppose for given C ∈ (−
√

8, 3) there is a non-empty set open interval A ⊂
AC such that for all rationals m

k ∈ A we have GC(
m
k ) ∈ Z \ k. Then choose

any m∞
k∞
∈ A and a Farey sequence of distinct rationals mn

kn
∈ A tending to

m∞
k∞

. For each n, there exists m̃n
k̃n
∈ A such that |m̃nkn − mn k̃n| = 1 (a Farey

neighbour). Then for all j ≥ 0

jmn + m̃n

jkn + k̃n
∈ A

just by definition of a Farey sequence and the fact that jmn+m̃n

jkn+k̃n
∈
[

mn
kn

, m̃n
k̃n

]
,

which belong to A.

Thus we can ensure that

GC

(
jmn + m̃n

jkn + k̃n

)
∈ Z \ (jkn + k̃n)

By assumption, for each m
k ∈ A there exists an integer n(m, k) such that

GC(m, k) = n(m,k)
k (we claimed that GC(m, k) ∈ Z

k ). Thus for each pair of
rationals in A



n(m, k)
k

− n(m′, k′)
k′

= N
(

m
k
− m′

k′

)
This can be rearranged to show that n(m,k)−Nm

k is the same for all rationals
m
k ∈ A. To do that, we see that

n(m′, k′)
k′

− m′

k′

does not depend on k, m, so it has to be the same for all k, m. We denote
this difference as p

q , so, substituting in the expression we obtained above, we
have

n(m, k)− Nm
k

=
p
q

Moreover, if we suppose that p
q is in lowest terms, we have that for all m

k ∈ A,

n(m, k)− Nm = p k
q . If q > 1, then there are values of k (those missing some

prime factor of q) for which this is impossible (in order to have p k
q ∈ Z, we

need to have mcd(k, q) = q for all k, which is not always true). Thus q = 1.
Hence,

n(m, k)
k

= N
m
k
+ p

so in general we obtain the following equation

GC(Ω) = NΩ + p (3.19)

on A. Thus to prove density of frequencies with no early collision in a
component of AC, it suffices to find a contradiction of Equation (3.19) in that
component.

From now on the rest of the proof consists on looking for specific coun-
terexamples of this equation for different intervals of C. Even though it is
an interesting computation, we will avoid it and assume that it is true as it
goes far beyond what we want to achieve with this project. For the complete
computation, see [1].

• Proof of Lemma 3.12

We will use the third formulation of the nondegeneracy condition to make
this proof (see 3.2.2). As we saw before, we can translate the energy into



the Jacobi constant C. Enforcing the collision point pα to be the starter point
of the motion of the Asteroid and Jupiter, we can reduce the dimension of
the parameter λ referred in the nondegeneracy formulation to dim Q (in this
case dim Q = 2). Then, we parametrise the set of planar allowed Kepler
ellipses through a given point P (with the Sun S at one focus) by the position
F ∈ R2 of the second focus. Normalising the distance SP = 1, we have

a =
definition

1
2
(1 + PF)

e =
definition

SF
2a

C =
Equation (3.12)

a−1 ± 2

√
a− SF2

4a2

The argument of the square root is positive since e < 1 in AC. For Ω ∈ AC,
the orbit crosses the unit circle transversely at non-zero speed and Jupiter
moves along the unit circle at non-zero speed, so the second equation of
(3.6) is satisfied nondegenerately for Ω = m

k (as its derivative with respect
to time is non-zero). Thus all we have to check is that the third equation of
(3.6) is satisfied nondegenerately too. That is, we have to check that

∂C
∂SF

∣∣∣∣∣
a

6= 0

Since e > 0 in AC, we have

∂C
∂SF

∣∣∣∣∣
a

= ± SF

2a
√

a− SF2

4a2

6= 0

• Proof of Lemma 3.13

For each C ∈ (−
√

8, 3) and Ω ∈ AC, there are two possible ellipses leaving
it with frequency Ω, and they leave in different and non-opposite directions,
as we show below

Thus at least one of them leaves in a different and non-opposite direction
from that in which the Asteroid arrived along the previous collision trajec-
tory.



Figure 3.5: Two ellipses that leave the same point of the unit circle with the same
values of (a−1, C) [1].

3.3 Jean-Pierre Marco and Laurent Niederman Results

The procedure made by Jean-Pierre Marco and Laurent Niederman can be
divided in three parts:

• To begin with, they will give a description of the Hamiltonian of the RCP3BP
in different reference systems, as well as studying its Hill’s Region. This is
explained in section 3.3.1 of this work.

• Then, we will study the unperturbed case, which corresponds to the Kepler
problem between the Asteroid and the Sun, in order to determine the levels
of energy needed to obtain elliptic solutions.This is explained in section 3.3.2
of this work.

• Finally, we will regularize the perturbed system using a Levi-Civita map to
find homoclinic solutions which will generate the second-species solutions.
This is explained in section 3.3.3 of this work.

3.3.1 Description and equations of the problem

First, we will recall the equations of motion of this problem (see Section 2.3) in
different coordinate frameworks.

Equations in fixed coordinates

We are going to consider the equations of motion in the RPC3BP (2.29) in
complex notation:

dP
dt

=
d2Q
dt2 = −(1− µ)

Q + µeit

|Q + µeit|3 − µ
Q− (1− µ)eit

|Q− (1− µ)eit|3 (3.20)



where Q ∈ C is the position of the third mass and P ∈ C is the velocity (recall that
µ is the mass of the Sun, 1− µ is the mass of Jupiter, and the mass of the Asteroid
is negligible). Here we abuse the notation and call

Q = (Q1, Q2) = Q1 + iQ2

P = (P1, P2) = P1 + iP2

Equations in rotating coordinates

As we saw in the previous section, it is easier to work with rotating coordinates
instead of fixed ones. Denoting the position and velocity by (ξ, η) respectively in
this new reference (note that (ξ, η) are the same that (x, y) in rotating coordinates
(see Section 2.3.1) in complex notation, so ξ = x1 + ix2 and η = y1 + iy2), they
must verify

Q = ξeit P = ηeit (3.21)

Adapting the equations of motion and the corresponding Hamiltonian H in (2.33),
we obtain 

dξ
dt = η − iξ
dη
dt = −iη − (1− µ) ξ+µ

|ξ+µ|3 − µ
ξ−(1−µ)
|ξ−(1−µ)|3

(3.22)

and their corresponding Hamiltonian

Rµ(ξ, η) =|η|2 + i(ηξ − ηξ)− 2(1− µ)

|ξ + µ| −
2µ

|ξ − (1− µ)|
+ 2(1− µ) + (1− µ)2

(3.23)

when C×C is provided with the symplectic form (see Section 7.1.1)

Ω = dη ∧ dξ + dη ∧ dξ

Proof. Consider the function (3.23)

Rµ(ξ, η) =|η|2 + i(ηξ − ηξ)− 2(1− µ)

|ξ + µ| −
2µ

|ξ − (1− µ)|
+ 2(1− µ) + (1− µ)2

with the symplectic form Ω = dη ∧ dξ + dη ∧ dξ.
We want to obtain the equations of motionξ̇ = η − iξ

η̇ = −iη − (1− µ) ξ+µ
|ξ+µ|3 − µ

ξ−(1−µ)
|ξ−(1−µ)|3



To do that we express η and ξ as follows

ξ = a + bi, η = c + di

ξ = a− bi, η = c− di

So the symplectic form becomes

Ω = dη ∧ dξ + dη ∧ dξ = (dc + idd) ∧ (da− idb) + (dc− idd) ∧ (da + idb)

= (dc ∧ da)− idc ∧ db + idd ∧ da + dd ∧ db + dc ∧ da + idc ∧ db− idd ∧ da + dd ∧ db

= 2(dc ∧ da) + 2(dd ∧ db) = 2(dc ∧ da + dd ∧ db)

From the definition of the symplectic form (see Section 7.1.1), we know that
Ω(XR, ·) = dR, so

2(XRa dc− XRc da + XRb dd− XRd db) = (∂a+biR)d(a + bi) + (∂c+diR)d(c + di)

= (∂aR)da + (∂bR)db + (∂cR)dc + (∂dR)dd

and so we have the following relations

2ȧ = ∂cR =⇒ ȧ =
1
2

∂cR

2ḃ = ∂dR =⇒ ḃ =
1
2

∂dR

−2ċ = ∂aR =⇒ ċ = −1
2

∂aR

−2ḋ = ∂bR =⇒ ḋ = −1
2

∂bR

Then {
ξ̇ = ȧ + iḃ = 1

2 (∂cR + i∂dR)

η̇ = ċ + iḋ = 1
2 (−∂aR− i∂bR)

So we only have to express Rµ in these new coordinates and perform the compu-
tations:

Rµ(ξ, η) =Rµ(a, b, c, d) = c2 + d2 + i [(c + di)(a− bi)− (c− di)(a + bi)]

− 2(1− µ)√
(a + µ)2 + (b + µ)2

− 2µ√
(a− (1− µ))2 + (b− (1− µ))2

+ 2(1− µ) + (1− µ)2

So



ξ̇ =
1
2
(∂cRµ + i∂dRµ) =∗

1
2
(2c + 2b + 2ai− 2di) = (c + b) + i(a− d)

* Computation of ∂cRµ:

∂cRµ = 2c + i(a− bi− (a + bi)) = 2c + i(−2bi) = 2c + 2b

* Computation of i∂dRµ:

i∂dRµ = i[2d + i(i(a− bi) + i(a + bi))] = i[2d + i(2ai)] = 2di− 2ai

which coincides with the corresponding equation of motion

ξ̇ = η − iξ = (c + di)− i(a + bi) = (c + b) + i(a− d)

We perform a similar computation for η̇

η̇ =− 1
2
(∂aRµ + i∂bRµ)

=
∗
−1

2

[
− 2d +

2(1− µ)(µ + a)
|ξ + µ|3 +

2µ(a− (1− µ))

|ξ − (1− µ)|3 + i

(
2c +

2(1− µ)(µ + b)
|ξ + µ|3

+
2µ(b− (1− µ))

|ξ − (1− µ)|3

)]
= (d− ic)

1
|ξ + µ|3 ((1− µ)(µ + a) + i(1− µ)(µ + b))

− 1
|ξ − (1− µ)|3 (µ(a− (1− µ)) + iµ(b− (1− µ)))

= (d− ic)− (1− µ)[(a + bi) + µ]

|ξ + µ|3 − µ[(a + bi)− (1− µ)]

|ξ − (1− µ)|3

= −iη − (1− µ)(ξ + µ)

|ξ + µ|3 − µ(ξ − (1− µ))

|ξ − (1− µ)|3

* Computation of ∂aRµ:

∂aRµ = i[(c + di)− (c− di)] + 2(1− µ)
µ + a
|ξ + µ|3 + 2µ

a− (1− µ)

|ξ − (1− µ)|3

= −2d +
2(1− µ)(µ + a)
|ξ + µ|3 +

2µ(a− (1− µ))

|ξ − (1− µ)|3

* Computation of ∂bRµ:

∂bRµ = i[−i(c + di)− i(c− di)] + 2(1− µ)
µ + b
|ξ + µ|3 + 2µ

b− (1− µ)

|ξ − (1− µ)|3

= 2c +
2(1− µ)(µ + b)
|ξ + µ|3 +

2µ(b− (1− µ))

|ξ − (1− µ)|3



Hill’s Region for µ 6= 0

Once we have formulated the Hamiltonian Rµ, we can now fix a level energy
h and compute the possible positions and velocities that accomplish this equation,
i.e, compute R−1

µ (h). It can be expressed as

|η − iξ|2 = h + |ξ|2 + 2(1− µ)

|ξ + µ| +
2µ

|ξ − (1− µ)| − 2(1− µ)− (1− µ)2 ≥ 0 (3.24)

The representations of the Hill’s region in rotating coordinates are given in the
following pictures, where the hi are the critical values of Rµ.

Figure 3.6: Hill’s Region [2].

Equations in rotating coordinates centered at P2

Since one of the goals is to study the collision trajectories with Jupiter (repre-
sented as the point P2), located at ξ = (1− µ, 0), we are going to make a translation
to place Jupiter at the center, as it will be a the (in rotating coordinates) where the
collision will take place. This reference frame is, as we said, just a translation of
the coordinates (ξ, η) given in the previous rotating reference. Thus we define the
new coordinates (M, N) as follows

M = ξ − (1− µ), N = η − i(1− µ) (3.25)

and the new Hamiltonian is written as

Hµ(M, N) =|N|2 + i(MN −MN)− 2µ

|M|

− (1− µ)

(
2

|1 + M| − 2 + (M + M)

) (3.26)

for the symplectic form

Ω = dM ∧ dN + dM ∧ dN (3.27)

and the collision with Jupiter happens, in these coordinates, when M = 0.



3.3.2 Kepler problem in the rotating frame

In order to work with the Kepler problem between the Asteroid and the Sun,
we must consider that the mass of Jupiter is now negligible. When µ = 0, the
Hamiltonian can be written as

H0(M, N) = |N|2 + i(MN −MN)−
(

2
|1 + M| − 2 + (M + M)

)
(3.28)

This would represent the Hamiltonian of the Kepler problem related to the center
P1 (the Sun), in a rotating coordinate framework centered at P2 (which is now
M = 0).

It would be easier to study this Hamiltonian in a rotating framework centered
on P1 instead of P2. This change is as simply as a translation, similar to the one
we did before in (3.25). As µ = 0, the point P1 is now at the center of masses C, so
we can use the coordinates (ξ, η) instead. The new Hamiltonian will be

R0(ξ, η) = |η|2 + i(ηξ − ηξ)− 2
|ξ| + 3 (3.29)

which is nothing more than substituting µ = 0 (and (1− µ) = 1− µ = 1) in the
function Rµ(ξ, η) in (3.23).

Now the following Lemma will give us a relation between this result and the
angular momentum, that we will denote by σ, of the Kepler system.

Lemma 3.14. Preserving the same notation used until now, the angular momentum of
the Asteroid in the rotating framework defined above can be expressed as

σ = − i
2
(ηξ − ηξ)

Proof. We want to see that the angular momentum σ = − i
2 (ηξ − ηξ). To do that,

we express the position ξ and velocity η as follows:

ξ = a + bi

η = c + di

By definition, the angular momentum is σ = ξ × η = ad− bc.
So

σ = − i
2
(ηξ − ηξ) = − i

2
[(c + di)(a− bi)− (c− di)(a + bi)]

= − i
2
[dia + adi− cbi− cbi] = ad− bc



The Hamiltonian R0 can be written then in terms of the angular momentum and
the physical energy of P3 in the fixed coordinate system centered at P1 (which we
will denote by F0) as follows:

R0(ξ, η) = F0(ξ, η)− 2σ(ξ, η) (3.30)

with
F0(ξ, η) = |η|2 − 2

|ξ| + 3 (3.31)

The angular momentum σ is a first integral (see Equation 2.10) and F0 too, so R0

is completely integrable.
Note that for µ = 0, H0 is not singular at M = 0 (in fact, at the collision point,

H0(0, N) = |N|2). It happens the same for R0, which is not singular for ξ = 1 (at
the collision point, R0(1, η) = |η|2 + i(η − η) + 1). This result will be useful when
we study the collision trajectories.

Topology of the unperturbed problem

Now we are going to study the Hill’s region from (3.24) for µ = 0.
For h < 0, the region of energy h is the union of a disk centered at P1 of radius

< 1 (without the origin), and the complementary of C of a disk of radius > 1

Figure 3.7: Hill’s Region for h < 0.

For the critical value h = 0 the two regions collide under the circle of radius 1
Finally, for h > 0, the region is C∗ (see Figure 3.9).



Figure 3.8: Hill’s Region for h = 0.

Every submanifold of energy h > 0 is then diffeomorphic to C∗ × T1. (The
equation of the submanifold is the one obtained in (3.24), so for a given position
of the Hill’s Region ξ ∈ C∗ , we obtain the equation of a torus for η, as η initially
belong to C).

Structure of the submanifolds for a constant positive energy h

In order to study the structure of the submanifolds for a fixed value of R0 = h
in (3.30), we need to study the different values of the constants of motion F0 and
σ.

For a fixed value F0, we will say that a solution of R0 is elliptic if F0 < 3,
parabolic if F0 = 3 and hyperbolic if F0 > 3. (i.e. if the trajectory of the solution
in fixed coordinates is elliptic, parabolic or hyperbolic respectively). Finally, if the
angular momentum σ > 0 we will say that the solution is prograde, and retrograde
otherwise.

Note the similarities with the analysis done in Section 3.2). There, we will
restrict initially to the elliptic domain, so we just consider F0 < 3. However, we
said that the motion was prograde if C > a−1 and retrograde if C < a−1 (being C
the Jacobi Constant and a−1 the inverse of the semi-major axis), instead of talking
about the angular momentum.

But both definitions are similar since Equation (3.12) gives us that, if C >

a−1, we must consider the positive root of 2
√

a(1− e2) > 0 (because, as seen in
Section 2.1.2, in the elliptic orbit we have that e < 1), and this term is nothing



Figure 3.9: Hill’s Region for h > 0.

more that 2σ, implying directly that σ > 0. The same similarity can be obtained
for the retrograde motion.

We will study now the submanifolds of constant energy h > 0, as they will be
the ones that we will consider later on (see Chapter 5). Let us fix h > 0 and denote
by H = R−1

0 (h). H is the union of

H+ = H∩ (F−1
0 ((3,+∞))), H0 = H∩ F−1

0 (3), H− = H∩ (F−1
0 (−∞, 3))

To do that we state the following lemma:

Lemma 3.15. All of the submanifolds H+ and H− are diffeomorphic to C∗ ×T1.

Proof. It is enough to see that for a fixed value of ξ ∈ C∗, η lives in a circle.
In complex analysis, the parametrization of a circle centered at z0 ∈ C with

radius r is given by
|z− z0|2 = r2

This result can be also expressed in the following way

|z− z0|2 = r2 ⇐⇒ (z− z0)(z− z0) = zz− zz0 − z0z + z0z0

= |z|2 + |z0|2 − (zz0 + zz0) = r2 (3.32)

Now we impose the condition of H, i.e. R0(ξ, η) = h, so

R0(ξ, η) = h ⇐⇒
Eq. (3.29)

|η|2 + i(ηξ − ηξ)− 2
|ξ| + 3 = h

⇐⇒
iξ=−iξ

|η|2 − (η(iξ) + η(iξ)) = h +
2
|ξ| − 3



To adapt this equation to be as Equation (3.32), we add and substract |iξ|2, so we
obtain:

|η|2 + |iξ|2 − η(iξ) + η(iξ)) = h +
2
|ξ| − 3 + |iξ|2

Considering z = η and z0 = iξ, we get

|η − iξ|2 = r2 =
|iξ|2=|ξ|2

h +
2
|ξ| − 3 + |ξ|2 (3.33)

So effectively, η lives on a circle with center iξ and radius r =
√

h + 2
|ξ| − 3 + |ξ|2

Fixed h, one can also define the circle |η− iξ|2 = r2 at the collision point ξ = 1,
denoted as C0:

C0 = {(1, η), |η − i|2 = h} (3.34)

The same definition can be applied to the coordinates (M, N), obtaining

C0 = {(0, N), |N|2 = h} (3.35)

From these definitions, we can introduce the concept of singular domain.

Definition 3.16. We define the singular domain D of H as the union of orbits that
intersect with C0, being C0 the circle of velocities around P2 under the submanifold H
(i.e, the circle of available velocities for which there is a collision with P2).

We will pay more attention to the elliptic singular domain De ⊂ D, generated
by the union of elliptic orbits (in H−) that intersect with C0.

Evolution of the structure H in terms of the energy h

What is left to do is to determine for which values of h we would obtain the
elliptic singular domain De, as it will be the one we will work with.

Consider C0 as defined in (3.34). We will denote by ηc those velocities η that
live in C0.

To obtain the elliptic singular domain De, we have to intersect this circle C0

with the submanifold H−. Such submanifold is described by imposing R0(ξ, η) =

h and F0(ξ, η) < 3.
On the one hand, from Equation (3.31), we obtain

F0 = F0(1, ηc) = |ηc|2 + 1⇐⇒ ηc =
√

F0 − 1 eiθ (3.36)

for some θ ∈ (0, 2π).



On the other hand, from the definition of the circle C0 (3.34), we have

|ηc − i|2 = h⇐⇒ |η|2 + 1− (ηi + ηi) = h⇐⇒ |η|2 + 1− (−ηi + ηi) = h

⇐⇒
Equation(3.36)

h− F0 = −2
√

F0 − 1 sin θ ⇐⇒ sin θ =
h− F0

−2
√

F0 − 1

⇐⇒ h− F0

−2
√

F0 − 1
∈ (−1, 1)

From this result, we can obtain the following inequality:

−2
√

F0 − 1 < h− F0 < 2
√

F0 − 1

so we can finally bound h as follows:

F0 − 2
√

F0 − 1 < h < F0 + 2
√

F0 − 1

Since F0 < 3, we can get the upper bound replacing F0 by 3, so h < 3 + 2
√

2.
To obtain the other boundary, one can compute the minimum of the expression
F0 − 2

√
F0 − 1:

(F0 − 2
√

F0 − 1)′ = 1− 1√
F0 − 1

= 0⇐⇒ F0 = 2

For F0 = 2, F0 − 2
√

F0 − 1 = 0, so h is bounded by:

0 < h < 3 + 2
√

2

so from now on we will suppose that the value of h ∈ (0, 3 + 2
√

2).

3.3.3 Regularization of the system

Now we will come back to the Hamiltonian system Hµ defined in (3.26). We
fix an energy h > 0, and we denote by Hµ = H−1

µ (h), and XHµ the Hamiltonian
field associated with Hµ and restricted by Hµ.

For M = 0, the Asteroid is at collision with Jupiter. As we said, there is no
problem when we are considering the Kepler’s problem between the Asteroid and
the Sun (i.e., when we consider µ = 0).

However, for µ 6= 0, we have to consider the Hamiltonian (3.26). In this case,
when M = 0, there is a singularity. This is a problem when we want to find
periodic solutions that goes near the collision. To deal with this singularity, we
regularize the Hamiltonian at the collision by performing a change of variables.



Levi-Civita regularization for a fixed energy h

The regularization of the collision with P2 (Jupiter) is obtained through the
application ρ of Levi-Civita, that goes from C∗ × C to C∗ × C, and defined as
follows

ρ : C∗ ×C→ C∗ ×C

(z, w) 7→ ρ(z, w) =

(
z2

h
,

√
hw
z

)
(3.37)

that preserves the symplectic form Ω (3.27) (up to scaling)

Ω = dM ∧ dN + dM ∧ dN

=⇒ ρ∗(Ω) =
2√
h
(dz ∧ dw + dz ∧ dw)

(3.38)

We also have to take into account also the change in time [4]:

4|z|2dτ = dt

and so the Hamiltonian (3.26), in the level of energy Hµ = h, is transformed into

Lµ =
|z|2
h

(Hµ − h) ◦ ρ

in the level of energy Lµ = 0, that has a unique analytic extension in C2, expressed
as

Lµ(z, w) = |w|2 − |z|2 + i|z|2

h
3
2
(zw− zw)− 2µ− (1− µ)

h3 f (z, z, h) (3.39)

with
f (z, z, h) = −|z|6 + 3

4
|z|2(z2 + z2)2 + O8(z) (3.40)

Proof. We will prove the uniqueness and the expression of the analytic expansion
Lµ.

Uniqueness
Suppose that there exists two analytic extensions of Lµ in C2, and denote them by
F1 and F2. Then, F1− F2 is an analytic function that cancels in C∗×C2 ⊂ C2 =⇒

C2convex
F1− F2 = 0 for every point in C2, which implies that F1 = F2 for every point in C2.

Expression

Lµ(z, w) =
|z|2
h

(Hµ − h) ◦ ρ



(Hµ− h)(M, N) = |N|2− h+ i(MN−MN)− 2µ

|M| − (1−µ)

(
2

|1 + M| − 2 + (M + M)

)

(Hµ − h) ◦ ρ =

∣∣∣∣∣
√

hw
z

∣∣∣∣∣
2

− h + i

(
z2

h

√
hw
z
− z2

h

√
hw
z

)
− 2µ∣∣∣ z2

h

∣∣∣
− (1− µ)

 2∣∣∣1 + z2

h

∣∣∣ − 2 +
z2 + z2

h

 = h

∣∣∣∣∣wz
∣∣∣∣∣
2

+
i√
h

(
z2

z
w− z2

z
w

)

− 2µ∣∣∣ z2

h

∣∣∣ − (1− µ)

2

−1 +
1∣∣∣1 + z2

h

∣∣∣
+

z2 + z2

h


So

Lµ(z, w) =
|z|2
h

h

∣∣∣∣∣wz
∣∣∣∣∣
2

+
|z|2i
h
√

h

(
z2

z
w− zw

)
− 2µ− |z|

2

h
(1− µ)

(
2

(
− 1 +

1∣∣∣1 + z2

h

∣∣∣
)

+
z2 + z2

h

)
− |z|2 = |w|2 − |z|2 + i|z|2

h
3
2
(zw− zw)− 2µ− (1− µ)

h3 f (z, z, h)

= ww− zz +
i

h
3
2
(zz2w− z2zw)− 2µ− 1− µ

h3 f (z, z, h)

We denote by Cµ the intersection with Lµ = L−1
µ (0) of the plane z = 0, i.e.,

of the circle corresponding to the collision P2P3 in regularized coordinates. We
choose L−1

µ (0) because we are working with a fixed energy level h. For z = 0,
Lµ(0, w) = |w|2 − 2µ = 0 is the equation of a circle in the collision of the Asteroid
P3 with P2 (Jupiter) because z = 0 corresponds to the point P2 in this coordinate
reference. In conclusion, we can define Cµ as

Cµ = {w ∈ C, |w|2 = 2µ} (3.41)

and we will say then that (Lµ, XLµ) is a regularization of (Hµ, XHµ).
Finally, consider now the circle of velocities C0 defined in (3.35) (recall that this

circle is defined under the Hamiltonian (3.29)). This circle, when going through
the Levi-Civita regularization process, collapses to the origin, as one can obtain by
replacing µ = 0 at Equation (3.41). For this reason, we are going to make a local
study of the dynamics around the origin.



Local study of a fixed point

The Hamiltonian field XLµ associated with Lµ has, as linear part, the following
Hamiltonian L̃:

L̃ = |w|2 − |z|2

whose equations of motion are defined as follows:{
ż = ∂L̃

∂w = w

ẇ = − ∂L̃
∂z = z

The corresponding stable and unstable subspaces Es and Eu are of dimension 2
and have for equations w = −z and w = z respectively.

Proof.

XLµ =


ż
ẇ
ż
ẇ


It will be enough to study ż and ẇ, since ż and ẇ can be obtained by conjugacy.(

ż
ẇ

)
=

(
∂Lµ

∂w
∂Lµ

∂z

)
=

 w + i

h
3
2
|z|2z

z− i

h
3
2
(2|z|2w− z2w) + 1−µ

h3
∂ f
∂z


Then, denoting by Id =

(
1 0
0 1

)
we obtain:

DXLµ(0, 0) =

(
0 Id
Id 0

)
=⇒ Pλ = (λ2 − 1)2 = 0 =⇒ λ = ±1

For Eu:

vu = Ker(DXLµ − I) = Ker


−1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 −1

 =⇒ Eu = {w = z}

Analogically, we obtain Es = {w = −z}

In a neighbourhood of the origin, the submanifold of energy zero Lµ can be
expressed as

|w|2 − |z|2 = 2µ + O4(|z|, |w|)



• When µ 6= 0, the intersection of Lµ with the band B of C2 of equation |z|2 ≤
α (α << 1) is a closed and complete torus generated by Cµ.

0

Cµ

|z2| ≤ α

Figure 3.10: The disk |z2| ≤ α and the circle Cµ generates a complet closed torus.

• When µ→ 0, the circle Cµ converges to the origin.

• When µ = 0, the submanifold L0 ∩ B is homeomorph to a cone with peak at
the origin and base a torus of dimension 2 with equation |z|2 = |w|2 = α.

Figure 3.11: Cone with peak at the origin and base a torus of dimension 2 of
equation |z|2 = |w|2 = α.



Finally, we take a look at what happens with the dynamics in the case µ = 0.
The circle C0 (3.35) of the velocities at the point P2 is sent by ρ to the fixed point O
of the system. As a consequence, the cylinder obtained by the transport of C0 by
the flux of the Kepler problem (called singular domain in definition 3.16) is sent
by ρ to the union of the 2-dimensional unstable and stable manifolds of the fixed
point (z, w) = 0.

3.4 Comparison

To make an appropriate comparison between the papers, we are going to split
them in two parts, one concerning the solutions to the Kepler’s problem between
the Sun and the Asteroid when as a result of considering the mass of Jupiter negli-
gible, and the other part related to the arguments made to build the second-species
periodic solution. Finally, we will compare separately the way they regularize the
collisions.

1. To begin with, let us talk about the reference frame. One could notice that
during both approaches, the reference frame used changed constantly, from
a fixed coordinate system to the rotating one, the Levi-Civita regularized
system, between others. Even though it seems to be a trivial equivalence, it
is important as in both works these changes are useful to understand and
ease the computations needed to prove more difficult theorems.

Moreover, one can also see notable differences in the way of treating the
problem. The variational approach proves the existence of an orbit that trav-
els near the “homoclinic” solution, which will be by definition a second-
specie solution. On the other hand, the geometrical approach proves that
the homoclinic solution is the generatrix of a set of second-species solutions.

However, they are indeed similar. In fact, all resides in the way they defined
the concept of “a solution”.

• In the variational we work in the configuration space, and a limit (or
homoclinic) solution will be the one that crosses all the singularities of
a finite set denoted by P (see Section 3.2). Thus, one can think of a solu-
tion as multiple elliptic orbits taken by the Asteroid around the circular
orbit made by Jupiter, each of them produced when the Asteroid and
Jupiter collides (see Figure 3.5)

• In the geometrical approach we work in the phase space, and the gener-
atrix of the second-species solution will be just the union of two of these



ellipses of origin and extreme in the collision point (see Figure 5.1),
which in Levi-Civita variables become homoclinic orbits to the origin.

These differences will lead us to solve “different” problems. In the first
case we will look for an ellipse that crosses the singularity only once (see
Section 3.2.4), while in the other approach we will seek for those solutions
that crosses the singularity at least twice (see Section 3.3). Even though they
seem to be different, at the end they are the same problem, as the geometrical
approach considers a solution to be the union of two of these ellipses, as we
said before.

2. Once they have defined their homoclinic solutions as starting point, their
arguments differ in the treatment of the problem.

• The variational approach works in the configuration space and makes
an argument based on the action-integral theory and the Lagrangian
of the system (see Section 4.1). Based on this, it separates the action
in three parts (see Figure 4.4): one corresponding to the action made
by the orbit from the boundary of a ball centered at the singularity
to the singularity itself; another one corresponding to the action from
the singularity to another point of the boundary; and the third one
corresponding to the path between this latter boundary point to the
boundary of the next singularity. With particular conditions over these
points, it can state and prove the existence of a path shadowing the
homoclinic solution with an action being the same as we defined with
an added little perturbation (see Lemma 4.1). Once it has this result, the
only thing that is left to do is to join everything together in a convenient
way to generate the shadowing orbit (see Section 4.2).

• The geometrical approach works in the phase space and builds up a
coordinate framework suitable in order to transform a ball centered
at the collision into an isolated block, with the particularity that its
boundary is divided in two parts: one where the homoclinic solution
enters and the other one where it exits (see Section 5.2), just as the
ones defined in the analytical approach. Once it has defined such a
ball, it only needs to prove that a submanifold generated by the flow
of the system applied to a neighbourhood of a point of the homoclinic
solution will enter this ball from the corresponding boundary and will
exit from the other one via a suitable transition map (see Section 5.3),
and the existence of periodic orbits which correspond to second-species
solutions will be proved.



To make this comparison more clear, let us take a look at the way they build
the second-species periodic solutions in a more restricted scenario.

For the variational approach, suppose that we have a small ball centered at
one collision point such as in Section 4.1. Then, one can impose the con-
ditions necessary to be able to use Lemma 4.1 and prove the existence of a
unique trajectory ε-close to the singular one for some points of the boundary
of such a ball.

However, this idea is pretty similar to the one performed in the geometrical
approach, when considering the isolated block around a singularity. Here
we stated and proved (in Section 5.3) that a submanifold corresponding to
a neighborhood of the homoclinic solution goes through this isolated block
via a well-defined transition map, being one part of the boundary the entry
point and another part of the boundary the exit point.

(a) Shadowing trajectory given by
lemma 4.1 in the variational ap-
proach.

(b) Shadowing trajectory result of
theorem 5.11 in the geometrical ap-
proach.

Figure 3.12: Comparison between both results inside a ball centered at a collision
point.

To sum up, we are going to compare the Levi-Civita regularization of both
approaches. The first one uses this result to have a well-defined action from which
it can state some important results, as it preserves both the Hamiltonian and the
integral action (see Section 4.3). The geometrical one uses it instead to be able to
have a non-singular Hamiltonian in the perturbed case and prove the existence of
periodic orbits in such configuration (see Section 5.3).

Geometrically speaking, the importance of the Levi-Civita map resides on the
fact that it allows us to regularize the singularities of the problem (allowing us
to use important theorems such as the Implicit Function Theorem to state some
important results in a neighborhood of these collision points) in exchange of time



regularization. This means that, while in the regular problem the Asteroid col-
lides with Jupiter at a finite time, in the Levi-Civita case the collision point is a
hyperbolic point, so it takes infinite time for the Asteroid to reach it.

As we said before, this change in the time parametrization does not involve
neither the Hamiltonian nor the integral actions, which is why it is so useful in
the analytic approach (see Section 4.3). On the other hand, it explains why in the
geometrical approach there is a need for building a suitable reference framework
to work under the idea of the singularity being a hyperbolic point, and where both
stable and unstable manifolds are moved in order to become the reference axis to
make the computations easier (see Section 5.2).





Chapter 4

Variational Approach

We will start by reviewing in detail the variational approach given by S.V.
Bolotin and R.S. Mackay [1]. To do that, we will explain all the concepts treated
along the paper, from solving the simplest case scenario of a local ball centered
at one singularity, as well as proving Theorem 3.4 and Theorem 3.9, that ensure
the existence of a general solution that shadows the homoclinic solution. This
solution, if it is periodic, will be the second-species solution we are seeking for.

4.1 A Boundary Value Problem

Suppose we have a small ball Ui centred at pi ∈ P(see Section 3.2) and we
want to connect two points a, b ∈ Ui. Fix an energy level E with Lagrangian Lε in
(3.1) for ε = 0 (that we will denote by L0). For any a ∈ Ui there exists a unique
trajectory γ+

a : [0, τ+(a)] → Ui of energy E connecting a to pi. Similarly, for any
b ∈ Ui, there is a unique trajectory γ−b : [τ−(b), 0] → Ui of energy E connecting pi

to b (see Figure 4.1).
We denote

S+(a) =
∫ τ+(a)

0
(L(γ+

a (t), γ̇+
a (t) + E)dt

S−(b) =
∫ 0

τ−(b)
(L(γ−b (t), γ̇−b (t) + E)dt

(4.1)

their corresponding actions (see Equation 7.21). These actions can be seen as dis-
tances between the points and the singularity respectively (that is, S+(a) behaves
like dist(a, pi) and S−(b) like dist(pi, b), where the distance is defined by the Jacobi
metric (7.15)).
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Ui

γ+
a (τ

+
a ) = γ−b (τ

−
b )

pi

γ+
a (0) = a

γ−b (0) = b

γ+
a (t)

γ−b (t)

Figure 4.1: Ball Ui centered at pi with two unique trajectories of energy E denoted
by γ+

a and γ−b .

Let
u+(a) = γ̇+

a (τ
+(a)), u−(b) = γ̇−b (τ

−(b))

be the tangent vectors to γ+
a , γ−b at the collision point pi = γ+

a (τ
+(a)) = γ−b (τ

−(b)).
Let Σi = ∂Ui. Fix a small δ > 0 and let

Xi = {(a, b) ∈ Σ2
i | ||u+(a)− u−(b)|| ≥ δ} (4.2)

Equivalently, a pair of points (a, b) ∈ Σi belongs to Xi if the solution of the La-
grangian L0 in (3.1), with energy E connecting a and b does not pass too close to
the centre pi (i.e., these are suitable points from which we can proof the general
Theorem 3.9, as they suit up with the definition of chain (see Section 3.2)).

Let
Yi = {(a, b) ∈ Σ2

i | ||u+(a) + u−(b)|| ≥ δ} (4.3)

As well as in Xi, to preserve the definition of chain we need the trajectories to have
the property γ̇+

a (τ
+(a)) 6= −γ̇−b (τ

−(b)).

Lemma 4.1. There exists ε0 > 0 such that:

• For any ε ∈ (0, ε0] and (a, b) ∈ Xi, there exists a unique trajectory γ = γε
a,b :

[0, τ] → Ui of energy E for the system (Lε) (3.1) connecting a to b: γε
a,b(0) =

a, γε
a,b(τ) = b.



• τ = τ(a, b, ε) is a C2 function of Xi × (0, ε0] and τ(a, b, ε) → τ+(a) + τ−(b)
uniformly as ε→ 0.

• γε
a,b|[0,τ+(a) → τ+(a) and γε

a,b(· + τ)|[τ−(b),0] → γ−b uniformly as ε → 0. More
precisely, there exists a constant C > 0 depending only on δ such that

max
0≤t≤τ+(a)

dist(γε
a,b(t), γ+

a (t)) ≤ Cε

max
τ+τ−(b)≤t≤τ

dist(γε
a,b(t), γ−b (t− τ)) ≤ Cε

• The action of the trajectory γ:

S(a, b, ε) =
∫ τ

0
(Lε(γ(t), γ̇(t)) + E) dt

is a C2 function on Xi × (0, ε0] and

S(a, b, ε) = S+(a) + S−(b) + εs(a, b, ε) (4.4)

where s is uniformly C2 bounded on Xi as ε→ 0.

• If, additionally, (a, b) ∈ Yi, then the trajectory γε
a,b does not pass too close to pi:

min
0≤t≤τ

dist(γε
a,b(t), pi) ≥ cε, c > 0 (4.5)

For the approach that we are going to make we will suppose that (a, b) ∈ Yi

for the rest of the paper. The proof of this Lemma is presented in Section 4.3.

4.2 Shadowing Collision Orbits

In this section we prove Theorem 3.9. We will use the same notation as in
Section 3.2 and Section 4.1.

For any k ∈ K a finite set, let αk and βk two consecutive collision points, and
xk ∈ Σαk and yk ∈ Σβk be the intersection points of γk with the boundaries of
the balls defined around such collision points (see Figure 4.1) and denoted by
Σαk and Σβk respectively. Then γk(t) = γ−xk

(t + τ−(xk)) for 0 ≤ t ≤ −τ−(xk),
γk(t) = γ+

yk
(t− τk + τ+(yk)) for τk − τ+(yk) ≤ t ≤ τk. Without loss of generality

we can assume that the points xk and yk are not conjugate along γk for all k. If not,
we change the radius of the balls Ui a little to make the new intersection points
non-conjugate.

Once we have described the collision trajectories inside the balls Uαk and Uβk ,
we want to define a path between them. Let Ak ⊂ Σαk be a small neighborhood



of xk, Bk ⊂ Σβk a small neighborhood of yk, and Wk be a small neighborhood of
γ([0, τk]). We may assume that Ak = Wk ∩ Σαk and Bk = Wk ∩ Σβk .

The non-conjugacy property of the points xk and yk along γk is equivalent as
saying that γk is a nondegenerate curve (see Section 3.2). From what we saw in the
previous chapter, being nondegenerate means that this curve is a nondegenerate
critical point for the action integral (3.5) for a set of curves u. In particular, we can
define a subset of this set of curves u, named σ, living in a small neigborhood of
Wk with σ(0) = u ∈ Ak and σ(1) = v ∈ Bk (or, up to a time parametrization, we
could just say σ(τ) = v). This leads to consider the following functional

F(σ, τ) =
∫ τ

0
(Lε(σ(t), σ̇(t)) + E) dt,

which gives rise to the idea of using the implicit function theorem. As F(γk, τ) = 0
and Dτ F(γk, τ) 6= 0 (for being a nondenegerate curve), we can ensure by this
Theorem that there exists a unique σε

uv = σ : [0, τ] → Wk with τ = τε
uv (the τ

function will describe the time that the curve takes from u to v, and so it is why
it has to depend on such points) such that σ(0) = u, σ(τ) = v, and a solution of
the Lagrangian (Lε) (3.1) with energy E, and close to γk(t− τ−(xk)) for 0 ≤ t ≤ τ

(see Figure 4.2). This result can be seen as a consequence of the third definition
that we state about the nondegenerate collision curves (see Section 3.2).

αk βk

γ−xk
γ+

yk

γ
xk

yk

Wk

Uαk
Uβk

Ak

Bk

v

u

σ

Figure 4.2: Representation of a shadowing orbit σ (in purple), close to the trajec-
tory γ, generated by γ−xk

, γ+
yk

and the path between them (in black).



Let us consider again this latter functional evaluated at the minimizer σ

fε(u, v) =
∫ τ

0
(Lε(σ(t), σ̇(t)) + E) dt

at ε = 0, and the action integrals S+ and S− (4.1) at the collision points αk and βk.

Lemma 4.2. The function gk(u, v) = f0(u, v) + S−αk
(u) + S+

βk
(v) on Ak × Bk has a

nondegenerate critical point at zk = (xk, yk).

Proof. This Lemma follows from the assumption that γk is a nondegenerate critical
point of the action functional (3.5). Indeed, gk(u, v) is the action obtained by gluing
together the trajectories γ−u , σ0

uv and γ+
v (with appropriate shift of time parametri-

sation). Hence gk is just the action connecting pα and pβ, with break points u, v,
and by definition zk = (xk, yk) must be a noncritical point (as γk(τ

−(xk)) = xk and
γk(τk − τ+(yk)) = yk.

Another way of understanding this proof is the following: We know that γk is a
nondegenerate collision orbit for the Lagrangian system (L) (3.2). As a nondegen-
erate orbit, it is a nondegenerate critical point for the functional (3.5). This action
can be divided in three parts: The one corresponding to the ball centered at the
first collision point pαk , whose action is defined by S−αk

(u), the one corresponding
to the path between the two balls, whose action would correspond by definition
to f0(u, v) (as we are considering the non-perturbative case ε = 0), and the one
corresponding to the path in the second ball centered at pβk , whose action is S+

βk

(with an appropriate time parametrization). As zk is the intersection of γk with
Wk, zk is then a nondegenerate critical point of the function gk(u, v).

Let us choose some coordinates u, v in Ak and Bk. Lemma 4.2 implies that if
the neighborhoods Ak, Bk are small enough, there exists C > 0 such that

||(g′′k (s))
−1|| ≤ C for s ∈ Ak × Bk (4.6)

where s = (u, v) and || · || is the max norm in Ak × Bk.
This is due to the fact that zk = (xk, yk) is a nondegenerate critical point of gk

on Ak× Bk, which ensures that g′′k (zk) 6= 0 and it is bounded. Thus, we can expand
these results on a small neighborhood of zk, which corresponds to Ak × Bk.

Let G ⊂ K2 be defined as follows

G = {(k, l) ∈ K2 | βk = αl , γ̇k(τk) 6= ±γ̇l(0)}

so pαk is the first collision point of the trajectory γk, and pβk refers to the second
collision point of the trajectory γk, which corresponds to the first collision point of
the following orbit, denoted by γl (of the chain γki ), i.e., pαl .



Taking the neigborhoods Ak, Bk small enough, it can be assumed that for all
(k, l) ∈ G, Bk × Al ⊂ Yj, where j(k, l) = βk = αl and Yj is defined in (4.3). This can
be translated as saying that the shadowing collision orbit, in the path that connects
the previous collision orbit γk to the following one γl , does not pass too close to
the collision point pαl (see Figure 4.3).

pαk

pαl = pβk

pβl

Uαk
Uαl = Uβk Uβl

γk γl
σ

Figure 4.3: Example of a shadowing orbit (denoted by σ) and the collision orbits
γk and γl .

So, until now the results we got are the following:

• First of all, Lemma 4.1 ensures that in a ball centered at one collision point pi

there exists a unique shadowing collision orbit that does not pass too close
to the collision point. This result will prove the Theorem 3.9, but only for
pieces of orbits which belong to balls centered at the collision points.

• Lemma 4.2 and the results that we saw at the beginning of this chapter en-
sure us that in the space between two of the previous balls there exists a
unique orbit σε

uv that connects the intersection points u and v (these intersec-
tion points will be the ones generated by the intersection of the shadowing
collision orbit with the respective balls) that goes close to the collision orbit
γ, which is the one generating the chain of collisions.

What is left to do is to connect these two results carefully in order to obtain the
shadowing collision orbit that will pass close to the collision chain for every colli-
sion point pi ∈ P . This shadowing orbit, when imposed a periodicity condition,
will be then the second species solution we were seeking for.

To do that, we will state and prove something a little more precise than Theo-
rem 3.9. We will assume that the neighborhoods Wk are small enough.



Theorem 4.3. There exists ε0 > 0 such that for any ε ∈ (0, ε0] and any chain (ki ∈ K)i∈Z
of collision orbits there exists a unique (up to a time shift) trajectory γ : R→ (∪k∈KWk) \
P of energy E for the system (Lε) (3.1) and a sequence

· · · < ai < bi < ai+1 < bi+1 < · · · ,

such that for all i ∈ Z:

• γ([ai, bi]) ⊂Wki , γ(ai) ∈ Aki , γ(bi) ∈ Bki ;

• γ([bi, ai+1]) ⊂ Uj, j = βki = αki+1

The asymptotic behaviour of this trajectory as ε→ 0 is as follows:

• bi − ai → τki − τ−(xki)− τ+(yki) as ε→ 0;

• γ(t) is O(ε)-close to γki([τ
−(xki), τ − τ+(yki)] for ai ≤ t ≤ bi;

• γ(t) = γε
q(bi),q(ai+1)

(t− bi) for all t ∈ [bi, ai+1]

The constant ε0 depends only on the set {γk}k∈K of collision orbits and it is in-
dependent of the sequence (ki ∈ K). Thus γ(t) is O(ε)-close to a chain of collision
orbits. Moreover, one can note that Lemma 4.1 gives us directly that the trajectory
γ([bi, ai+1]) avoids pj by a distance of order ε (4.5).

Proof. Given a sequence (ki)i∈Z with (ki, ki+1) ∈ G for all i ∈ Z, let

Y = ∏
i∈Z

(Aki × Bki)

with supremum norm in the chosen charts on Ak and Bk. Choose ε0 > 0 and let
ε ∈ (0, ε0]. Then trajectories of the system (Lε) (3.1) with energy E near the chain
(γki)i∈Z correspond to critical points of the functional

Fε(u, v) = ∑
i∈Z

( fε(ui, vi) + S(vi, ui+1, ε))

over sequences (u, v) = (ui, vi)i∈Z ∈ Y. This result can be understood as the sum
of the action integral between vi ∈ ∂Bki and pβki

, which is S−(vi), plus the action
integral between ui+1 ∈ ∂Bki = ∂Ak+1 and pβki

= pαki+1
, which is S+(ui+1). The

sum of these two action integrals (plus a remainder term denoted by ε due to
the fact that both action integral S+ and S−, defined in the previous section, are
described under the Lagrangian (L) (3.2), not (Lε) (3.1) ) generates the function
S(vi, ui+1, ε) described in Lemma 4.1.



pαki+1
= pβki

Ui Ui+1

ui−1
S+(ui+1)

S−(vi) vi fε(ui, vi)

ui

S+(ui)

pαki+2
= pβki+1

vi+1S−(vi+1)

Wi

Figure 4.4: Example of the construction of the action integral of the collision tra-
jectory. For the shadowing orbit, we need to add a factor εs (see Lemma 4.1).

Moreover, we have to add the action integral between ui and vi, defined at the
beginning of the chapter by fε(ui, vi). This result, which would be the total ac-
tion between one element of Yi, expanded to all Y is what we called Fε(u, v) (see
Figure 4.4).

Using Lemma 4.2 and Equation (4.4) we can rewrite this total formal action as

Fε(u, v) = ∑
i∈Z

( fε(ui, vi) + S(vi, ui+1, ε)) =
Equation (4.4)

∑
i∈Z

( fε(ui, vi) + S+(ui+1) + S−(vi)

+ εs(vi, ui+1, ε)) = ∑
i∈Z

( f0(ui+1, vi) + S+(ui+1) + S−(vi) + εs(ui+1, vi, ε))

=
Lemma 4.2

∑
i∈Z

(gki(ui, vi) + εs(vi, ui+1, ε))

As they have to be nondegenerate, trajectories of (Lε) (3.1) of energy E correspond
to nondegenerate zeros (see Section 3.2) of the mapping

Φε = ∇Fε : Y → Z

(u, v) 7→ (U, V)

defined by {
Ui =

gki
∂ui

(ui, vi) + ε ∂s
∂ui

(vi−1, ui, ε)

Vi =
∂gki
∂vi

(ui, vi) + ε ∂s
∂vi

(vi, ui+1, ε)
.

Since the function s is uniformly C2 bounded as ε → 0, and the second derivative
matrix of g is uniformly invertible, the chain of collision trajectories is a nondegen-
erate zero of Φ0 and we can use the implicit function theorem, which gives us a
locally unique continuation for a range of ε independent of the sequence (ki). This



means that Φε has a unique zero (which is the shadowing collision orbit) provided
that

ε−1
0 > C max

(k,l)∈G
max
Bk×Ak

||s′′||,

where C is the constant in (4.6) and s′′ is the Hessian of the perturbed action (we
need ε−1

0 to be greater independently of the sequence, that is why we impose it to
be greater than the maximum).

4.3 Regularisation of Collisions

In this section we prove Lemma 4.1. Before that, let us make some considera-
tions.

Instead of working with the domain D (see Section 3.2), we can use the follow-
ing

D = {q ∈ Q |W(q) < E} ⇐⇒ D = {q ∈ Q |W(q)− E < 0},

and taking E = 0, we have, in particular, that W(pi) < 0 for all pi ∈ P . In
addition, it can also be assumed that ω(pi) = 0. If this is not true, let φ be a
smooth function on Q such that ∇φ(pi) = ω(pi). We can subtract 〈∇φ(q), q̇〉 from
L without changing the Lagrange equations.

Lemma 4.4. The Hamiltonian corresponding to the Lagrangian Lε in (3.1) has the form

Hε =
1
2

〈
A−1(q)(p−ω(q)), p−ω(q)

〉
+ W(q) + εV(q) (4.7)

Proof. The Lagrangian Lε(q, q̇) (3.1) takes the form

Lε(q, q̇) =
1
2
〈A(q)q̇, q̇〉+ 〈ω(q), q̇〉 −W(q)− εV(q)

We know that

p =
∂Lε

∂q̇
=

∂

∂q̇

(
1
2
〈A(q)q̇, q̇〉+ 〈ω(q), q̇〉 −W(q)− εV(q)

)
= ω(q) +

1
2
(A(q)q̇ + A(q)q̇) = ω(q) + A(q)q̇

In order to obtain the associated Hamiltonian, we perform the Legendre Transfor-
mation (see Section 7.1.2):

Hε = q̇
∂Lε

∂q̇
− Lε = q̇p− Lε



and so we obtain

Hε(q, p) = q̇ (ω(q) + A(q)q̇)− 1
2
〈A(q)q̇, q̇〉 − 〈ω(q), q̇〉+ W(q) + εV(q)

=
q̇=A−1(q)(p−ω(q))

〈
A−1(q)(p−ω(q)), p

〉
− 1

2

〈
p−ω(q), A−1(q)(p−ω(q))

〉
−
〈

ω(q), A−1(q)(p−ω(q))
〉
+ W(q) + εV(q)

=
1
2

〈
A−1(q)(p−ω(q)), p−ω(q)

〉
+ W(q) + εV(q)

In local conformal coordinates q ∈ R2 = C near pk, we have

Lε(q, q̇) =
1
2

a(q)|q̇|2 + iλ(q)(qq̇− qq̇)−W(q) +
ε f (q)
|q| .

As a generalization of (3.10) with a(0) > 0, W(0) < 0, and f (0) > 0. Without
loss of generality it can be assumed that a(0) = 1, f (0) = 1

4 and W(0) = − 1
8 . If

not, we can just scale the variables, change time and rescale ε. The Hamiltonian
corresponding to this latter Lagrangian is

Hε(q, p) =
1
2
|p− iλ(q)q|2 + W(q)− ε

f (q)
|q|

using directly the result of Lemma 4.4.
Let h : R2 → R2 be the squaring map h(x) = x2, x ∈ C.

Lemma 4.5. There exists a C4 Hamiltonian

H(x, y) =
1
2
(|y|2 − |x|2) + O4(x, y) (4.8)

on R4{x, y} such that for x 6= 0 the canonical transformation g : (x, y) → (q, p), q =

h(x), y = h′(x)T p takes trajectories of the system with HamiltonianH on the energy level
H = ε to the trajectories of the system with Hamiltonian Hε on the energy level Hε = 0.

Proof. We will use the Mathieu transformation [4]. In this case, we are given a
point transformation q = h(x), with ∂h

∂x = 2x invertible (the inverse would be
just 1

2x−1 , which is well-defined as we are supposing that x 6= 0.) This point
transformation can be extended to a symplectic transformation by defining the
function S̃(x, p) = h(x)T p and

q =
∂S̃
∂p

(x, p) = h(x), y =
∂S̃
∂x

=
∂h
∂x

(x) · p = h′(x) · p



which gives us directly the result, as we can define from this function the desired
g that takes trajectories of the regularized system H at energy level H = ε to the
trajectories of the system with Hamiltonian Hε on the energy level Hε = 0, by
means of the Levi-Civita regularization process [4].

The transformation g does not preserve the time parametrisation of the solu-
tion, but it preserves the actions.∫

γ
〈y, dx〉 =

∫
g(γ)
〈p, dq〉

by the definition of Mathieu transformation. So, for trajectories of Hε with energy
0, we have that the action

∫
〈p, dq〉 =

∫
Lε (this is just the definition of the action

of the trajectory g(γ)), so we have the equivalent action
∫
〈y, dx〉 for H.

Consider now a more general Hamiltonian system on R2m with a Hamiltonian
of the form (4.8). The hyperbolic equilibrium 0 has m-dimensional stable and un-
stable manifolds W±loc. Since W±loc are Lagrangian manifolds (see Section 7.1.1) and
project diffeomorphically to Rm, they are defined, by Poincare’s Lemma, by gen-
erating functions s± on a small ball U with center 0 in Rm (as they are Lagrangian
manifolds, their form is closed; and by Poincare’s Lemma they are exact).

W±loc = {(x, y) | y = ∓∇s±(x), x ∈ U} (4.9)

By the definition of W±loc, for any point a ∈ U there exists a unique trajectory
ωa : [0, ∞) → U such that lim

t→∞
ω+

a (t) = 0 and ω+
a (0) = a. Similarly, there exists

a unique trajectory ω−a : (−∞, 0] → U such that lim
t→−∞

ω−a (t) = 0 and ω−a (0) = a.

Using (4.9) one can compute the actions of these trajectories:∫
ω+

a

〈y, dx〉 =
∫ 0

a
−∇s+(x)dx = s+(a)∫

ω−a
〈y, dx〉 =

∫ a

0
∇s−(x)dx = s−(a)

For the trajectories ω±a (t), let z±a (t) ∈W±loc be the corresponding orbits in the phase
space.

Lemma 4.6. Let T > 0 be sufficiently large. Then for any points a, b ∈ U and τ ≥ T:

• There exists a unique trajectory of Hamiltonian (4.8)

z(t) = (x(t), y(t)) = f (a, b, τ, t),

(τ, t) ∈ DT = {(τ, t) | τ ≥ T, 0 ≤ t ≤ τ},

such that x(0) = a and x(τ) = b.



• The map f is C2 on U2 × DT and

f (a, b, τ, t) = z+a (t) + z−b (t− τ) + e−τφ(a, b, τ, t) (4.10)

where φ is uniformly C2 bounded on D2 × DT.

• The action
S(a, b, τ) =

∫ τ

0
〈y, dx〉

of the trajectory z(t) is C2 on U2 × [T, ∞) and

S(a, b, τ) = s+(a) + s−(b) + e−τR(a, b, τ) + τh(a, b, τ) (4.11)

where R is uniformly C2 bounded as τ → ∞ and h(a, b, τ) is the energy of z

This Lemma can be deduced from the strong λ-lemma [7]. However, we will
prove the Lemma for the simplest scenario, i.e., considering R2×R2 and the linear
part of the regularized Hamiltonian, to get an idea on how these results can be
obtained.

Proof. As we have a symmetric behaviour between spaces, it will be enough to
make the computations considering just R2, so x ∈ R and y ∈ R. The regularised
Hamiltonian function would be then

H(x, y) =
1
2
(|y|2 − |x|2) = 1

2
(y2 − x2) (4.12)

with equations of motion ẋ = ∂H
∂y = y

ẏ = − ∂H
∂x = x

So we have the following system

ż =

(
ẋ
ẏ

)
= Az

with A =

(
0 1
1 0

)
. One can clearly see that (0, 0) is an hyperbolic point (it is

the solution of ż = 0) and now we determine its behaviour by computing the
eigenvalues

Pλ = det(A− λI) =

∣∣∣∣∣−λ 1
1 −λ

∣∣∣∣∣ = λ2 − 1 = 0 =⇒ λ1 = 1, λ2 = −1



So (0, 0) is a saddle point.
Then, we compute the stable and unstable manifold, denoted by W+

loc and W−loc
respectively.

W+
loc = Ker(A + I) = Ker

(
1 1
1 1

)
=⇒W+

loc = 〈(1,−1)〉

W−loc = Ker(A− I) = Ker

(
−1 1
1 −1

)
=⇒W−loc = 〈(1, 1)〉

As one can know from the literature, the general solution of this type of linear
ODE systems is

z(t) = c1eλ1tv1 + c2eλ2tv2

So in our case we would obtain

z(t) = c1et

(
1
1

)
+ c2e−t

(
1
−1

)
(4.13)

so {
x(t) = c1et + c2e−t ∈ R
y(t) = c1et − c2e−t ∈ R

Now we impose the initial conditions:{
x(0) = a⇐⇒ c1 + c2 = a

x(τ) = b⇐⇒ c1eτ + c2e−τ = b
(4.14)

By a direct computation, we can deduce the values of the coefficients c1 and c2{
c1 = −b+ae−τ

e−τ−eτ

c2 = b−aeτ

e−τ−eτ

(4.15)

So the solution of the system would be

z(t) =
−b + ae−τ

e−τ − eτ
et

(
1
1

)
+

b− aeτ

e−τ − eτ
e−t

(
1
−1

)
which is unique.

Now we must express this solution as a function f (a, b, t, τ) = z+a (t) + z−b (t−
τ) + e−τφ(a, b, τ, t), with φ bounded.

Let us compute then z+a (t) (z−b (t − τ) would be similar, changing the initial
conditions)



Figure 4.5: Representation of the stable and unstable manifolds for the linear case.
As we can see, z+a and z−a are just the points of these manifolds whose projection
onto the X-axis corresponds to the point a.

z+a is given by the projection of the general solution z(t) into the stable mani-
fold W+

loc (see Figure 4.5), that is

x(0) = a, y(0) = −a

Substituting in (4.13), we obtain the following system of equations{
c1 + c2 = a

c1 − c2 = −a

which leads to the following expression of z+a (t)

z+a (t) = ae−t

(
1
−1

)
that fulfills the required conditions

lim
t→+∞

z+a (t) = 0, x+a (0) = a

By a similar procedure, we obtain z−b (t− τ) = bet−τ

(
1
1

)
What is left to do is to compute the function φ, which would be the remainder.

To do that, we perform the following computations:
We impose the equality

z(t) = f (a, b, t, τ) = z+a (t) + z−b (t− τ) + e−τφ(a, b, τ, t)



So

−b + ae−τ

e−τ − eτ
et

(
1
1

)
+

b− aeτ

e−τ − eτ
e−t

(
1
−1

)
= ae−t

(
1
−1

)
+ bet−τ

(
1
1

)
+ e−τ

(
φ1

φ2

)

Now we compute φ1

φ1(a, b, t, τ) = eτ

[
et
(
−b + ae−τ

e−τ + eτ
− be−τ

)
+ e−t

(
b− aeτ

e−τ + eτ
− a
)]

= et
(

a− beτ

e−τ − eτ
− b
)
+ e−t

(
beτ − ae2τ

e−τ − eτ
− aeτ

)
= et

(
a− be2τ

1− e2τ
− b
)
+ e−t

(
be2τ − aeτ

1− e2τ

)
As t is bounded, we can suppose that et = C, so lim

τ→+∞
φ1 = − b

C < ∞, so φ1 is

bounded.
A similar computation can be done for φ2, obtaining the following result

φ2(a, b, t, τ) = et
(

a− be2τ

1− e2τ
− b
)
− e−t

(
be2τ − aeτ

1− e2τ

)
,

and supposing again that et = C, lim
τ→+∞

φ2 = b
C < ∞, so φ2 is bounded too.

Finally, we must show that the action

S(a, b, τ) =
∫ τ

0
〈y, dx〉

can be written as

S(a, b, τ) = s+(a) + s−(b) + e−τR(a, b, τ) + τh(a, b, τ)

where R is bounded as τ → +∞
To do that, we just compute the action using the general solution (4.13)

S(a, b, τ) =
∫ τ

0
〈y, dx〉 =

∫ τ

0
〈(c1et − c2e−t, c1et − c2e−t)〉dt =

∫ τ

0
(c1et − c2e−t)2dt

=
∫ τ

0
c2

1e2t − 2c1c2 + c2
2e−2tdt =

[
c2

1
2

e2t − 2c1c2t− c2
2

2
e−2t

]τ

0

=
c2

1
2

e2τ − 2c1c2τ − c2
2

2
e−2τ − c2

1 + c2
2

2

Now, in a similar way as we did before with z+(a) and z−(b), we compute s+(a)
and s−(b):



s+(a) =
∫

ω+(a)
〈y, dx〉 =

z+a (t)=(ae−t,−ae−t)

∫ +∞

0
〈−ae−t, ae−t〉dt

=
∫ +∞

0
−a2e−2tdt =

[
a2

2
e−2t

]+∞

0
= − a2

2

s−(b) =
∫

ω−(b)
〈y, dx〉 =

z−b (t)=(et−τb,et−τb)

∫ τ

−∞
〈et−τb, et−τb〉dt

=
∫ τ

−∞
b2e2t−2τdt =

[
1
2

b2e2t−2τ

]τ

−∞
=

b2

2

We have to rearrange the result so we obtain the following equality

c2
1

2
e2τ − 2c1c2τ − c2

2
2

e−2τ − c2
1 + c2

2
2

= − a2

2
+

b2

2
+ e−τR(a, b, τ) + τh(a, b, τ)

To do that, we use (4.14), so{
a = c1 + c2 ⇐⇒ a2 = c2

1 + c2
2 + 2c1c2

b = c1eτ + c2e−τ ⇐⇒ b2 = c2
1e2τ + 2c1c2 + c2

2e−2τ

so
b2 − a2

2
=

1
2
(
c2

1e2τ + c2
2e−2τ − c2

1 − c2
2
)
=

c2
1

2
e2τ +

c2
2

2
e−2τ − c2

1 + c2
2

2
.

Substituting in the previous equality, we obtain that

R(a, b, τ) = −c2
2

h(a, b, τ) = −2c1c2

Finally, we must see that lim
τ→+∞

R(a, b, τ) < ∞

lim
τ→+∞

R(a, b, τ) = lim
τ→+∞

− c2
2 =

Equation(4.15)
lim

τ→+∞
− b2 − 2aeτ + a2e2τ

e−2τ − 2 + e2τ

= lim
τ→+∞

− a2e4τ

1 + e4τ
= −a2 < +∞

Lemma 4.7. The energy h(a, b, τ) of the trajectory z(t) is a C2 function on U2 × [T, ∞)

and has the form
h(a, b, τ) = e−τ(h0(a, b) + h1(a, b, τ)) (4.16)

where
h0(a, b) = 2〈v+(a), v−(b)〉, v±(a) = lim

t→±∞
(e±tω̇±a (t))



and ||h1||C2(U2×[τ,∞)) → 0 as τ → ∞.
Here v±(a) are tangent vectors at 0 to the asymptotic trajectories ω±a , and 〈, 〉 is the

Euclidean scalar product.

We will prove this Lemma for the specific case we have been dealing with until
now (i.e., considering the linear part of the Hamiltonian function H in R2) and
then we will give a more general proof.

Proof. We recall Equation (4.11) so we have

h(a, b, τ) = −2c1c2,

with c1 = −b+ae−τ

e−τ+eτ and c2 = b−aeτ

e−τ+eτ .
First of all, we compute h0(a, b) = 2〈v+(a), v−(b)〉

v+(a) = lim
t→+∞

(etω̇+
a (t)) =

proof of Lemma 4.6
lim

t→+∞
(et( ˙ae−t))

= lim
t→+∞

(−a) = −a

v−(b) = lim
t→−∞

(e−tω̇b(t)) =
proof of Lemma 4.6

lim
t→−∞

(e−t(etb))

= lim
t→−∞

b = b

So h0(a, b) = −2ab. Moreover, we have that

h(a, b, τ) = −2c1c2 = −2
[
(−b + ae−τ)(b− aeτ)

(e−τ − eτ)2

]
= −2

(
−b2 + abeτ + abe−τ − a2

(e−τ + eτ)2

)
Imposing the equality we want to prove, we can deduce the value of h1

−2c1c2 = e−τ(h0 + h1) = e−τ(−2ab + h1)

Then

h1(a, b, τ) = −2eτ

[
−b2 + ab(eτ + e−τ)− a2

(e−τ − eτ)2

]
+ 2ab

= −−2b2eτ + 2ab(e2τ + 1)− 2a2eτ + 2ab(e−τ − eτ)2

(e−τ − eτ)2

= −−2b2eτ + 2abe2τ + 2ab− 2a2eτ + 2abe−2τ − 4ab + 2abe2τ

(e−τ − eτ)2

= − eτ(−2b2 − 2a2) + 4abe2τ + 2abe−2τ + 2ab
(e−τ − eτ)2

= − e3τ(−2b2 − 2a2) + 4abe4τ + 2ab + 2abe2τ

e4τ − e2τ + 1



We compute the limit to see if it is bounded

lim
τ→∞

h1(a, b, τ) = lim
τ→∞
− e3τ(−2b2 − 2a2) + 4abe4τ + 2ab + 2abe2τ

e4τ − e2τ + 1
= −4ab < ∞

So h1 is bounded.

Proof. First of all we are going to define a symplectic change of coordinates that
ensures us that both stable and unstable manifolds are on the axis, so W−loc = {v =

0} and W+
loc = {u = 0} for (u, v) ∈ R2m. This transformation (x, y) 7→ (u, v) is

given by

y =
u + v√

2
+ O3(u, v), x =

u− v√
2

+ O3(u, v)

so we have

H(u, v) =
1
2

∣∣∣∣∣u + v√
2

+ O3(u, v)

∣∣∣∣∣
2

−
∣∣∣∣∣u− v√

2
+ O3(u, v)

∣∣∣∣∣
2
+ O7(u, v)

=
1
2

(
1
2
(u2 + 2u · v + v2 + O(u, v))− 1

2
(u2 − 2u · v + v2 + O(u, v))

)
= 〈u, v〉(1 + O(u, v))

so the equations of motion would be{
u̇ = ∂H

∂v = u + O2(u)

v̇ = − ∂H
∂u = −v + O2(v)

leading to stable and unstable manifolds W+
loc and W−loc in a neighborhood of the

equilibrium point 0 with equations W+
loc = {v = 0} and W−loc = {u = 0} respec-

tively.
The Hamiltonian system on the unstable manifold W−loc defined by u̇ = u +

O2(u) can be transformed [8] to a linear equation ξ̇ = ξ by a C2 change of variables
ξ = f (u). Hence the phase flow on W−loc takes the form

g−t(u, 0) = ( f−1(e−t f (u)), 0) = e−t( f (u) + G(u, t), 0) (4.17)

where ||G||C2 → 0 uniformly on W−loc as t→ ∞.
The first equality comes from the following computation

ξ̇ = ξ =⇒ ξ(t) = etξ0 =⇒
f (u)=ξ

g−t(u, 0) = ( f−1(e−t f (u)), 0)

The second equality comes from the Taylor expansion of f−1 at 0, and the fact that
u̇ = u + O2(u).



A similar representation holds for the flow on the stable manifold.

gt(0, v) = e−t(0, g(v) + E(v, t)), (4.18)

where ||E||C2 → 0 uniformly on W+
loc as t→ ∞. Note that

 lim
t→∞

etg−t(u, 0) = lim
t→∞

et(e−t( f (u) + G(u, t), 0)) = ( f (u), 0)

lim
t→∞

etgt(0, v) = lim
t→∞

et(e−t(0, g(v) + E(v, t)) = (0, g(v))
(4.19)

One can write now the trajectory z(t) in terms of the phase flows gt and g−t [9].
Considering t = τ

2 we have

z
(τ

2

)
= (g− τ

2
(u, 0), g τ

2
(0, v)) = (e−

τ
2 f (u), e−

τ
2 g(v)) + e−

τ
2 F(u, v, τ)

Since H is a first integral, replacing this latter expression into the Hamiltonian in
coordinates (u, v) will give us the result we desired

h(a, b, τ) = H
(

z
(τ

2

))
= e−τ(〈 f (u), g(v)〉+ h1(u, v, τ)),

where ||h1||C2 → 0 as τ → ∞. Now passing to the variables x, y and using (4.19),
we obtain Lemma 4.7.

Finally, we will state the last proposition that will allow us, along with the two
lemmas we just have proved, to give the proof of Lemma 4.1 we were seeking for.

Take small ν > 0 and let B = {(a, b) ∈ U2 | h0(a, b) ≥ ν}. Then for (a, b) ∈ B
the function h0(a, b) is bounded away from zero. If it is non zero, then h(a, b, τ) has
to be monotone in τ for sufficiently large τ. For small ε > 0, solving the equation
h(a, b, τ) = ε for τ yields a C2 function τ = τε(a, b). To see how we can obtain this
τ function we define F(a, b, t) = h(a, b, t)− ε and we have

• F(a, b, τ) = 0 by hypothesis.

• Dτ F = ∂
∂τ h(a, b, τ) 6= 0 because h is monotone in τ.

By the Implicit Function Theorem, there exists τ = τε(a, b), C2 function in B,
such that F(a, b, τε(a, b)) = 0

This result gives rise to the following proposition

Proposition 4.8. There exists ε0 > 0 such that for all ε ∈ (0, ε0]:



• For any (a, b) ∈ B, there exists a unique trajectory zε
a,b = (xε

a,b, yε
a,b) : [0, τ] →

U ×Rm of energy ε connecting the points a and b.

• The time τ = τε(a, b) is a C2 function on B and

τε(a, b) = − log ε + µ(a, b, ε)

where the function µ is uniformly bounded on B as ε→ 0

• We have
zε

a,b(t) = z+a (t) + z−b (t) + εζ(a, b, ε) (4.20)

where the function ζ is uniformly C1 bounded as ε→ 0.

• The action fε(a, b) = S(a, b, τε(a, b)) of the trajectory zε
a,b is a C2 function on B and

fε(a, b) = s+(a) + s−(b) + εr(a, b, ε)− ε log ε (4.21)

where r is uniformly C2 bounded on B as ε→ 0

Note that from (4.16) and (4.20) we have

min
0≤t≤τ

|xε
a,b|2 = 2ε(|v+(a)||v−(b)| − 〈v+(a), v−(b)〉) + o(ε) (4.22)

Hence xε
a,b(t) avoids 0 by a distance of

√
ε provided that v+(a) 6= v−(b).

Proof.

• We can use directly the previous lemmas and the fact that h(a, b, τ) = ε to
prove the existence and uniqueness of the trajectory connecting two points
of B with energy ε.

• From Lemma 4.7 we know that

ε = h(a, b, τ) = e−τ(h0 + h1) ≈
both bounded on B

e−τγ(a, b, ε)

We take logarithms and we obtain

log ε = −τ + log γ =⇒ τ = − log ε + µ(a, b, ε)

with µ(a, b, ε) bounded from the previous results.

• The expression of the new trajectory zε
a,b(t) comes from (4.10), replacing τ

for − log ε + µ.



• The expression of the new action fε(a, b) comes from (4.11) replacing τ for
− log ε + µ.

• We will check this minimum result for the linear case (4.12), where we have
the explicit form of the trajectory.

We recall the function that describes the trajectory z(t) in (4.10)

x(t) =
(ae−τ − b)et + (b− aeτ)e−t

e−τ − eτ

So
x2(t) =

1
(e−τ − eτ)2 [e

2t(ae−τ − b)2

+ e−2t(b− aeτ)2 + 2(ae−τ − b)(b− aeτ)]

(4.23)

Then, we perform the derivative with respect to time t.

ẋ2(t) =
1

(e−τ − eτ)2

[
2e2t(ae−τ − b)2 − 2e−2t(b− aeτ)2] = 0

⇐⇒ e2t(ae−τ − b)2 − e−2t(b− aeτ)2 = 0

Which implies

e4t =
(b− aeτ)2

(ae−τ − b)2 =⇒ e2t = ± b− aeτ

ae−τ − b
, e−2t = ± ae−τ − b

b− aeτ

Substituting in the original expression (4.23)

x2(t) =
1

(e−τ − eτ)2

[
4(b− aeτ)(ae−τ − b)

]
Using now that τε ≈ −log ε, we have that

min
0≤t≤τ

|xε
a,b(t)|2 = 4ab

ε− 2 + 1
ε

ε2 − 2 + 1
ε2

− 4(a− b)2

ε2 − 2 + 1
ε2

which can be rearranged to obtain

min
0≤t≤τ

|xε
a,b(t)|2 = 4abε + o(ε)

but we observe that

4abε = 2ε(2ab) = 2ε(|v+(a)||v−(b)| − 〈v+(a), v−(b)〉

due to the fact that v+(a) = −a and v−(b) = b



Now we are ready to prove the Lemma 4.1.

Proof. We saw in the previous chapter that collision solutions γ+
h(a) : [0, τ+(h(a))]→

Ui with pi for the system (L) (3.2) (3.2) correspond (up to time parametrization;
as we saw in Lemma 4.5, the canonical transformation g does not preserve the
time) to asymptotic orbits ω+

a : [0,+∞) → U = h−1(Ui) to the equilibrium 0 for
the system with Hamiltonian H on the level set H = 0 (see Section 3.2).

In the conformal coordinates with centre pi, the map h takes the regular-
ized trajectory ω+

a : [0,+∞) → U to the initial trajectory γ+
h(a) : [0, τ+(h(a))] →

Ui (with changed time parametrization), i.e. γ+
h(a)(t) = h(ω+

a (t+(t))), where
t+ : [0,+∞] → [0, τ+(h(a))] (note that in the regularized trajectory ω+

a , corre-
sponding to the stable manifold W+

loc, it takes +∞ time to reach the equilibrium
point 0, i.e, ω+

a (+∞) = 0). Similarly, γ−h(a)(t) = h(ω−a (t−(t)), where t−(t) : [−∞, 0]→
[τ−(h(a)), 0].

U Ui

h

ω+
a ω−a

γ+
h(a)(t) γ−h(a)(t)

O pi

Figure 4.6: The map h takes the regularized trajectory ωa to the initial trajectory
γh(a)

Using the definition of the squaring map h, we obtain that for any a ∈ U

h(v±(a)) = ∓λu±(h(a))

This result makes sense because if h takes the regularized trajectory ω±a to the
initial collision trajectory γ±h(a), it will send as well the tangent vectors at 0 of these
ω±a to the tangent vectors at pi of the collision trajectories γ±h(a). The fact of being
a squaring map is what gives us this linear relation of constant λ between these
two vectors. In fact, a direct computation shows that λ = |v±(a)|2

2 .



Moreover, as we saw at the beginning of this section, this map does not change
the action, so S±(h(a)) = s±(a).

For being a squaring map at C, we have also that h(y) = λh(x), λ ≥ 0 is
equivalent to y ⊥ x. Hence u+(h(a)) 6= u−(h(b)) if, and only if, v+(a) and v−(b)
are not orthogonal (this is a condition that we need to impose as we have defined
in Section 4.1).

Take two points ã, b̃ ∈ Σi such that |u+(ã) − u−(b̃| ≥ δ (i.e, ã, b̃ ∈ X as in
Lemma 4.1), and

h0(a, b) = 2〈v+(a), v−(b)〉 ≥ (1− µ)

provided (1− µ) ≥ 0 sufficiently small, so we are under the conditions of Proposi-
tion 4.8. By this proposition, we can connect a to b by a trajectory zε

a,b = (xε
a,b, yε

a,b)

of energy ε for the system with Hamiltonian (4.8). Under the map h and an ap-
propriate time reparametrization, h(xε

a,b) gives a trajectory of energy 0 for the
system (Lε) (3.1) connecting ã = h(a) to b̃ = h(b) (using Lemma 4.5). Since the
action is invariant under the transformation h, (4.21) implies (4.4) with r(a, b, ε) =

s(h(a), h(b), ε). Finally, condition (4.5) comes directly from (4.22) and the fact that
|h(x)| = |x|2, and the Lemma 4.1 is proved for the 2D case.





Chapter 5

Geometrical Approach

Once we have reviewed in detail the theory and the results given by S.V. Bolotin
and R.S. Mackay [1], it is time to move onto the work made by Jean-Pierre Marco
and Laurent Niederman [2]. We will start by giving some complementary defini-
tions and notations apart from those ones defined in Section 3.3, as well as intro-
ducing some new concepts such as “generatrix solutions”, which will allow us to
state the theorems needed to ensure the existence of the second species solutions
we are looking for.

5.1 Homoclinic solutions and Second Species solutions

5.1.1 Formulation of the problem

We fix an energy h that ensures the existence of an elliptic singular domain
(see Section 3.3), i.e., h ∈ (0, 3 + 2

√
2). We make the following considerations

• For µ > 0, we will denote by Pµ to the system (Hµ, XHµ) (Hµ defined in
(3.26)).

• For µ = 0, P0 will be the singular system obtained by the restriction of
(H, XH0) (H0 defined in (3.28)) to the complementary in H of the circle C0

(3.35).

• For µ ≥ 0, we will denote byQµ the regularized system (Lµ, XLµ) (Lµ defined
in (3.39)).
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Homoclinic limit solutions

We consider the Hamiltonian R0 (3.23):

R0(ξ, η) = |η|2 − 2
|ξ| + 3− 2σ

with a fixed energy h ∈ (0, 3 + 2
√

2), and two angular momentums σu and σs

in the interval (σ−(h), σ+(h)) correspondent to the elliptic singular domain De

defined for this energy value (see Section 3.3). We denote by ϕu and ϕs two
solutions of the problem P0 of respective momentums σu and σs. Moreover, we will
suppose that their domains are consecutive, i.e., of the form Dom(ϕs) = (−tc, tc)

and Dom(ϕu) = (tc, tc + l). Under the configuration space, their trajectories are
2 arcs of ellipses, but in rotating coordinates, they are solution with origin and
extreme in the point P2, as we can see in the following picture [2] (in fact, these
are solutions of the problem P0 with ξ = 1 and η∗ =

√
h− 1 + 2σ∗ eiθ∗ for some

θ∗).

Figure 5.1: Example of two double singular trajectories [2].

Of course, all these solutions can be considered in the coordinate system M =

ξ − (1− µ), N = η − i(1− µ), of Hamiltonian (3.29):

H0(M, N) = |N|2 + i(MN −MN)−
(

2
|1 + M|

)
− 2 + (M + M)

Let us study now the regularized problem (see Section 3.3.3). To do that, we
will recall some results concerning the Levi-Civita map ρ (3.37).



• It duplicates solutions. In fact, this map takes solutions of the regularized
domain C∗ × C to the regular domain in such a way that ρ(z) 7→ z2 (we do
not need to consider ρ(ω)).

This means that, if we consider for example the homoclinic solution ϕs, this
will correspond to two regularized solutions of the form zs = ±

√
ϕs.

• It sends the collision point P2 = (M = 0, N∗) 7→ (0, 0) (see Section 3.3.3).

Family of second species solutions

We denote by ϕ the function defined under Dom(ϕs) ∪ Dom(ϕu) such that
ϕ|Dom(ϕs) = ϕs and ϕ|Dom(ϕu) = ϕu. Under this notation, one can define ϕs and ϕu

as the generatrix solutions defined in Section 3.1.
A direct translation of this concept can be made for the correspondent regu-

larized problem Qµ. The two families (ψ±µ ) of solutions associated to the covering
converge each one for µ → 0 to the union of two different homoclinic solutions
related with the fixed point O. As we have noticed before, one solution ϕµ corre-
sponds to two solutions of the regularized problem, in this case denoted by ψ±µ .
As ϕµ converges to ϕ when µ → 0, ψ± will converge to two solutions ψ± when
µ → 0. These solutions will be different homoclinic solutions related to the fixed
point O.

For the rest of the chapter we will determine the analytic conditions needed to
ensure that the limit solutions ϕs and ϕu become generatrices. In particular, we
will prove the following theorem.

Theorem 5.1. Let σ1 < σ2 be two angular momentums in the interval (σ−, σ+). For every
η > 0, there exists two generatrix solutions ϕs and ϕu of the problem P0, of respective
angular momentums m1 and m2 such that |m1 − σ1| < η and |m2 − σ2| < η

5.1.2 Existence and density of homoclinic solutions

We will start by proving the existence, in the case µ = 0 and for an energy
h ∈ (0, 3 + 2

√
2), of an infinite number of homoclinic symmetric orbits in the

system Q0.

Double collision ellipses in P2

We will work here under fixed coordinates Q = (Q1, Q2) satisfying (3.20) for
µ = 0, without fixing the energy to begin with. The problem will be to find
a Kepler elliptic solution describe by P3 surrounding P1 (of mass 1), such that



it collides at least two times with P2, which will be describing a circular orbit of
radius 1 with a normalized angular momentum. These solutions will be of interest
because two different collisions in the fixed coordinate system are translated into
one auto-intersection with the fixed point P2 in the rotating coordinate system
(ξ, η), obtaining something similar to the Figure 5.1.

It will be enough to know the semi-major axis a and the eccentricity e of the
solution. The first thing is to take a look at the period of the solution. When there
is a rational relation between the periods of P3 and P2 (in fact, the period of P2

would be 2π), the particles P2 and P3 have an infinite amount of collisions at the
same point. In the rotating frame (see Section 3.3), this behaviour corresponds
to periodic solutions of system (3.23). However, they are not interesting for our
purposes. That is why we will suppose that T

2π is not rational.
So, let us denote by C− and C+ the points where the consecutive collisions

take place. The origin of times will be the middle value of the interval between
collisions, so they happen at times −tc and +tc respectively. The points C− and
C+ are the intersection points between the ellipse and the circular trajectory, and
they are symmetric in relation to the semi-major axis of the ellipse. Our reference
system will be then (P1, Q1, Q2), where P1 = (0, 0): (P1, Q1) is the major axis of the
orbit of P3 to his apocentre and (P1, Q2) is orthogonal to (P1, X1) (see Figure 5.2).

P3

P1

Q2

Q1

Figure 5.2: Representation of the reference system (P1, Q1, Q2).

Since the particle P2 has a constant angular momentum, at t = 0 it is place at
the axis (P1, Q1), and by symmetry the particle P3 it is also placed at (P1, Q1) in



the apocentre or pericentre (due to the third Kepler’s Law).
If E denotes the eccentric anomaly of P3 in the fixed reference frame (P1, X1, X2),

its trajectory is described by the following equations{
Q1 = a(e− cos E)

Q2 = −a
√

1− e2 sin E
(5.1)

which are the classical equations that describe the coordinates of a point from
the focus (in this case the focus is our reference P1), and the travel time is given by
the Kepler Equation

t = a
3
2 (E− e sin E) (5.2)

Supposing that at t = t0 the point P3 is at C−, for an eccentric anomalie value
E0 = E, we would obtain

cos(t0) = a(e− cos E0)

sin(t0) = −a
√

1− e2 sin E0

t0 = a
3
2 (E0 − e sin E0)

(5.3)

It is clear that we can write the positions Q1 and Q2 as the cos(t0) and sin(t0)

respectively due to the fact that at C−, the point P3 can be seen as a point in the
circular trajectory of P2. Moreover, by symmetry we would obtain the equations
for C+ just considering t = −t0 instead.

These equations lead to the following results:

cos(E0) =
a− 1

ae
, cos(t0) =

1− a(1− e2)

e
(5.4)

and if we note by cos−1 the determinations of the angle in [0, π], the third
equation leads to

2π(ka
3
2 −m) + a

3
2

cos−1
(

a− 1
ae

)
−

√
e2 −

(
a− 1

a

)2


− cos−1
(

1− a(1− e2)

e

)
= 0

where k and m are any two integer numbers. We will prove it.

Proof. {
cos(t0) = a(e− cos(E0))

sin(t0) = −a
√

1− e2 sin(E0)



So

1 = cos2(t0) + sin2(t0) = a2(e− cos E0)
2 + a2(1− e2) sin2 E0

=
sin2 E0=1−cos2 E0

a2(1− e2)− a2(1− e2) cos2 E0 + a2(e2 − 2e cos E0 + cos2 E0)

= a2 − a2e2 − a2 cos2 E0 + a2e2 cos E0 + a2e2 − 2a2e cos E0 + a2 cos2 E0

= a2 + a2e2 cos2 E0 − 2a2e cos E0

Then we obtain

cos E0 =
2
e ±

√
4
e2 − 4(a2−1)

a2e2

2
=

2
e ±

√
4a2−4a2+4

a2e2

2
=

2
e ±

2
ae

2
=

1
e
− 1

ae
=

a− 1
ae

Substituting this expression in the first equation of the system we can deduce
cos(t0)

cos(t0) = a(e− cos E0) = ae− a
a− 1

ae
=

ae2 − a + 1
e

=
1− a(1− e2)

e

Finally, we are going to obtain the last expression as follows

cos t0 =
1− a(1− e2)

e
=⇒ t0 = cos−1

(
1− a(1− e2)

e

)
+ 2mπ, m ∈ Z

cos E0 =
a− 1

ae
=⇒ E0 = cos−1

(
a− 1

ae

)
+ 2kπ, k ∈ Z

Then we use Kepler’s Equation

t0 = a
3
2 (E0 − e sin(E0))⇐⇒

⇐⇒ a
3
2

cos−1
(

a− 1
ae

)
+ 2kπ −

√
e2 −

(
a− 1

a

)2
− cos−1

(
1− a(1− e2)

e

)
− 2mπ = 0

⇐⇒ 2π(ka
3
2 −m) + a

3
2

cos−1
(

a− 1
ae

)
−

√
e2 −

(
a− 1

a

)2
− cos−1

(
1− a(1− e2)

e

)
= 0



First density result

Lemma 5.2. For an energy h ∈ (0, 3 + 2
√

2), the torus of the problem P0 containing the
arcs corresponding to symmetric orbits of double collision generate a submanifold dense on
De

Proof. We know that the period of the point P3 in an ellipse is T = 2πa
3
2 (2.18). As

we said before, we are supposing that the relation T
2π is not rational, which leads

to say that a
3
2 is not rational. Then, the manifold generated by (ka

3
2 − m)k,m∈Z is

dense in R. We will introduce the following function

G(a, e) = a
3
2

cos−1
(

a− 1
ae

)
−

√
e2 −

(
a− 1

a

)2
− cos−1

(
1− a(1− e2)

e

)
So we will have to prove that the torus of parameters (a, e) has a double collision
orbit if and only if G(a, e) = 2π(ka

3
2 −m) is true for any k, m ∈ Z.

We fix first an energy h. The following equation relates the energy h with the
given parameters (a, e)

h = −1
a
+ 2
√

a(1− e2)

which is the same relation as in (2.33). The problem becomes now to find pa-
rameters (a′, e′) in a neighborhood of (a, e), with the same energy h, such that
G(a′, e′) = 2π(ka′

3
2 −m)

With a fixed δ > 0. We can find k, m ∈ Z such that |G(a, e)− 2π(ka
3
2 −m)| < δ

(this is a general result from Dirichlet’s theorem). We can suppose that |k| is
arbitrary big, and define the following map:

ψ : (a′, e′) 7→ (h(a′, e′), G(a′, e′)− 2πka′
3
2 )

This map is clearly a local diffeomorphism from a neighborhood O of (a, e) to
a neighborhood U of ψ(a, e), and the values δ and k can be chosen such that
(h, 2πm) ∈ U . By the inverse function theorem, the inverse map ψ−1 is well-
defined, and ψ−1(h, 2πm) = (a′, e′) ends the proof (because we have found a
neighborhood of (a, e) such that h(a′, e′) = h and G(a′, e′)− 2πka′

3
2 = 2πm).

Corollary 5.3. For an energy h ∈ (0, 3 + 2
√

2), the fixed point of the problem Q0 has an
infinite number of symmetric homoclinic orbits.

Proof. Every double collision solutions from P0 is translated by the Levi-Civita
map in 2 homoclinic solutions for the problem Q0. Then they must be infinite, all
contained in the submanifold L0.



5.2 Construction of second species solutions

Once we have proved the existence of infinite number of homoclinic orbits for
the problem P0 (and in Q0), we are ready to build up the second species solutions
for the problem Pµ from the limit solutions ϕs and ϕu.

5.2.1 Definitions and notations

• From now on, p will be the canonical projection of T∗(C) to C (i.e, it will
give us the position). We will preserve the notations and hypothesis from
the previous section, in particular we will fix h ∈ (0, 3 + 2

√
2).

• For µ ≥ 0, we will denote by Φµ the flux of the system Pµ and ψµ the
correspondent one in the regularized system Qµ (see Section 5.1.1). For
u ∈ T∗(C) given, and for a subset ∆ of R, we denote by Φµ(∆, u) the set of
Φµ(t, u) for t ∈ ∆ where this expression is well-defined.

• Recall that the Hamiltonian of the problem Qµ is written as (see 3.39)

Lµ(z, w) = |w|2 − |z|2 − 2µ + i
|z|2

h
3
2
(zw− zw)− (1− µ)

h3 f (z, z, h) (5.5)

with

f (z, z, h) = −|z|6 + 3
4
|z|2(z2 + z2)2 + O8(z)

• We will denote by S the symmetry in C×C defined by S(M, N) = (M,−N).
For every µ, the Hamiltonian Hµ (in 3.26) is invariant by S. Since S∗(Ω) =

−Ω, for every solution ϕ of Pµ, the map ϕ̃ defined by ϕ̃(t) = S(ϕ(−t)) is
also a solution of Pµ. Let us prove it.



Proof. 1. Hµ is invariant by S

Hµ(S(M, N)) =Hµ(M,−N) = | − N|2 + i
(

M(−N)−M(−N)
)
− 2µ

|M|

− (1− µ)

(
2

|1 + M|
− 2 + (M + M)

)

= |N|2 + i(M(−N)−M(−N))− 2µ

|M|

− (1− µ)

(
2

|1 + M| − 2 + (M + M)

)

= |N|2 + i(MN −MN)− 2µ

|M|

− (1− µ)

(
2

|1 + M| − 2 + (M + M)

)
= Hµ(M, N)

2. S∗(Ω) = −Ω
We recall the definition of the symplectic form Ω (3.27)

Ω = dM ∧ dN + dM ∧ dN

So
S∗(Ω) = dM ∧ (−dN) + dM ∧ (−dN)

= −dM ∧ dN − dM ∧ dN = −Ω

• A solution ϕ of Pµ will be symmetric if its orbit is invariant by S (i.e,
S(ϕ(t)) = ϕ(t) ∀t ∈ ∆).

• For µ ≥ 0, we will define

Iµ = {(M, N) ∈ Hµ, Im(M) = Re(N) = 0}
= {(M1, 0, 0, N2), Hµ(M1, 0, 0, N2) = h}.

(5.6)

Iµ will be a submanifold of dimension 1 of Hµ = H−1
µ (h) (initially of dimen-

sion 4, but we impose the 2 conditions of Iµ plus the one given by fixing
the energy h), and invariant by S (due to this latter result, we can think of
Iµ as a symmetric axis in the configuration space, which will allow us to
understand better the operations perform along the paper).

• One solution ϕ of Pµ will be of orthogonal crossing when its orbit ϕ(t) inter-
sects with Iµ in such a way that the trajectory p(ϕ(t)) is orthogonal to the
correspondent axis p ◦ Iµ = OM1 at the point p ◦ (ϕ(t))|M1 .



5.2.2 Construction of second species solutions

All the construction is based on the following lemma:

Lemma 5.4. Let φ be a solution of Pµ, for which there exists two instants t1 and t2 in
Dom(φ) such that φ(t1) ∈ Iµ and φ(t2) ∈ Iµ, with t1 6= t2. Then φ is periodic, of period
T = 2(t2 − t1), and symmetric, because S(φ(T − t)) = φ(t), ∀t ∈ R.

Proof.

• Suppose that φ(0), φ(T) ∈ Iµ. We are going to prove that φ(0) = φ(2T).

First of all, since φ is a solution of Pµ, then ψ(t) = S(φ(−t)) is a solution of
Pµ too.

Moreover, ψ(0) = S(φ(0)) = φ(0), so for all t, we can ensure that ψ(t) =

φ(t), which implies that φ(t) = S(φ(−t)).

Finally, we use the fact that φ(T) ∈ Iµ, which implies that φ(T) = S(φ(T)).
Combining this expression with the one we just proved, we obtain

φ(−T) = S(φ(−(−T))) = S(φ(T))

φ(T) = S(φ(T))

so φ(T) = φ(−T) =⇒ ∀s, φ(T + s) = φ(−T + s), which leads to

φ(0) = φ(2T)

proving that φ is 2T-periodic.

• If φ(t1), φ(t2) ∈ S, and we denote ϕ(t) = φ(t + t1). So ϕ(0) = φ(t1) and
ϕ(t2 − t1) = φ(t2) ∈ S.

From the previous result, we can ensure that ϕ(t) is 2T-periodic, with T =

t2 − t1 =⇒ φ(t) = ϕ(t− t1) is 2T-periodic.

Now we can describe the method to build up the second species solutions. To
begin with, we were given two arcs of elliptic solutions ϕs and ϕu of energy h
from the problem P0, that verifies Dom(ϕs) = (−tc, tc), and Dom(ϕu) = (tc, tc + l),
with the trivial extension of the solutions, i.e., p ◦ ϕs(±tc) = p ◦ ϕu(tc + l) = P2

(see Section 5.1).



One can immediately notice that ϕs and ϕu are symmetric, as they fulfill the
conditions of Lemma 5.4, since ϕs(0) ∈ I0 and ϕu(τ) ∈ I0, where τ = tc +

l
2 (see

Figure 5.3). We will denote by As = ϕs(0), Au = ϕu(τ), ns = p ◦ As, nu = p ◦ Au

the orthogonal intersection points of the trajectories ϕs and ϕu with the axis OM1.
Now consider µ > 0 small. We denote by As(µ) and Au(µ) the points in Iµ

such that p ◦ As(µ) = ns and p ◦ Au(µ) = nu, and their limits when µ → 0 are As

and Au respectively (this means that when we introduce a new mass µ, the coor-
dinates of the position of As(µ) and Au(µ) does not change, only the momentum
Ns and Nu, in such a way that when µ→ 0, Ns → As|N and Nu → Au|N). From the
manifold (of dimension 1) Iµ we can define then two neighborhoods Is(µ), Iu(µ)

of the points As(µ) and Au(µ) in Iµ which are diffeomorphic to intervals.

I0

Au = ϕu(τ) As = ϕs(0) ϕs(−tc) = ϕs(tc) = ϕu(tc) = ϕu(tc + l)

Figure 5.3: Periodic solutions ϕs and ϕu with symmetry at the axis I0.

For ε > 0 given (detailed later), we will define the following 2-dimensional sub-
manifolds of Hµ.

Vs(µ) = Φµ([0, tc + ε), Is(µ)), Vu(µ) = Φµ((−τ − ε, 0], Iu(µ))

which are nothing more than the translation of the arcs Is(µ) and Iu(µ) done by
the flux Φµ. So, in order to prove that ϕs and ϕu are generatrices, it will be enough
to prove that Vs(µ) ∩ Vu(µ) 6= ∅ ∀µ > 0, as it would mean that we can find an
orbit for every µ which will be periodic (by the construction we just made we will
be able to ensure that the conditions of Lemma 5.4 will be accomplished by this
orbit) and when µ→ 0, it will become the union of ϕs and ϕu (see Section 5.1).



Our goal will be then to find the initial solutions ϕs and ϕu for which we can
build the manifolds Vs(µ) and Vu(µ) in such a way they intersect in Hµ for any
µ 6= 0.

5.2.3 Local analysis at the neighborhood of the origin

We will suppose given two elliptic solutions ϕs and ϕu for the problem P0 and
all the notation described above. The first step is to diagonalize the linear part of
the regularized Hamiltonian Lµ (3.37), in a suitable base, as it is easier to work
with only the diagonal part for the computations.

Choice of the coordinate system

As before, the elliptic solutions are extended by continuity to the limits of their
domains (p ◦ ϕs(±tc) = p ◦ ϕu(tc) = p ◦ ϕu(tc + l) = P2). We will denote from
now on ϕs(tc) = (0, Ns) and ϕu(tc) = (0, Nu) in the rotating coordinate system
centered at P2 (see Section 3.3). Then, we can write the following:

ϕs(t) = (Ns(t− tc) + O2(t− tc), Ns + O1(t− tc))

ϕu(t) = (Nu(t− tc) + O2(t− tc), Nu + O1(t− tc))
(5.7)

Proof. We are going to see that φs(t) can be written as

ϕs(t) = (Ns(t− tc) + O2(t− tc), Ns + O1(t− tc))

around t = tc. The same computation can be done to prove the expression for
φu(t).

By Taylor’s expansion around tc we have:

ϕs(t) = ϕs(tc) + ϕ̇s(tc)(t− tc) + O2(t− tc)

By definition we know that φs(tc) = (0, Ns). Moreover, we know that φs is the
solution of H0 in rotating coordinates around P2 (3.28), so

ϕ̇s(tc) = (Ns,−iNs)

Then
ϕs(t) = (0, Ns) + (Ns,−iNs)(t− tc) + O2(t− tc)

= (Ns(t− tc) + O2(t− tc), Ns + O1(t− tc))



The points (0, Ns) and (0, Nu) are in H0 (since by definition they correspond to
points of ϕs and ϕu, which are solutions of the problem P0), so |Ns|2 = |Nu|2 = h
(this is a direct substitution of H0(0, N) in (3.28)). We will denote by rs and ru the
determinations of the square roots of Ns and Nu (So

√
N2

s =
√

hrs and
√

N2
u =√

hru). Now we will go through the regularization process by applying the Levi-
Civita map (3.37), but before that we need to recall that every solution in Pµ is
translated into two solutions of the problem Qµ, but we can deduce one from the
other by the symmetry z 7→ −z.

We will denote then by γs = (zs, ωs) and γu = (zu, ωu) the functions such that

ρ ◦ γs = ϕs ρ ◦ γu = ϕu

By Taylor’s expansion in a neighborhood of tc, we can express these functions as
follows

zs(t) = vs
√

tc − t + O 3
2
(tc − t)

ωs(t) = −vs
√

tc − t + O 3
2
(tc − t)

(5.8)

zu(t) = vu
√

t− tc + O 3
2
(t− tc)

ωu(t) = vu
√

t− tc + O 3
2
(t− tc)

(5.9)

where
vs = i

√
hrs and vu =

√
hru (5.10)

Before defining the appropriate base, let us state and prove the following result

Lemma 5.5. If (e1, e2, f1, f2) are complex numbers verifying

(e1| f1) = (e2| f2) 6= 0 (e1| f2) = (e2| f1) 6= 0 (5.11)

where (z1|z2) = Re(z1z2), and such that the couple (e1, f1) is a R-base of C, the vectors

S1 = (e1,−e1), S2 = (e2,−e2)

U1 = ( f1, f1), U2 = ( f2, f2)
(5.12)

generate a R-base of C2, symplectic with factor 2(e1| f1).

Proof. We are going to see that (S1, S2, U1, U2) is a C2 symplectic base with factor
2(e1| f1).

First of all, we introduce the following notation

e1 = a + bi = (a, b)



e2 = c + di = (c, d)

f1 = e + f i = (e, f )

f2 = g + hi = (g, h)

now we write the base matrix M =
(

S1 S2 U1 U2

)

M =


a c e g
b d f h
−a −c e g
−b −d f h


We have to prove that MT JM = αJ, α = 2(e1| f1) (see Section 7.1.1)

JM =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




a c e g
b d f h
−a −c e g
−b −d f h

 =


−a −c e g
−b −d f h
−a −c −e −g
−b −d − f −h



MT JM =


a b −a −b
c d −c −d
e f e f
g h g h



−a −c e g
−b −d f h
−a −c −e −g
−b −d − f −h

 =


0 0 A B
0 0 C D
−A −C 0 0
−B −D 0 0


where A = 2ae + 2b f , B = 2ag + 2bh, C = 2ce + 2d f and D = 2cg + 2dh.

Moreover we know

(e1| f1) = ae + b f

(e2| f2) = cg + dh

(e1| f2) = ag + bh

(e2| f1) = ce + d f

and by hypothesis we suppose that (e1| f1) = (e2| f2) 6= 0 and (e1| f2) = (e2| f1) = 0.
Substituting we obtain

MT JM =


0 0 2(e1| f1) 0
0 0 0 2(e2| f2)

−2(e1| f1) 0 0 0
0 −2(e2| f2) 0 0

 = 2(e1| f1)J = αJ



So, if (s̃, ũ) = (s̃1, s̃2, ũ1, ũ2) are the coordinates of C2 defined in this base, we can
write the Hamiltonian Lµ in this base. The result, denote by lµ, is the following
expression

lµ(s̃, ũ) = 2(s̃1ũ1 + s̃2ũ2) +
µ

α
+

(
∑

1≤i,j≤2
s̃iũj

)
O2(s̃, ũ) + O6(s̃, ũ) (5.13)

(with s̃ = s̃1e1 + s̃2e2 and ũ = ũ1 f1 + ũ2 f2). From now on, we will choose

e1 = vs, f1 = vu, e2 = ivu, f2 = ivs (5.14)

and we will suppose that condition (5.11) is verified, so vs and vu must be chosen
such that they are not orthogonal (i.e. Ns and Nu must be non collinear).

Figure 5.4: Example of admissible velocities [2].

Once we have defined this new base, we can introduce a new change of co-
ordinates (s, u) = (s̃ + O5(s̃, ũ), ũ + O5(s̃, ũ)) in a neighborhood of the origin [10].
The Hamiltonian Lµ in this new coordinates is written by

lµ(s, u) = 2(s1u1 + s2u2) +
µ

α
(5.15)

with s = s1e1 + s2e2 and u = u1 f1 + u2 f2.
This Hamiltonian lµ(s, u) corresponds to the linear part of the Hamiltonian

defined in (5.13), in a neighborhood of the origin. The local stable subspace Es and
the local unstable subspace Eu of the Hamiltonian (5.15) are defined as follows

Es
loc(0) = {(s, u), s = 0}

Eu
loc(0) = {(s, u), u = 0}

By the Stable Manifold Theorem, we can ensure that there exists stable and unsta-
ble submanifolds, denoted by Ws

loc(0) and Wu
loc(0) respectively, described as:

Ws
loc(0) = {(s, u), s = 0}



Wu
loc(0) = {(s, u), u = 0}

Moreover, we can ensure by Hartman-Grobman Theorem that there exists a con-
tinuous conjugation that linearized the vectorial field, in such a way that we can
consider the solutions ϕs and ϕu to be taken by the axis Os1 and Ou1 respectively.

s

u

Ws
loc(0)

Wu
loc(0)

Figure 5.5: Representation of the stable and unstable manifold in coordinates (s, u)
in a neighborhood of the origin.

In this way we have been able to define a base for which we obtain a linear regu-
larized Hamiltonian lµ in a neighborhood of the origin.

Isolated Blocks

We will use the notation in [11]. We define the norm ||(s, u)|| = Sup(|s|, |u|),
and we denote as Bε = B(εh

3
4 ) the ball centered at 0 of radius εh

3
4 in C2. Its

boundary is the intersection of the manifolds Cs(ε) and Cu(ε) defined by

Cs(ε) = {|s| = εh
3
4 ; |u| ≤ εh

3
4 } Cu(ε) = {|s| ≤ εh

3
4 ; |u| = εh

3
4 }

One can verify easily that for ε small enough, B(εh
3
4 ) is an isolated block (it comes

directly from the definition. For more details, see [11]) for the linearized field XL̃µ

defined from the Hamiltonian Lµ. Then it is an isolated block from the general
field XLµ too. The entering manifold would be Cs(ε) (it is the manifold that con-
tains the points of ∂Bε such that there exists a δ > 0 so ψµ((−δ, 0), Cs(ε))∩Bε 6= ∅),
and the exit manifold would be Cu(ε) (it is the manifold that contains the points
of ∂Bε such that there exists a δ > 0 so ψµ((0, δ), Cu(ε)) ∩ Bε 6= ∅). It is easier for
later on to understand Cs(ε) and Cu(ε) as Poincaré section.



P2

εh
3
4

Cs(ε)

Cu(ε)

γ

Figure 5.6: Isolated blocks for the ball Bε, with the collision trajectory γ.

Choice of coordinates in Cs(ε) and Cu(ε)

We define the coordinates (xs, ys, θs) of a point (s, u) in Cs(ε) by the equalities

u = xss + ys(is), s = εh
3
4 eiθs (5.16)

In the same way, we define the coordinates (xu, yu, θu) of a point (s, u) in Cu(ε) by
the following

s = xuu + yu(iu), u = εh
3
4 eiθu (5.17)

The explicit expressions of the coordinates (x, y) are given by:

xs =
1

ε2h
3
2
(s1u1 + s2u2)

ys =
1

ε2h
3
2
(s1u2 − s2u1)

xu =
1

ε2h
3
2
(s1u1 + s2u2)

yu =
1

ε2h
3
2
(s2u1 + s1u2)

(5.18)

Proof. We recall the definition of u and s{
u = xss + ys(is)

s = εh
3
4 eiθs



So we have

u = u1 + iu2 = xs(s1 + is2) + ys(is1 − s2)

Then

u1 = s1xs − yss2 =⇒ xs =
u1 + yss2

s1

On the other hand

u2 = s2xs + yss1

Substituting xs from the first expression we got

u2 = s2
u1 + yss2

s1
+ yss1 =⇒ u2s1 = s2u1 + yss2

2 + yss2
1

=⇒ u2s1 − u1s2 = ys|s|2 =⇒ ys =
1
|s|2 (u2s1 − u1s2)

=
|s|2=ε2h

3
2

1

ε2h
3
2
(u2s1 − u1s2)

Finally, substituting this latter expression in xs we have

xs =
u1 +

u2s1−s2u1
|s|2 s2

s1
=

u1(s2
1 + s2

2) + (u2s1 − s2u1)s2

s1|s|2

=
u1s1 + u2s2

|s|2 =
1

ε2h
3
2
(u1s1 + u2s2)

The computation is similar for xu, yu.

Transition map from Cs(ε) to Cu(ε)

In order to define this transition map, which will be crucial in the next section,
we just focus on the linearized part at the neighborhood of the fixed point (s, u) =
(0, 0), which will be associated only on the quadratic part of the Hamiltonian lµ

(5.15) and then independent of µ. It has as expression:

ds
dt

= −
dlµ

du
= −s,

du
dt

=
dlµ

ds
= u

It has by flux the expression φ(t, (s0, u0)) = (e−ts0, etu0). Then, we can define the
transition map fε associated to this system as follows

fε(s, u) =

(
|u|
εh

3
4

s,
εh

3
4

|u| u
)

(5.19)



The coordinates (xu, yu, θu) of fε(s, u) ∈ Cu are written in terms of the coordinates
(xs, ys, θs) of (s, u) ∈ Cs as

xu = xs, yu = −ys, eiθu =
u
|u| (5.20)

and the latest equality is expressed as
cos(θu) =

xs cos θs−ys sin θs√
x2

s+y2
s

sin(θu) =
xs sin θs+ys cos θs√

x2
s+y2

s

(5.21)

Proof.

• fε(s, u) ∈ Cu(ε) ∣∣∣∣∣ |u|εh
3
4

s

∣∣∣∣∣ = |u|εh
3
4
|s| =

(s,u)∈Cs(ε)
|u| ≤ εh

3
4

∣∣∣∣∣ εh
3
4

|u| u
∣∣∣∣∣ = εh

3
4

• We are going to prove the last equality for θu. We know that in Cu(ε), u =

εh
3
4 eiθu =⇒ eiθu = u

εh
3
4
= u
|u|

eiθu =
u
|u| =

in Cs(ε)

xss + ys(is)
|s|
√

x2
s + y2

s
=

|s|=εh
3
4

xseiθs + ys(ieiθs)√
x2

s + y2
s

=
xs cos θs + ixs sin θs + iys cos θs − ys sin θs√

x2
s + y2

s

So

eiθu = cos(θu) + i sin(θu) =⇒


cos(θu) =

xs cos θs−ys sin θs√
x2

s+y2
s

sin(θu) =
xs sin θs+ys cos θs√

x2
s+y2

s

Once we have defined this transition map (at least in the linearized case), we can
use the C1 approximation Theorem (see [10] for more information), to ensure that
the transition map fε approaches to the exact transition map fεµ in topology C1 by
order of ε2.



5.3 Conditions of existence of generatrix solutions

Now that we have set up all the concepts, we are prepared to give, and explain,
all the conditions needed to ensure the existence of second species solutions. We
will preserve all the notation introduced until now, in particular we want to recall
that Domϕs = (−tc, tc) and Domϕu = (tc, tc + l).

We will denote by as and au the semi-major axis of these two elliptic solutions
ϕs and ϕu respectively. It is easy to see that, for µ ≥ 0, the semi-major axis can
be chosen as a parameter in Iµ in a neighborhood of ϕs(0) and ϕu(0). We will
denote iµ

s : Us → Iµ and iµ
u → Iµ to these analytic parametrizations, where Us and

Uu are the neighborhoods of as and au in R, in such a way that i0
s (as) = ϕs(0), and

i0
u(au) = ϕu(0).

Apart from that, we will denote by Φ̃µ the regularization (by the Levi-Civita
map ρ) of Φµ in Lµ, compatible with γs defined in Section 5.2.3, whose difference
with ψµ in Qµ is just the time parameter (i.e., Φ̃µ is just the result of applying the
map ρ to Φµ, while ψµ includes also the time change to completely regularize it.

To determine the conditions to ensure the existence of generatrix solutions we
will enunciate, and prove, the following lemmas.

Lemma 5.6. For ε and µ small enough, there exists a real δs > 0 such that the relation
Φ̃µ(t, iµ

s (a)) ∈ Cs(ε) defines an implicit function τ
µε
s (a), defined in the interval Iδs =

(as − δs, as + δs), whose image is a neighborhood of tc. The map qµε
s defined by qµε

s (a) =
Φ̃µ(τ

µε
s (a), iµ

s (a) is an analytic diffeomorphism of Iδs under its image in Cs(ε). We have
the same result for the section Cu(ε), where we can define in a similar way δu, Iδu and qµε

u .

The implicit function τ
µε
s is the one that determines the time that the flux

needs to go from the corresponding point in Iµ (which would be iµ
s (a)) to the

Poincaré section Cs(ε) (in fact, one can use the Implicit Function Theorem because
the derivative is non-zero, by the property of transversality given by the definition
of Poincaré section).

As we saw in Section 5.2.2), the manifold that describes the flux of this sub-
manifold Iµ was Vs(µ) (in the non regularized case). So, we can say that this
intersection point of the flux ϕ̃s with Cs(ε) is equivalent to the intersection of the
regularized manifold of Vs(µ) by the Levi-Civita map (that we will denote by
Ws(µ)) with the boundary of the isolated block ∂Bε(0). From now on, the param-
eter ε is fixed by context, and the functions defined in Lemma 5.6 will be simply
τ

µ
s , qµ

s , qµ
u.

The first step is the computation of the expansions, at first order, of the func-
tions q0

s and q0
u. In order to do that, we will be focusing on the non-regularized



system (as it is easier to compute). For t < tc, we denote by hs(t, a) = Φ0(t, i0
s (a)),

with a ∈ Iδs , and for t > tc and a ∈ Iδu , we denote by hu(t, a) = Φ0(t, i0
u(a)).

Lemma 5.7. The Taylor’s expansion at first order at the point (tc, as) of the function hs is
written as

M(t, a) = Ns(t− tc) + ∆Ms(a− as) + O2((a− as), (tc − t))

N(t, a) = Ns + ∆Ns(a− as) + O2((a− as), (tc − t))
(5.22)

with

∆Ms =
1
as

+ (Ns + i)
(

1− as
√

σs

2a2
s es

sin tc −
3tc

2as

)
+

asσ
2
s − σs

2a3
s es

(
as − i

2es sin tc

1− e2
s

)
e−itc

∆Ns = −
Ns + i

2as
−
(

1− asσs

2a2
s es

sin tc −
3tc

2as

)
+ i(ases − cos tc)

asσs − 1
2a3

s es
(5.23)

where σs =
√

as(1− e2
s ). The analog relations for hu are obtained directly replacing the

indices s by u.

Proof. We will start working in the fixed coordinate system. In these coordinates,
the point h(t, a) is given, as a function depending on the eccentric anomaly, by

X(t, a) = a(e + cos E) + ia(1− e2)
1
2 sin E

Y(t, a) = − sin E√
a(1 + e cos E)

+ i
(1− e2)

1
2 cos E√

a(1 + e cos E)

with the relation
t = a

3
2 (E + e sin E)

The expression for the position X is a similar expression as the one we have when
computing the ellipses with double collision (see Section 5.1.2). In fact, the differ-
ence between the two of them resides in the fact that in this case the center is P2,
not P1. From this expression, one can obtain Y(t, a) as follows:

Y(t, a) =
dX
dt

=
∗

1

a
3
2 (1 + e cos E)

dX
dE

=
1

a
3
2 (1 + e cos E)

[
−a sin E + ia(1− e2)

1
2 cos E

]
= − sin E√

a(1 + e cos E)
+ i

(1− e2)
1
2 cos E√

a(1 + e cos E)

* t =
Kepler Equation

a
3
2 (E + e sin E) =⇒ dt = a

3
2 (1 + e cos E)dE =⇒ d

dt = 1

a
3
2 (1+e cos E)

d
dE

The variables are related by the equalities X(tc, as) = eitc , Y(tc, as) = (Ns + i)eitc . It



is just a matter of substituting the point P2 = (0, 0) at the rotating coordinates to
the fixed ones and the velocity at the collision in rotating coordinates, which we
know is equal to Ns, to the fixed coordinates too (see Section 3.3). Then, we can
deduce directly the computation of the computation of the first derivatives, taking
into account the relations

de
da

(tc, as) =
a2

s (1− e2
s )− (as(1− e2

s ))
1
2

2a3
s es

∂E
∂a

(tc, as) =
1− (as(1− e2

s ))
1
2 as

2a
5
2
s es

sin tc −
3tc

2a
3
2
s

Relations given by the fact that we are fixing an energy h for the system [4]. Finally,
one can obtain the results given in the Lemma by performing the change from the
coordinates (X, Y) to the rotating ones (M, N) given by M = Xe−it − 1, N =

Ye−it − i.

Lemma 5.8. The approximations of the functions q0
s and q0

u in a neighborhood of as and
au are given, relatively to the coordinates (xs, ys, θs) and (xu, yu, θu) in Cs(ε) and Cu(ε),
by

q0
s (as) = (0, 0, 0) q0

u(au) = (0, 0, 0)

and
dxs

da
(as) = O(1)

dys

da
(as) = −

Im(∆MsNs)

2h
5
2 ε2

+ O(1)

dθs

da
(as) =

1
ε

ds2

da
(as) + O(ε)

dxu

da
(au) = O(1)

dyu

da
(au) = −

Im(∆MuNu)

2h
5
2 ε2

+ O(1)

dθu

da
(au) =

1
ε

du2

da
(au) + O(ε)

Proof.

1. We denote by τs(ε) = τ0
s (as) and τu(ε) = τ0

u(au) the functions defined in
Lemma 5.6 (this would be referring to the time that the elliptic solutions
take to go from the point ϕs(0) and ϕu(0) to the corresponding point in



Cs(ε) and Cu(ε), denoted by qs(as) and qu(au)). So qs(as) = ϕs(τs(ε)) and
qu = ϕu(τu(ε)).

The choice of coordinates (s, u) in section 5.1 in this two points leads to

qs(as) = (εh
3
4 , 0, 0, 0), qu(au) = (0, 0, εh

3
4 , 0)

deduced from the fact that qs(as) ∈ ϕs, which belongs to the axis Os1 (see
Section 5.1) and qs(as) ∈ Cs(ε). A similar reasoning works for qu(au).

As we said before, one can think of Cs(ε) and Cu(ε) as Poincaré sections. In
this way, it is clear that the field must go through ∂Bε transversally (it is a
consequence of being a Poincaré section), so the functions τs(ε) and τu(ε)

must be analytic. The developments (5.10) and the choice of the base (5.12)
and (5.14) implies that

ϕs(t) = (
√

tc − t + O 3
2
(tc − t), 0, 0, 0)

ϕu(t) = (0, 0,
√

t− tc + O 3
2
(t− tc), 0)

in coordinates (s, u). Since by definition ||ϕs(τs)|| = ||ϕu(τu)|| = εh
3
4 we

have that

√
tc − τs + O 3

2
(tc − τs) = εh

3
4 =⇒ tc − τs ≈ ε2 + O4(ε)

√
τu − tc + O 3

2
(τu − tc) = εh

3
4 =⇒ τu − tc ≈ ε2 + O4(ε)

2. In order to know the approximations of the functions qs and qu, we have
to use the functions hs and hu defined in Lemma 5.7, and go through all
the changes of variables needed to obtain the expressions in coordinates
(xs, ys, θs) and (xu, yu, θu) (see Section 5.2.3). To begin with, we will evaluate
the derivatives of the function hs under the parameter a

dhs

da
(τs, as) =

∂hs

∂a
(τs, as) +

∂hs

∂t
(τs, as)

∂τs

∂a
(as)

It is enough to know the estimations of the partial derivatives of hs in Levi-



Civita coordinates, i.e.

∂z
∂a

(t, as) = −
1

2
√

tc − t
vs + O 1

2
(tc − t)

∂ω

∂t
(t, as) =

1
2
√

tc − t
vs + O 1

2
(tc − t)

∂z
∂a

(t, as) = −
∆MsNs

2h
√

tc − t
vs + O 1

2
(tc − t)

∂ω

∂a
(t, as) =

∆MsNs

2h
√

tc − t
vs + O 1

2
(tc − t)

where vs is defined in (5.10). The two first equations are a result of perform-
ing the derivative with respect to t of equation (5.8). On the other hand,
the last two equations come from a different computation that involves the
result of Lemma 5.7.

hs(t, a) =
Lemma 5.7

(Ns(t− tc) + ∆Ms(a− as) + O2((a− as), (t− tc)),

Ns + ∆Ns(a− as) + O2((a− as), (t− tc)))

We know that hs(t, a) = ρ(z, ω) =
(

z2

h ,
√

hω
z

)
, so

• z2
s

h = Ns(t− tc) + ∆Ms(a− as) + O2((a− as), (t− tc))

z2
s = hNs(t− tc) + h∆Ms(a− as) + hO2((a− as), (t− tc))

Now we perform the derivatives with respect to a and evaluate at (t, as)

2zs
∂zs

∂a
(t, as) = h∆Ms + hO2(t− tc) =⇒

∂zs

∂a
=

h∆Ms + hO2(t− tc)

2zs

=
h∆Ms + O2(t− tc)

2(vs
√

tc − t + O 3
2
(t− tc))

=
∗
− ∆MsNs

2h
√

tc − t
vs + O 1

2
(t− tc)

* Computation of h∆Ms
2vs
√

tc−t

h∆Ms

2vs
√

tc − t
=

|Ns|2=h

∆MsNsNs

2i
√

hrs
√

tc − t
=

rs=
√

Ns

∆MsNs

(
−1

2
i

√
h

h
√

Ns
1√

tc − t

)

= − ∆MsNs

2h
√

tc − t
i
√

hrs = −
∆MsNs

2h
√

tc − t
vs

•
√

hωs
zs

= Ns + ∆Ns(a− as) + O2((t− tc), (a− as))



We perform the computations

ωs =
Nszs√

h
+

∆Nszs(a− as)√
h

+ O2((t− tc), (a− as))

= zs + O(a− as)
2 + O2((t− tc), (a− as))

Now we perform the derivatives with respect to a and evaluate at (t, as)

∂ωs

∂a
(t, as) =

∂z
∂a

(t, as) + O2(t− tc) =⇒
∂ωs

∂a
(t, as) =

∂z
∂a

(t, as)

= −
(
− ∆MsNs

2h
√

tc − t
vs

)
+ O 1

2
(t− tc)

=
∆MsNs

2h
√

tc − t
vs + O 1

2
(tc − t)

Rearranging these two latter expressions, one can obtain

∂z
∂a

(t, as) = −
1

2h
√

tc − t
[Re(∆MsNs)vs + Im(∆MsNs)(ivs)] + O 1

2
(tc − t)

∂ω

∂a
(t, as) =

−1
2h
√

tc − t
[Re(∆MsNs)(−vs) + Im(∆MsNs(ivs)] + O 1

2
(tc − t)

and so we obtain, in coordinates S1, S2, U1, U2 (recall that S1 = (vs,−vs) and
U2 = (ivs, ivs)) the following

(
∂z
∂t
(t, as),

∂ω

∂t
(t, as)

)
= − 1

2h
√

tc − t
S1 + O 1

2
(tc − t)

(
∂z
∂a

(t, as),
∂ω

∂a
(t, as)

)
= −Re(∆MsNs)

2h
√

tc − t
S1 −

Im(∆MsNs)

2h
√

tc − t
U2 + O 1

2
(tc − t)

Taking into account the linearized change of variables (5.12) and (5.14) and
the result we obtained above that ensures that tc − τs(ε) = O2(ε), we have

∂s1

∂t
(τs, as) = −

1
2hε

+ O(ε)

∂s2

∂t
(τs, as) = O(ε)

∂u1

∂t
(τs, as) = O(ε)

∂u2

∂t
(τs, as) = O(ε)



and

∂s1

∂a
(τs, as) = −

Re(∆MsNs)

2hε
+ O(ε)

∂s2

∂a
(τs, as) = O(ε)

∂u1

∂a
(τs, as) = O(ε)

∂u2

∂a
(τs, as) = −

Im(∆MsNs)

2hε
+ O(ε)

What is left to do is to compute the derivative dτs
da (as), which is given by

dτs

da
(as) = −

∂|s|2
∂a

(τs, as)

(
∂|s|2

∂t
(τs, as)

)−1

= −Re(∆MsNs) + O2(ε)

Let us see why. By definition of |s|2 and τs, we know that |s|2(τs, as) = εh
3
4 =

C. So we can apply the Implicit Function Theorem and obtain the following

∂|s|2(τs, as)

∂a
= 0 =⇒ ∂|s|2

∂a
(τs, as) +

∂|s|2
∂t

(τs, as) ·
dτs

da
(as) = 0

=⇒
∂|s|2

∂t (τs,as) 6=0

dτs

da
(as) = −

∂|s|2
∂a

(τs, as)

(
∂|s|2

∂t
(τs, as)

)−1

Now we substitute

−∂|s|2
∂a

(τs, as) = −
∂(s2

1 + s2
2)

∂a
(τs, as) =

(
−2s1

∂s1

∂a
− 2s2

∂s2

∂a

)
(τs, as)

= 2s1

(
Re(∆MsNs)

2hε
+ O(ε)

)
+ 2s2O(ε)

On the other hand

∂|s|2
∂t

(τs, as) =

(
2s1

∂s1

∂t
+ 2s2

∂s2

∂t

)
(τs, as) = −2s1

(
1

2hε
+ O(ε)

)
+ 2s2O(ε)

So
dτs

da
(as) = −Re(∆MsNs) + O2(ε)



Applying the same change of variables as above, we deduce

ds1

da
(as) = O(ε)

ds2

da
(as) = O(ε)

du1

da
(as) = O(ε)

du2

da
(as) = −

Im(∆MsNs)

2hε
+ O(ε)

(5.24)

Finally, using (5.18) we obtain the final result in the indicated form. We can
make the same reasoning and computations for hu.

The statement of the Theorem of existence of generatrix solutions need a sup-
plementary definition concerning the manifolds Vs(ε) and Vu(ε) defined in Section
5.2.2.

Definition 5.9. We denote by P̃2s (resp. P̃2u) to the lift given by the Levi-Civita map
ρ of the point P2 in the manifold Vs(0) (resp. Vu(0)). We will say that Vs(0) (resp.
Vu(0)) is p-regular in P2 when the restriction of p to Vs(0) is a local diffeomorphism at
the neighborhood of P̃2s (reps. P̃2u).

From this definition, one can apply Lemma 5.7 and Lemma 5.8 to prove the
following result:

Lemma 5.10. Vs(0) (resp. Vu(0)) is p-regular in P2 if and only if Im(∆MsNs) 6= 0
(resp. Im(∆MuNu 6= 0)).

Proof. In order to have a local diffeomorphism in a neighborhood of P̃2s, we need
to use the Inverse Function Theorem on p in Vs(0) (recall that Vs(0) = Φ0((0, tc +

ε), Is(0)), which can be seen as hs((0, tc + ε), i0
s (Iδs)). So, it is equivalent to look at

the local diffeomorphism over Vs(0) as it is to look at it over h((0, tc + ε, i0
s (Iδs)).

Then, we can use the results given in both Lemma 5.7 and Lemma 5.8 to ensure
that the derivatives dxs

da and dys
da are not zero if and only if Im(∆MsNs) 6= 0. The

same argument works for P̃2u.

Now we are ready to state, and proof, the Theorem of existence of generatrix
solutions:



Theorem 5.11. We suppose that the manifolds Vs(0) and Vu(0) are p-regular in P2, and
the velocities Ns and Nu are non-collinear. Then, there exists a real number µ1 > 0 such
that, for every µ < µ1, the manifolds Vs(µ) and Vu(µ) have a transversal intersection in
the manifold Hµ. The solutions ϕs and ϕu are then generatrices.

Proof.
It will be enough to prove it under the regularized system Lµ, and demonstrate
the intersection property for the regularized manifolds defined at the beginning
of this section, and denoted by Ws(µ) and Wu(µ). The proof will be performed in
6 stages.

1. Domains of definition of the arcs qµ
s and qµ

u.

We will begin by precising the length of the intervals Iδs and Iδu introduced
in Lemma 5.6, in order to be able to give uniform estimations later on.

We denote by C0 the maximum of the norm of the differential of the Kepler
field in non-regularized rotating coordinates (problem P0) in a big enough
neighborhood of the image of ϕs. Then we can state the following inequality:

||Φ0(τ
0
s (as), i0

s (a))−Φ0(τ
0
s (as), i0

s (as))|| ≤ eC0τ0
s (as)||i0

s (a)− i0
s (as)||

Proof. We denote f (t) = Φ0(t, i0
s (a)) − Φ0(t, i0

s (as)), so our goal will be to
bound f (τ0

s (as)). In order to do that, we begin with the following result:

f (τ0
s (as)) = f (0) +

∫ τ0
s (as)

0
f ′(s) ds

denoting by X the Kepler field associated with the flux Φ0, we can rewrite
this equality as

Φ0(τ
0
s (as), i0

s (a))−Φ0(τ
0
s (as), i0

s (as))

= (i0
s (a)− i0

s (as)) +
∫ τ0

s (as)

0

[
X(Φ0(s, i0

s (a)))− X(Φ0(s, i0
s (as)))

]
ds

taking norms we can write the following inequality:

||Φ0(τ
0
s (as), i0

s (a))−Φ0(τ
0
s (as), i0

s (as))||

≤ ||(i0
s (a)− i0

s (as))||+
∣∣∣∣∣∣ ∫ τ0

s (as)

0

[
X(Φ0(s, i0

s (a)))− X(Φ0(s, i0
s (as)))

]
ds
∣∣∣∣∣∣

≤ ||i0
s (a)− i0

s (as)||+
∫ τ0

s (as)

0
||X(Φ0(s, i0

s (a)))− X(Φ0(s, i0
s (as)))|| ds

and now we can apply the IVT (Intermediate Value Theorem) and we obtain:

||X(Φ0(s, i0
s (a)))−X(Φ0(s, i0

s (as)))|| ≤ max||DX|| ||Φ0(s, i0
s (a))−Φ0(s, i0

s (as))||



so we can rewrite the previous expression as follows:

||Φ0(τ
0
s (as), i0

s (a))−Φ0(τ
0
s (as), i0

s (as))|| ≤ ||i0
s (a)− i0

s (as)||+

+
∫ τ0

s (as)

0

[
max||DX|| ||Φ0(s, i0

s (a))−Φ0(s, i0
s (as))||

]
ds

Now we can use Gronwall’s Lemma and we get the result:

||Φ0(τ
0
s (as), i0

s (a))−Φ0(τ
0
s (as), i0

s (as))||

≤ ||i0
s (a)− i0

s (as)|| e
∫ τ0

s (as)
0 max||DX|| ds

≤ ||i0
s (a)− i0

s (as)|| eC0τ0
s (as)

The function i0
s is analytic in a neighborhood of as and, considering the

proper analytic extension of this function under a complex domain contain-
ing as, we can ensure, by Cauchy, the following result

∣∣∣∣∣∣di0
s

da

∣∣∣∣∣∣
Us
≤ C1||i0

s ||Us

where || · ||Us is the L∞ norm in a neighborhood of Us (introduced at the
beginning of this section) and where C1 is a constant > 0. Then we obtain:

||Φ0(τ
0
s (as), i0

s (a))−Φ0(τ
0
s (as), i0

s (as))|| ≤
f irst ineq.

eC0τ0
s (as)||i0

s (a)− i0
s (as)||

≤
IVT

eC0τ0
s (as)

∣∣∣∣∣∣di0
s

da

∣∣∣∣∣∣
Us
|a− as| ≤

i0
s analytic

C1||i0
s ||Us |a− as|eC0τ0

s (as)

As we are supposing that a ∈ Iδs (see Lemma 5.6), then |a− as| ≤ δs. Fixing
a value δs = ε

7
3 (it will make the following computations easier) we will have

directly the following result

||Φ0(τ
0
s (as), i0

s (a))−Φ0(τ
0
s (as), i0

s (as))|| = O(ε
7
3 )

We can consider now the image ρ(Cε) of the surface of the section by the
Levi-Civita transformation, and using the results of Lemma 5.7, we obtain
the following equality:

(M, N)(Φ0(τ
0
s (as), i0

s (a))) =
Lemma 5.7

(M((τ0
s (as), i0

s (a)), N(τ0
s (as), i0

s (a)))

=
tc−τ0

s (as)=−O2(ε)
(−ε2Ns, Ns) + O(ε

7
3 ) ∀a ∈ Iδs



So one can observe that P2 /∈ Φ0(τ0
s (as), i0

s (Iδs)) (for ε small enough). It
is easy to prove then that the map q0

s is well-defined in Iδs , with |τ0
s (a) −

τ0
s (as)| = O(ε

7
3 ) (this difference, by IVT, has the same order as |a − as| =

O(ε
7
3 )). Finally, we can obtain the expression of q0

s (a) in coordinates (s, u),
by applying the results obtained along the proof of Lemma 5.8.

(s, u)(q0
s (a)) = (ε, 0) + O(ε

4
3 )

The distance of the domain Iδu can be chosen in the same way, with δu = ε
7
3 .

2. Limit development of the arc q0
s .

Once we have obtained the coordinates on (s, u) of q0
s (a) for an arbitrary

semi-mayor axis in a neighborhood of as, the second step is to compute the
proper estimations of the tangent vectors to the manifold Vs(µ), for a value of
µ small enough. Once we have that, we will be able to deduce an estimation
for the derivatives of all the arc q0

s (Iδs).

By analyticity of the field P0, we can obtain directly the time derivatives:

∂(M, N)

∂t
(Φ0(τ

0
s (a), i0

s (a))) = (Ns, 0) + O(ε
7
3 )

That comes from performing the derivatives of M, N with respect to t in
Lemma 5.7.

Then, using the same procedure as before, one can compute the derivatives
with respect to t of the transformed coordinates in Levi-Civita.

∂(s, u)
∂t

(q0
s (a)) =

∂(s, u)
∂t

(q0
s (as)) + O(ε

4
3 ) ∀a ∈ Iδs

However, the derivatives with respect to the semi-major axis a need a more
detailed study. For this reason, we introduce the following function

Z0(t) = [Φ0(t + τ0
s (a)− τ0

s (as), i0
s (a + h))−Φ0(t + τ0

s (a)− τ0
s (as), i0

s (a))]−
− [Φ0(t, i0

s (as + h))−Φ0(t, i0
s (as))]

where h is a real number near to 0 and a ∈ Iδs . With the previous notation
and the analyticity of i0

s , we have the following result:∣∣∣∣∣∣dZ0

dt

∣∣∣∣∣∣ ≤ C0||Z0||+ |h|O(ε
7
3 )

Proof. We know that Φ0 is solution of d
dt Φ0 = f (Φ0), where f is the Kepler

field. So, by definition of C0, we have



||D f || ≤ C0

On the other hand we know

d
dt

[Φ0(t, z1)−Φ0(t, z0)] = f (Φ0(t, z1))− f (Φ0(t, z0))

=
∫ 1

0
D f (Φ0(t, z0) + s(Φ(t, z1)−Φ0(t, z0)) ds · [Φ0(t, z1)−Φ0(t, z0]

So we have that

d
dt

Z0(t) =
∫ 1

0
D f (Φ0(t + τ0

s (a)− τ0
s (as), i0

s (a))) + s(Φ0(t + τ0
s (a)−

− τ0
s (as), i0

s (a + h))−Φ0(t + τ0
s (a)− τ0

s (as), i0
s (a))) ds·

[Φ0(t + τ0
s (a)− τ0

s (as), i0
s (a + h))−Φ0(t + τ0

s (a)− τ0
s (as), i0

s (a))]−

−
∫ 1

0
D f (Φ0(t, i0

s (a))) + s(Φ0(t, i0
s (a + h))−Φ0(t, i0

s (a))) ds

· [Φ0(t, is(a + h))−Φ0(t, is(a))]

Denoting by t̃ = t + τ0
s (a)− τ0

s (as), we break this equality in two parts

d
dt

Z0(t) = A1 + A2

where

A1 =
∫ 1

0
D f (Φ0(t̃, i0

s (a) + s(Φ0(t̃, i0
s (a + h))−Φ0(t̃, i0

s (a))) ds·

· [Φ0(t̃, i0
s (a + h))−Φ0(t̃, i0

s (a))−(Φ0(t, i0
s (a + h))−Φ0(t, i0

s (a)))]

=
∫ 1

0
D f (Φ0(t̃, i0

s (a) + s(Φ0(t̃, i0
s (a + h))−Φ0(t̃, i0

s (a))) ds · Z0

As we see, we sustract this last term in A1 to obtain the integral multiplied



by Z0. Now we have to add it in A2 to recover the original expression of A1

A2 =−
∫ 1

0

(
D f (Φ0(t, i0

s (a))) + s(Φ0(t, i0
s (a + h))−Φ0(t, i0

s (a)))
)

ds

× [Φ0(t, i0
s (a + h))−Φ0(t, i0

s (a))]+
∫ 1

0

(
D f (Φ0(t̃, i0

s (a)

+s(Φ0(t̃, i0
s (a + h))−Φ0(t̃, i0

s (a)))
)

ds×(Φ0(t, i0
s (a + h))−Φ0(t, i0

s (a)))

=

[ ∫ 1

0

(
D f (Φ0(t̃, i0

s (a) + s(Φ0(t̃, i0
s (a + h))−Φ0(t̃, i0

s (a)))
)

ds

−
∫ 1

0

(
D f (Φ0(t, i0

s (a))) + s(Φ0(t, i0
s (a + h))−Φ0(t, i0

s (a)))
)

ds

]
× (Φ0(t, i0

s (a + h))−Φ0(t, i0
s (a)))

Now we can bound this terms independently, so we obtain

|A1| ≤ C0||Z0||

For A2, we have to bound each term to obtain |h|O(ε
7
3 ).

On the one hand, using the fact that |t̃ − t| . ε
7
3 , the integral factor is

bounded by O(ε
7
3 ).

On the other hand, the last factor |Φ0(t, is(a + h) − Φ0(t, is(a))| . O(|h|)
by the analyticity of i0

s (a). Joining both boundaries we obtain the desired
inequality.

Applying Gronwall’s Lemma once again we obtain the following inequality

||Z0(τ
0
s (as))|| ≤ ||Z0(0)||eC0τ0

s (as) + |h|O(ε
7
3 )

Proof. We want to prove the following inequality

||Z0(τ
0
s (as))|| ≤ ||Z0(0)||eC0τ0

s (as) + |h|O(ε
7
3 )

We know that∫ τ0
s (as)

0

dZ0

dt
dt = Z0(τ

0
s (as))− Z0(0) =⇒ Z0(τ

0
s (as))

= Z0(0) +
∫ τ0

s (as)

0

dZ0

dt
dt



So

||Z0(τ
0
s (as))|| ≤ ||Z0(0)||+

∫ τ0
s (as)

0

∣∣∣∣∣∣dZ0

dt

∣∣∣∣∣∣ dt

≤
Prev. Inequality

||Z0(0)||+ C0

∫ τ0
s (as)

0
||Z0|| dt + |h|O(ε

7
3 )

Finally, we have

||Z0(τ
0
s (as))|| ≤ ||Z0(0)||+ C0

∫ τ0
s (as)

0
||Z0|| dt =⇒

Gronwall’s lemma
||Z0(τ

0
s (as))||

≤ ||Z0(0)||eC0τ0
s (as) + |h|O(ε

7
3 )

The analyticity of the flux Φ0 leads us to the following result

||Z0(0)|| ≤ C0h|τ0
s (a)− τ0

s (as)|+ ||[i0
s (a + h)− i0

s (a)]− [i0
s (as + h)− i0

s (as)]||

being
||Z0(τ

0
s (as))|| = |h|O(ε

7
3 )

which ensures that the limit when h→ 0 is

lim
h→0

Z0(τ0
s (as))

h
= lim

h→0

[
Φ0(τ0

s (a), i0
s (a + h))−Φ0(τ0

s (a), i0
s (a))

h

]
− lim

h→0

[
Φ0(τ0

s (as), i0
s (as + h))−Φ0(τ0

s (as), i0
s (as))

h

]
= O(ε

7
3 )

Then, by definition of the derivative in terms of limits, we obtain

∂(M, N)

∂a
(Φ0(τ

0
s (a), i0

s (a)))− ∂(M, N)

∂a
(Φ0(τ

0
s (as), i0

s (as))) = O(ε
7
3 )

which in coordinates (s, u) can be written as

∂(s, u)
∂a

(q0
s (a)) =

∂(s, u)
∂a

(q0
s (as)) + O(ε

4
3 )

As it does not depend on a, we obtain finally the derivative along the arc q0
s :

d(s, u)
da

(q0
s (a)) =

d(s, u)
da

(q0
s (as)) + O(ε

4
3 ) ∀a ∈ Iδs



3. Distance between the perturbed arcs and the non-perturbed ones.

Once we were able to give an expression for q0
s along the arc Iδs , the next

step is to introduce a perturbation µ, and compute the distance between q0
s

and qµ
s . To do that, we will study the system at the boundary of a disk

centered in P2 of radius ε (note that this disk is different from Bε defined
in Section 5.2, where we defined the manifolds Cs(ε) and Cu(ε), since the
radius has a different value). For that reason, we have to take into account
also the distance between this exterior neigborhood and ρ(Cs(ε)).

The study of the restricted problem in rotating coordinates Pµ at the exterior
of a disk D(P2, ε) leads to the following distance

||Φµ(t, iµ
s (a))−Φ0(t, iµ

s (a))|| = O
( µ

ε2

)
since the maximum is computed considering a time interval of the form
[0, tc−C2ε] (to ensure it does not collide with the manifold D(P2, ε), as it has
to be treated separately).

This difference comes from the difference between the two correspondent
Hamiltonian functions H0 and Hµ (see Section 3.3). One can see that this

difference is of order O
(
− µ
|M|

)
, so between the fluxes Φ0 and Φµ one has

to consider the derivative (since this difference is related to the difference
between the two vectorial fields) which is, in this time interval, O

(
µ
|M|2

)
=

O
( µ

ε2

)
.

Now we denote by Vµ(ε) to the lift of the manifold Hµ of the disk D(P2, ε)

(i.e., consider Vµ(ε) to be the set of points in D(P2, ε) that are in Hµ). The
travel time (for the problem Pµ) between the entrance in Vµ(ε) and the arrival
to Cs(ε) is of order ε. So we have

||Φµ(τ
0
s (a), iµ

s (a))−Φ0(τ
0
s (a), iµ

s (a))|| = O
( µ

ε2

)
+ O

( µ

ε4 ε
)
= O

( µ

ε3

)
In order to understand this result, one has to divide this difference in two
parts:

• The first part corresponds to the difference between the fluxes at a time
interval of [0, tc − C2ε], as the previous equality shows. This explains
why the first element of the sum is O

( µ
ε2

)
.

• The second part corresponds to the difference between the fluxes in
between Vε and Cs(ε). However, Cs(ε) lives in the regularized system,



while Vµ(ε) in the non-regularized one (in other words, we are mixing
up both problems Pµ and Qµ). So, as we know, going through the Levi-
Civita map ρ implies that the position M gets squared (in this case it
would mean that, instead of having a difference of ε−2, we would have
a difference of ε−4). Joining this result with the fact that the travel time
between the two manifolds is of order ε, we obtain the second part of
the sum.

Now, in the same way as we did in the first step of the proof, we obtain an
estimation of the distance in the problem P0

||Φ0(τ
0
s (a), iµ

s (a))−Φ0(τ
0
s (a), i0

s (a))|| ≤ ||iµ
s (a)− i0

s (a)||eC0τ0
s (a)

being the function iµ
s − i0

s analytic and verifying ||iµ
s − i0

s ||Us = O(µ). Putting
together these two last results, we obtain the following estimation for the
distance

||Φµ(τ
0
s (a), iµ

s (a))−Φ0(τ
0
s (a), i0

s (a))|| = O
( µ

ε3

)
4. Choice of the mass µ as a function of ε.

Now we will relate the order of the parameters µ and ε, to ease the following
computations by working with only one variable. We are going to fix here
the value of µ = ε

11
2 , that guarantees the following

||Φµ(τ
0
s (a), iµ

s (a))−Φ0(τ
0
s (a), i0

s (a))|| = O
( µ

ε3

)
= O(ε

5
2 )

And now we can use this estimations to compute M(Φµ(τ0
s (a =, iµ

s (a))) in
terms of the non-perturbed arc in the same way as we did before (using
Lemma 5.7)

M(Φµ(τ
0
s (a), iµ

s (a)))| = ε2|Ns|+ O(ε
7
3 ) + O(ε

5
2 ) > 0

Expressing this result in coordinates (s, u) we obtain (in the same way as we
did when we were computing (s, u)(q0

s (a)) in terms of (s, u)(q0
s (as)))

(s, u)(qµ
s (a)) = (s, u)(q0

s (a)) + O(ε
3
2 ) ∀a ∈ Iδs (5.25)

with |τµ
s (a)− τ0

s (a)| = O(ε
5
2 ), by the same reasoning as before; the difference

of the vectorial fields is of order O
( µ

ε3

)
= O(ε

5
2 ) (take into account that until

now we were computing the difference between Φµ(τ0
s (a), iµ

s (a)) and q0
s (a)).



In order to have the desired distance between qµ
s (a) and q0

s (a), we should
substitute τ0

s (a) by τ
µ
s (a). That is why with this last estimation one can

obtain Equation 5.25).

5. Development of the perturbed arcs.

We will use a similar procedure as in paragraph 2. To perform the develop-
ment of the function qµ

s , we need to compute the derivatives with respect of
the parameters a and t. The time derivatives verify:

∂(M, N)

∂t
(Φµ(τ

µ
s (a), iµ

s (a))) =
∂(M, N)

∂t
(Φ0(τ

0
s (a), i0

s (a))) + O
( µ

ε4

)
being

∂(s, u)
∂t

(qµ
s (a)) =

Derivate Equation (5.25)

∂(s, u)
∂t

(q0
s (a)) + O(ε

1
2 ) ∀a ∈ Iδs

One can obtain these results by a direct computation of all the previous
results.

Like before, to estimate the derivatives with respect to the semi-major axis a,
we will study the variations of:

Zµ(t) = [Φµ(t + τ
µ
s (a)− τ0

s (a), iµ
s (a + h))−Φµ(t + τ

µ
s (a)− τ0

s (a), iµ
s (a))]

− [Φ0(t, i0
s (a + h))−Φ0(t, i0

s (a))]

where h is a real number near 0 and a ∈ Iδs . Our objective will be to obtain
an estimation for the value Zµ(τ0

s (a)), as we did in paragraph 2

Denote by tε the instant when the solution Φ0(t, i0
s (a)) intersects with ∂Vµ(ε).

Then, for t ∈ [0, tε] we obtain the following estimation∣∣∣∣∣∣dZµ

dt

∣∣∣∣∣∣ ≤ [C0 + O
( µ

ε3

) ]
||Zµ||+

[
||Φ0(τ

µ
s (a)− τ0

s (a), iµ
s (as))− i0

s (a)||eC0tε

+ O
( µ

ε3

) ]
||i0

s (a + h)− i0
s (a)||

In order to understand this result, one has to divide the inequality in two
parts. The first part corresponds to the interval t ∈ [0, tε), which has a similar

procedure as in b when estimating the value of
∣∣∣∣∣∣ dZ0

dt

∣∣∣∣∣∣. One notes that the
derivative of the flux can be estimated in terms of the associated Kepler field,
which has a maximum at C0. So the first sum comes from the estimation of
the Kepler field plus the difference between fields Xµ−X0, that we know it is
of order O

( µ
ε3

)
. On the other hand, the second sum comes from considering

the limit case when t = tε, where we can apply all the previous results.



The choice of µ and the analyticity of iµ
s and i0

s allow us to rewrite this
inequality as follows:∣∣∣∣∣∣dZµ

dt

∣∣∣∣∣∣ ≤ [C0 + O(ε
5
2 )]||Zµ||+ |h|O(ε

5
2 )

The first sum comes from a direct substitution of µ = O(ε
11
2 ). The second

sum comes from the fact that the difference between the is parametrization
can be reduced to |h| multiplied by a constant and so the remaining term
would be O

( µ
ε3

)
, which as we said is equivalent to O(ε

5
2 ).

Then we can apply Gronwall’s Lemma as we did in paragraph 2 to obtain
the following

||Zµ(tε)|| ≤ ||Zµ(0)||eC0tε + |h|O(ε
5
2 )

For t ∈ [tε, τ0
s (a)], one has to take into account the distance between ρ(Cs(ε))

and Vµ(ε), as we did in paragraph 3. As we saw before, this consideration
is translated to square the ε term, so instead of having O

( µ
ε3

)
, we will ob-

tain O(
( µ

ε6

)
. Moreover, now at the second term of the sum we evaluate the

inequality at τ0
s (a) instead of tε, so the exponential term changes too.∣∣∣∣∣∣dZµ

dt

∣∣∣∣∣∣ ≤ [C0 + O
( µ

ε6

)]
||Zµ||

+
[
||Φ0(τ

µ
s (a)− τ0

s (a), iµ
s (as))− i0

s (a)||eC0τ0
s (a) + O

( µ

ε6

)]
× ||i0

s (a + h)− i0
s (a)||

Once again, taking into account the choice of the mass µ and the analyticity
of i0

s and iµ
s we have

∣∣∣∣∣∣dZµ

dt

∣∣∣∣∣∣ ≤ [C0 + O(ε−
1
2 )]||Zµ||+ |h|O(ε−

1
2 )

The estimation τ0
s (a)− tε = O(ε) saw in paragraph 3 leads to the inequality:

||Zµ(τ
0
s (a))|| ≤ ||Zµ(tε)||+

∣∣∣∣∣∣dZµ

dt

∣∣∣∣∣∣(τ0
s (a)− tε)

≤ ||Zµ(tε)||(1 + O(ε
1
2 )) + |h|O(ε

1
2 )

and the estimation of ||Zµ(tε)|| implies that

||Zµ(τ
0
s (a))|| ≤ C||Zµ(0)||(1 + O(ε

1
2 )) + |h|O(ε

1
2 )



What is left to do is to estimate the value of ||Zµ(0)||, so we substitute in the
expression and we obtain

Zµ(0) =[Φµ(τ
µ
s (a)− τ0

s (a), iµ
s (a + h))−Φµ(τ

µ
s (a)− τ0

s (a), iµ
s (a))]

− [i0
s (a + h)− i0

s (a)]

We know that the flux Φµ is analytic in a neighborhood of (0, iµ
s (a)), so we

have

[Φµ(τ
µ
s (a)− τ0

s (a), iµ
s (a + h))−Φµ(τ

µ
s (a)− τ0

s (a), iµ
s (a))]

− [Φµ(0, iµ
s (a + h)−Φµ(0, iµ

s (a)] = [Φµ(τ
µ
s (a)− τ0

s (a), iµ
s (a + h))−Φµ(τ

µ
s (a)

− τ0
s (a), iµ

s (a))]− [iµ
s (a + h)− iµ

s (a)] = |h|O(ε
5
2 )

and we only have to give an estimation for

||[iµ
s (a + h)− iµ

s (a)]− [i0
s (a + h)− i0

s (a)]||

The function iµ
s − i0

s is analytic in Us, so

∣∣∣∣∣∣d(iµ
s − i0

s )

da

∣∣∣∣∣∣
Us
≤ C3||iµ

s − i0
s ||Us =

Definition
O(µ) = O(ε

11
2 )

where C3 is a constant value, and

||[iµ
s (a + h)− iµ

s (a)]− [i0
s (a + h)− i0

s (a)]|| = |h|O(ε
11
2 )

Putting together all the previous results we obtain

||Zµ(τ
0
s (a))|| = |h|O(ε

1
2 )

making the limit when h→ 0 as we did in paragraph 2, we have

∂(M, N)

∂a
(Φµ(τ

µ
s (a), iµ

s (a))) =
∂(M, N)

∂a
(Φ0(τ

0
s (a), i0

s (a))) + O(ε
1
2 )

which in coordinates (s, u) can be expressed as

∂(s, u)
∂a

(qµ
s (a)) =

∂(s, u)
∂a

(q0
s (a)) + O(ε−

1
2 )

where we deduce finally the uniform estimation along the arc:

d(s, u)
da

(qµ
s (a)) =

d(s, u)
da

(q0
s (a)) + O(ε−

1
2 ) ∀a ∈ Iδs (5.26)

The equivalent estimations of (5.25) and (5.26) at the neighborhood of iµ
u(au)

are also valid with µ ≥ 0.



6. End of the proof.

Finally, we will introduce on Cs(ε) and Cu(ε) two new coordinate systems to
define the intersections Lµ ∩Cs(ε) and Lµ ∩Cu(ε). They will be given by the
following transformations:

T s
µ (xs, ys, θs) = (x̃s, ys, θs) T u

µ (xu, yu, θu) = (x̃u, yu, θu)

where

x̃s =
1

2ε2h
3
2

(
l̃s
µ(xs, ys, θs)−

µ

α

)
and

x̃u =
1

2ε2h
3
2

(
l̃u
µ(xu, yu, θu)−

µ

α

)
l̃(s,u)
µ is the restriction of the Hamiltonian lµ in Cs(ε) or Cu(ε), expressed in

the correspondent coordinates (x, y, θ). The analyticity of lµ implies directly
the same for the maps T s

µ and T u
µ , and the relations (5.13) and (5.18) implies

the following equalities in ∂Bε

x̃s = xs + O(ε); x̃u = xu + O(ε)

So the transformations T s
µ and T u

µ are analytic diffeomorphism ε-near to the
identity on ∂Bε. Then one can define the following:

Lµ ∩ Cs(ε) =
{
(x̃s, ys, θs) ∈ Cs(ε) | x̃s = −

µ

2αε2h
3
2

}
Lµ ∩ Cu(ε) =

{
(x̃u, yu, θu) ∈ Cu(ε) | x̃u = − µ

2αε2h
3
2

}
One can obtain these sets just by replacing l̃(s,u)

µ by 0, as Lµ corresponds to
the points with 0 energy level.

On the other hand, we know that Equation (5.25) for a = as implies:

(s, u)(qµ
s (as)) = (ε, 0) + O(ε

3
2 )

Moreover, relation (5.26) and the hypotheses that Im(∆MsNs) 6= 0 implies
that u2(q

µ
s (a)) varies under an interval of length of order O(ε

4
3 ) when a varies



in Iδs :

du2

da
(qµ

s (a)) =
Equation (5.26)

du2

da
(q0

s (a)) + O(ε−
1
2 )

=
Result Paragraph 2

du2

da
(q0

s (as)) + O(ε
4
3 ) + O(ε−

1
2 )

=
Equation (5.24)

− Im(∆MsNs)

2hε
+ O(ε

4
3 )

In particular, there exists aµ
s ∈ Iδs such that u2(q

µ
s (aµ

s )) = 0. We denote by
m(s)

µ the correspondent point qµ
s (aµ

s )), intersection of the arc Ws(µ) ∩ Cs(ε)

with the plane u2 = 0 (see Lemma 5.6).

Our objective will be to find the representation in coordinates (xu, yu, θu) of
the linear transition map fε(m

(s)
µ ). Since we have an explicit expression for

x̃s (and so xu = x̃s), we only need to focus on computing ys and u (because
yu = −ys and eiθu = u

|u| ) (see Equation (5.20)).

The coordinates (s, u) of the point m(s)
µ verify

(s1, s2, u1)(m
(s)
µ ) = (ε, 0, 0) + O(ε

4
3 ) (5.27)

It is a point of Cs(ε), so |s| must have modulus εh
3
4 (We will suppose h to be

1 for convenience).

and

(
ds1

da
,

ds2

da
,

du1

da
,

du2

da

)
(m(s)

µ ) =

(
0, 0, 0,− Im(∆MsNs)

2hε

)
+ O(ε−

1
2 ) (5.28)

which is a direct computation from equations (5.24) and (5.26).

Using now Equation (5.18) to transform these expressions in coordinates
(xs, ys, θs), and knowing by hypothesis that Im(∆MsNs) 6= 0

ys(m
(s)
µ ) = O(ε

2
3 ) and

dys

da
(m(s)

µ ) = O(ε−2)

On the other hand, relation (5.15) implies:

[2s1(m
(s)
µ ) + (s1(m

(s)
µ ) + s2(m

(s)
µ ))O2(ε)]u1(mµ(s)) +

µ

α
+ O6(ε) = 0

and using (5.27) we obtain the explicit expression for u1(m
(s)
µ )



u1(m
(s)
µ ) = − µ

2αε
+ O

(
µ

ε
2
3

)
= − ε

9
2

2α
+ O(ε

29
6 ) (5.29)

We can ensure that α 6= 0 because we are supposing that Ns and Nu are not
collinear.

Then, the coordinates of the linear transition map fε applied to the point
m(s)

µ , denoted by (x̃′(l)u , y′(l)u , θ
′(l)
u ) are of the form

y′(l)u = O(ε
2
3 ) θ

′(l)
u = 0

Moreover, the hypotheses Im(∆MsNs) 6= 0 and Equation (5.29) implies.

dy′(l)u

da
( fε(m

(s)
µ )) = O

(
1
ε2

)
;

dθ
′(l)
u

da
( fε(m

(s)
µ )) = O

(
1

ε
11
2

)
Finally, using the approximation Theorem in Section 5.2.3, we can estimate
the value of the coordinates of the exact transition map fεµ, denoted by
(x̃′u, y′u, θ′u)

y′u = O(ε
2
3 ) θ′u = O(ε2)

dy′u
da

( fεµ(m
(s)
µ )) = O

(
1
ε2

)
;

dθ′u
da

( fεµ(m
(s)
µ )) = O

(
1

ε
11
2

)
Now we make an analogous study for the arc Wu(µ)∩ Cu(ε). For a ∈ Iδu , we
have:

(s1, s2, u1, u2)(q
µ
u(a)) = (0, 0, ε, 0) + O(ε

4
3 ) (5.30)

and(
ds1

da
,

ds2

da
,

du1

da
,

du2

da

)
(qµ

u(a)) =
(

0,− Im(∆MuNu)

2hε
, 0, 0

)
+ O(ε−

1
2 ) (5.31)

It follows an analogous reasoning as in Equations (5.27) and (5.28) (see Sec-
tion 5.2.3).

Once again, we can use the same estimation as in Equation (5.25) at a neigh-
borhood of iµ

u(au), so

(s, u)(qµ
u(au)) = (0, ε) + O(ε

3
2 )



Moreover, estimation (5.31) and the hypothesis that Im(∆MuNu) 6= 0 implies
that s2(q

µ
u(a)) varies on an interval of length of order O(ε

4
3 ) when a varies

on Iδu (the proof is analogous to the one made for u2(q
µ
s (a)). In particular,

there exists aµ
u ∈ Iδu such that s2(q

µ
u(aµ

u)) = 0. We will denote by m(u)
µ the

point qµ
u(aµ

u), which corresponds to the intersection of the arc Wu(µ) ∩ Cu(ε)

with the plane of equation s2 = 0. The coordinates of m(u)
µ will be denoted

as (x̃′′u , y′′u , θ′′u ).

In order ot know the expression of y′′u and θ′′u , we use once again Equation
(5.18), so we have

y′′u(a) = O(ε
2
3 ) and θ′′u (a) = O(ε

1
3 )

and the hypothesis Im(∆MuNu) 6= 0 and Lemma 5.8 implies:

dy′′u
da

(m(u)
µ ) = O

(
1
ε2

)
;

dθ′′u
da

(m(u)
µ ) = O

(
1

ε
3
2

)
We can choose ε small enough such that the tangent of the arc fεµ((Ws(µ) ∩
Cs(ε))) at the point fεµ(m

(s)
µ ) is arbitrary near to the axis θu (in variables

(s, u), this would be equivalent to be in the axis Ou1, where the point m(u)
µ

lives), so we can ensure there is a “continuous connection” between the arcs
fεµ((Ws(µ) ∩ Cs(ε))) and Wu(µ) ∩ Cu(ε), which will have, as a consequence,
a transversal intersection (when the semi-major axis vary intervals centered
at aµ

s and aµ
u).

The convergence of periodic solutions ϕµ can be proved immediately from
the previous construction, since Ws(µ) ∩Wu(µ) intersect ∂Bε in the points
that converge to the intersections of ϕs and ϕu with ∂Bε (with semi-major
axis in the domains Iδs and Iδu respectively). So the solutions ϕs and ϕu are
generatrices.

Now we are ready to prove Theorem 5.11.

Proof. We set the solutions ϕs and ϕu of angular momentum σs and σu respectively.
We remark that the function angular momentum, in a neighborhood of the initial
conditions (corresponding to ϕs and ϕu) in I0, is strictly monotone. Lemma 5.2
implies then the density of the initial conditions in I0 corresponding to double
collision solutions (i.e. we have a submanifold dense in the domain elliptic). So
it is enough to prove that Im(∆MsNs) and Im(∆MuNu), restricted to I0, are an-
alytic and non-constants, which is clear at least in a neighborhood of the initial
conditions.



Finally, by the principle of isolated zeros, which ensures that all zeroes of an
analytic function are isolated, there exist initial conditions arbitrarily close to the
initial ones fulfilling these previous conditions, and giving rise to the generatrix
solutions by all the previous construction, and the Theorem is proved.

Figure 5.7: Representation of the homoclinic solution (in red and blue) and a
second-species solution (in purple) in the reference s,u.

Figure 5.8: A more detailed description of the elements inside the ball Bε.





Chapter 6

Conclusions and future work

From the initial requirements (see Chapter 1) to obtain a complete proof of the
existence of second species periodic solutions, our work has accomplished:

• Studying the Kepler problem from different points of view in order to better
understand the scenario where we were going to work with.

• Introducing and applying dynamical concepts such as Hamiltonian systems,
Lagrange equations and symplectic geometry.

• Understanding both geometrical and variational approaches to know how to
build second-species periodic solutions.

• Comparing both results to look for similarities in the reasoning of both ap-
proaches, to better understand how one can go from the variational approach
to the geometrical one.

The variational point of view [1] gives us an explanation on how we can build
an “homoclinic” solution going through all the infinitely many singularities that
correspond to the collisions of an Asteroid with Jupiter (see Section 3.2). Once we
have defined this solution, it leads us through the construction of a true solution
(i.e., a solution with a well-defined and definite action integral) shadowing the
“homoclinic” one (see Section 4.2).

On the other hand, the geometrical one [2] builds up a suitable environment
where one can prove that there exists one homoclinic solution from which one can
generate a family of second-species solutions (see Section 5.1). It separates this so-
lution in two parts (one corresponding to the stable manifold and the other one to
the unstable one), and introduces different reference frameworks to put as a refer-
ence system these two manifolds (see Section 5.2). Finally, it defines two Poincaré
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sections in a neighborhood of the singularity and a suitable transition map, from
which one can generate the desired second-species solutions (see Section 5.3).

However, as one may have already noticed along the paper, they only work for
a two-dimensional configuration space. To expand these results to a more real-
istic three-dimensional space, S.V. Bolotin and R.S. Mackay [1] use the following
methods:

• Instead of using a Levi-Civita regularization map, they use the KS-regularization
instead [12].

• They work with a quadratic Hopf map instead of the usual one (see Section
4.3).

• They introduce geodesic coordinates to simplify computations.



Chapter 7

Annex

7.1 Lagrangian & Hamiltonian formalism

In this section we will give some definitions and properties about the Hamil-
tonian and Lagrangian systems that we will use along the paper. In order to get a
complete definition of both points of view, see the work made by Meyer-Offin [4].

7.1.1 Hamiltonian Equations

A Hamiltonian system is a system of 2n ordinary differential equations of the
form

dqi

dt
=

∂H
∂pi

(t, q, p),
dpi

dt
= −∂H

∂qi
(t, q, p) (7.1)

where H = H(t, q, p), called the Hamiltonian, is a smooth real-valued function
defined for (t, p, q) ∈ O, an open set in R1×Rn×Rn. The vectors q = (q1, · · · , qn)

and p = (p1, · · · , pn) are traditionally called the position and momentum vectors,
respectively, because that is what these variables represent in many mechanical
examples.

In general, we can express this system in the following way: Introduce the 2n
vector z, the 2n× 2n skew-symmetric matrix J, and the gradient by

z =

[
q
p

]
, J = Jn =

[
0 I
−I 0

]
, ∇H =


∂H
∂z1
...

∂H
∂z2n


where 0 is the n × n matrix and I is the n × n identity matrix. In this notation,
(7.1) becomes

ż = J∇H(t, z) (7.2)
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In the special case when H is independent of t, the differential equations (7.2)
are called autonomous, and the Hamiltonian system is called conservative.

A first integral for (7.2) is a smooth function F : O −→ R1 which is constant
along the solutions (that we denote by φ) of (7.2); i.e., F(φ(t, t0, z0)) = F(z0) is con-
stant. The classical conserved quantities of energy, momentum, etc. are integrals.
The level surfaces F−1(c) ⊂ R2n, where c is a constant, are invariant sets, i.e., they
are sets such that if a solution starts in the set, it remains in it.

Lemma 7.1. If the Hamiltonian system is autonomous, then the associated Hamiltonian
function H is a first integral.

Proof. We begin by expressing how F changes

d
dt

F(φ(t, t0, z0)) = DzF(φ(t, t0, z0))ż +
∂

∂t
F(φ(t, t0, z))

= (∇F)T ◦ φ · J · ∇H ◦ φ +
∂

∂t
F ◦ φ

= {F, H} ◦ φ +
∂

∂t
F ◦ φ

with {·, ·} being the Poisson bracket. Using the fact that the Hamiltonian system
is autonomous (independent of t), we obtain:

d
dt
(F ◦ φ) = {F, H} ◦ φ

As we saw before, being a first integral means that F is constant along solu-
tions, so, in order to have a first integral, we must have the following result

{F, H} ◦ φ = 0

As we will see later, the Poisson bracket is an anti-symmetric operator, so
{H, H} = 0, proving the result.

The most important property of the first integrals is that the solutions lie on
the set F−1(c), which is of dimension 2n− 1. If we were so lucky as to find 2n− 1
independent integrals, F1, · · · , F2n−1, then holding all these integrals fixed would
define a curve in R2n, the solution curve. This happens in some special cases,
for example in the Kepler problem (see Section 2.1.2). We say such a system is
completely integrable.



The Poisson Bracket

Like the example we saw before, many of the special properties of Hamiltonian
systems are formulated in terms of the Poisson bracket operator, so it plays a
central role in the theory developed here.

Definition 7.2. Let H, F and G be smooth functions from O ⊂ R1 ×Rn ×Rn into R1,
and define the Poisson bracket of F and G by

{F, G} = ∇FT J∇G =
∂FT

∂q
∂G
∂p
− ∂FT

∂p
∂G
∂q

=
n

∑
i=1

(
∂F
∂qi

(t, p, q)
∂G
∂pi

(t, q, p)− ∂F
∂pi

(t, p, q)
∂G
∂qi

(t, q, p)
) (7.3)

Clearly {F, G} is a smooth map from O to R1 as well, and one can easy verify
that {·, ·} is anti-symmetric and bilinear. Moreover, it verifies Jacobi’s identity:

{F, {G, H}}+ {G, {H, F}}+ {H, {F, G}} = 0. (7.4)

Finally, we will state as a Theorem important results given by the Poisson
bracket.

Theorem 7.3. Let F, G, and H be as above and independent of time t. Then

1. F is an integral for (7.2) if and only if {F, H} = 0.

2. H is an integral for (7.2).

3. If F and G are integrals for (7.2), then so is {F, G}.

Linear Equations

In this theory, as we have noticed, a special role is played by the 2n× 2n matrix

J =

[
0 I
−I 0

]
(7.5)

Note that J is orthogonal and skew-symmetric, i.e.,

J−1 = JT = −J (7.6)

Let z be a coordinate vector in R2n, I an interval in R, and S : I → gl(2n,R)
be continuous and symmetric. A linear Hamiltonian system is the system of 2n
ordinary differential equations

ż = J∇H = A(t)z (7.7)



where
H = H(t, z) =

1
2

zTS(t)z, (7.8)

so A(t) = JS(t). The Hamiltonian H is then a quadratic form in z with coefficients
that are continuous in t ∈ I ⊂ R. If S, and hence H, is independent of t, then H
is an integral for (7.7) by Theorem 7.3. This property gives rise to two important
definitions

Definition 7.4. A matrix A ∈ gl(2n,F) is called Hamiltonian (or sometimes infinitesi-
mally symplectic), if

AT J + JA = 0 (7.9)

We denote the set of such matrices sp(2n,F).

Definition 7.5. A 2n× 2n matrix T is called symplectic with multiplier µ if

TT JT = µJ (7.10)

where µ is a nonzero constant. If µ = ±1, then T is simply said to be symplectic. The
set of all 2n× 2n symplectic matrices is denoted by Sp(2n,R).

Symplectic Manifolds

There is a lot to say in terms of symplectic geometry. However, the purpose of
this chapter is to highlight only those theoretical results relevant along this work.
For that reason, we will skip some theoretical background needed in order to full
comprehend all the results. For more information, see [4].

With that said, we will start by giving a definition of symplectic manifolds,
and their relevance to be able to relate differential forms with vector fields.

Definition 7.6. A symplectic manifold is a pair (M, Ω) where M is a 2n-dimensional
differentiable manifold and Ω is a smooth nondegenerate 2-form on M. Ω is called the
symplectic structure or symplectic form.

The standard example is R2n with

Ω =
n

∑
i=1

dqi ∧ dpi =
n

∑
i=1

dzi ∧ dzn+i =
1
2

Jijdzidzj. (7.11)

where ∧ refers to the wedge product, and z = (z1, · · · , z2n) = (q1, · · · , qn, p1, · · · , pn)

are coordinates in R2n (position and momenta). The coefficient matrix of Ω is just
J.

In general

Ω =
1
2

2n

∑
i=1

2n

∑
j=1

ωij(z)dzi ∧ dzj =
1
2

ωijdzi ∧ dzj. (7.12)



A symplectic structure creates a way to convert a one-form like dH to a vector field
like ż = J∇H. At each point p ∈ M the symplectic form defines a nondegenerate
bilinear map Ωp : T∗p M× T∗p M→ R1, so the map

[ : Tp M→ T∗p M

v 7→ v[ = Ωp(v, ·)

is a well defined invertible linear map with inverse ] : T∗p M→ Tp M
Let v ∈ Tp M so

v =
n

∑
i=1

vi
∂

∂zi
= vi

∂

∂zi

then

v[ =
n

∑
i=1

ωijvidxj = ωijvidxj

The form Ω is nondegenerate, so the coefficient matrix has an inverse; let it be ωij

so that ωijω
ij = δ

j
i the Kronecker delta. Let w = ∑ widxi then

w] =
n

∑
i=1

ωijwi
∂

∂xj
= ωijwi

∂

∂xj

Thus, if the Hamiltonian is H, then the Hamiltonian vector field is dH].
Finally, we will sum up this section by giving an introduction to the Lagrangian

submanifolds keeping the notation we were using until now.

Definition 7.7. Let M be a manifold. A Lagrangian submanifold L ⊂ M is a submanifold
of dimension n such that Ω|L = 0 (recall that Ω is the symplectic form), that is, it is a
submanifold of maximal dimension where Ω is zero. Or a Lagrangian submanifold is a
submanifold of M such that TpL is a Lagrangian subspace of Tp M for all p ∈ L in the
sense of Section 7.1.1

For example, each TpN ⊂ TN is Lagrangian. The zero section

Z : N → TN

p 7→ 0p

takes N into a Lagrangian submanifold of TN. In coordinates (q, p) where Ω =

∑ dqi ∧ dpi the sets where q = 0 or where p = 0 are Lagrangian submanifolds.

Lemma 7.8. If A is real Hamiltonian matrix, and all its eigenvalues have nonzero real
parts, then there exists Lagrangian linear subspaces L, L∗ such that R2n = L⊕ L∗ and all
the solutions of ẋ = Ax in L (respectively L∗) tend to 0 as t → +∞ (resp. t → −∞).
These are the stable and unstable sets and they are Lagrangian submanifolds.



7.1.2 Lagrange Equations

Maupertuis-Jacobi’s Principle of Least Action

In 1740, Pierre Louis Moreau de Maupertuis stated that, in analogy with Fer-
mat’s Principle of Least Time for light, a particle of mass m under the influence
of a force F = −∇U (where U is the potential energy) moves along a path which
satisfies the Principle of Least Action: δS = 0, where the action integral is defined as

S[x] =
∫

p · dx =
∫

mv ds, (7.13)

where v = ds
dt denotes the magnitude of particle velocity, which can be also

expressed as

v(s) =

√
2
m
[E−U(s)], (7.14)

with the particle’s kinetic energy K = 1
2 mv2 written in terms of its total energy E

and its potential energy U(s).
It was Jacobi who, later on, emphasized the connection between Fermat’s Prin-

ciple of Least Time and Maupertuis’Principle of Least Action by introducing a
different form of the Principle of Least Action δS = 0, where Jacobi’s action inte-
gral is

S[x] =
∫ √

2m(E−U) ds = 2
∫

K dt, (7.15)

where particle momentum is written as p =
√

2m(E−U). To obtain the second
expression of Jacobi’s action integral (7.15), Jacobi made use of the fact that, by
introducing a path parameter τ such that v = ds

dt =
s′
t′ (where a prime here denotes

a τ-derivative), we find

K =
m(s′)2

2(t′)2 = E−U

so that 2Kt′ = s′p, and the second form of Jacobi’s action integral results. Next,
Jacobi used the Principle of Least Action to establish the geometric foundation of
particle mechanics. Here, the Euler-Jacobi equation resulting from Jacobi’s Princi-
ple of Least Action is expressed as

d
ds

(√
E−U

dx
ds

)
= ∇
√

E−U

Lagrange’s Equations from D’Alembert’s Principle

The Principle of Virtual Work is one of the oldest principles in Physics that
may find its origin in the work of Aristotle on the static equilibrium of levers. It



was finally written in its current form in 1717 by Jean Bernouilli and states that a
system composed of N particles is in static equilibrium if the virtual work

δW =
N

∑
i=1

Fi · δxi = 0 (7.16)

for all virtual displacements (δx1, · · · , δxN) that satisfy physical constraints.
However, it was Jean Le Rond d’Alembert who generalized the Principle of

Virtual Work (in 1742) by including the accelerating force mi ẍi in (7.16):

N

∑
i=1

(
Fi −mi

d2xi

dt2

)
= 0 (7.17)

so that the equations of dynamics could be obtained from this one. Hence, d’Alembert’s
Principle, states that the work done by all active forces acting in a system is alge-
braically equal to the work done by all the acceleration forces.

The most historically significant application of d’Alembert’s Principle (7.17),
however, came from Lagrange, who transformed it into the following expression:

δK + δW =
d
dt

(
m

dx
dt
· δx
)

(7.18)

where K denotes the Kinetic Energy.
We note that, for a conservative active force derivable from a single potential

energy U (i.e., F = −∇U), the virtual work is δW = −δU, so that time integration
of Eq. (7.18) yields an important principle known as Hamilton’s Principle:∫ t2

t1

(δK− δU) dt = δ
∫ t2

t1

L dt = 0, (7.19)

where δx vanishes at t = t1 and t2 and the function

L = K−U (7.20)

obtained by subtracting the potential energy U from the kinetic energy K, is known
as the Lagrangian function of the system.

Hamilton’s Principle and Euler-Lagrange Equations

Hamilton’s principle (sometimes called The Principle of Least Action) is ex-
pressed, as we said before, in terms of a function L(q, q̇; t) known as the La-
grangian, which appears in the action integral

S[q] =
∫ t f

ti

L(q, q̇; t) dt (7.21)



where the action integral is a functional of the generalized coordinates q(t), pro-
viding a path from the initial point qi = q(ti) to the final point q f = q(t f ). The
stationarity of the action integral

0 = δS[q; δq] =
(

d
dε

S[q + εδq]
)

ε=0
=
∫ t f

ti

δq ·
[

∂L
∂q
− d

dt

(
∂L
∂q̇

)]
dt

where the variation δq is assumed to vanish at the integration boundaries
(δqi = 0 = δq f ) yields the Euler-Lagrange equation for the generalized coordinate
qj (j = 1, · · · , k):

d
dt

(
∂L
∂q̇j

)
=

∂L
∂qj (7.22)

Legendre Transformation

The k second-order Euler-Lagrange equations on configuration space q = (q1, · · · , qk)

(7.22) can be written as 2k first-order differential equations, known as Hamilton’s
equations, on a 2k-dimensional phase space with coordinates z = (q1, · · · , qk; p1, · · · , pk),
where

pj(q, q̇; t) =
∂L
∂q̇j (q, q̇; t) (7.23)

defines the jth-component of the canonical momentum. In terms of these new
coordinates, the Euler-Lagrange equations (7.22) are transformed into Hamilton’s
canonical equations (7.1) where the Hamiltonian function H(q, p; t) is defined from
the Lagrangian function L(q, q̇; t) by the Legendre transformation:

H(q, p; t) = p · q̇(q, p, t)− L[q, q̇(q, p, t), t] (7.24)

7.2 Coordinate Framework

7.2.1 Jacobi Coordinates

Jacobi coordinates are ideal coordinates for investigations of the N-body prob-
lem. Let us see how it is built.

Let qi, pi ∈ R3 for i = 1, · · · , N, be the coordinates of the N-body problem (see
section 2.1). We define a sequence of transformations starting with g1 = q1 and
µ1 = m1 and proceed inductively by

Tk :


uk = qk − gk−1

gk =
(

1
µk

)
(mkqk + µk−1gk−1)

µk = µk−1 + mk

(7.25)



for k = 2, · · · , N. µk is the total mass, and gk is the position vector of the
center of mass of the system of particles with indices 1, 2, · · · , k. The vector uk is
the position of the kth particle relative to the center of mass of the previous k− 1
particles (see Figure 7.1).

Figure 7.1: Jacobi coordinates for the 3-Body Problem [4].

Consider Tk as a change of coordinates from gk−1, u2, · · · , qk, · · · , qN to
gk, u2, · · · , uk, qk+1, · · · , qN or simply from gk−1, qk to gk, uk+1. The inverse of Tk is

T−1
k :

qk =
(

µk−1
µk

)
uk + gk,

gk−1 =
(
−mk

µk

)
uk + gk.

(7.26)

This is a linear transformation on the q variables only, i.e, on a Lagrangian
subspace, so we need to perform the transformation on the p variables in order
to have a symplectic transformation. To make the symplectic completion of Tk,
define G1 = p1 and

Qk :

vk =
(

µk−1
µk

)
pk −

(
mk
µk

)
Gk−1,

Gk = pk + Gk−1

(7.27)

Q−1
k :

pk = vk +
(

mk
µk

)
Gk,

Gk−1 = −vk +
(

µk−1
µk

)
Gk

(7.28)

If we denote the coefficient matrix in (7.25) by A, the coefficient matrices in
(7.26), (7.27), and (7.28) are A−1, A−T, and AT, respectively. Thus, the pair Tk, Qk

is a symplectic change of variables.
These variables satisfy the identities

gk−1 × Gk−1 + qk × pk = gk × Gk + uk × vk



and

||Gk−1||2
2µk−1

+
||pk||2
2mk

=
||Gk||2

2µk
+
||vk||2
2Mk

where Mk = mk
µk−1

µk
. Additionally, the kinetic energy is

K =
N

∑
k=1

||pk||2
2mk

=
||GN ||2

2µN
+

N

∑
k=2

||vk||2
2Mk

and the total angular momentum is

A =
N

∑
k=1

qk × pk = gN × GN +
N

∑
k=2

uk × vk,

where gN is the center of mass of the system, and GN is the total linear mo-
mentum.

Unfortunately, the formulas for the variables uk and vk are not simply ex-
pressed in terms of the variables qk and pk. Note that

u2 = q2 − q1

Let dij = qi − qj. The Hamiltonian of the N-Body Problem in Jacobi coordinates is

H =
||GN ||2

2µN
+

N

∑
k=2

||vk||2
2Mk

− ∑
1≤i<j≤N

mimj

||dij

with equations of motion 
ġi = − ∂H

∂Gi

u̇i = − ∂H
∂vi

Ġi =
∂H
∂gi

v̇i =
∂H
∂ui

(7.29)

7.2.2 Polar Coordinates

Let x, y be the usual coordinates in the plane and X, Y their conjugate mo-
menta. Suppose we wish to change to polar coordinates (r, θ), in the (x, y)-plane
and to extend this point transformation to a symplectic change of variables. Let
R, Θ be conjugate to r, θ. Use the generating function S = Xrcosθ +Yrsinθ [4], and
so



x =
∂S
∂X

= r cos θ, y =
∂S
∂Y

= r sin θ,

R =
∂S
∂r

= X cos θ + Y sin θ =
xX + yY

r
,

Θ =
∂S
∂θ

= −Xr sin θ + Yr cos θ = xY− yX.

(7.30)

If we think of a particle of mass m moving in the plane, then X = mẋ and
Y = mẏ are linear momenta in the x and y directions; so, R = mṙ is the linear mo-
mentum in the r direction, and Θ = mxẏ−myẋ = mr2θ̇ is the angular momentum.
The inverse transformation is

X = R cos θ −
(

Θ
r

)
sin θ,

Y = R sin θ +

(
Θ
r

)
cos θ

Kepler’s Problem in Polar Coordinates

The Hamiltonian of the planar Kepler’s problem (2.8) in polar coordinates is

P(r, θ, R, Θ) =
1
2

(
R2 +

Θ2

r2

)
− µ

r
(7.31)

Because P is independent of θ, is is an ignorable coordinate, so Θ is a first
integral. The equations of motion are

ṙ = R, θ̇ =
Θ
r2

Ṙ =
Θ2

r3 −
µ

r2 , Θ̇ = 0
(7.32)

The 3-Body Problem in Jacobi-Polar Coordinates

Now consider the 3-Body Problem in Jacobi coordinates with center of mass at
the origin and linear momentum zero; i.e.

H =
||v2||2
2M2

+
||v3||2
2M3

− m1m2

||u2||
− m1m3

||u3 + α0u2
− m2m3

||u3 − α1u2||
Introduce polar coordinates for u2 and u3. That is, let

u2 = (r1 cos θ1, r1 sin θ1), u3 = (r2 cos θ2, r2 sin θ2),



v2 =

(
R1 cos θ1 −

(
Θ1

r1

)
sin θ1, R1 sin θ1 +

(
Θ1

r1

)
cosθ1

)
,

v3 =

(
R2 cos θ2 −

(
Θ2

r2

)
sin θ2, R2 sin θ2 +

(
Θ2

r2

)
cos θ2

)
,

so the Hamiltonian H becomes (shifting the index 1, 2, 3 to 0, 1, 2)

H =
1

2M2

{
R2

1 +

(
Θ2

1

r2
1

)}
+

1
2M3

{
R2

2 +

(
Θ2

2

r2
2

)}
− m0m1

r1

− m0m2√
r2

2 + α2
0r2

1 − 2α0r1r2 cos(θ2 − θ1)

− m1m2√
r2

2 + α2
1r2

1 − 2α1r1r2 cos(θ2 − θ1)
.

Note that the Hamiltonian only depends on the difference of the polar angles,
θ2 − θ1.
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