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Abstract

In this master thesis we generalize a theorem by Palais on the rigidity of compact
group actions to cotangent lifts. We use this result to prove rigidity for integrable sys-
tems on symplectic manifolds including systems with degenerate singularities which
are invariant under a torus action. We also prove the b-symplectic analogue of the
rigidity results. We illustrate the three basic types of singularities of integrable sys-
tems through three models from classical mechanics and we give them as cotangent
lifts. Finally we review the focus-focus singularity and the saddle-focus singularity.
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1. Introduction

Symmetries of mathematical objects, understood as transformations that do not
change the shape or the structure of the object, are present in a huge variety of
models for physical problems. A set of transformations satisfying certain conditions
and endowed with an internal operation is called a group and a special category of
groups are Lie groups, which have the extra structure of a differentiable manifold.
The transformation of a manifold by an object of a group is called an action, and the
classification of actions of Lie groups on smooth manifolds is a principal objective in
geometry, since studying how a Lie group acts on a manifold it is possible to derive
conclusions on the structure of the manifold.

A principal application of Lie groups theory is the study of dynamical systems,
systems of equations that depend on time, which can be seen as continuous trans-
formations of the coordinates of an object in a phase space. Inside the vast family
of dynamical systems, the class of integrable Hamiltonian systems includes systems
which produce a foliation of the phase space by invariant manifolds, and their charac-
terization has been a long-time pursued goal. One of the most important milestones
in the field is the Arnold-Liouville-Mineur Theorem, proved independently by Arnold
and Liouville in [Arn74] and by Mineur in [Min36]. This result states that, in a reg-
ular integrable system, the induced foliation near a compact fibre is a fibration by
tori. The theorem also constructs a special set of coordinates, the action-angle coor-
dinates, which turn out to be a version of the local coordinates given by the classical
Darboux Theorem for symplectic manifolds.

Concerning the stability of the regular tori given by the Arnold-Liouville-Mineur
Theorem, the KAM rigidity theory states the exact conditions that the joint flows of a
system have to satisfy in order to be stable. Namely, KAM theory provides the precise
hypothesis that make regular tori survive under small perturbations of the system.
With the same idea of stability of transformations under small perturbations, Richard
Palais proved in [Pal61a] that two compact Lie group actions on a compact manifold,
if they are close enough, are equivalent in the sense that there exists a diffeomorphism
conjugating both actions. Other classical stability results for differentiable maps were
proved in the 60’s and 70’s for which stability yields equivalence of close maps (see
for instance [Mat68] and [Tho72]).

Symplectic manifolds are the natural setting to test stability ideas as among the
classical actions of Lie groups on symplectic manifolds the ones admitting a moment
map stand out. These are Hamiltonian actions where the group action can be read
off from a mapping µ : M −→ g∗ where g is the Lie algebra of the Lie group.

In [Mir07] it was proved that C2-close symplectic actions on a compact symplectic
manifold are equivalent in the sense that not only the actions are conjugated by a
diffeomorphism but this diffeomorphism preserves the symplectic form. The proof
in [Mir07] (see also [MMZ12]) uses the path method requiring differentiability of
degree 2 as the diffeomorphism yielding the equivalence comes from integration of a
time-dependent vector field. Generalizations of this result can be easily achieved for
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Hamiltonian actions in the symplectic context. In the more general Poisson context
technical complications occur due to the lack of a general path method in Poisson
geometry and fine Nash-Moser techniques come to the rescue to prove rigidity of
Hamiltonian actions of semisimple Lie groups of compact type on Poisson manifolds
as proved in [MMZ12]. Those results can be obtained either globally (for compact
manifolds) or semilocally (in the neighbourhood of a compact submanifold which is
invariant by the group actions).

The lift of Lie group actions to the cotangent bundle, naturally equipped with a
canonical symplectic form, provides natural examples of Hamiltonian actions. Non-
compactness of cotangent bundles leaves the study of equivalence of actions out of
the radar of the compact case and needs to be re-examined with fresh eyes. In this
master thesis we analyze the case of cotangent lifted actions where we can easily
prove the equivalence of Hamiltonian actions on non-compact manifolds (cotangent
bundles) by lifting the diffeomorphism given by Palais (in his Theorem 3.11) from
the base. This simple idea allows to reduce the required degree of differentiability
by 1 from the case of compact group actions on compact symplectic manifolds. We
present a new result on rigidity of lifted actions, which can be thought as an extension
of Palais rigidity Theorem to the cotangent lift of an action of a compact group. It
has the advantage of being useful at the level of the cotangent bundle, which is a
non-compact manifold, in contrast with the compactness required for the manifold
in the original Palais Theorem.

Cotangent lifted actions may, a priori, seem a small class of actions to con-
sider. However, this class includes the wide class of regular integrable systems as
Kiesenhofer and Miranda proved in [KM17]. There, they show that the action-angle
coordinate theorem for integrable systems can be rephrased (see [KM17]) as follows:
any integrable system is equivalent in a neighbourhood of a regular torus to the
integrable system given by the cotangent lift of translations of this torus to T ∗(Tn).

In this sense group actions turn out to be a useful tool to understand integrable
systems. But what happens outside the regular tori? What happens with singular-
ities of integrable systems? As a consequence of the cotangent lift result above and
rigidity theorem for cotangent lifts, it follows that integrable systems whose singu-
larities are only of regular and of elliptic type are rigid inside the integrable class.
Some of these results can be reproved using normal form theorems for the integrable
system and the symplectic form. However, our technique reveals to be useful also
when there are no normal forms known for degenerate singularities which are invari-
ant by circle actions. In this direction, we prove a rigidity result for this special class
of degenerate singularities of integrable systems.

b-Symplectic geometry is a tool that extends the symplectic structure to manifolds
with boundary by considering the boundary as a hypersurface of the double of the
manifold and considering vector fields which are tangent to this hypersurface along
it. It is then possible to associate a vector bundle (the b-tangent bundle) to model
this situation and work with forms as sections of the dual bundle. This setting (see
[GMPS15], [GMP11] and [GMP14] for the complete overview) provides a singular
model for integrable systems which can be useful for families of physical problems
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for which symplectic manifolds are not enough to describe them properly. We have
adapted some our results on rigidity to the b-symplectic case, proving a b-symplectic
analogue of the symplectic Palais Theorem proved by Miranda in [Mir07] and proving
a b-cotangent lifted rigidity theorem.

To illustrate the application of the results on rigidity at the level of the cotan-
gent lift to physical problems, we take three simple physical examples of integrable
Hamiltonian systems and show that they contain the basic types of non-degenerate
singularities (in the Williamson sense [Wil36]). Then, we see that the model based on
the cotangent lift of a Lie group action produces these three singularities, that is, we
formulate the elliptic, the hyperbolic and the focus-focus singularities as cotangent
lifts.

Finally, we discuss two examples of integrable systems with non-degenerate sin-
gularities in which the author has worked along the master and which we think that
are of interest because they show how the study of non-degenerate singularities is
necessary to understand physical problems. The first example is the semitoric in-
tegrable system with a focus-focus singularity. The second example is a classical
problem in celestial mechanics, the Planar Circular Restricted Three Body Problem
(R3BP).

For the semitoric integrable system, we follow the analysis carried by San Vu
Ngoc in [VuN03] to conclude that the Lagrangian leaf of a focus-focus singularity is
topologically a pinched torus. Then, we study the semi-global invariant of Taylor
Series type that Vu Ngoc introduces in his paper and that characterizes the neigh-
bourhood of a focus-focus singular leaf. For the R3BP, we study a special bifurcation,
the Hopf Bifurcation. In particular, we study the stability of two fixed points of the
system by making an intense use of symplectic transformations and scalings.

Organization of this work

This work is organized as follows. In Section 2 we present all the preliminary contents.
We are going to deal with specific objects of differential geometry and integrable
systems and, although we suppose the reader is familiar with this concepts, we
consider that a Preliminaries section is convenient. In this section we give an overview
of basic contents on differential geometry, symplectic and b-symplectic geometry, Lie
groups theory and dynamical systems.

In Section 3 we state some of the main results in characterization of regular
integrable systems, such as the Arnold-Liouville-Mineur Theorem and the KAM
Theorem. We present the Palais Theorem on the equivalence of close compact group
actions on compact manifolds, which is the previous step, as well as the motivation, of
the new results we present in this master thesis. We also review the recent advances
on non-degenerate singularities of integrable Hamiltonian systems.

Section 4 is the core of this master thesis. We state and prove a new theorem
about the equivalence of the cotangent lift of close group actions on manifolds. We
also prove two new theorems on the equivalence of close integrable systems which
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are consequence of the first one.

In Section 5 we prove the b-symplectic analogues of the theorems on rigidity of
close actions proved in the previous section. We also prove the b-symplectic versions
of the results that are needed to prove the Palais Theorem.

In Section 6 we give the definition of three well-known physical models which
contain the three basic non-degenerate singularities. Namely, we give the formulation
of the harmonic oscillator, which has an elliptic singularity, we give the formulation of
the simple pendulum, which has a hyperbolic singularity, and we give the formulation
of the spherical pendulum, which has a focus-focus singularity. Then, we give the
three singularities as cotangent lifts of group actions.

In Section 7 we give an example of the study of a particular integrable system, the
semitoric integrable system with a focus-focus singularity. We detail all the steps
that lead to the conclusion that the singular leaf of the focus-focus singularity is
topologically a pinched torus and we define the invariant associated to it.

In Section 8 we present another particular integrable system which has a saddle-
focus singularity, the Restricted Three Body Problem. We study the the Hopf Bifur-
cation and we show how the computation of the stability of the equilibrium points
of the system is carried via symplectic transformations.

Finally, in Section 9 we summarize the new results obtained and discuss some
questions that this master thesis has created and are still open. Among them, there
is the natural one of asking if it is possible to relax the hypothesis of the main result
that we have proved (Theorem 4.2). It is true for compact group actions and we
wonder if it is also true for actions not of a compact group but of a locally compact
group, provided that the actions are proper. We give the precise conjecture and
we explain why we could not prove it yet. We also discuss other questions that
this work has raised and that we hope we can answer in the future, concerning for
example other formulations of the cotangent singular models or the application of
the cotangent lift to geometric quantization.

Papers related to this master thesis

There are two papers written by the author and professor Eva Miranda which have
been produced along with this master thesis. One is based on the new results of
section 4 concerning rigidity of lifted actions and it is on arXiv1 [MM20]. The other
one contains the cotangent lift models for non-degenerate singularities of section 6
and is in pre-print.

1"Rigidity of cotangent lifts and integrable systems", [arXiv:2006.12477 math.SG]
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2. Preliminaries

Most of the definitions and results in this section will be well-known by a reader
with notions of differential geometry and Lie groups theory. Nevertheless, a review
of them will be useful to establish the notation that will be used throughout all the
sections.

2.1 Differential geometry

We start defining the essential concepts in differential geometry.

Definition 2.1. A smooth manifold is a two-countable Hausdorff topological space
M such that, for every x ∈ M , there exists ϕ : U → Rk, where U ⊂ M is an
open neighbourhood of x (with the induced euclidean topology) and ϕ is a local
diffeomorphism.

ϕ

ϕ−1

M

U

ϕ(U)

Rn

•ϕ(x)

•x

Figure 1: A local chart in a smooth manifold M is a smooth map to RdimM .

Example 2.2. The circle S1 = {z ∈ C | ‖z‖ = 1} is a smooth manifold of dimension
1 which can be equipped with the following charts. Since any point z ∈ S1 can be
written as z = e2iπc for a unique c ∈ [0, 1), for any given c ∈ [0, 1) the map

νz : R −→ S1

t 7−→ e2iπt

restricted to the interval Ic = (c−1/2, c+1/2), namely µz = νz|Ic is a diffeomor-
phism from Ic to S1 \ {−e2iπc}, which is a neighbourhood of z = e2iπc ∈ S1. Then,
ϕz := µ−1

z is a chart of S1 near z.

Definition 2.3. A curve γ(t) on a smooth manifold M is a differentiable map from
I ⊂ R to M .

Definition 2.4. The tangent space of the manifold M at the point x ∈ M is
Tx(M) := Im dφ0, where φ0(0) = ϕ−1

0 (0) = x. The set of all tangent vectors on
M at x is denoted by TxM .
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The tangent bundle of M , denoted by TM , is defined as the disjoint union of all
the sets of tangent vectors, i.e.:

TM :=
⊔
x∈M

TxM.

It is equipped with the canonical projection

π : TM −→M

(x, v) 7−→ x

With the same setting, the cotangent bundle ofM , denoted by T ∗M , is defined as the
vector bundle over M which is dual to the tangent bundle TM . It is also equipped
with the canonical projection

π : T ∗M −→M

(x, p) 7−→ x

Definition 2.5. The linear tangent mapping of a map f : M → N at x = γ(0) (for a
curve γ on M), denoted by (df)x, is defined as follows. If γ′(0) is the tangent vector
to the curve γ(t) ∈ M , (df)x : Tx(M) → Tf(x)N assigns to it the tangent vector
to the curve f(γ(t)) ∈ N at t = 0. This definition makes the following diagram
commute:

TM TN

M N

πM

df

f

πN

where πM and πN are the natural projections on M and N respectively.

Definition 2.6. A vector field X over a manifold M is a derivation. That is, it is
a R-linear map X : C∞(M,R) → C∞(M,R) such that it satisfies the Leibniz rule,
i.e. X(f, g) = fX(g) + X(f)g. More explicitly, X(f) is a function whose value at
a point x is the directional derivative of f at x in the direction X(x). A vector Xx

at a point x ∈M satisfies Xx(f, g) = f(x)Xx(g) +Xx(f)g(x). The set of all vector
fields over a manifold is denoted by X(M).

Remark 2.7. The linear tangent mapping defined before is also called the differential
of f at x ∈ M . For a smooth vector field X ∈ X(M), the differential acts on X
exactly as (dfx)(X) = X(f). It is more intuitive, though, to think that it is the
directional derivative of f with respect to the vector field X. Notice that dfx is an
element of (TxM)∗, the dual space of TxM .
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Definition 2.8. If X is a smooth vector field on M and dfx is a linear tangent
mapping, the application of dfx to X, denoted by f∗X, is called the pushforward.

Definition 2.9. An integral curve γ of a vector fieldX ∈ X(M) is a curve γ : I →M
such that

dγ

dt
(t) = X(γ(t)) ∀t ∈ I.

Remark 2.10. Locally, integral curves always exist. Take coordinates (Uα, ϕα =
(x1, . . . , xn)) and X =

∑n
i=1X

i∂/∂xi. Then, the equality writes as

n∑
i=1

γ′i(t)
∂

∂xi
=

n∑
i=1

Xi(γ(t))
∂

∂xi
⇐⇒ γ′i(t) = Xi(γ(t)), ∀i = 1, . . . , n,

which is a system of ODE’s whose solution exists locally by Theorem of Existence
of ODE’s.

Definition 2.11. Assume M is a compact manifold. Then, the flow φ of a vector
field X ∈ X(M) is given by

φ : M × R −→ M
(x, t) 7−→ γXx (t)

where γXx (t) is an integral curve of X passing through x.

It is immediate to check, from the definition, that any flow φ satisfies the following
properties:

• φ(x, 0) = x.

• ∀t ∈ R, φ̃t(x) := φ(x, t) is a diffeomorphism.

• φ(φ(x, s), t) = φ(x, s+ t).

Definition 2.12. Given two vector fields X,Y ∈ X(M), the Lie bracket2 between
X and Y is defined as the vector field [X,Y ] that assigns to each f ∈ C∞(M) the
vector field given by

[X,Y ](f) = X(Y (f))− Y (X(f)).

Definition 2.13. A differential r-form (or a differential form of degree r, or, simply,
an r-form) α at a point x on a smooth manifold M is an element αx ∈ ∧r(TxM)∗,
where ∧r is the wedge product of r dual vector spaces. The space of all r-forms on
M is denoted by Ωr(M).

Remark 2.14. The wedge product of r-forms satisfies α ∧ β = (−1)|α||β|β ∧ α, where
|α|, |β| are the degrees of the forms α and β respectively.

2This definition of the Lie bracket is compatible with the definition given in the context of Lie
groups in Definition 2.51.
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Definition 2.15. Let X,X2, . . . , Xr ∈ X be smooth vector fields and α ∈ Ωr(M) an
r-form. The interior product ιXα of α with X is a r−1-form that is defined as

ιXα(X2, . . . , Xr) = α(X,X2, . . . , Xr).

It is also called the contraction between α and X.

Definition 2.16. Let α be a differential r-form on a smooth manifold M . The
exterior derivative of α is the differential (r+1)-form dα defined in the following way.
If X0, X1, . . . , Xr are smooth vector fields defined on M , then

dα(X0, . . . , Xr) =
∑
i

(−1)iXi(α(X0, . . . , X̂i, . . . , Xr)) +

+
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j . . . , Xr),

where [·, ·] is the Lie bracket of vector fields and X̂i denotes the omission of the
element Xi.

Remark 2.17. The exterior derivative satisfies the following properties:

1. If U ⊂M is open, then α|U = β|U ⇒ dα|U = dβ|U .

2. d2 = 0.

3. d(fdx1 ∧ · · · ∧ dxn) = df ∧ dx1 ∧ · · · ∧ dxn.

Remark 2.18. When a differential form α ∈ Ωr(M) satisfies dα = 0, it is called a
closed form. If α = dβ for some β ∈ Ωr−1(M), α is called an exact form.

The generalization of the Lie bracket between vector fields is the Lie derivative.

In the more general definition, the Lie derivative LXR evaluates the change of a
tensor field R along the flow of a particular vector field X on a smooth manifold M .
We list the three most used Lie derivatives:

• The Lie derivative of a scalar function f ∈ C(M) with respect to a vector field
X is LXf = X(f), the directional derivative of f with respect to the vector
field.

• The Lie derivative of a vector field Y ∈ X(M) with respect to a vector field X
is LXY = [X,Y ], the Lie bracket.

• The Lie derivative of a r-form α ∈ Ωr(M) with respect to a vector field X is
LXα = ιXdα+ dιXα, an equality which is known as Cartan’s magic formula.

Definition 2.19. Let ϕ : M → N be a smooth map and let f : N → R be a smooth
function. The pullback of f by ϕ is a smooth map defined by

(ϕ∗f)(x) := f(ϕ(x)), x ∈M.

Let α ∈ Ωr(N) be a differential r-form on N . Let X1, . . . , Xr ∈ X(M) be smooth
vector fields on M . The pullback of α by ϕ is a differential r-form defined by

(ϕ∗α)x(X1, . . . , Xr) := αϕ(x)(dϕx(X1), . . . , dϕx(Xr)), x ∈M.

8



We give some results on integration of differential distributions, which will be
important to understand foliations later.

Lemma 2.20. Let X,Y ∈ X(M). Then, [X,Y ] = 0 ⇐⇒ XY − Y X = 0 ⇐⇒
φXs ◦ φYt = φYt ◦ φXs , where φZr is the flow of the vector field Z at time r.

Proposition 2.21. Let X,Y be two vector fields on a manifoldM such that [X,Y ] =
0. Then, there exists a smooth map F : (−ε, ε)× (−ε, ε) −→M such that:

1. F (0, 0) = p.

2. dF(s,t)

∣∣
p

(
∂
∂s

)
= X(F (s, t))

∣∣
p
.

3. dF(s,t)

∣∣
p

(
∂
∂t

)
= Y (F (s, t))

∣∣
p
.

Proof. Take F = φXs ◦ φYt (p), which satisfies φXs ◦ φYt = φYt ◦ φXs by Lemma 2.20.
Then:

1. F (0, 0) = p.

2. dF(s,t)

∣∣
p

(
∂
∂s

)
= d

ds

(
φXs
) (
φXs ◦ φYt

)
(p) = X(F (s, t)).

3. dF(s,t)

∣∣
p

(
∂
∂t

)
= d

dt

(
φYt
) (
φYt ◦ φXs

)
(p) = Y (F (s, t)).

Definition 2.22. The image of the map F = φXs ◦ φYt is called an integral surface.

Definition 2.23. A differential distribution D of rank k is the object that satisfies
the following properties:

• For every p ∈M , Dp ≤ TpM , i.e. Dp is a subspace of dimension k.

• For every p ∈M , there exists a neighbourhood U ⊂M of p and X1, . . . , Xk ∈
X(U) such that if q ∈ U , then 〈X1(q), · · · , Xl(q)〉 = Dq.

Example 2.24. In M = Rn, D = 〈 ∂
∂x1

, . . . , ∂
∂xk
〉 with k ≤ n is a distribution of rank

k. In fact, it is Rk at every point.

Example 2.25. In M = R3, D = 〈 ∂∂x ,
∂
∂y + x ∂

∂z 〉 is a distribution of rank 2.

Remark 2.26. A distribution of rank 1 is a vector field.

Definition 2.27. Let D be a differential distribution of rank k on a manifold M .
Then, D is integrable if there exists a k-dimensional embedded submanifold S ⊂M
such that for all p ∈ S, TpS = Dp.

The distribution of Example 2.24 is integrable, while the distribution of Example
2.25 is not.

9
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Definition 2.28. A distribution D on a manifold M is involutive if for every pair
(X,Y ) of vector fields locally defined on an open neighbourhood U and for every
p ∈ U , [X,Y ]p ∈ Dp.

Theorem 2.29 (Frobenius Theorem). A distribution D is integrable if and only if
it is involutive.

Definition 2.30. A leaf of an integrable distribution is a maximal integrable sub-
manifold.

Remark 2.31. In the definition of a leaf Λ of an integrable distribution, maximal
means that if there exists an integrable submanifold S such that Λ ∩ S 6= 0, then
S ⊂ Λ.

Remark 2.32. The leaf Λp at a point p in a manifold with an integrable distribution
can be defined as the set:

Λp = {q ∈M | p can reach q following paths in the integrable submanifold}.

2.2 Complex manifolds

In Section 6 we are going to deal with complex manifolds. We give its basic notions
and the construction of the tangent and cotangent bundles of a complex manifold.

Definition 2.33. Let D be an open subset of Cn and let f : D −→ C be a complex-
valued function on D. We say that f is holomorphic in D if each point p ∈ D has
an open neighborhood U such that f writes as

f(z) =
∞∑

k1,...,kn=0

ck1,...,kn(z1 − a1)k1 · · · (zn − an)kn

for all z ∈ U .

Remark 2.34. For a map f : D ⊂ Cn −→ E ⊂ Cm, we say it is holomorphic if the
component functions f1, . . . , fm : D −→ C are holomorphic.

Proposition 2.35. If f : D ⊂ Cn −→ C is holomorphic, then it satisfies the Cauchy-
Riemann equations. I.e., if f = g + ih with g, h : D −→ R and zi = xi + iyi with
xi, yi ∈ R, then, for all i = 1, . . . , n:

∂g

∂xi
=
∂h

∂yi
and

∂g

∂yi
= − ∂h

∂xi
. (2.1)

Definition 2.36. An holomorphic atlas A = {(Uα, zα)}α∈A is a covering of a topo-
logical space X by open subsets Uα ⊂ Xα∈A, together with a set of homeomorphisms
φα : Uα −→ DαCn such that the functions gα,β = φα ◦ φ−1

β : φβ(Uα ∩ Uβ) −→
φα(Uα ∩ Uβ) are holomorphic. Each φα : Uα −→ Di is called a coordinate chart.
The atlas is called maximal if whenever (U, z) is a local complex chart and (U, z) is
compatible with (Uα, zα)∀α ∈ A, (U, z) ∈ A.

10



Definition 2.37. A complex analytical structure on a topological manifold of real
dimension 2n is a maximal holomorphic atlas.

Definition 2.38. A complex manifold is a topological manifold together with a
complex analytical structure.

Remark 2.39. Given a complex manifold X of complex dimension n with atlas A =
{(Uα, zα)}α∈A, one can always consider the underlying real differentiable manifold
X0 of real dimension 2n with the coordinates inherited from the complex structure
on X.

Definition 2.40. A complex structure on a real vector space V is a R-linear endo-
morphism J such that J ◦ J = −Id.

Example 2.41. The product by i on Cn:

·i : Cn −→ Cn (2.2)
(. . . , xi + iyi, . . . ) 7−→ (. . . , ixi − yi, . . . ) (2.3)

induces the following complex structure J on Cn ∼= R2n:

J : R2n −→ R2n (2.4)
(. . . , xi, . . . , yi, . . . ) 7−→ (. . . ,−yi, . . . , xi, . . . ) (2.5)

And the following diagram commutes

Cn Cn

R2n R2n

∼=

·i

J

∼=

In matrix form, the linear endomorphism J writes as

J : R2n −→ R2n (2.6)(
x
y

)
7−→ J̄

(
x
y

)
=

(
−y
x

)
(2.7)

with J̄ =

(
0 −In
In 0

)
, which has eigenvalues ±i with multiplicity n and has the

11
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following corresponding eigenspaces:

E+i =

〈


1
0
...
0
−i
0
...
0


,



0
1
...
0
0
−i
...
0


, . . . ,



0
...
0
1
0
...
0
−i



〉
and E−i =

〈


1
0
...
0
i
0
...
0


,



0
1
...
0
0
i
...
0


, . . . ,



0
...
0
1
0
...
0
i



〉

(2.8)
Notice that dimCE+i = dimCE−i = n and that E+i ⊕ E−i = C2n.

Consider a complex manifoldX of complex dimension n. It is not obvious which is
the tangent space to X at a point for the next reason. Suppose that X0 is its underly-
ing real differential manifold of dimension 2n. For any a = (x1, . . . , xn, y1, . . . , yn) ∈
U ⊂ X0, the tangent space of X0 at a is defined as TaX0 := Im dφ0, where
φ0(0) = ϕ−1

0 (0) = x and ϕ0 is a chart of X0 centered at 0. The canonical basis
of TaX0

∼= R2n is

{ ∂

∂x1

∣∣∣∣
a

, . . . ,
∂

∂xn

∣∣∣∣
a

,
∂

∂y1

∣∣∣∣
a

, . . . ,
∂

∂yn

∣∣∣∣
a

}.

The complexification of TaX0, i.e., (TaX0)C = TaX0 ⊗R C = TaX0 ⊕ iTaX0, has
then real dimension 4n, twice the dimension of X. In consequence, it is natural to
take as the tangent space of X at a only a part of (TaX0)C, in order to deal with
something similar to the tangent space for real differential manifolds.

The complex structure J : R2n → R2n of Example 2.41 allows us to split (TaX0)C

into the sum of two convenient subspaces. By identification of TaX0 with R2n, J
induces the map Ja

Ja :


∂
∂xi

∣∣∣∣
a

7−→ ∂
∂yi

∣∣∣∣
a

∂
∂yi

∣∣∣∣
a

7−→ − ∂
∂xi

∣∣∣∣
a

,

which is equivalent to J on TaX0.

Exactly as in Example 2.41, by C-linear extension of Ja on (TaX0)C we obtain
the following eigenspaces

T 1,0
a X : = {w ∈ (TaX0)C | Jaw = iw}, the holomorphic tangent space and,

T 0,1
a X : = {w ∈ (TaX0)C | Jaw = −iw}, the anti-holomorphic tangent space.

for which we can take, respectively, the basis

∂

∂zi

∣∣∣∣
a

=
1

2

(
∂

∂xi

∣∣∣∣
a

− i ∂
∂yi

∣∣∣∣
a

)
,

∂

∂z̄i

∣∣∣∣
a

=
1

2

(
∂

∂xi

∣∣∣∣
a

+ i
∂

∂yi

∣∣∣∣
a

)
, i = 1, . . . , n

Notice that (TaX0)C = T 1,0
a X ⊕ T 0,1

a X, and that dimC T
1,0
a X = dimC T

0,1
a X = n.
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Lemma 2.42. Let f : D ⊂ Cn → C and suppose f = g + ih with g, h : D −→ R.
Then, the Cauchy-Riemann Equations (2.1) are equivalent to ∂f

∂z̄i
= 0 ∀i = 1, . . . , n.

Proof. For all i = 1, . . . , n:

∂

∂z̄i
f =

∂

∂z̄i
(g + ih) =

1

2

(
∂

∂xi
(g + ih) + i

∂

∂yi
(g + ih)

)
(2.9)

=
1

2

((
∂

∂xi
(g)− ∂

∂yi
(h)

)
+ i

(
∂

∂xi
(h) +

∂

∂yi
(g)

))
. (2.10)

Hence,
∂

∂z̄i
f = 0 ⇐⇒ ∂g

∂xi
=
∂h

∂yi
,
∂g

∂yi
= − ∂h

∂xi
. (2.11)

Each partial derivative is evaluated at a, which we omit for simplicity.

Remark 2.43. If f is an holomorphic function, ∂f
∂z̄i

= 0 for any i. Then, if w ∈ T 0,1
a X,

w(f) = 0. Since we usually want to work with holomorphic functions, it makes sense
to take T 1,0

a X as the tangent space of X at a.

Definition 2.44. Let X be a complex manifold and take a ∈ X. We define the
holomorphic tangent space or, simply, the tangent space of X at a as T 1,0

a X.

Definition 2.45. The holomorphic tangent bundle or, simply, the tangent bundle of a
complex manifold X is defined as TX =

⊔
a∈X T

1,0
a X = {(a,w) | a ∈ X,w ∈ T 1,0

a X},
and it is equipped with the natural projection π : (a,w) 7→ a : TX → X.

The cotangent space at a point in a complex manifold is defined as the dual space
to the tangent space, analogously to what it is done in the real differential case.

Definition 2.46. Let a be a point in a complex manifold X and consider T 1,0
a X, the

tangent space of X at a. The dual space of T 1,0
a X, i.e. (T 1,0

a X)∗ is the holomorphic
cotangent space or, simply, the cotangent space of X at a.

Although the cotangent space is already well-defined, we are going to prove that
we can also define it from the cotangent space of a real differentiable manifold in
the same way we constructed the tangent space, and that the two definitions are
equivalent.

Take again X0, the underlying real differential manifold of dimension 2n corre-
sponding to X. For any a = (x1, . . . , xn, y1, . . . , yn) ∈ U ⊂ X0, the cotangent space
of X0 at a is defined as T ∗aX0 := HomR(TaX0,R), where TaX0 is the tangent space
of X at a. The canonical basis of T ∗aX0

∼= R2n is

{(dx1)a, . . . , (dxn)a, (dy1)a, . . . , (dyn)a}.

The complexification of T ∗aX0 is (T ∗aX0)C = T ∗aX0⊗RC = T ∗aX0⊕iT ∗aX0. Again,
it has real dimension 4n and we want to take as the cotangent space of X at a only
a subspace of (T ∗aX0)C of dimension 2.

13
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The splitting of (T ∗aX0)C into the sum of two subspaces is analogous to the one
applied for the complexified tangent space. If we consider (dzi)a = (dxi)a + i(dyi)a
and (dz̄i)a = (dxi)a − i(dyi)a we can define:

(T ∗aX)1,0 : = 〈(dz1)a, . . . , (dzn)a〉, the holomorphic cotangent space, and

(T ∗aX)0,1 : = 〈d(̄z1)a, . . . , (dz̄n)a〉, the anti-holomorphic cotangent space.

It is clear that (T ∗aX0)C = (T ∗aX)1,0 ⊕ (T ∗aX)0,1 and that

dzi

(
∂

∂zj

)
= δij , dz̄i

(
∂

∂z̄j

)
= δij , dz̄i

(
∂

∂zj

)
= dzi

(
∂

∂z̄j

)
= 0. (2.12)

where we omit the evaluation at a. Then, we have proved the following.

Proposition 2.47. Let a ∈ X a point in a complex manifold. Then, the cotangent
space (T 1,0

a X)∗ of X at a coincides with (T ∗aX)1,0.

If f : D ⊂ Cn −→ C, we can write

(df)a =
n∑
i=1

∂f

∂xi
(a)(dxi)a +

n∑
i=1

∂f

∂yi
(a)(dyi)a,

or, in the new basis,

df =
n∑
i=1

∂f

∂zi
(a)(dzi)a +

n∑
i=1

∂f

∂z̄i
(a)(dz̄i)a) = ∂f + ∂̄f.

Since any holomorphic function f satisfies ∂̄f and we want (df)a to be an element
of the cotangent space, it becomes clear why we chose (T ∗aX)1,0 = 〈(dz1)a, . . . , (dzn)a〉
as the cotangent space of X at a.

We end this section with the most basic example of a complex manifold.

Example 2.48. Take X = C, a complex manifold with coordinates z = x + iy. The
tangent space at m ∈ C is:

T 1,0
m C =

〈
∂

∂z

∣∣∣∣
m

〉
=

〈
∂

∂x

∣∣∣∣
m

− i ∂
∂y

∣∣∣∣
m

〉
.

So, if w ∈ T 1,0
m C, then:

w = (a+ ib)(
∂

∂x

∣∣∣∣
m

− i ∂
∂y

∣∣∣∣
m

) =

(
a
∂

∂x

∣∣∣∣
m

+ b
∂

∂y

∣∣∣∣
m

)
+ i

(
b
∂

∂x

∣∣∣∣
m

− a ∂
∂y

∣∣∣∣
m

)
.

The cotangent space at m is:

(T ∗mC)1,0 = 〈(dz)m〉 = 〈(dx)m + i(dy)m〉.

So, if ω ∈ (T ∗mC)1,0, then:

ω = (a+ ib) ((dx)m + i(dy)m) = (a(dx)m − b(dy)m) + i (b(dx)m + a(dy)m) .
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2.3 Lie groups theory

In this section, we introduce the basics of Lie groups and Lie group actions, one of
the most important tools in differential geometry and mathematical physics.

Definition 2.49. A finite-dimensional smooth manifold G is called a Lie group if it
has a group structure and if its group operations

µ : (x, y) 7→ x · y : G×G→ G,

ι : x 7→ x−1 : G→ G,

i.e. the group product and the group inversion, are smooth.

Some examples of Lie groups are R and C equipped with the addition operation
and GL(n,R) and GL(n,C) equipped with the matrix product. A classical set of
Lie groups is the family of matrix Lie groups.

Definition 2.50. A matrix Lie group is a closed subgroup G of GL(n,C).

The most studied Lie groups are, in fact, matrix Lie groups. Some examples of
matrix Lie groups are:

• SL(n,R) = {A ∈ GL(n,R) | detA = 1},

• O(n,R) = {A ∈ GL(n,R) | AtA = I},

• SO(n,R) = {A ∈ GL(n,R) | AtA = I, detA = 1},

• U(n) = {A ∈ GL(n,C) | A∗A = I},

• SU(n) = {A ∈ GL(n,C) | A∗A = I, detA = 1}

• Sp(2n,R) = {A ∈ GL(2n,R) | AtJA = J}, with J a nonsingular skew-
symmetric matrix (the group of symplectic matrices).

Associated to any Lie group, there is a Lie bracket and a Lie algebra. For any G
Lie group, TeG, the tangent space of the Lie group G at the identity element e, is
denoted by g. By definition, g is a real vector space. Equipped with the addition, it
is a commutative Lie group of the same dimension as G.

Definition 2.51. Let V be a vector space. The bilinear map [·, ·] : V ×V → V that
satisfies [X,X] = 0 and [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 (the Jacobi identity)
for any X,Y, Z ∈ V is called the Lie bracket.

Definition 2.52. Let G be a Lie group. Then, the tangent space of G at the identity,
g = TeG, provided with the Lie bracket [·, ·] : g×g→ g, is the Lie algebra associated
to G.

Remark 2.53. Lie algebra g of a group G can be thought of the linearization of G
near the identity element.
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Example 2.54 (Computation of the Lie algebra of SL(2,R)). To compute of sl(2,R),
the Lie algebra of SL(2,R), suppose X ∈ sl(2,R). Then, X can be represented
by the tangent vector at 0 of the path γ : (−ε, ε) ⊂ R → SL(2,R) such that
γ(0) = eSL(2,R) = I. That is, X = γ′(0).

Then, γ(t) =

(
a(t) b(t)
c(t) d(t)

)
.

Since γ(0) = I, a(0) = 1, b(0) = 0, c(0) = 0, d(0) = 1. Since SL(2,R) = {A ∈
GL(2,R) | detA = 1} and γ(t) ∈ SL(2,R), a(t)d(t)− b(t)c(t) = 1 for all t ∈ (−ε, ε).
Deriving this expression, it follows that a′(t)d(t)+a(t)d′(t)− b′(t)c(t)− b(t)c′(t) = 0.
Evaluating at t = 0, the following holds: a′(0) + d′(0) = 0 (equivalently, the trace of
γ′(0) is 0). Then,

X = γ′(0) =

(
a′(0) b′(0)
c′(0) −a′(0)

)
.

We conclude that sl(2,R) = {A ∈ GL(2,R) | tr(A) = 0}.

Some examples of Lie algebras are:

• sl(n,R) = {A ∈ GL(n,R) | tr(A) = 0} is the Lie algebra of SL(n,R),

• o(n,R) = {A ∈ GL(n,R) | At +A = 0} is the Lie algebra of O(n,R),

• u(n) = {A ∈ GL(n,C) | A∗ +A = 0} is the Lie algebra of U(n).

For all these Lie algebras, as well as for any other Lie algebra associated to a
matrix Lie group, the Lie bracket of two elements X,Y of the algebra takes the form
[X,Y ] = XY − Y X.

Taking into account that a Lie group is, in particular, a smooth manifold, it
makes sense to consider the derivative of a Lie group homomorphism. The following
result shows that a homomorphism of Lie groups induces a homomorphism of Lie
algebras.

Proposition 2.55. Let φ : G → H be a Lie group homomorphism which is differ-
entiable at eG. Then, the differential dφeG : TeGG = g→ TeHH = h is a Lie algebra
homomorphism, i.e, a linear map that satisfies dφ([X,Y ]g)eG = [dφ(X)eG , dφ(y)eG ]h
for all X,Y ∈ g.

Proof. Take x ∈ G and consider the map Adx : y 7→ xyx−1 : G → G, the x-
conjugation map. Its derivative at eG is Adx := d(Adx)eG : g → g, the x-adjoint
map.

Then, the map Ad : x 7→ Adx : G → GL(g), where GL(g) is the Lie group of
all bijective linear maps on g, is a homomorphism of groups. Its derivative at eG is
ad := d(Ad)eG : g→ L(g, g), where L(g, g) is the vector space of all linear mappings:
g→ g.

16



The Lie bracket can be now reformulated in the following way:

[X,Y ] := (adX)(Y ) ∀X,Y ∈ g,

which is a definition equivalent to 2.52.

Since φ is a homomorphism, it is clear that:

φ((Adx)(y)) = φ(xyx−1) = φ(x)φ(y)φ(x)−1 = ((Adφ(x))(φ(y)).

Differentiating on both sides with respect to y at y = eG and taking the direction
Y ∈ g:

dφ(Adx(Y ))eG = (Adφ(x))(dφ(Y )eG).

Differentiating on both sides with respect to x at x = eG and taking the direction
X ∈ g:

dφ((adX)(Y ))eG = (ad(dφ(X)eG))(dφ(Y )eG),

which is equivalent to

dφ([X,Y ]g)eG = [dφ(X)eG , dφ(y)eG ]h.

What is interesting about Lie algebra g and the Lie Bracket is that they make it
possible to recover the local structure of the Lie group G. Then, it is common that
the study of a group G is done through the study of g, which is linear.

A principal connection between the Lie algebra g and the Lie group G is the
exponential map. Before introducing it, it is necessary to talk about left-invariance
and right-invariance of vector fields.

For any element x of any group G, it is possible to define the left and right
multiplications by x, respectively, by

Lx : y 7→ xy : G→ G,

Rx : y 7→ yx : G→ G.

Definition 2.56. A vector field X defined on a Lie group G is called left invariant
if, for all x, y ∈ G,

X(Lxy) = Ty(LxX(y)),

and it is called right invariant if, for all x, y ∈ G,

X(Rxy) = Ty(RxX(y)).

In the particular case of taking y = eG, the two conditions in 2.56 define two
special left and right invariant vector fields, XL and XR, which satisfy, respectively,
XL(x) = Te(LxX(e)) and XL(x) = Te(RxX(e)).

17



Master Thesis

Definition 2.57. The exponential map from g into G is defined as

exp : X 7→ h(1) : g→ G,

where hX : (R,+) → (G, ·) is the differentiable homomorphism such that dhX
dt (0) =

X.

With the definition of the exponential map, Proposition 2.55 can be extended to
the following commutative diagram:

g h

G H

expG

dφeG

φ

expH

The following theorem proves that the exponential map is well-defined.

Theorem 2.58. Given X ∈ g, there is a unique homomorphism hX : (R,+)→ (G, ·)
which is differentiable at t = 0 and its differential there (dhXdt (0)) is equal to X. It
is exactly the integral curve of XL and also of XR that starts at e ∈ G, and it is
complete, in the sense that it is defined for all t ∈ R.

Proof. Consider X ∈ g and φt, the flow of XL(x) = Te(LxX(e)), which is left invari-
ant. It satisfies φt = R(φt(1)) [DK99]. Then, it is clear that φt+s(1) = φs(φt(1)) =
φt(1)·φs(1). This relation shows that, given t, if φt(1) is defined, then, for some ε > 0,
φs(1) is defined for s ∈ (t−ε, t+ε). This implies that φt is a differentiable homomor-
phism defined for all t ∈ R, and we can denote it by hX : t 7→ φt(1) : (R,+)→ (G, ·).
An analogous reasoning shows that the flow of XR(x) = Te(LxX(e)) defines the
same homomorphism hX .

Now, take h = hX : (R,+)→ (G, ·) such that h is differentiable at t = 0 and its
differential there is equal to X. Since h is a diffeomorphism around 0, it is possible
to differentiate the expression:

h(s)h(t) = h(s+ t) = h(t+ s) = h(t)h(s)

respect to s and evaluate at s = 0.

From the leftmost equality, one obtains that:

dh

dt
(t) = TeR(h(t))(X) = XR(h(t))),

indicating that h(t) is an integral curve of XR. Since h(0) = 1, h is uniquely
determined by X.

From the rightmost equality, one concludes that h(t) is an integral curve of XL,
uniquely determined by X.
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The exponential map is a smooth map and locally it is a diffeomorphism. It has
many other "nice" properties that are not of use in this work but can be found on
[DK99] in great detail.

We introduce now Lie group actions.

Definition 2.59. Let G be a Lie group and let M be a smooth manifold. A Lie
group action of G on M is a smooth collection of smooth maps ρg : M → M with
g ∈ G that satisfies ρg·h = ρg ◦ ρh and ρe = id, where e is the identity element of G.
The associated map

ρ : (g,m) 7→ g ·m : G×M →M,

is smooth.

Example 2.60. Let G be a Lie group and consider the action α of G on itself defined
by left multiplication:

ρ : (g1, g2) 7→ g1 · g2 : G×G→ G.

It is clear that it defines a Lie group action because:

1. The induced mapping ρg1 : g2 7→ g1 · g2 : G → G is a diffeomorphism for any
g1, g2 ∈ G.

2. The induced mapping satisfies ρg1·g2(g3) = (g1 · g2) · g3 = g1 · (g2 · g3) =
ρg1 ◦ ρg2(g3) for any g1, g2, g3 ∈ G.

Example 2.61. Let M be a compact manifold and X ∈ X(M) (X is a vector field
defined on M). Then, the flow (for definition of flow, see Section 2.7) of X at any
point x ∈M , φ : (t, x) 7→ φt(x) : R×M →M defines a Lie group action because:

1. φt(x) is defined for all t ∈ R, because M is compact.

2. φt(x) is a diffeomorphism.

3. φt+s(x) = φt ◦ φs(x).

Example 2.62. Take G = GL(n,R) and M = Rn. Then

ρ : GL(n,R)× Rn −→ Rn

(A, x) 7−→ A · x

defines a Lie group action because, for any A,B ∈ (n,R):

1. ρA is a differentiable map and its inverse is ρA−1 , which is also differentiable.

2. ρAB(x) = (AB)x = A(Bx) = ρA ◦ ρB(x).

19



Master Thesis

Example 2.63. TakeG = S1 andM = S2, the unit sphere on R3. Consider cylindrical
coordinates (r, θ, z). The map

ρ : S1 × S2 −→ S2

(t, (r, θ, z)) 7−→ (r, θ + t, z)

is a Lie group action. The reader can check that, for a fixed t ∈ S1, ρt is a diffeo-
morphism and satisfies the composition property.

When dealing with Hamiltonian dynamical systems, it is usual to consider non-
compact Lie groups. Then, it is useful to have a less strong condition than compact-
ness for Lie group actions.

Definition 2.64. A Lie group action ρ : G×M →M is proper if the action map

ρ : (g,m) 7→ (g ·m,m) : G×M →M ×M,

is proper, in the sense that the preimage of any compact set is a compact set.

In the following list there are some properties of proper Lie group actions, and
many others can be found on [GGK02].

• If the Lie group G is compact, the action on the manifold M is proper.

• The restriction of a proper action to any closed subgroup H ⊂ G is a proper
action on M .

• The restriction of a proper action to any invariant subset U ⊂ M is a proper
action U .

• If the action is proper, the evaluation map

evm : G→M, g 7→ g ·m

is proper ∀m ∈M .

Like for any group action, it is possible to define stabilizers and orbits of the
points in the manifold.

Definition 2.65. Let ρ : G×M →M be a Lie group action. For each m ∈M , the
stabilizer or isotropy group of m is

Gm = {g ∈ G | g ·m = m} ⊂ G.

The stabilizer Gm is always a Lie group and, if the action is proper, Gm is
compact. If Gm = {e},∀m ∈ M , the action is called free action, while it is called
locally free action if all the Gm’s are discrete.
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Definition 2.66. Let ρ : G×M →M be a Lie group action. For each m ∈M , the
orbit of m is

G ·m = {g ·m | g ∈ G} ⊂M.

The manifold M can be partitioned in orbits, as the evaluation map evm : g 7→
g · m induces a bijection between the quotient G/Gm and the orbit G · m. The
quotient set M/G is precisely the set of orbits in which M decomposes.

Example 2.67. Take G = S1 and M = S2 and consider the action ρ in Example
2.63. The diffeomorphism ρt can be interpreted as the planar rotation of S2 of angle
t around the z-axis. Then, it is clear that M/G, the set of orbits, is the interval
[−1, 1].

Example 2.68. Like in Example 2.61, take M a compact manifold and X ∈ X(M).
The action of R on M given by the flows of X induces a natural partition of M into
orbits of the form γx = {(φt(x)) | t ∈ T}. That is the reason for the definition of
orbit of a dynamical system in Section 2.7.

Lemma 2.69. Let ρ : G×M →M be a proper Lie group action. Then, every orbit
G ·m is a closed subset of M .

Proof. A proper map between smooth manifolds is closed. Then, as the action is
proper, the evaluation map evm : g 7→ g ·m is proper and closed. Hence, every orbit
is closed.

Definition 2.70. Let X be a topological space. A σ-algebra on X is a familyM of
subsets of X such that ∅ ∈ M, for every S ∈M, X \S ∈M and if S1, S2, · · · ∈ M is
a countable family, then ∪∞i=1Si ∈M. The smallest of such σ-algebras that contains
all the open subsets of X is called Borel σ-algebra on X.

Definition 2.71. Let X be a topological space with a σ-algebra M. A measure
µ on X is a mapping µ : M → R≥0 ∪ {∞} such that, for every S1, S2, · · · ∈ M
countable family of pairwise disjoint elements,

µ(∪∞i=1Si) =
∞∑
i=1

µ(Si),

where we assume that a+∞ =∞ for any a ∈ R≥0∪{∞}. IfM is a Borelσ-algebra,
µ is called a Borel measure.

If X is a locally compact Hausdorff space, and µ a Borel measure on X, we say
that µ is regular if, for every element S of the Borel σ-algebra on X, the following
two conditions are satisfied:

µ(S) = inf{µ(U) | A ⊂ U,U open},

µ(S) = sup{µ(K) | K ⊂ A,K compact}.
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Definition 2.72. Let G be a locally compact group. The left Haar measure on G is
a regular Borel measure µ on G that is finite on compact subsets of the Borel algebra
and that is left invariant, i.e., µ(g · S) = µ(S) for every g ∈ G and every element S
of the Borel σ-algebra of G.

The right Haar measure can be defined in an analogous way. In every compact
Lie group G, every left invariant measure is also a right invariant measure, and vice
versa [DK99]. Although it is not a direct result, and we will not prove it (a proof can
be found on [DK99]), the Haar measure exists on every locally compact Lie group.

Theorem 2.73. Let G be a locally compact group. Then, there exists a left (and
right) Haar measure µ on G which is unique up to a scalar multiple. Moreover, if G
is compact, there is a unique Haar measure such that the integration over all G is 1
(i.e.

∫
G 1dµ = 1, and it is called the normalized Haar measure on G (or, simply, the

Haar measure on G).

The definition of the Haar measure is quite technical but, for instance, the Haar
measure on Rn is the usual Lebesgue measure. This way, equipping a Lie group G
with this measure and using the general theory of Lebesgue integration, it is possible
to define the integral of all Borel measurable functions f on G.
Example 2.74. Take G = (R \ {0}, ·). Then, a Haar measure µ is

µ(S) =

∫
S

1

|x|
dx,

for any Borel subset S of G. If, for instance, S = [a, b], with 0 < a < b,

µ(S)

∫ b

a

1

|x|
dx = log (b/a).

Now, if the interval S is multiplied by an element g ∈ G, the measure of gS is

µ(gS) = log ((gb)/(ga)) = log ((b)/(a)) = µ(S).

So, indeed, µ is left invariant (it is also right invariant).
Example 2.75. If G = GL(n,R) a Haar measure for any for any Borel subset S of G
is

µ(S) =

∫
S

1

|det(X)|n
dX,

where dX is the Lebesgue measure on Rn2 .

The uniqueness of the Haar measure stated on Theorem 2.73, when the Lie group
is compact, makes it possible to apply averaging arguments.

Definition 2.76. Let G be a compact Lie group. Then, the integration of any map
f ∈ C(G) over all the elements of G with respect to the Haar measure µ, i.e.:

f 7→
∫
G
f dµ : C(G)→ R,

is called averaging over G.
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We are going to use averaging, in particular, in the proof of Theorem 5.5.

For many real Lie groups it is possible to consider their complexification, such as
we did with differential manifolds. We have the following definition of the complex-
ification of a compact Lie group.

Definition 2.77. Let K be a compact Lie group. An analytic complexification of K
is a complex analytic group G together with a Lie group homomorphism i : K −→ G
such that, if f : K −→ H is another Lie group homomorphism into a complex
analytic group H, then there exists a unique analytic homomorphism F : G −→ H
such that f = F ◦ i.

In the same way, we can consider the complexification of a Lie algebra, which is
easier to define because it is only the complexification of a real vector space. To get
from a real Lie algebra representation to a complex one, we extend the action of real
scalars to complex scalars. In the case of real matrices, complexification is essentially
allowing complex coefficients and using the same rules for multiplying matrices as
before.

Definition 2.78. The complexification V C of a real vector space V is the space of
pairs (v1, v2) of elements of V with product by a+ ib ∈ C given by

(a+ ib)(v1, v2) = (av1 − bv2, av2 + bv1)

This definition makes it possible to think of the complexification of V as V C =
V + iV . Now, for any real Lie algebra g, the complexification gC is the set of pairs of
elements (X,Y ) of g, with the usual rule for the product by complex scalars, which
can be thought of as gC = g + ig.

The Lie bracket on g extends in a natural way to a Lie bracket on gC by:

[(X1, Y1), (X2, Y2)] = ([X1, X2]− [Y1, Y2], [X1, Y2] + [Y1, X2]),

which can be thought as the following computation:

[X1 + iY1, X2 + iY2] = [X1, X2]− [Y1, Y2] + i([X1, Y2] + [Y1, X2])

Example 2.79. The Lie group G = GL(n,R) has the Lie algebra gl(n,R) ⊂ gl(n,C)
of real n × n matrices. Its complexification is nothing else than gl(n,C), since
gl(n,R)C = gl(n,R) + igl(n,R) = gl(n,C).

Example 2.80. The Lie group U(n) has the Lie algebra u(n) ⊂ gl(n,C) of anti-
Hermitian matrices. Since the product of the anti-Hermitian matrices by i gives the
Hermitian matrices, the complexification u(n)C of u(n) is exactly gl(n,C).

Remark 2.81. With these two examples, one can see that different Lie algebras can
have the same complexification.
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Example 2.82. The Lie groups O(n,R) and SO(n,R) have the same Lie algebra, since
SO(n,R) is the connected component of O(n,R) that contains the identity. The
complexification of the Lie algebra so(n,R) of the real anti-symmetric matrices is
naturally the Lie algebra of the complex anti-symmetric matrices so(n,C) ⊂ gl(n,C),
since so(n,R)C = so(n,R) + iso(n,R) = so(n,C).

The topology of the simple orthogonal group over the complex numbers is quite
simple. As well as SO(n,R), SO(n,C) is a connected Lie group, since any element
can be joined by a path to the identity. The elements of SO(n,C) can be thought
as rotations and can be identified in a hyperbolic basis with the invertible elements
of C, i.e., with C \ {0}. The topology of this set can be, at its turn, identified to the
Cartesian product S × R.

2.4 Symplectic geometry

Symplectic geometry is a branch of differential geometry which is fundamental for
the formulation of Hamiltonian mechanics, for geometric quantization, and for con-
sidering many other problems. It is also the main setting in which the new results
of this work actually belong.

Definition 2.83. Given an even dimensional manifold M2n, we say a smooth 2-
form ω is a symplectic form if ω is closed (dω = 0) and non-degenerate (∀α ∈
Ω1(M), ∃!X ∈ X(M) that solves ιXω = α).

Definition 2.84. A symplectic manifold is a pair (M,ω) such thatM is a differential
manifold and ω is a closed non-degenerate 2-form on M .

Remark 2.85. The condition of non-degeneracy of ω stated in the definition is equiva-
lent to the condition that ω is a volume form, which means that ωn := ω∧· · ·∧ω 6= 0,
where n is half the dimension of the manifold M .
Example 2.86. Consider R2n with the standard coordinates x1, . . . , xn, y1, . . . , yn.
The standard 2-form

ωst =

n∑
i=1

dxi ∧ dyi

is a symplectic form because dωst = 0 and ωnst = n! · dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn 6= 0.
Example 2.87. Let Σ be an orientable surface and take ω ∈ Ω2(M) a volume form
in Σ. Then, ω is closed because is a form of degree 2, the maximal degree on the
manifold. It is also clear that ω is non degenerate, as ωn = ω1 6= 0 because the
dimension of Σ is 2. Then, (Σ, ω) is a symplectic manifold.

Definition 2.88. A diffeomorphism ϕ : (M1, ω1) → (M2, ω2) between symplectic
manifolds is called a symplectomorphism if ϕ∗ω2 = ω1.

When we study integrable Hamiltonian systems it is quite common to apply
changes of coordinates. It is essential to preserve the symplectic structure of the
underlying manifold along these changes, and this can be achieved if the transfor-
mations are symplectic.
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Definition 2.89. A symplectic transformation of a symplectic vector space (V 2n, ω)
is a linear transformation L : V −→ V which preserves ω:

ω(Lu,Lv) = ω(u, v).

If ω is written as a matrix Ω in some fixed basis of V , and L is written as a matrix
M , the cpreserving condition is equivalent to the condition that M is a symplectic
matrix:

MTΩM = Ω.

The following result basically states that every symplectic manifold is locally
equivalent to (R2n, ωst), which is a big result in symplectic geometry.

Theorem 2.90 (Darboux). Let (M2n, ω) be a symplectic manifold. Then, for all
p ∈M , there exists a local coordinate system (x1, y1, . . . , xn, yn) such that

ω =

n∑
i=1

dxi ∧ dyi

in a neighbourhood U of p.

Proof. We use the exponential map. Let p be a point in M and

expp : U ⊂ TpM −→ V ⊂M
u 7−→ γu(1)

is a local diffeomorphism. Locally, (M,ω) is symplectic, so TpM is symplectic
with symplectic form ω̃1 = exp∗ ω. We express ω̃1 in a symplectic base {ei, fi}ni=1

and we get ω̃0, which satisfies:

• ω̃0(ei, fj) = δij ,

• ω̃0(ei, ej) = 0,

• ω̃0(fi, fj) = 0.

In this symplectic base, if J is the matrix
(

0 −In
In 0

)
, then ω̃0(u, v) = uT · J · v.

Now, we define ω0 := (exp−1)∗ω̃0 and we apply the Moser’s trick. We define the
path

ωt = (1− t)ω0 + tω1 (2.13)

which is a path of closed forms, since dωt = (1−t)dω0+tdω1 = 0 because dω0 = dω1 =
0. The forms ωt are locally non-degenerated, because det(ωij(p)) 6= 0 and, since det
is a continuous map, there exists a neighbourhood U of p such that det(ωij(q)) 6= 0
for any q ∈ U .
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By Poincaré Lemma, ω0 − ω1 = dβ (because ω1 and ω0 are closed and d is
linear). So ω0 − ω1 is closed and, then, locally exact. Then, there exists a vector
field Xt such that ιXtωt = −β. Let ϕt be the flow of Xt and let us prove that
(ϕt)

∗ωt = ω0 = (ϕ1)∗ω1:

d

dt
(ϕ∗tωt) = ϕ∗t

(
d

dt
ωt + LXtωt

)
= (2.14)

= ϕ∗t (−ω0 + ω1 + dιXtωt + ιXtdωt) = (2.15)
= ϕ∗t (dβ + d(−β) + 0) = (2.16)
= ϕ∗t (0) = 0 (2.17)

Then, ϕ∗tωt is constant and, since ϕ∗0ω0 = 0, we have that (ϕt)
∗ωt = ω0.

Definition 2.91. LetH ∈ C∞ be a smooth function on a symplectic manifold (M,ω)
(in Physics, a Hamiltonian, the function of total energy). The Hamiltonian vector
field XH associated to H is defined as the only solution of ιXH

ω = −dH.

Example 2.92. Take (R2n, ω =
∑
dxi ∧ dyi). Let us write the flow of XH :

XH =
n∑
i=1

Xxi
H

∂

∂xi
+

n∑
i=1

Xyi
H

∂

∂yi
(2.18)

So, on the one hand:

ιXH
ω = ω(XH , ·) =

n∑
i=1

Xxi
H dyi +

n∑
i=1

−Xyi
H dxi (2.19)

And, on the other hand:

− dH =

n∑
i=1

−∂H
∂xi

dxi +

n∑
i=1

−∂H
∂yi

dyi (2.20)

This leads to the Hamiltonian equations:{
Xxi
H dyi = ẋi = −∂H

∂yi
dyi

Xyi
H dxi = ẏi = ∂H

∂xi
dxi

(2.21)

Definition 2.93. The Poisson bracket associated to a symplectic manifold (M,ω)
is the operator defined by

{·, ·} : C∞(M)× C(M)∞ −→ C∞(M)

(f, g) 7−→ {f, g} = ω(Xf , Xg),

where Xf and Xg are the solutions of ιXf
ω = −df and ιXgω = −dg, respectively.

Remark 2.94. The Poisson bracket satisfies, for all f, g, h ∈ C∞(M):
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1. {f, g} = −{g, f} (skew-symmetry).

2. {f, {g, h}}+ {h, {f, g}}+ {g, {f, h}} = 0 (Jacobi’s identity).

3. {f, gh} = {f, g}h+ g{f, h} (Leibniz rule).

Theorem 2.95. Let H ∈ C∞ be a Hamiltonian and XH the corresponding Hamilto-
nian vector field. Then, XH(H) = 0

Proof. Consider the Poisson bracket {·, ·} defined by

{f, g} = ω(Xf , Xg) = −ω(Xg, Xf ) = −{g, f} = Xf (g) (2.22)

where Xf is defined by ιXf
ω = −df and analogously for Xg. Then, by skew-

symmetry of {·, ·}, XH(H) = 0.

Definition 2.96. Let (M,ω) be a symplectic manifold. A vector field X ∈ X(M) is
called symplectic vector field if it preserves ω, i.e., if LXω = 0, or dιXω = 0.

Remark 2.97. We will denote by XSymp(M) = {X ∈ X(M) | dιXω = 0} the set of
symplectic vector fields on M and by XHam(M) = {X ∈ X(M) | ιXω = −dβ} the
set of symplectic vector fields on M .

Lemma 2.98. XHam(M) ⊂ XSymp(M).

Proof. Take X ∈ XHam(M). Then:

LXf
ω = dιXf

ω + ιXf
dω = d(−df) + 0 = −d2f = 0 (2.23)

Lemma 2.99. H1(M) = XSymp(M)�XHam(M)

Example 2.100. Take (R2n, ω = dx∧dy). X = ∂
∂x1

is Hamiltonian because ιXω = dy1.
Hence, it is symplectic.

Example 2.101. Take (S2, ω = dh∧dθ). X = ∂
∂θ is Hamiltonian because ιXω = −dh.

Hence, it is symplectic.

Example 2.102. Take (R2n, ω = dθ1 ∧ θ2). X = ∂
∂θ1

is not Hamiltonian because
ιXω = dθ2 and θ2 is not a global function. It is symplectic.

Lemma 2.103. Let f,H ∈ C∞(M). Then,

{f,H} = 0 ⇐⇒ f is constant along the flow of XH (2.24)

Proof. {f,H} = −XH(f) = − d
dt(f ◦ γ)(t)

∣∣
t=0

= 0

Definition 2.104. Suppose f,H ∈ C∞(M) satisfy {f,H} = 0. Then, f is called an
integral of motion of H.
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Definition 2.105. Let (M2n, ω) be a symplectic manifold. A Hamiltonian system
(M,ω,H ∈ C∞(M)) is called completely integrable if ∃f1, . . . , fn ∈ C∞(M) such that:

1. {fi, fj} = 0 for all i, j = 1, . . . , n

2. df1 ∧ · · · ∧ dfn 6= 0 a.e.

Example 2.106. Any Hamiltonian system defined on a surface, (Σ2, ω,H ∈ C∞(M)),
is completely integrable.

Definition 2.107. Let G be a Lie group and (M,ω) a symplectic manifold. A group
action ρ : G −→ Diff(M) is a symplectic action if ρ : G −→ Symp(M) ⊂ Diff(M),
where Symp(M) is the set of symplectomorphisms on M .

Example 2.108. Take (R2n, ωst) and X = ∂/∂x1. The flow of X defines a symplectic
action ψ : R −→ Symp(R2n, ωst) which is the following:

ψ(t)(x1, y1, . . . , xn, yn) = (x1 + t, y1, . . . , xn, yn). (2.25)

We give the definition of a Hamiltonian action and the moment map, which are
the absolute key concepts in the link between symplectic geometry and integrable
systems.

Definition 2.109. Let G be a Lie group and g its Lie algebra. Consider also g∗, the
dual of g. Suppose ψ : G → Diff(M) is an action on a symplectic manifold (M,ω).
It is called a Hamiltonian action if there exists a map µ : M → g∗ which satisfies:

• For each X ∈ g, dµX = ιX#ω, i.e., µX is a Hamiltonian function for the vector
field X#, where

– µX : p 7−→ 〈µ(p), X〉 : M −→ R is the component of µ along X,
– X# is the vector field on M generated by the one-parameter subgroup
{exp tX | t ∈ R} ⊂ G.

• The map µ is equivariant with respect to the given action ψ on M and the
coadjoint action: µ ◦ ψg = Ad∗g ◦ µ, for all g ∈ G.

Then, (M,ω,G, µ) is called a Hamiltonian G-space and µ is called the moment
map.

2.5 b-symplectic geometry

When dealing with physical models it is usual to encounter singularities in the phase
space. A natural formulation for these type of singularities at the level of the manifold
is the b-geometry and, in the symplectic context, the b-symplectic geometry. We give
some definitions and results on b-symplectic manifolds that will be necessary later.
The proofs of these results are contained in [GMP11], [GMP14] and [GMPS15].
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Definition 2.110. A pair (M,Z), where M is a manifold and Z a (not necessarily
connected) hypersurface in M is called a b-manifold.

Definition 2.111. A map f : (M1, Z1) −→ (M2, Z2) between b-manifolds is called
a b-map if f is transverse to Z2 and Z1 = f−1(Z2).

Definition 2.112. We call an action ρ of a Lie group G on a b-manifold (M,Z) a
b-action if for every g ∈ G, the induced diffeomorphism ρg is a b-map on (M,Z).

Differential forms with singularities can be introduced formally for b-Poisson man-
ifolds. The idea is that it is possible to extend the symplectic structure from M\Z
to the whole manifold M . This singular form will be called a b-symplectic form on
M .

Definition 2.113. A b-vector field on a b-manifold (M,Z) is a vector field which is
tangent to Z at every point p ∈ Z.

If x is a local defining function for Z on an open set U ⊂M and (x, y1, . . . , yN−1)
is a chart on U , then the set of b-vector fields on U is a free C∞(M)-module with
basis

(x
∂

∂x
,
∂

∂y1
, . . . ,

∂

∂yN
).

There exists a vector bundle associated to this module. This vector bundle is called
the b-tangent bundle and denote it bTM . The b-cotangent bundle bT ∗M of M is
defined to be the vector bundle dual to bTM .

For each k > 0, let bΩk(M) denote the space of b-de Rham k-forms, i.e., sections
of the vector bundle Λk(bT ∗M). The usual space of de Rham k-forms sits inside this
space in a natural way; for f a defining function of Z every b-de Rham k-form can
be written as

ω = α ∧ df
f

+ β, with α ∈ Ωk−1(M) and β ∈ Ωk(M). (2.26)

The decomposition given by (2.26) enables us to extend the exterior d operator
to bΩ(M) by setting

dω = dα ∧ df
f

+ dβ.

The right hand side is well defined and agrees with the usual exterior d operator on
M \ Z and also extends smoothly over M as a section of Λk+1(bT ∗M). Note that
d2 = 0, which allows us to define the complex of b-forms, the b-de Rham complex.
The cohomology associated to this complex is called b-cohomology and it is denoted
by bH∗(M).

A special class of closed 2-forms of this complex are b-symplectic forms as defined
in [GMP14].

Definition 2.114. Let (M2n, Z) be a b-manifold and ω ∈ bΩ2(M) a closed b-form.
We say that ω is b-symplectic if ωp is of maximal rank as an element of Λ2( bT ∗pM)
for all p ∈M . We call (M,Z, ω) a b-symplectic manifold.
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Definition 2.115. The set of b-functions bC∞(M) consists of functions with values
in R ∪ {∞} of the form

c log|f |+ g,

where c ∈ R, where f is a defining function for Z and g is a smooth function. The
differential operator d is defined as: d(c log|f |+ g) := c df

f + dg ∈ bΩ1(M), where dg
is the standard de Rham derivative.

The Lie derivative of b-forms is defined via the Cartan formula:

LXω = ιX(dω) + d(ιXω) ∈b Ωk(M), (2.27)

where ω ∈b Ωk(M) and X is a b-vector field.

Finally, the following theorem shows how the b-cohomology is related to De Rham
cohomology:

Theorem 2.116 (Mazzeo-Melrose). The b-cohomology groups of M2n satisfy

bH∗(M) ∼= H∗(M)⊕H∗−1(Z).

2.6 The cotangent lift

The cotangent bundle of a smooth manifold can be naturally equipped with a sym-
plectic structure in the following way. Let M be a differential manifold and consider
its cotangent bundle T ∗M . There is an intrinsic canonical linear form λ on T ∗M
defined pointwise by

〈λp, v〉 = 〈p, dπpv〉, p = (m, ξ) ∈ T ∗M, v ∈ Tp(T ∗M),

where dπp : Tp(T
∗M) −→ TmM is the differential of the canonical projection at p.

In local coordinates (qi, pi), the form is written as λ =
∑

i pi dqi and is called the
Liouville 1-form. Its differential ω = dλ =

∑
i dpi∧dqi is a symplectic form on T ∗M .

Definition 2.117. Let ρ : G × M −→ M be a group action of a Lie group G
on a smooth manifold M . For each g ∈ G, there is an induced diffeomorphism
ρg : M −→ M . The cotangent lift of ρg, denoted by ρ̂g, is the diffeomorphism on
T ∗M given by

ρ̂g(q, p) := (ρg(q), ((dρg)
∗
q)
−1(p)), (q, p) ∈ T ∗M

which makes the following diagram commute:

T ∗M T ∗M

M M

π

ρ̂g

ρg

π
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Lemma 2.118. The induced diffeomorphism ρ̂g preserves the form λ and, hence,
preserves the symplectic form ω.

Proof. We will prove that, in general, that given a diffeomorphism ρ : M −→ M ,
its cotangent lift preserves the canonical form λ. At a point p = (m, ξ) ∈ T ∗M , we
have:

λp = (dπ)∗pξ =

= (dπ)∗p(dρ)∗m ((dρ)∗m)−1 ξ =

= (d(ρ ◦ π))∗p ((dρ)∗m)−1 ξ =

= (d(π ◦ ρ̂))∗p ((dρ)∗m)−1 ξ =

= (dρ̂)∗p(dπ)∗ρ̂(p) ((dρ)∗m)−1 ξ =

= (dρ̂)∗pλρ̂(p),

where we used the definitions of the Liouville 1-form and the cotangent lift and the
fact that ρ ◦ π = π ◦ ρ̂. Then, the canonical 1-form is preserved by ρ̂.

As a consequence:

ρ̂∗(ω) = ρ̂∗(dλ) = d(ρ̂∗λ) = dλ = ω.

So, the cotangent lift ρ̂g preserves the Liouville form and the symplectic form of
T ∗M .

Remark 2.119. The cotangent lift of a Lie group G on a manifold M , which is an
action on (T ∗M,ωT ∗M ), is automatically Hamiltonian (see for instance [GS84b]).
This makes the cotangent lift a natural and powerful tool for the formulation of
integrable systems, specially in the context of mechanics.

The cotangent lift can also be defined in a b-manifold. In this case there are
two different 1-forms that provide a symplectic structure on the b-cotangent bundle,
namely, the canonical b-1-form and the twisted b-1-form. Each of this forms produces
the same b-symplectic form, but the b-cotangent lift in each of the cases is different.

First, we define the canonical b-1-form:

Definition 2.120. For (M,Z) a b-manifold, we define a b-form λ on bT ∗M via

〈λp, v〉 := 〈p, (πp)∗(v)〉, (2.28)

where v ∈ bT (bT ∗M) and p ∈b T ∗M . The negative differential

ω = −dλ

is the canonical b-symplectic form on bT ∗M . Here, we view bT ∗M as a b-manifold
with hypersurface π−1(Z) where

π : bT ∗M →M
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is the canonical projection. Choosing a local set of coordinates x1, . . . , xn on M ,
where x1 is a defining function for Z we have a corresponding chart

(x1, . . . , xn, p1, . . . , pn)

on T ∗M , given by identifying the 2n-tuple above with the b-cotangent vector

p1
dx1

x1
+

n∑
i=2

pidxi ∈b T ∗xM.

In these coordinates

λ = p1
dx1

x1
+

n∑
i=2

pidxi ∈bT ∗(bT ∗M).

Then, we define the canonical b-cotangent lift.

Definition 2.121. Assume that (M,Z) is an n-dimensional b-manifold. Consider
the b-cotangent bundle bT ∗M endowed with the canonical b-symplectic structure
obtained naturally if we use the intrinsic definition of the Liouville one-form in the
b-setting. Moreover, assume that the action of G on M preserves the hypersurface
Z, i.e. ρg is a b-map for all g ∈ G. Then the lift of ρ to an action on bT ∗M is
well-defined:

ρ̂ : G×bT ∗M →bT ∗M : (g, p) 7→ ρ∗g−1(p).

We call this action on bT ∗M , endowed with the canonical b-symplectic structure,
the canonical b-cotangent lift.

Proposition 2.122. The canonical b-cotangent lift is Hamiltonian with equivariant
moment map given by:

µ : bT ∗M → g∗, 〈µ(p), X〉 := 〈λp, X#|p〉 = 〈p,X#|π(p)〉, (2.29)

where p ∈ bT ∗M , X ∈ g, X# is the fundamental vector field of X under the action
on bT ∗M and the function 〈λ,X#〉 is smooth because X# is a b-vector field.

Now, we define the twisted b-1-form.

Definition 2.123. Let T ∗Tn be endowed with the standard coordinates (θ, a), θ ∈
Tn, a ∈ Rn and consider again the action on T ∗Tn induced by lifting translations of
the torus Tn. Define the following non-smooth one-form away from the hypersurface
Z = {a1 = 0} :

λtw,c log |a1|dθ1 +

n∑
i=2

aidθi.

Then, the form ω := −dλtw,c is a b-symplectic form on T ∗Tn, called the twisted
b-symplectic form on T ∗Tn. In coordinates:

ωtw,c :=
c

a1
dθ1 ∧ da1 +

n∑
i=2

dθi ∧ dai. (2.30)
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We call the lift together with the b-symplectic form (2.30) the twisted b-cotangent
lift with modular period c on the cotangent space of a torus.

In a more general setting, the twisted cotangent lift is defined as follows. Consider
a (n− 1)-dimensional manifold N and let λN be the standard Liouville one-form on
T ∗N . Endow the product T ∗(S1 × N) ∼= T ∗S1 × T ∗N with the product structure
λ := (λtw,c, λN ) (defined for a 6= 0). The form ω = −dλ is a b-symplectic structure
with critical hypersurface given by a = 0.

Suppose K is a Lie group acting on N and consider the component-wise action
of G := S1 × K on M := S1 × N , where S1 acts on itself by rotations. Lift this
action to T ∗M as described before. This construction, with T ∗M endowed with the
b-symplectic form ω, is called the twisted b-contangent lift.

If (x1, . . . , xn−1) is a chart on N and (x1, . . . , xn−1, y1, . . . , yn−1) is the associated
chart on T ∗N , λ has the following local expression:

λ = log |a|dθ +

n−1∑
i=1

yidxi. (2.31)

This action is, again, Hamiltonian with moment map given by the contraction of
the fundamental vector fields with λ:

Proposition 2.124. The twisted b-cotangent lift on M = S1 × N is Hamiltonian
with equivariant moment map µ given by

〈µ(p), X〉 := 〈λp, X#|p〉, (2.32)

where X# is the fundamental vector field of X under the action on T ∗M .

2.7 Integrable systems

The study of evolution in time of physical, chemical and other kinds of systems leads
to the mathematical formulation of the time dependence of the different variables
involved. The concept of dynamical system formalizes this problem. In this section
we restate and complement some definitions on integrable Hamiltonian systems that
we already gave and we provide some physical examples, which at the end are the
motivating problems.

Definition 2.125. A dynamical system is a tuple (M,T, (φt)t∈T ) such that T is Z
or R, M is a non-empty set and (φt)t∈T is a family of functions from M to M that
satisfy:

• φ0(x) = x, ∀x ∈M

• φs+t(x) = φs(gt(x)), ∀x ∈M,∀t, s ∈ T.
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In most of the cases, and also in this work, M is a smooth manifold and φt(x) a
x-continuous function. The function φ(x), for a fixed t, is called the flow through x,
while the set γx = {(φt(x)) | t ∈ T} is called the orbit through x. If T is taken to be
Z, the dynamical system is called discrete, while it is called continuous if T is taken
to be R.

A special family of continuous dynamical systems are Hamiltonian systems, which
are defined from a system of ordinary differential equations and a smooth function.
The following definition comes from the field of dynamical systems.

Definition 2.126. A Hamiltonian system is the system of ordinary differential equa-
tions:

• dqi
dt = ∂H

∂pi
(t, q, p)

• dpi
dt = −∂H

∂qi
(t, q, p)

for i = 1, . . . , n, where H : U ⊂ R× Rn × Rn → R is a smooth function.

The theorem of existence and uniqueness from the theory of differential equations
states that, for any (t0, p0, q0) ∈ U , there is a unique solution φ(t; t0, p0, q0) of the
Hamiltonian system 2.126 that is defined in a neighbourhood of t0 and that satisfies
φ(t0; t0, p0, q0) = (p0, q0). When H does not depend on t, the system is called
autonomous.

Example 2.127. The central force problem given by q̈ = k(|q|) · q, with q : R → R
is a classical physical problem that can be formulated as an autonomous Hamilto-
nian system. By defining p := dq/dt, the second order equation of the problem is
equivalent to the system:

dq

dt
= p,

dp

dt
= k(|q|) · q,

and it is easy to check that Hamiltonian

H =
1

2
p2 −

∫
s=|q|

k(s)ds

gives raise to exactly this system.

A generalized definition of Hamiltonian system, in the sense that it can be defined
on a general symplectic manifold, is the following.

Definition 2.128. Let (M,ω) be a symplectic manifold. Let H ∈ C∞(M) be a
smooth function. Then, the Hamiltonian system is given by the vector field XH that
solves of the equation

ιXH
ω = −dH.

34



Example 2.129. In the problem of magnetic a particle moving in a magnetic field,
consider only the spin motion, i.e. the rotation of the spin vector s of the particle.
As the spin vector can point to any direction on R3 but its magnitude is fixed, the
problem is naturally set in S2. S2 is a surface and can be equipped with the form
ω = dsz ∧ dθ, where θ is the polar angle and sz is the z component of the spin
vector s. Then, since ω is proportional to the area form of the sphere, (S2, ω) is a
symplectic manifold, as we saw in 2.87.

If the magnetic field of magnitude B is taken in the z-direction, the Hamiltonian
H of the particle is defined as H = szB. Then, the vector field XH associated to
this Hamiltonian is the solution to

ιXH
(dsz ∧ dθ) = −d(szB),

which is
XH = B

∂

∂θ
.

Then, the flows of the Hamiltonian field are circles of S2 that lay in planes that
are normal to the z direction. So, the spin vector of the particle rotates around the
magnetic field.

It is easy to see that, in a Hamiltonian system, the Hamiltonian H is a conserved
quantity, in the sense that it is constant along the solutions of the ode system3.
Any smooth function that has this property is called an integral of the system. The
existence of such functions in a given dynamical system is a well-known and difficult
problem, and they are essential in the definition of one subcategory of Hamiltonian
systems called completely integrable systems or simply integrable systems.

Definition 2.130. Let M be a symplectic manifold of dimension 2n. Let H be
a Hamiltonian defined on M . The Hamiltonian system given by H is said to be
completely integrable if there exists a function F : M → (f1, . . . , fn) ∈ Rn such that
df1, . . . , dfn are independent a.e., the components of F are in involution with respect
to the symplectic Poisson bracket ({fi, fj} = 0 for all i, j) and {fi, H} = 0 for all i.
Such F is called the moment map and the function H may be one of the fi’s.

Remark 2.131. A Hamiltonian system of degree n = 1 is always integrable and the
Hamiltonian function H is the natural first integral.
Example 2.132. The harmonic oscillator is probably the most classical physical ex-
ample of a Hamiltonian system which is integrable. It is defined from the differential
equation

q̈ + ω2q = 0,

with ω a constant. The associated Hamiltonian equations are:

dq

dt
= ωp,

dp

dt
= −ωq,

where p has been defined as ωp = dq/dt. A first integral of the system, which already
makes the system integrable, is H(q, p) = ω

2 (q2 + p2).
3It is constant along the solutions because, by definition dH/dt = dq/dt·dp/dt−dp/dt·dq/dt = 0.
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Definition 2.133. An integrable system on M is given by a smooth map f =
(f1, . . . , fn) : M → Rn such that {fi, fj} = 0 for all 1 ≤ fi, fj ≤ n and rank f = n
almost everywhere. If the Hamiltonian vector fields provided by each fi (i.e. the Xi

satisfying ιXiω = −dfi), which have commuting flows φ1
t , . . . , φ

n
t , are complete, then

the system induces an Rn action on M , called the joint flow :

ρ : Rn ×M −→M (2.33)

(t1, . . . , tn, p) 7−→ φ1
t ◦ · · · ◦ φnt (p) (2.34)

Remark 2.134. The action ρ of the additive group (Rn,+) preserves the level sets
Mc = f−1(c) for all c ∈ Rn.

If f is an integrable system with compact connected fibers, then the Arnold-
Liouville-Mineur Theorem (see Theorem 3.3 in the next section) tells us that, when-
ever c is a regular point of f , these fibers Mc are diffeomorphic to Rn/Lc, where
Lc ⊂ Rn is the period lattice, so Mc are called the Liouville tori.
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3. Stability and equivalence of actions and integrable sys-
tems

Stability is a general concept which, in geometry and dynamical systems, refers to
persistence of a certain properties or structures when something else changes. We call
that something is stable if it remains essentially the same after a small perturbation.
We can use it to talk of stable mappings, stable algebraic structures, stable initial
positions of integrable systems... For properties of mappings, for instance, the precise
definition is the following.

Definition 3.1. A property of a map f : X → Y is called stable if whenever f0

possesses the property and ft : X → Y is an homotopy of f0, then, for some ε > 0,
the property is satisfied for each ft if t ∈ [0, ε].

In the study of group actions, a similar concept is used, rigidity, if for any group
action on a manifold, all nearby actions are equivalent to it.

Definition 3.2. Let a Lie group G act smoothly on a manifold M and let ρ :
G ×M −→ M denote this action. The action ρ is rigid if for every smooth one-
parameter family of actions ρt of G on M there exists a one-parameter family of
diffeomorphisms ht : M −→ M which conjugate ρ to ρt for all t in a small interval
(−ε, ε) ⊂ R. We say that two actions which are conjugated via a diffeomorphism are
equivalent.

When studying integrable systems, one gives a lot of importance to the fibrations
and the orbits of the system and whether they are stable under certain conditions
or under small perturbations. In this section we review briefly some important
known theorems on stability of integrable systems and we expose the basic results
concerning non-degenerate singularities of integrable systems. We believe that this
is a necessary background that will help the reader to understand the new results in
the next section and that it will also illustrate our motivation to prove them.

3.1 The Arnold-Liouville-Mineur Theorem

The most important classical result in determining the topology of fibrations is the
Arnold-Liouville-Mineur theorem. It states that, in the case of a regular integrable
system, the compact fibers have a tori fibrated neighbourhood. The same theorem
carries the definition of a special set of coordinates, the action-angle coordinates.

Consider an integrable system defined on a symplectic manifold (M,ω) of dimen-
sion 2n and given by a proper moment map F = (f1, . . . , fn). The flows of the vector
fields Xi associated4 to the fi can be thought as a Lie group action of Rn on M as in
Example 2.61. In this way, the orbits of the action given by the momentum map F
define a foliation by invariant leaves. These leaves are identified with the level sets
of F as Λc := F−1(c), c ∈ Rn, and are, in general, Lagrangian submanifolds of M ,

4A vector field Xi is associated to a function fi if it satisfies ιXiω = −dfi.
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which means that are of dimension n, half the dimension of M . From this point on,
we assume that F is a proper map.

If df1∧· · ·∧dfn 6= 0 at a pointm ∈M , a theorem of Darboux-Carathéodory states
that it is possible to take local coordinates (x, ξ), in such a way that the foliation Λc
for c in a neighbourhood of F (m) is given by ξ = c, so the same functions f1, . . . , fn
are the momentum coordinates, and therefore the x variables are the local position
coordinates. The Arnold-Liouville-Mineur Theorem says much more.

Theorem 3.3 (Arnold-Liouville-Mineur). Let (M,ω) be a symplectic manifold and
F : M → Rn a proper moment map. Suppose that the components f1 . . . , fn of F
are in involution with respect to the Poisson bracket and that df1 ∧ · · · ∧ dfn 6= 0
almost everywhere. Assume that c ∈ Rn is a regular value of F and that the leaf
Λc = F−1(c) is connected.

Then, in a neighbourhood Ω(Λc) of the leaf Λc, there exists a diffeomorphism
φ : Ω(Λc)→ Dn × Tn such that:

1. φ(Λc) = {0} × Tn.

2. φ∗(
∑n

i=1 dµi∧dβi) = ω, where µ1, . . . , µn are coordinates on Dn and β1, . . . , βn
are coordinates on Tn.

3. The moment map F is only function of the coordinates φ∗(µi).

The theorem says that the Ω(Λc) is symplectomorphic to a neighbourhood of the
zero section of T ∗(Tn), the cotangent bundle of the n-torus Tn. In particular, Λc
and the closer leaves are called Liouville tori.

The theorem also gives raise to a set of coordinates pi = φ∗(µi), θi = φ∗(βi),
called action coordinates and angle coordinates, respectively. It is a result by Mineur
that the pi coordinates can also be computed equivalently in the following way:

pi(x) =

∫
Γi(x)

λ, x ∈M,

where λ is the Liouville 1-form5 and Γi(x) is a closed curve that lies on the torus
containing x.

In action-angle coordinates, the moment map F writes as F = (p1, . . . , pn),
meaning that the action coordinates are the normal form of the set of first integrals
of the system. Action-angle coordinates give also the normal Darboux form for the
symplectic structure of the fibration, which is

ω =

n∑
i=1

dpi ∧ dθi.

5Recall that, if λ is the Liouville 1-form, −dλ = ω.
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Remark 3.4. Dynamics in the compact leaf Λc is basically reduced to two types. If
the Hamiltonian H is the component f1 of F , the Hamiltonian system induced by
Ĥ = H ◦ φ−1(p1, . . . , pn, θ1, . . . , θn) is

dθ

dt
= ∂pĤ(p, θ) = ∂pĤ(p),

dp

dt
= −∂θĤ(p, θ) = 0,

as F does not depend on θ. The equations of the system make it clear that the each
flow will be confined in an invariant toric leaf with p constant and θ varying on the
torus as a function of p. This is the reason for calling p the action and θ the angle.

Explicitly, the flows are given by

ϕ : R×Dn × Tn → Dn × Tn

(t, p, θ) 7→ (p, θ + ∂pĤ(p)).

Although completely integrable systems such as the ones that considers the
Arnold-Liouville-Mineur Theorem are rare to find when dealing with physical prob-
lems, it is more typical to encounter close-to-integrable systems. These are Hamilto-
nian systems of the form

dθ

dt
= ∂pH0(p) + ε∂pH1(p, θ),

dp

dt
= −ε∂θH1(p, θ),

that are integrable systems with first integrals pi if ε = 0 and close-to-integrable if
0 < ε << 1.

Example 3.5. Consider the manifold (M = R×T, ω = dp∧ dθ) and the Hamiltonian
H = p2/2 + ε cos θ for p ∈ R, θ ∈ T, 0 < ε << 1. The equations of the system are

dθ

dt
= p, (3.1)

dp

dt
= ε sin θ, (3.2)

and its solutions lie on the level sets H = h of the first integral p = ±
√

2(h− ε cos θ.

In the case ε = 0, the Hamiltonian H is simply H = p2/2 and the orbits are
given by {(p, θ) | p 6= 0 constant} and {(p, θ) | p = 0, θ constant}.

The perturbation of the system by adding the term ε cos θ to H changes the
shape of the orbits of the type {(p, θ) | p 6= 0 constant} but they are essentially the
same kind of S1 orbits. So, these invariant tori "survive", as we can see in Figure 2.
On the contrary, the orbits of the type {(p, θ) | p = 0, θ constant}, which are fixed
points, break down and there appear new closed orbits which are not deformable to
the original ones.
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Figure 2: Phase space and some orbits of the simple pendulum system in Example
3.2 for ε = 0 and ε > 0, respectively.

In this example we see that if we add a perturbation to an integrable system,
some of the tori given by the Arnold-Liouville-Mineur Theorem may still exist but
others may appear or disappear. To the study of this tori persistence is devoted the
KAM theory.

3.2 KAM Theory

Generalizing the setting of in Example 3.2, consider a HamiltonianH(θ, p) = H0(p)+
εH1(θ, p), for (θ, p) ∈ (Tn × V ⊂ Rn, ω =

∑n
i=1 dθi ∧ dpi). The corresponding

Hamiltonian system is

dθ

dt
= ∂pH0(p) + ε∂pH1(θ, p),

dp

dt
= −ε∂θH1(θ, p).

For ε = 0, the flow of the Hamiltonian system at p 6= 0 is

ϕt(p1, . . . , pn, θ1, . . . , θn) = (p1, . . . , pn, θ1 + ν1t, . . . , θn + νnt).

We define the frequency vector ν := (ν1, . . . , νn, 1) ∈ Rn+1.

If the frequency vector ν satisfies ν · k = (ν1, . . . , νn, 1) · (k1, . . . , kn, 1) = 0 for
some k ∈ Zn+1, it is called a resonant frequency. If there is no k ∈ Zn+1 such that
ν · k = 0, ν is called a non-resonant frequency.

If ν is resonant, any flow in the Hamiltonian system eventually closes and, hence,
is a periodic orbit . On the other hand, if ν is non-resonant, the flow fills Tn densely
and it is called a quasi-periodic orbit[KMS16].

Definition 3.6. A vector a = (a1, . . . , an) ∈ Rn is called Diophantine when ∃γ >
0, τ ≥ 0 such that

|a · k| ≥ γ

||k||τ
∀k ∈ Z \ {0},
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where ||k|| =
∑n

i=1 |ki|.

In some sense, the Diophantine or strongly non-resonant vectors are the vectors
in Rn that are further from any rational vector (i.e. a vector of Qn).

The Diophantine nature of the frequency vector of the flows in an unperturbed
integrable Hamiltonian system strongly affects the persistence of the Liouville tori
when the system is slightly perturbed. The KAM theorem, named after Kolmogorov,
Arnold and Moser, states the exact conditions for tori persistence.

Theorem 3.7. Let H : (θ, p) 7→ H(θ, p) : Tn × Dn → R be an analytic function
that only depends on p, i.e. H : (θ, p) = h(p). Consider the frequency vector ν(p) :=
∂h(p)/∂p ∈ Rn. If the frequency vector ν(p0) of p0 ∈ Dn is Diophantine and it is
non-degenerated (i.e. det(D2

ph(p0)) 6= 0), then, the Liouville torus Tn × {p0} given
by the LAM theorem persists under perturbations of the Hamiltonian H of the form

Hε(θ, p) = H(p) + εH1(θ, p),

with H1 analytic, if ε > 0 is sufficiently small.

Besides, the flow ϕt of the new perturbed system on the surviving torus T is
conjugated to the linear flow on Tn with frequency vector ν(p0). I.e., it exists a
diffeomorphism φ : TN → T such that

φ−1 ◦ ϕt ◦ φ(θ0) = θ0 + ν(p0)t.

The theorem states that tori corresponding to strongly non-resonant frequencies
survive under sufficiently small perturbations, and it is, in fact, a direct consequence
of a theorem proved by Kolmogorov in 1954.

Theorem 3.8. Let H : Tn × Dn
r → R be in the Kolmogorov normal form, i.e., in

the form:
H(θ, p) = a+ ν · p+Q(θ, p),

for some a ∈ R, ν ∈ Rn and Q : Tn ×Dn → R a function which is quadratic in p.
Assume that H is non-degenerate in the sense that:

det
1

(2π)n

∫
Tn

∂2
pQ(θ, 0)dθ 6= 0.

Consider the perturbed Hamiltonian Hε = H + εH1, with H1 : Tn × Dn
r → R

analyitic. Then, there exists an ε0 such that, for all ε ∈ (0, ε0), there is a diffeomor-
phism

φ : Tn ×Dn
r∗ → Tn ×Dn

r ,

for some 0 < r∗ < r, which transforms Hε into Kolmogorov normal form:

(Hε ◦ φ)(θ, p) = a∗ + ν · p+Q∗(θ, p),

in such a way that ||φ − id||sup, |a∗ − a| and ||Q − Q∗||sup are of order ε. The
diffeomorphism φ is ε-close to the identity, in the sense that there exists a constant
K such that ||φ− id||sup < Kε.
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Following the ideas in KAM theory to see which objects persist under perturba-
tion, we want to study the rigidity of Lie group actions.

3.3 Stability, rigidity and Palais Theorem

Following the notation of Palais in [Pal60], we define Ck-close actions.

Definition 3.9. Let f, g : M → N be two smooth maps between smooth manifolds
of dimensionm and n, respectively. Suppose that (x1, . . . , xm) is a coordinate system
for U ⊂ M compact and (y1, . . . , yn) is a coordinate system for V ⊂ N . Suppose
that f(U) ⊂ V and g(U) ⊂ V . Then, f and g are Ck-close maps, for k ≥ 0, if there
exists an ε > 0 such that |yi ◦ f(p)− yi ◦ g(p)| < ε for p ∈ U and i = 1, . . . , n and∣∣∣ ∂r(yi ◦ f)

∂xj1 · · · ∂xjr
(p)− ∂r(yi ◦ f)

∂xj1 · · · ∂xjr
(p)
∣∣∣ < ε,

for p ∈ U , r ≤ k, i = 1, . . . , n and jα = 1, . . . ,m.

For Lie group actions the definition of closeness is the natural one, consider-
ing that the source space is the product of two smooth manifolds, hence a smooth
manifold.

Definition 3.10. Two Lie group actions ρ1, ρ2 : G×M → M are Ck-close actions
if, for g1, g2 ∈ G, ρ1g1

, ρ2g2
are Ck-close maps.

Richard Palais already proved in [Pal61a] an important rigidity result, the exis-
tence of a diffeomorphism that conjugates C1-close actions of a compact Lie group
on a compact manifold.

Theorem 3.11 (Palais). Let G be a compact Lie group and M a compact manifold.
Let ρ1, ρ2 : G ×M −→ M be two actions which are C1-close. Then, there exists
a diffeomorphism ϕ of class C1 that conjugates ρ1 and ρ2, making them equivalent.
This diffeomorphism belongs to the arc-connected component of the identity.

In the case of the manifold being symplectic, Palais Theorem was extended to
the following Theorem to obtain that the diffeomorphism conjugating the two close
symplectic actions is a symplectomorphism. This was proved by Miranda (see [Mir07]
or [MMZ12]).

Theorem 3.12 (Miranda). Let G be a compact Lie group and (M,ω) a compact
symplectic manifold. Let ρ1, ρ2 : G × M −→ M be two symplectic actions which
are C2-close. Then, there exists a symplectomorphism ϕ that conjugates ρ1 and ρ2,
making them equivalent.

In the proof of Theorem 3.12, the diffeomorphism given by Palais Theorem is
used, together with the Moser path method and a De Rham homotopy operator, to
prove that the symplectic structure is equivariantly preserved.
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3.4 Non-degenerate singularities in integrable Hamiltonian systems

A Hamiltonian system is completely integrable if it is defined by n first integrals in
involution with respect to the Poisson bracket. Completely integrable Hamiltonian
systems are closely related to Lagrangian foliations through the following result.

Proposition 3.13. Let f1, . . . , fn be n functions such that {fi, fj} = 0, ∀i, j. Sup-
pose that dpf1 ∧ · · · ∧ dpfn 6= 0 at a point p ∈M . Then, the distribution generated by
the Hamiltonian vector fields D = 〈Xf1 , . . . , Xfn〉 is involutive and the leaf through
p is a Lagrangian submanifold.

The dynamics of an integrable system F = (f1, . . . , fn) is explained by the
Arnold-Liouville-Mineur Theorem (see Theorem 3.3) at the regular points, namely,
at the points of the manifold where the differential dF = (df1, . . . , dfn) is not singu-
lar. This theorem was restated by Kiesenhofer and Miranda in [KM17] revealing that
at a semilocal level the regular leaves are equivalent to a completely toric cotangent
lift model.

Theorem 3.14. Let F = (f1, . . . , fn) be an integrable system on a symplectic mani-
fold (M,ω). Then, semilocally around a regular Liouville torus, the system is equiva-
lent to the cotangent model (T ∗Tn)can restricted to a neighbourhood of the zero section
(T ∗Tn)0 of T ∗Tn.

At the singular points, the degeneracy of dF determines in general how difficult
is to understand the dynamics, and for the case of non-degenerate singular points
there are powerful results. The following definitions give the precise details of these
concepts.

Definition 3.15. A point p ∈M2n is a singular point of an integrable Hamiltonian
system given by F = (f1, . . . , fn) if the rank of dF = (df1, . . . , dfn) at p is less
than n. The singular point p has rank k and corank of n − k if rank(dF )p =
rank ((df1)p, . . . , (dfn)p) = k.

Definition 3.16. Let g be a Lie algebra. A Cartan subalgebra h is a nilpotent subal-
gebra of g that is self-normalizing, i.e., if [X,Y ] ∈ h for all X ∈ h, then Y ∈ h. If g is
finite-dimensional and semisimple over an algebraically closed field of characteristic
zero, a Cartan subalgebra is a maximal abelian subalgebra (a subalgebra consisting
of semisimple elements).

Definition 3.17. Let (M2n, ω) be a symplectic manifold with an integrable Hamil-
tonian system of n independent and commuting first integrals f1, . . . , fn. Consider a
singular point p ∈M of rank 0, i.e. (dfi)p = 0 for all i. It is called a non-degenerate
singular point if the operators ω−1d2f1, . . . , ω

−1d2fn form a Cartan subalgebra in
the symplectic Lie algebra sp(2n,R) = sp(TpM,ω).

Remark 3.18. The operators ω−1d2fi, where dfi is the Hessian of fi, associate a
function to the Hessian by visualizing the Hessian as a quadratic form H(u, v) and
taking the symplectic dual of the function obtained. A good reference for details of
the algebraic construction of the Cartan subalgebra is [BF04].
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The classification of non-degenerate critical points of the moment map in the
real case was obtained by Williamson [Wil36]. In the complex case, all the Cartan
subalgebras are conjugate and hence there is only one model for non-degenerate
critical points of the moment map.

Theorem 3.19 (Williamson). For any Cartan subalgebra C of sp(2n,R), there ex-
ists a symplectic system of coordinates (x1, . . . , xn, y1, . . . , yn) in R2n and a basis
f1, . . . , fn of C such that each of the quadratic polynomials fi is one of the following:

fi = x2
i + y2

i for 1 ≤ i ≤ ke
fi = xiyi for ke + 1 ≤ i ≤ ke + kh{
fi = xiyi+1 − xi+1yi

fi+1 = xiyi + xi+1yi+1

for i = ke + kh + 2j − 1, 1 ≤ j ≤ kf

The three types are called elliptic, hyperbolic and focus-focus, respectively.

Remark 3.20. Notice that the focus-focus components always go by pairs. Because
of theorem 3.19, the triple (ke, kh, kf ) at a singular point it is an invariant. It is also
an invariant of the orbit of the integrable system through the point [Zun96].

If p is a non-degenerate singularity of the moment map F , it is characterized by
four integer numbers, the rank k of the singularity and the triple (ke, kh, kf ). By the
way they are defined, they satisfy k + ke + kh + 2kf = n, where n is the number of
degrees of freedom of the integrable system.

The following is a result of Eliasson [Eli90] and Miranda and Zung ([Mir03],
[Mir14], [MZ04]).

Theorem 3.21 (Smooth local linearization). Given an smooth integrable Hamil-
tonian system with n degrees of freedom on a symplectic manifold (M2n, ω), the
Liouville foliation in a neighborhood of a non-degenerate singular point of rank k
and Williamson type (ke, kh, kf ) is locally symplectomorphic to the model Liouville
foliation, which is the foliation defined by the basis functions of Theorem 3.19 plus
"coordinate functions" fi = xi for i = ke + kh + 2j + 1 to n.

Remark 3.22. The theorem states the existence of a semilocal symplectomorphism
between foliations with a non degenerate singularity of rank k and the same param-
eters (ke, kh, kf ). One could think that functions are also preserved via a symplecto-
morphism, but it is not possible to guarantee this statement when hk 6= 0 as one can
add up analytically flat terms on different connected components (see counterexam-
ple in [Mir03]). In general one needs more information about the topology of the leaf
to conclude (see Figure 3).
Remark 3.23. Because of Theorem 3.21, if one considers the Taylor expansions of F =
(f1, . . . , fn) at the non-degenerate singular point in a canonical coordinate system
and removes all terms except for linear and quadratic, the functions obtained remain
commuting and define a Liouville foliation that can be considered as the linearization
of the initial foliation F given by f1, . . . , fn, to which it is symplectomorphic.
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The description of non-degenerate singularities at the semilocal level is completed
with the following two results.

Theorem 3.24 (Model in a covering). The manifold can be represented, locally at a
non-degenerate singularity of rank k and Williamson type (ke, kh, kf ), as the direct
product

M reg × k· · · ×M reg ×M ell × ke· · · ×M ell ×Mhyp ×
kh· · · ×Mhyp ×M foc ×

kf· · · ×M foc

Where:

• M reg is a "regular block", given by

f = x,

• M ell is an "elliptic block", representing the elliptic singularity given by

f = x2 + y2,

• Mhyp is an "hyperbolic block", representing the hyperbolic singularity given by

f = xy,

• M foc is a "focus-focus block", representing the focus-focus singularity given by{
f1 = x1y2 − x2y1

f2 = x1y1 + x2y2

.

For the first three types of blocks the symplectic form is ω = dx ∧ dy, while for the
focus-focus block it is ω = dx1 ∧ dy1 + dx2 ∧ dy2.

In the case of a smooth system (defined by a smooth moment map), a similar
result was proved and described by Miranda and Zung in [MZ04]. It summarizes some
previously results proved independently and fixes the case where there are hyperbolic
components (kh 6= 0), because in this case the result is slightly different and it has
to be taken the semidirect product in the decomposition. As opposite to the case
where there are only elliptic and focus-focus singularities, in which the base of the
fibration of the neighbourhood is an open disk, if there are hyperbolic components
the topology of the fiber can become complicated. The reason is essentially that for
the smooth case a level set of the form {xiyi = ε} is not connected but consists of
two components.

Theorem 3.25 (Miranda-Zung). Let V = Dk × Tk × D2(n−k) with coordinates
(p1, ..., pk) for Dk, (q1(mod1), ..., qk(mod1)) for Tk, and (x1, y1, ..., xn−k, yn−k) for
D2(n−k) be a symplectic manifold with the standard symplectic form

∑
dpi ∧ dqi +∑

dxj ∧ dyj. Let F be the moment map corresponding to a singularity of rank k
with Williamson type (ke, kh, kf ). There exists a finite group Γ, a linear system
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on the symplectic manifold V/Γ and a smooth Lagrangian-fibration-preserving sym-
plectomorphism φ from a neighborhood of O into V/Γ, which sends O to the torus
{pi = xi = yi = 0}. The smooth symplectomorphism φ can be chosen so that via φ,
the system-preserving action of a compact group G near O becomes a linear system-
preserving action of G on V/Γ. If the moment map F is real analytic and the action
of G near O is analytic, then the symplectomorphism φ can also be chosen to be real
analytic. If the system depends smoothly (resp., analytically) on a local parameter
(i.e. we have a local family of systems), then φ can also be chosen to depend smoothly
(resp., analytically) on that parameter.

In this case, the so-called twisted hyperbolic component can arise (see Figure 3),
and the group of all linear moment maps preserving symplectomorphisms of the
linear direct model of Williamson type (ke, kh, kf ) is isomorphic to

Tk × Tke × (R× Z/2Z)kh × (R× T1)kf .

Figure 3: In the neighbourhood of an orbit of rank 1 andWilliamson type (0, 1, 0), the
return map corresponding to the flow of circle action can give rise to two different
behaviours. After one turn, the point can return to itself or it can return to its
"opposite" branch (twisted hyperbolic case), and this defines a Z/2Z action. The
twisted hyperbolic case is described in this picture.

To end this section, we recall a related result which highlights the importance
of considering the symplectomorphism at the level of the Lagrangian fibration in-
duced by the Hamiltonian vector fields of the integrable system. Assume that
(M,ω) is a symplectic manifold with a non-degenerate singularity of Williamson
type (ke, kh, kf ). Assume that the foliation F at the singularity is the linear foliation
defined by F = 〈X1, . . . , Xn〉, where the vector fields Xi are the linear Hamiltonian
vector fields corresponding to the basis functions of Theorem 3.19. Namely, Xi are
the vector fields induced by ιXiω = −dfi, that is:

• Xi = −yi ∂
∂xi

+ xi
∂
∂yi

for elliptic components,

46



• Xi = −xi ∂
∂xi

+ yi
∂
∂yi

for hyperbolic components,

• Xi = −xi ∂
∂xi

+ yi
∂
∂yi
− xi+1

∂
∂xi+1

+ yi+1
∂

∂yi+1
and

Xi+1 = xi+1
∂
∂xi

+ yi+1
∂
∂yi
− xi ∂

∂xi+1
− yi ∂

∂yi+1
for focus-focus components.

Then, the following theorem holds.

Theorem 3.26. [Mir03] Let ω be a symplectic form defined in a neighbourhood of
the singularity at p for which the foliation F is Lagrangian. Then, there exists a
local diffeomorphism φ : (U, p) −→ (φ(U), p) such that φ preserves the foliation and
φ∗(
∑

i dxi ∧ dyi) = ω, where xi, yi are local coordinates on (φ(U), p).

For completely elliptic singularities (of rank 0 and Williamson type (ke, 0, 0))
Theorem 3.26 was proved by Eliasson [Eli90]. When he 6= 0, the foliation given by
the hyperbolic components is preserved but the components of the moment map are
not necessarily preserved (for more details see [Mir03]).
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4. New results on rigidity of close lifted actions and appli-
cations

4.1 Equivalence of close lifted actions

We state and prove some results on symplectic equivalence of lifted close actions of
a compact group on a compact manifold. We start proving a proposition on the
equivalence at the level of cotangent lift given equivalence at the base. It is clear
that if two symplectic actions are close, so are their fundamental vector fields. In
Proposition 4.1 we prove that if two actions are C1-equivalent, so are their cotangent
lifts, and we define explicitly the diffeomorphism that conjugates them. With the
same idea, and since any cotangent lifted action is Hamiltonian, we prove that if two
actions are C1-equivalent, then the moment maps induced by their cotangent lifts
are also equivalent.

Proposition 4.1. Let G be a Lie group and let M be a smooth manifold. Let
ρ1, ρ2 : G × M −→ M be two actions which are C1-equivalent via a conjugation
through a diffeomorphism ϕ. Let ρ̂1, ρ̂2 be the cotangent lifts of ρ1, ρ2, respectively.
Then, ρ̂1 and ρ̂2 are C1-equivalent via the conjugation through ϕ̂. The moment maps
induced by ρ̂1, ρ̂2, denoted respectively by µ1, µ2, are equivalent via the conjugation
through ϕ̂ as µ2 = µ1 ◦ ϕ̂.

Proof. Assume ρ1, ρ2 : G×M −→M are two C1-equivalent Lie group actions. Let ϕ
be the C1-diffeomorphism conjugating the two actions, i.e, let ϕ be a diffeomorphism
such that ρ1◦ϕ = ϕ◦ρ2. Differentiating both sides, the following equality is obtained:

dρ1,ϕ(q) ◦ dϕq = dϕρ2(q) ◦ dρ2,q.

Transposing and inverting the latter equality on both sides, one arrives to the
following relation:

((dρ1,ϕ(q))
∗)−1 ◦ ((dϕq)

∗)−1(p) = ((dϕρ2(q))
∗)−1 ◦ ((dρ2,q)

∗)−1(p),

which shows that ((dϕ)∗)−1 is exactly the conjugation between ((dρ1,ϕ(q))
∗)−1 and

((dρ2,q)
∗)−1.

We define now ϕ̂(q, p) := (ϕ(q), ((dϕq)
∗)−1(p)), which is a diffeomorphism and

can be thought as the cotangent lift of ϕ. Consider the cotangent lift of the actions
ρ1 and ρ2, i.e. ρ̂1 and ρ̂2. By definition, ρ̂i(q, p) = (ρi(q), ((dρi,q)

∗)−1(p)). Then, it
is clear that ρ̂1 ◦ ϕ̂ = ϕ̂ ◦ ρ̂2, and we conclude that the cotangent lifts of the actions
are equivalent on the cotangent bundle via conjugation by ϕ̂, which is precisely the
cotangent lift of the diffeomorphism ϕ that conjugates ρ1 and ρ2 on the base.

The cotangent lift of the action ρ̂i is a Hamiltonian action with moment map
µi : T ∗M 7−→ g∗ given by

〈µi(p), X〉 := 〈λp, X#|p〉 = 〈p,X#|π(p)〉,
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where p ∈ T ∗M,X ∈ g, X# is the fundamental vector field of X generated by the
ρ̂i action and λ is the Liouville 1-form on T ∗M .

The diffeomorphism ϕ̂ is defined by

ϕ̂(q, p) := (ϕ(q), ((dϕq)
∗)−1(p))

and satisfies ρ̂1 ◦ ϕ̂ = ϕ̂ ◦ ρ̂2. On the other hand, by Lemma 2.118 the Liouville
one-form is invariant under the lifted actions, i.e. ρ̂∗iλ = λ for i = 1, 2, and it is also
invariant under the diffeomorphism ϕ̂ by Lemma 2.118.

Through the following computation:

〈µ2(p), X〉 = 〈λp, X#|p〉 =

= 〈λp,
d

dt
(ρ̂2(exp(−tX), p)) |t=0〉 =

= 〈λp,
d

dt

(
ϕ̂−1(ρ̂1(exp(−tX), ϕ̂(p)))

)
|t=0〉 =

= 〈λϕ̂(p),
d

dt
(ρ̂1(exp(−tX), ϕ̂(p))) |t=0〉 =

= 〈λϕ̂(p), X
#|ϕ̂(p)〉 =

= 〈µ1(ϕ̂(p)), X〉 = 〈µ1 ◦ ϕ̂(p), X〉,

where we have used that ϕ̂−1◦ρ̂1◦ϕ̂ = ρ̂2. Observe that the fundamental vector fields
and the actions are ϕ̂-related. If one of the fundamental vector fields is Hamiltonian
in the ξ direction (the one given by µ1), so is the second (the one given by µ1 ◦ ϕ̂).
We conclude that the moment maps are equivalent.

Now we prove a theorem that can be thought as the cotangent lifted version of
Theorem 3.12.

Theorem 4.2. Let G be a compact Lie group and M a compact smooth manifold.
Let ρ1, ρ2 : G × M −→ M be two actions which are C1-close. Let ρ̂1, ρ̂2 : G ×
(T ∗M,ω) −→ (T ∗M,ω) be the cotangent lifts of ρ1, ρ2, respectively. Then, there
exists a symplectomorphism that conjugates ρ̂1 and ρ̂2, thus making them equivalent.

Remark 4.3. Notice that the actions have to be C1-close. Compared with the sym-
plectic version of Palais rigidity Theorem (Theorem 3.12), where they have to be
C2-close, one degree of differentiability is gained here.

Proof. Let G be a compact Lie group and M a compact smooth manifold. Let
ρ1, ρ2 : G × M −→ M be two actions and assume that they are C1-close. By
Theorem 3.11, there exists a diffeomorphism ϕ that conjugates ρ1 and ρ2.

Consider ρ̂1, ρ̂2 : G × (T ∗M,ω) −→ (T ∗M,ω), the cotangent lifts of ρ1 and
ρ2, respectively. By Proposition 4.1, the diffeomorphism ϕ̂ conjugates ρ̂1 and ρ̂2.
To prove that the actions ρ̂1 and ρ̂2 are not only equivalent, but symplectically
equivalent, we need to check that ϕ̂ preserves the symplectic form. By Lemma 2.118,
it preserves the canonical 1-form λ of T ∗M and, hence, it preserves the symplectic
form ω.
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4.2 Application to integrable systems with non-degenerate singular-
ities

Results of the previous section, namely shows a natural way of applying the result
of rigidity of the lifted actions to the category of Hamiltonian systems. Theorem 4.2
guarantees, for instance, that the compact orbits of two C1-close integrable systems
on a symplectic manifold are equivalent at the level of the cotangent lift.

An immediate corollary of Palais rigidity Theorem is the following. Consider
two integrable systems in a compact symplectic manifold (M,ω) given by F =
(f1, . . . , fn) and F̂ = (f̂1, . . . , f̂n), respectively. Let X1, . . . , Xn and X̂1, . . . , X̂n be
the corresponding associated vector fields (those induced by ιXiω = −dfi). If, for
each i = 1, . . . , n, the flow ψi of Xi is close to the flow ψ̂i of X̂i, and all of them
are actions of a compact group (case of toric manifolds), then the two integrable
systems are equivalent, i.e., it exists a diffeomorphism ϕ that conjugates F and F̂ .
This equivalence can even be pictured in terms of the Delzant theorem looking at
the corresponding Delzant polytopes [Del88].

In the same direction, a straightforward consequence of Theorem 4.2 at the
semilocal level in a neighbourhood of a compact orbit is the following.

Theorem 4.4. Let F = (f1, . . . , fn) : (M2n, ω) → Rn and F̂ = (f̂1, . . . , f̂n) :
(M2n, ω) → Rn be two smooth maps defining two integrable systems. Suppose that
the singularities of F and F̂ are non-degenerate and a combination of only regular and
elliptic components (with compact orbits) i.e., that each singularity of rank k 6= n has
Williamson type (n−k, 0, 0). Assume that, for all 1 ≤ i ≤ n, fi and f̂i are C2-close.
Then, for each c ∈ Im(F ) ⊂ Rn:

1. there exists ĉ ∈ Im(F̂ ) ⊂ Rn that is close to c, and

2. there exists a symplectomorphism φc that makes the neighbourhoods of the leaves
Λc = F−1(c) and Λ̂ĉ = F̂−1(ĉ) equivalent. Namely, there exists φc defined in a
neighbourhood of Λc such that φc ◦ F = F̂ ◦ φc and φ∗c(ω) = ω.

Remark 4.5. Observe that for elliptic and regular components the connected com-
ponents of the leaves equal the orbits.

Proof. By closeness between F and F̂ , for each c ∈ Im(F ) ⊂ Rn there exists ĉ ∈
Im(F̂ ) ⊂ Rn that is close to c and such that ĉ is a singular value of F̂ if and only if c
is a singular value of F . Closeness between F and F̂ (together with non-degeneracy)
guarantees that the number of elliptic components at the singularity x ∈ F−1(c) is
the same as the number of elliptic components at y ∈ F̂−1(ĉ).

Now, in view of Theorem 3.24, and since in this case the singularities are the
product of only regular and elliptic type, if we prove the existence of the symplec-
tomorphism for the case of a regular value and for the case of a complete elliptic
singularity we will be finished.
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If c is a regular value of F , by the Arnold-Liouville-Mineur Theorem the neigh-
bourhood of the leaf Λc is diffeomorphic to the cotangent bundle of the Liouville
torus. The same applies to the the neighbourhood of the leaf Λ̂ĉ. The action on
T ∗Tn is the cotangent lift of a compact torus action and then, by Theorem 4.2,
there exists a symplectomorphism φc conjugating F and F̂ on the respective leaf
neighbourhoods.

Now suppose c is a non-degenerate singular value of F and x ∈ F−1(c) is a
completely elliptic singularity. Consider the action given by the joint flow, which in
this case is locally free and has a unique fixed point, the singularity x . By means of
the joint flow we identify the action as a torus action (see [MZ04]) and we can apply
Theorem 3.12 to obtain rigidity between a neighbourhood of Λc and Λ̂ĉ.

Remark 4.6. In the case of a regular point, another way of proving symplectic rigidity
is using the normal form of the moment map, since there is only one local model,
which is the one given by the Arnold-Liouville-Mineur Theorem.

Remark 4.7. We do not require that the Williamson type of the non-degenerate
singularities of F and F̂ is the same, only that they both are combination of regular
and elliptic type (in both cases the orbits coincide with the leafs). Notice that if F̂ is
close enough to F , the elliptic components of a singularity of F will remain elliptic
in the associated singularity of F̂ , and the regular components can not become
neither hyperbolic nor focus-focus, so compactness of actions and, hence, rigidity, is
guaranteed without having to impose the same Williamson type.

These consequences do not go beyond results that are already known concerning
rigidity of integrable systems. In fact, they can be considered special cases of the
Arnold-Lioville-Mineur Theorem, since it gives a unique normal form for neighbour-
hoods of regular points of integrable systems. Nevertheless, Theorem 4.2 can be used
in the same context of integrable systems to prove a slightly more ambitious result.

4.3 Application to S1-invariant degenerate singularities

Consider the following example of a very simple integrable system.

Example 4.8. Let f = (x2+y2)k, with k ≥ 2, be the moment map of an the integrable
system in (R2, ωst = dx ∧ dy). It is a completely solvable system, it has an isolated
degenerate singularity at the origin, the flows of the Hamiltonian vector field lie in
concentric circles, and the singularity is a stable center. Since it is a degenerate
singularity, we can not apply directly normal form theorems. Nevertheless, we know
that, the system is invariant with respect to the S1 action and therefore we can use
another system (which is non-degenerate) associated to the circle action for which
there exists a normal form, which in fact is x2 + y2 and corresponds to an elliptic
singularity.

In order to conclude we need a normal form result for circle actions. We first
recall the general symplectic slice theorem and then apply it in the case of a fixed
point of a circle action.
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Theorem 4.9 (Guillemin-Sternberg [GS84a], Marle [Mar85]). Let (M,ω,G) be a
symplectic manifold together with a Hamiltonian group action. Let z be a point in M
such that Oz is contained in the zero level set of the momentum map. Denote Gz the
isotropy group and Oz the orbit of z. There is a G-equivariant symplectomorphism
from a neighbourhood of the zero section of the bundle T ∗G×Gz Vz equipped with the
above symplectic model to a neighbourhood of the orbit Oz.

Recall from Bochner’s linearization theorem that in a neighbourhood of a fixed
point of an action we can always linearize the group action.

Applying the theorem 4.9 above to the circle action case with a fixed point and
applying Bochner’s theorem we obtain the classical Marle-Guillemin-Sternberg which
gives a local normal form for the moment map of circle actions in a neighbourhood
of a fixed point of the action.

Theorem 4.10 ([Mar85, Mar84, GS84a]). Let (M2n, ω) be a symmplectic manifold
endowed with an S1-Hamiltonian action and let p be a fixed point for this action.
Then there exist local coordinates (x1, y1, . . . , xn, yn) such that ω =

∑n
i=1 dxi ∧ dyi

and µ(x) =
∑n

i=1 ci(x
2
i + y2

i ).

Remark 4.11. The constants cj can be interpreted as weights of the circle action.

The last conclusion of the example is summarized the following Lemma, which
is an easy consequence of the Guillemin-Marle-Sternberg Theorem.

Lemma 4.12. Consider a 2-dimensional integrable system which has an S1-invariant
degenerate singularity. Then, locally it is function of the quadratic normal form of
elliptic type.

Proof. By Guillemin-Marle-Sternberg Theorem 4.10, the moment map of an S1-
action with a fixed point is a sum of squares in its normal form. Since it is a
2-dimensional system and because of Noether’s theorem, one can take coordinates
x, y in a neighbourhood of the singularity in such a way that the moment map can
be written as

f = φ(x2 + y2).

Consider now R4 with coordinates (x1, y1, x2, y2) and with the standard sym-
plectic form ωst = dx1 ∧ dy1 + dx2 ∧ dy2. Consider the three following Hamiltonian
functions:

F =(f1, f2) =
(
x2

1 + y2
1, x

2
2 + y2

2

)
(4.1)

G =(g1, g2) =
(
(x2

1 + y2
1)2, x2

2 + y2
2

)
(4.2)

H =(h1, h2) =
(
(x2

1 + y2
1)2, (x2

2 + y2
2)2
)

(4.3)

The three integrable systems have an isolated singularity at the origin, but only
in the system given by F it is non-degenerate. By the way, this system is the
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model of the two uncoupled harmonic oscillators and its level sets are 2-dimensional
invariant tori. The same level sets appear in the other two systems, but Theorem
4.4 can be directly applied to state rigidity only in the first system, since it has
a single non-degenerate singularity of elliptic type (it is already in normal form),
while in the others the singularity is degenerate. Observing the system given by
G, though, one can see that the second component produces an invariant S1 action.
This S1 symmetry allows for a symplectic reduction of the system, making it decrease
from a 4-dimensional to a 2-dimensional. In this new system, the singularity is still
degenerate, but following the idea in Example 4.8 one can find its non-degenerate
elliptic normal form. Then, Theorem 4.4 can be applied to obtain rigidity of the
reduced system, understanding rigidity as equivalence of close systems. It is not
difficult to see that, then, the original system is also rigid.

In view of this procedure, we have the following result.

Theorem 4.13. Consider an integrable system in a symplectic manifold (M,ω) given
by F = (f1, . . . , fn). Suppose that if p ∈M is a singularity of F , it is isolated, there
are no other singularities in its F -level set, and it is:

• either non-degenerate of regular or elliptic type, or

• degenerate of the following type: f1, . . . , fn−1 have a non-degenerate singularity
of elliptic type at p, fn has a degenerate singularity at p and fn is S1-invariant.

Then the system is rigid at the neighbourhood of each compact leaf Λc = F−1(c) ⊂M .

Proof. In all the regular leaves or in the leaves containing non-degenerate singulari-
ties, Theorem 4.4 already gives rigidity. At any singular leaf containing a degenerate
singularity, there exist (n − 1) S1-invariant actions that commute so we can per-
form a series of (n− 1) symplectic reductions successively to reduce the system to a
2-dimensional system, which has a degenerate singularity corresponding to the sin-
gularity of fn. At this point, the moment map of the reduced integrable system still
gives an S1-invariant action which has a moment map fn and because of Theorem
4.10 the function fn can be put in the quadratic normal form corresponding to the
elliptic singularity. Then, again by Theorem 4.4, the system associated to fn is rigid
at the neighbourhood of the leaf. Because of by Lemma 4.12 the function fn is a
smooth function of fn = H(fn) of fn and thus rigidity also holds for fn and by
reconstruction from the initial integrable system (f1, . . . , fn) in a neighbourhood of
a compact leaf.

Theorem 4.13 states semiglobal rigidity in the very particular case of systems
with degenerate singularities that are non-degenerate in (n − 1) components of the
moment map and have an S1-invariant action in the degenerate component.
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5. The b-symplectic version

It is a natural question to ask if the same results obtained for the standard cotangent
lift in the symplectic setting are also true in the b-symplectic case. Since rigidity of
the cotangent lift is proved using Palais Theorem, in order to prove rigidity in the
b-symplectic setting one has to use a b version of Palais Theorem. At its turn, the
proof of Palais Theorem uses the classical Mostow-Palais Theorem on equivariant
embeddings, so one has too prove also its b version. In this section, we first state the
b version of the Mostow-Palais and the Palais Theorems. Then, we give the proofs
of the b-symplectic Palais and the twisted b-cotangent lifted Palais Theorems, which
are all new results.

5.1 The b-Mostow-Palais and the b-Palais Theorems

We want to prove the b-versions of the Mostow-Palais embedding Theorem and the
Palais Rigidity Theorem. We give a proof which is similar to the proof of Palais
Rigidity Theorem that can be found on [GGK02].

We start proving the following Lemma.

Lemma 5.1. Representation b-functions are C1-dense in C∞(M,Z).

Proof. Representation b-functions on G, with respect to the left or right action of
G on itself, are uniformly dense in C1(G). This follows from the Peter-Weyl Theo-
rem adapted for b-functions. Namely, the matrix coefficients of a finite-dimensional
representation T of G span the finite-dimensional representation T ∗ ⊗ T in C∞(G).
Then, any linear combination of matrix coefficients is a representation b-function on
G. On the other hand, by same the Peter-Weyl Theorem, such linear combinations
are uniformly dense in C∞(G).

To prove the lemma, we will show that the convolution of a function f on M
and a representation function u on G, is a representation function on M . More
specifically, for u ∈ C∞(G) and f ∈ C∞(M,Z), we set:

fu(x) =

∫
G
u(g)f(g−1x)dg (5.1)

where dg is the normalized Haar measure on the compact group G. And now we
see that fu is a b-representation function whenever u is a b-representation function.
Indeed, for every h ∈ G, we have

hfu = fhu (5.2)

where hu(g) := u(h−1g). This can be checked through the following calculation:

(hfu(x)) = fu(h−1x) =

∫
G
u(g)f(g−1h−1x)dg =

∫
G
u(h−1g)f(g−1x)dg = fhu(x).

(5.3)
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For a fixed f , the mapping u 7→ fu is linear and G-equivariant (as hfu = fhu).
Hence, V (fu) is the image of V (u) and, as a consequence, V (fu) is finite-dimensional
if V (u) is finite-dimensional.

To finish the proof, observe that every function f can be arbitrarily close C1-
approximated by bfunctions of the form fv with v ∈ C∞(G). It suffices to take as v a
bump function on G which is supported near e ∈ G and has unit integral. Uniformly
approximating v by representation functions u, we obtain a C1-approximation of f
by representation b-functions fu.

Before stating the b-Mostow Palais Embedding Theorem, We recall that a G-
action on M induces a linear G-representation on C∞(M,Z), where g ∈ G acts by
sending f ∈ C∞(M,Z) to the b-function (gf)(x) = f(g−1x). Denote by V (f) the
span in C∞(M,Z) of the orbit G · f . f is said to be a representation b-function if
V (f) is finite-dimensional.

Theorem 5.2 (b-Mostow-Palais embedding Theorem). Let a compact Lie group G
act on a compact b-manifold (M,Z) via b-maps. Then, there exists an equivariant
embedding of (M,Z) into a linear representation of G on a finite-dimensional pair
(V,H) of vector spaces where H has codimension 1 in V .

Proof. The evaluation maps δx : f 7→ f(x), for x ∈ (M,Z), give rise to an equivariant
injection x 7→ δx ofM,Z into the dual space to C∞(M,Z). For every f ∈ C∞(M,Z),
the space V (f) is naturally a G-representation, and the evaluation map gives rise
to an equivariant mapping (M,Z) → V (f)∗. By Whitney’s Theorem, every man-
ifold can be smoothly embedded in Rm for some m, and a C1 deformation of an
embedding remains an embedding Then, since representation b-functions are C1-
dense in C∞(M,Z) (by Lemma 5.1), there exists an embedding (M,Z)→ Rm whose
components f1, . . . , fm are representation b-functions.

Therefore, we obtain an equivariant evaluation map from (M,Z) to the direct
sum V = V (f1)∗⊕· · ·⊕V (fm)∗. This map is an embedding because its composition
with a suitable linear mapping V → Rm is the original embedding (f1, . . . , fm). And
if the G action onM is effective, so is the G action on V . Then, G embeds in GL(N),
where N = dimV . The action becomes orthogonal by taking any inner product on
V and averaging with respect to the G-action.

Now, before proving the b-Palais Rigidity Theorem, we need the following Propo-
sition.

Proposition 5.3. Let G be a compact Lie group and V a finite-dimensional vector
space. Let ρ0 be a linear representation of G in V . Then, for every representation
ρ which is sufficiently C0-close to ρ0, there exists an automorphism A of V which
intertwines ρ0 and ρ, i.e., such that ρ0 = A ◦ ρ ◦ A−1. Besides, A can be chosen to
depend smoothly on ρ and ρ0.
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Proof. For each representation ρ of G in V , define a linear map A : V → V by

A(x) =

∫
G
ρ0(g−1)ρ(g)(x)dg, x ∈ V.

Then, for any h ∈ G,

A(ρ(h)x) =

∫
G
ρ0(g−1)ρ(g)ρ(h)(x)dg =

∫
G
ρ0(g−1)ρ(gh)(x)dg.

The change of variable g 7→ gh−1 turns the integral into∫
G
ρ0(hg−1)ρ(g)dg = ρ0(h)

∫
G
ρ0(g−1)ρ(g)dg = ρ0(h)A(x).

This shows that A ◦ ρ = ρ0 ◦A. When A is invertible, the proof is finished. Because
A depends continuously on ρ and is equal to the identity map when ρ = ρ0, the map
A is invertible if ρ is sufficiently close to ρ0.

Theorem 5.4 (b-Palais Theorem). Let ρ be a b-action of a compact group G on
a compact b-manifold (M,Z). For every b-action ρ1 of G on (M,Z) which is suf-
ficiently C1-close to ρ, there exists a diffeomorphism φ : (M,Z) → (M,Z) which
is a b-map and which conjugates the actions: ρ1 = φρφ−1. Also, it belongs to the
connected component of the identity map.

Proof. We start applying Theorem 5.2 to both ρ and ρ1. We obtain two represen-
tations of G, say ρ̄ and ρ̄1, on vector spaces V and V1, respectively, and equivariant
embeddingsM → V for ρ and (M,Z)→ V1 for ρ1. We can find a linear isomorphism
V1 → V after which the embeddings become C1-close and ρ̄ and ρ̄1 become close,
making it possible to identify V = V1.

By Proposition 5.3, there exists a linear mapping A : V → V , close to the identity,
which sends ρ̄1 to ρ̄ (ρ̄ = A ◦ ρ̄1 ◦ A−1). Thus, we assume that the representations
are equal and the embedding ψ1 for ρ1 is still C1-close to the embedding ψ for ρ.

The image of ψ1 lies in a small tubular neighborhood of the image of ψ, which we
identify with (M,Z). Let us fix a G-invariant metric on V . The composition φ of ψ1

with the orthogonal projection from the tubular neighborhood to (M,Z) is clearly
G-equivariant: (M,Z, ρ1) → (M,Z, ρ) and it is a b-map. Since ψ1 is C1-close to ψ,
this composition is a diffeomorphism.

5.2 The b-symplectic and the b-cotangent lifted Palais Theorems

We prove now the b-symplectic version of Palais Theorem, which is the b-symplectic
analogue of Theorem 3.12.

Theorem 5.5. Let G be a compact Lie group and (M,Z, ω) a compact smooth b-
symplectic manifold. Let ρ1, ρ2 : G×M −→ (M,Z, ω) be two b-actions which are C2-
close. Then, there exists a b-symplectomorphism that conjugates ρ1 and ρ2, making
them equivalent.
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Proof. Let G be a compact Lie group and (M,Z, ω) a compact smooth manifold.
Let ρ1, ρ2 : G ×M −→ M be two b-actions and assume that they are C2-close. By
Theorem 5.4, there exists a diffeomorphism ϕ that conjugates ρ1 and ρ2 and such
that it is a b-map.

Set ω0 = ω and ω1 = ϕ∗(ω0) and consider the linear path of b-symplectic struc-
tures

ωt = tω1 + (1− t)ω0, t ∈ [0, 1],

which is a path of b-symplectic structures since ω0 and ω1 are close. We want to see
that this path, which takes ω0 to ω1, is invariant respect to the action ρ1.

By the Theorem 5.4 the b-diffeomorphism ϕ belongs to the arc-connected com-
ponent of the identity, making it possible to construct an homotopy ϕt from ϕ0 := id
to ϕ1 := ϕ.

Then, we define a b-De Rham homotopy operator Q following the recipe given in
[GS77] by Guillemin-Sternberg (see also [CdS01]) which states the following. Suppose
that ωt is a smooth family of b-k-forms and that ϕt represents a one-parameter family
of local diffeomorphisms such that ϕt = id and dϕt/dt = Xt ◦ ϕt, i.e., ϕt is the flow
of the b-vector field Xt. Then,

d

dt
(ϕ∗tωt) = ϕ∗t

(
LXtωt +

dωt
dt

)
. (5.4)

Fixing ωt = ω in Equation 5.4 and integrating over t ∈ [0, 1], we obtain:

ϕ∗1ω − ϕ∗0ω =

∫ 1

0
ϕ∗t (LXtωt)dt. (5.5)

Applying Cartan’s formula, we get to the following equality:

ϕ∗1ω − ϕ∗0ω =

∫ 1

0
ϕ∗t (ιXtdω + dιXtω)dt = (5.6)

=

∫ 1

0
ϕ∗t (ιXtdω)dt+ d

∫ 1

0
ϕ∗t (ιXtω)dt. (5.7)

Now, using Equation 5.7, we define the following b-De Rham operator Q:

Q(ω) =

∫ 1

0
ϕ∗t (ιXtω)dt,

where the b-vector field Xt is defined by the isotopy ϕt. Equation 5.7 applied to
ω = ω0 tells that:

ω1 − ω0 = Q(dω) + dQ(ω). (5.8)

Since ω is a b-symplectic form, Q(dω) = Q(0) = 0 and:

ω1 − ω0 = dQ(ω),

57



Master Thesis

which proves that ω0 and ω1 belong to the same cohomology class and explicitly
shows that ω1 − ω0 = dα for the b-1-form α = Q(ω).

Now, let Xt be the b-vector field that satisfies

ιXtωt = −α. (5.9)

Notice that Xt is a b-vector field for any t, since α is a b-1-form and ωt is a
b-2-form for any t. Then, Xt will preserve (M,Z). Consider the averaged vector
field of Xt with respect to a Haar measure dµ on G:

XG
t :=

∫
G
ρ1(g)∗(Xt)dµ. (5.10)

Since the b-diffeomorphism ϕ conjugates the actions ρ1 and ρ2, which both pre-
serve the initial b-symplectic form ω0, the path of b-symplectic forms ωt is invariant
under ρ1. Then, the b-vector field XG

t satisfies the equation

iXG
t
ωt = −

∫
G
ρ1(g)∗(α)dµ,

which can be considered an averaging of Equation 5.9. Then, the invariant b-1-form
defined by αG =

∫
G ρ1(g)∗(α)dµ satisfies ω1 − ω0 = dαG because the path ωt is

invariant under ρ1.

Finally, consider the equation

XG
t (φGt ) =

∂φGt
∂t

.

At this point, there is a loss of one degree of differentiability with respect to
the degree of differentiability of ϕ, but the existence of φGt for all t ∈ [0, 1] is clear,
because the manifold is compact and by 5.4 the conjugating b-diffeomorphism ϕ is
of class C2.

Then, the flow φGt commutes with the action of G given by ρ1 and satisfies
φG∗t (ωt) = ω0 for all t ∈ [0, 1]. In particular, at t = 1, we have that φG1 takes ω1 to
ω0 in an equivariant way.

We finally prove twisted b-cotangent lift version of the Palais Theorem, the b
analogue of 4.2. The twisted b-cotangent lift (see Definition 2.123) is appropriate
here because when we want to eventually apply this result to integrable systems,
these would be b-integrable Hamiltonian systems defined by b-functions. And the
logarithm appearing on the local expression of the twisted b-1-form, i.e.:

λtw = log |y1|dx1 +
n∑
i=2

yidxi,

is compatible with the logarithm term of a b-function. On the contrary, the canonical
b-cotangent lift is based on the singularity of the type 1/x appearing in the canonical
b-1-form, and it does not produce a proper b-integrable Hamiltonian system.
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Proposition 5.6. Let G be a compact Lie group and (M,Z) a compact smooth b-
manifold. Let ρ1, ρ2 : G × (M,Z) −→ (M,Z) be two b-actions which are C1-close.
Let ρ̂1, ρ̂2 : G × (bT ∗M,ω) −→ (bT ∗M,ω) be the twisted b-cotangent lifts of ρ1, ρ2,
respectively. Then, there exists a b-symplectomorphism that conjugates ρ̂1 and ρ̂2,
making them equivalent.

Before proving this proposition, we prove that if two b-actions are C1-equivalent,
so are their twisted b-cotangent lifts and so are the induced moment maps.

Proposition 5.7. Let G be a Lie group and let (M,Z) be a smooth manifold. Let
ρ1, ρ2 : G × (M,Z) −→ (M,Z) be two b-actions which are C1-equivalent via a con-
jugation through a diffeomorphism ϕ which is a b-map. Let ρ̂1, ρ̂2 be the twisted
b-cotangent lifts of ρ1, ρ2, respectively. Then, ρ̂1 and ρ̂2 are C1-equivalent via the
conjugation through the b-map ϕ̂. The moment maps induced by ρ̂1, ρ̂2, denoted re-
spectively by µ1, µ2, are equivalent via the conjugation through ϕ̂.

Proof. Assume ρ1, ρ2 : G × (M,Z) −→ (M,Z) are two C1-equivalent Lie group b-
actions. Let ϕ be the C1-b-diffeomorphism conjugating the two actions, i.e, let ϕ be
a b-diffeomorphism such that ρ1 ◦ ϕ = ϕ ◦ ρ2.

Define ϕ̂(q, p) := (ϕ(q), ((dϕq)
∗)−1(p)), which is a b-diffeomorphism and can be

thought as the twisted b-cotangent lift of ϕ. Consider the twisted b-cotangent lift of
the actions ρ1 and ρ2, i.e. ρ̂1 and ρ̂2. By definition, ρ̂i(q, p) = (ρi(q), ((dρi,q)

∗)−1(p)).
Then, by the same computations of the proof of Proposition 4.1 we deduce that
ρ̂1 ◦ ϕ̂ = ϕ̂ ◦ ρ̂2, and we conclude that the twisted b-cotangent lifts of the actions
are equivalent on the cotangent bundle via conjugation by ϕ̂, which is precisely the
twisted b-cotangent lift of the diffeomorphism ϕ that conjugates ρ1 and ρ2 on the
base.

Also, analogously to what was computed on Proposition 4.1, the moment maps
induced by the twisted b-cotangent lifts of ρ1 and ρ2 are equivalent.

Proof of Proposition 5.6. Let G be a compact Lie group and (M,Z) a compact
smooth b-manifold. Let ρ1, ρ2 : G × (M,Z) −→ (M,Z) be two b-actions and as-
sume that they are C1-close. By Theorem 5.4, there exists a diffeomorphism ϕ that
conjugates ρ1 and ρ2 and is a b-map.

Consider ρ̂1, ρ̂2 : G×(bT ∗M,ω) −→ (bT ∗M,ω), the twisted b-cotangent lifts of ρ1

and ρ2, respectively. By Proposition 5.7, the diffeomorphism ϕ̂ conjugates ρ̂1 and ρ̂2

and it is also a b-map. To prove that the actions ρ̂1 and ρ̂2 are not only equivalent,
but b-symplectically equivalent, we need to check that ϕ̂ preserves the b-symplectic
form. It preserves the canonical b-1-form λ of bT ∗M and, hence, it preserves the
b-symplectic form ω.
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6. Cotangent models for integrable systems

Integrable Hamiltonian systems with non-degenerate singularities are really common
in Mechanics problems, and one does not have to go to complicated models to already
find the three basic types of non-degenerate singularities (in the Williamson sense,
see Theorem 3.19) described in Section 3.4. In the classical examples of the harmonic
oscillator, the simple pendulum and the spherical pendulum, there appear the elliptic
singularity, the hyperbolic singularity and the focus-focus singularity, respectively.

On the other hand, the three basic singularities can be formulated (in the elliptic
case only formally) as the cotangent lift of a Lie group action, which shows how
cotangent models are a useful tool when dealing with integrable systems.

In this section, we give the mathematical description of the physical models illus-
trating the three types of non-degenerate singularities. Then, we give the formulation
of the elliptic, hyperbolic and focus-focus singularities as cotangent lifts.

6.1 The harmonic oscillator

Consider an ideal one-dimensional oscillating system consisting of a mass m con-
nected to a rigid foundation by way of a spring of stiffness constant k, as in Figure
4, with no friction of any kind and, hence, with no loss of mechanical energy. The
Hamiltonian of the system is the sum of the kinetic and the elastic potential energies.
In terms of the natural coordinates of the phase space of the system (R2, ω = dx∧dv),
which are the position x and the velocity v of the mass, it writes as:

Ĥ(x, v) =
1

2
mv2 +

1

2
kx2. (6.1)

Applying the following symplectic transformation:x = q · 1
4
√
k/m

v = p · 4
√
k/m

, (6.2)

the symplectic manifold is now (R2, ω = dq ∧ dp) and the Hamiltonian becomes:

H(p, q) =
1

2

√
mk

(
p2 + q2

)
. (6.3)

Dropping the physical constants m and k, this Hamiltonian is exactly the normal
form of the moment map of a one-dimensional system with an elliptic singularity at
the origin, the unique equilibrium point of the system.

6.2 The simple pendulum

The simple pendulum is another of the basic models in classical mechanics. The
most natural approximation to its formulation is the Newtonian setting, where we
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Figure 4: The harmonic oscillator.

consider the forces and acting in the system formed by a mass m attached to an end
of a rigid massless rod of length l which has the other end fixed, as in Figure 5. It is
assumed that the mass moves in the vertical plane formed by the vertical direction
and the initial position and, since the rod has fixed length, the natural coordinate is
the angle θ ∈ [0, 2π)] with respect to the lower vertical equilibrium position.

θ

Fg

Figure 5: The simple pendulum.

Newton’s law states that the acceleration of the mass in the direction of motion,
which is always perpendicular to the direction of the rod, is proportional to the
total force in this direction of motion. Since the only force in this direction is the
component of the gravity force, Newton’s law reduces to:

ma⊥ = F⊥. (6.4)

Taking into account that the acceleration is related to the angular coordinate
through a⊥(θ) = l ∂

2θ
∂t2

and that the force is also function of the angle through F⊥(θ) =
−mg sin θ, where g is the gravity acceleration, the equation rewrites as the following
2nd order ODE:
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∂2θ

∂t2
= −g

l
sin θ. (6.5)

If we define ρ := ∂θ
∂t and consider the symplectic structure (S1 ×R, ω = dθ ∧ dρ)

of the phase space, Equation (6.5) is equivalent to the Hamiltonian first order system
of ODE’s: {

∂θ
∂t = ρ
∂ρ
∂t = −g

l sin θ
, (6.6)

whose Hamiltonian is

Ĥ(θ, ρ) =
ρ2

2
− g

l
cos θ. (6.7)

The first equilibrium point of (6.6) is found at θ = ρ = 0 and it is an stable point.
Dropping out the physical constants, the Hamiltonian there has the normal form H̄ =
1
2(ρ2 +θ2), which corresponds to an elliptic singularity like in the harmonic oscillator.
We are more interested in the second equilibrium point, found at θ = π, ρ = 0.

The Hamiltonian there can be locally expanded as:

H(θ, ρ) =
1

2

(
ρ2 − g

l
θ2
)
. (6.8)

Dropping the physical constants g and l, this Hamiltonian corresponds to the
normal form of a one-dimensional system with a hyperbolic singularity at the origin.

6.3 The spherical pendulum

The most basic physical example of a singularity of focus-focus type comes from
the spherical pendulum. Consider a point of mass m attached to an end of a rigid
massless rod of length l and assume that the other end of the rod is fixed at the
origin and that the mass can move freely as long as it remains attached to the rod,
as in Figure 6. The mass can move, then, on a sphere of radius l.

The natural phase space is the cotangent bundle T ∗S2 and, while spherical co-
ordinates are the optimal setting to study the dynamics of the spherical pendulum,
Cartesian coordinates are more appropriated to analyze the singularities of the sys-
tem. In Cartesian, the position of the point of mass will be given by ~r = (x, y, z),
with ‖~r‖ = l. The conjugate variable to ~r is the linear momentum of the point,
~p = (px, py, pz) = m~̇r, which has to satisfy ~r · ~p = 0 in order to be contained in the
tangent space of the sphere.

The Hamiltonian of the system is the sum of kinetic and potential energies and
in the symplectic setting (R6, ω = dx ∧ dpx + dy ∧ dpy + dz ∧ dpz) writes as:

H(~r, ~p) =
‖~p‖2

2m
+mgl

~r · ẑ
‖~r‖

, (6.9)
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Figure 6: The spherical pendulum.

where g accounts for the gravity acceleration and ẑ is the unit vector in the z
direction. There is another conserved quantity, the angular momentum in the z
direction: L := Lz = xpy − ypx. H and L satisfy {H,L} = 0 and are independent
almost everywhere. Hence, they form the Liouville integrable system corresponding
the spherical pendulum.

There are two singularities in the pendulum system, one corresponding to z = −l
(or to ~r− = (0, 0,−l)) and the other one to z = l (or to ~r+ = (0, 0, l)). We are
interested in ~r1, the unstable equilibrium, where we are going to identify the focus-
focus singularity.

To study the system near z = l, we use that z =
√
l2 − x2 − y2 and take local co-

ordinates (x, y, z) = (x, y,
√
l2 − x2 − y2). The conjugate momentum ~p = (px, py, pz)

satisfies locally that pz = 0. In these symplectic coordinates the symplectic form is
ω = dx ∧ dpx + dy ∧ dpy and the Hamiltonian of the system writes as:

H =
1

2ml2
(
p2
x(l2 − x2) + p2

y(l
2 − y2)− 2xypxpy

)
+mg(

√
l2 − x2 − y2 − l). (6.10)

At this point, it is convenient to apply a symplectic scaling in order to adimen-
sionalize the Hamiltonian. We apply the following symplectic transformation:

x = ξ√
mν

px = pξ
√
mν

y = η√
mν

py = pη
√
mν

, (6.11)

where ν =
√
g/l. In these local symplectic coordinates near the unstable equilibrium

of the spherical pendulum, the symplecit form is rewritten as ω = dξ∧dpξ +dη∧dpη
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and the Hamiltonian becomes:

H = ν

(
1

2
(p2
ξ + p2

η)−
κ

2
(ξpξ + ηpη)

2 +
1

κ
(
√

1− κρ2 − 1)

)
, (6.12)

where ρ2 = ξ2 + η2, ν2 = g/l and 1/κ = ml2ν = mgl/ν and they are all constants.

Finally, a last symplectic transformation reveals that the Williamson normal form
at the unstable equilibrium of the spherical pendulum corresponds to the focus-focus
singularity. It is the following:

√
2ξ = q1 − p1,

√
2pξ = q1 + p1,

√
2η = q2 − p2,

√
2pη = q2 + p2 . (6.13)

In these coordinates, where ω = dp1 ∧ dq1 + dp2 ∧ dq2, the Hamiltonian is:

H = ν

(
p1q1 + p2q2 − κ

1

8
(q2 − p2)2 +

1

κ

√
1− κρ2 +

ρ2

2
− 1

κ

)
, (6.14)

where q2 = q2
1 + q2

2, p2 = p2
1 + p2

2 and ρ2 = p2/2 + q2/2− (p1q1 + p2q2).

Observe that the quadratic part of the potential has been absorbed in the terms
H ′ = ν(p1q2 + p2q2) and that the remaining terms of the potential are of order 4
and higher. The quadratic part of H is simply H ′ and the angular momentum in
the p, q variables is L = q1p2− q2p1. So, the system F = (H ′, L) has a singularity of
focus-focus type.

6.4 The hyperbolic singularity as a cotangent lift

Take coordinates (x, y) on T ∗R such that the symplectic form is ω = dx ∧ dy and
the moment map is f = xy.

If we compute the Hamiltonian vector field associated to f , we obtain

X = −∂f
∂y

(
∂

∂x

)
+
∂f

∂x

(
∂

∂y

)
= −x ∂

∂x
+ y

∂

∂y
= (−x, y). (6.15)

Consider the action of (R,+) on R given by:

ρ : R× R −→ R
(t, x) 7−→ e−tx

,

and the induced an action ρt : R −→ R. The differential of ρt at a point x ∈ R is:

(dρt)x : TxR −→ TxR
y 7−→ e−ty

,

Then, ((dρt)
∗
x)−1 acts as y 7−→ ety, and the cotangent lift ρ̂t associated to the

group action ρt, in coordinates (x, y) of T ∗R is exactly:

ρ̂ : T ∗R −→ T ∗R(
x
y

)
7−→

(
e−tx
ety

)
.
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Deriving the last vector with respect to t and evaluating at t = 0, we obtain
exactly X = (−x, y), the vector field associated to the hyperbolic singularity.

6.5 The elliptic singularity as a cotangent lift

The cotangent lift in the elliptic case uses a complex moment map which is not
holomorphic. It is a formal development and by no means holomorphicity is assumed.

Take complex coordinates (z, z̄) = (x + iy, x − iy) such that the symplectic
form is ω = dz ∧ dz̄. The moment map corresponding to the elliptic singularity is
f = x2 + y2 = zz̄.

The Hamilton’s equations in this complex setting are:

ιXω = −df ⇐⇒ ιa ∂
∂z

+b ∂
∂z̄
dz ∧ dz̄ = −∂f

∂z
dz − ∂f

∂z̄
dz̄ ⇐⇒

{
a = −∂f

∂z̄

b = ∂f
∂z

. (6.16)

If we compute the Hamiltonian vector field associated to f , we obtain

X = −∂f
∂z̄

(
∂

∂z

)
+
∂f

∂z

(
∂

∂z̄

)
= −z ∂

∂z
+ z̄

∂

∂z̄
= (−z, z̄). (6.17)

Now, consider the following action, which is the same that we used for the hy-
perbolic cotangent lift but in complex coordinates:

ρ : R× R −→ R
(t, z) 7−→ e−tz

,

And consider the induced an action ρt : R −→ R. The differential of ρt at a point
z ∈ R is:

(dρt)z : TzR −→ TzR
z̄ 7−→ e−tz̄

.

Then, ((dρt)
∗
z)
−1 acts as z̄ 7−→ etz̄, and the cotangent lift ρ̂t associated to the

group action ρt, in coordinates (z, z̄) of T ∗R is:

ρ̂ : T ∗R −→ T ∗R(
z
z̄

)
7−→

(
e−tz
etz̄

)
.

Deriving the last vector with respect to t and evaluating at t = 0 we obtain
X = (−z, z̄), the vector field associated to the hyperbolic singularity.

6.6 The focus-focus singularity as a cotangent lift

To describe the basic singularity of focus-focus type in a manifold of dimension 4 we
take coordinates (x1, x2, y1, y2). The symplectic form is ω = dx1∧dy1 +dx2∧dy2 and
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the moment map associated to this singularity is F = (f1, f2) = (x1y2−x2y1, x1y1 +
x2y2).

If we compute the Hamiltonian vector field associated to f1 and f2, we obtain

X1 =− ∂f1

∂y1

(
∂

∂x1

)
− ∂f1

∂y2

(
∂

∂x2

)
+
∂f1

∂x1

(
∂

∂y1

)
+
∂f1

∂x2

(
∂

∂y2

)
= (6.18)

=x2
∂

∂x1
− x1

∂

∂x2
+ y2

∂

∂y1
− y1

∂

∂y2
= (x2,−x1, y2,−y1), (6.19)

and

X2 =− ∂f2

∂y1

(
∂

∂x1

)
− ∂f2

∂y2

(
∂

∂x2

)
+
∂f2

∂x1

(
∂

∂y1

)
+
∂f2

∂x2

(
∂

∂y2

)
= (6.20)

=− x1
∂

∂x1
− x2

∂

∂x2
+ y1

∂

∂y1
+ y2

∂

∂y2
= (−x1,−x2, y1, y2). (6.21)

Now consider the action of a rotation and a radial dilation on R2 given by:

ρ : (S1 × R)× R2 −→ R2

((θ, t),

(
x1

x2

)
) 7−→ ρθ,t

(
x1

x2

)
= e−t

(
cos θ sin θ
− sin θ cos θ

)(
x1

x2

)
.

The differential of the induced action ρθ,t at a point x = (x1, x2) is the following
linear map:

dρθ,t : TxR2 −→ TxR2(
y1

y2

)
7−→ e−t

(
y1 cos θ + y2 sin θ
−y1 sin θ + y2 cos θ

)
.

Then, ((dρθ,t)
∗)−1 acts as:(

y1

y2

)
7−→ et

(
cos θ sin θ
− sin θ cos θ

)(
y1

y2

)
.

And the cotangent lift ρ̂θ,t associated to the group action ρθ,t is:

ρ̂θ,t : T ∗R2 −→ T ∗R2
x1

x2

y1

y2

 7−→


e−t(x1 cos θ + x2 sin θ)
e−t(−x1 sin θ + x2 cos θ)
et(y1 cos θ + y2 sin θ)
et(−y1 sin θ + y2 cos θ)

 .

Finally, deriving the last vector with respect to θ and evaluating at 0 and de-
riving the vector with respect to t and evaluating at 0 we obtain, respectively,
X1 = (x2,−x1, y2,−y1) and X2 = (−x1,−x2, y1, y2), the vector fields associated
with f1 and f2, the components of the moment map of the hyperbolic singularity.
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7. The focus-focus singularity, an overview

Following the idea of stability and classification of Hamiltonian systems, an impor-
tant result by Atiyah [Ati82] and Guillemin and Sternberg [GS82] states that, in
Hamiltonian systems where the moment map F is an action of a k-dimensional torus
and the manifoldM2n is compact, F (M) is a convex polytope. Later, Delzant proved
in [Del88] that, if M is a toric variety, this polytope determines M up to isomor-
phism. In the case where the dimension of the torus is n (half the dimension of M),
F (M) was called a Delzant polytope. When trying to classify integrable Hamiltonian
systems at the non-regular points, namely, at the singularities, finding objects such
as the Delzant polytope which are invariants of the manifold is one of the main goals.

A special class of integrable Hamiltonian systems which has been of interest of
the author is the class of semitoric integrable systems. There exist results concerning
invariant objects in this special class of systems which are explained in this section.

Definition 7.1. A semitoric integrable system consists of a symplectic connected
manifold (M,ω) of dimension 4 and two independent and smooth functions J,H
defined on M , with J generating a Hamiltonian S1 action and {J,H}=0.

Remark 7.2. For simplicity, in the study of semitoric integrable systems it is assumed
that F has only non-degenerate singularities and that none of them is hyperbolic.
It is the same as to say that the three possible singularities in a semitoric integrable
system, written in an appropriate basis, are:

F1 = (q2
1 + p2

1, p2) (transversally − elliptic),
F2 = (q2

1 + p2
1, q

2
2 + p2

2) (elliptic− elliptic),
F3 = (q1p1 + q2p2, q1p2 − q2p1) (focus− focus).

It is also general to assume that the focus-focus singularities are on different level
sets of F .

For the sake of completeness, and before starting with the particular case of the
focus-focus singularity, we mention that there are 5 invariants that San Vu Ngoc and
Alvaro Pelayo declared to be the complete family of invariants that determines a
semitoric integrable system in a manifold of dimension 4. The rest of the section is
devoted to the description of one of these invariants. For more details on the other
invariants, see [PN09].

A Hamiltonian system (M,ω, F ) is said to be singular at a point m ∈M if m is
a critical point for the momentum map F , i.e., if each function fi has a critical point
at m. Without loss of generality, we will assume from now on that fi(m) = 0 at the
critical point m. The simple focus-focus singularity is defined to be the singularity
that appears in a manifold M of dimension 4 when there is a critical point m which
is non-degenerate and the momentum map can be written locally in a basis (f1, f2)
such that, in the Williamson coordinates (q1, q2, p1, p2) the components f1 and f2

are expressed as [Eli90]:
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{
f1 = q1p1 + q2p2

f2 = q1p2 − q2p1

(7.1)

It is clear from the local chart of coordinates that the focus-focus singularity
is isolated as a critical point of F . In particular, one can see that the punctured
neighbourhood of m in M is foliated by leafs of the form Λc = F−1(c) which are
smooth Lagrangian submanifolds of M . In the rest of the section, we describe the
leaf Λ0 of the singular foliation and its neighbourhood.

7.1 The focus-focus invariant leaf

With the notation of Equation 7.1, we denote the Hamiltonian vector fields of f1 and
f2 by X1 and X2, respectively, and define the complex coordinates z1 := q1 + iq2,
z2 := p1 + ip2. The flows of X1 and X2 if the system has a focus-focus singularity
are, respectively: {

ϕ1
t (z1, z2) = (etz1, e

−tz2)

ϕ2
t (z1, z2) = (eitz1, e

itz2)
(7.2)

In these complex coordinates, it is easy to see that the complex function associ-
ated to the momentum map, F̃ := f1 +if2, is written as F̃ (z1, z2) = z̄1z2. Hence, the
singular leaf Λ0 = F−1(0) is the union of the complex planes {z1 = 0} and {z2 = 0},
which, besides, correspond to the stable and unstable manifolds of the flow of X1.

Although the focus-focus singularities are isolated, it can happen that a La-
grangian leaf Λ0 contains several of them. Assuming Λ0 to be compact, there can be
only finitely many of them. However, in this section, we will discuss the case where
Λ0 contains only one critical point, denoted by m. In this case, the leaf is called
simple focus-focus leaf.

We notice that the punctured leaf Λ0 \{m}, which is smooth and invariant under
Hamiltonian flows of the system, is not compact. This prevents the neighboring leaves
to be diffeomorphic to Λ0\{m} because by the Liouville-Arnold-Mineur Theorem (see
Theorem 3.3) they are compact. Nevertheless, we with are going to show that the
local structure of Λ0 gives enough information to describe the leaf globally. Namely,
we are going to review the proof of the following theorem [San98].

Theorem 7.3. Let Λ0 be a simple focus-focus leaf of the momentum map and let
m be the singularity. Then, the connected component of m in Λ0 is the image of
an immersion of a 2-sphere with a double point. Besides, the punctured connected
component of m in Λ0 is an orbit of the Hamiltonian action of the system, with the
structure of an affine infinite cylinder.

Proof. We start supposing, without loss of generality, that Λ0 is connected, because
any other connected components in its neighbourhood are necessarily regular tori
and the Arnold-Liouville-Mineur Theorem applies there.
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Now, notice that Λ0 \ {m} can have at most two connected components, as Λ0 is
the union of two complex planes through their respective origins. On Λ0 \ {m}, the
action of the momentum map is locally free, as it does not contain any singularity.
It implies that each connected component of Λ0 \ {m} is an orbit of the system, on
which all isotropy subgroups I are conjugated. This orbit, then, is diffeomorphic to
R2/I. Therefore, each connected component of Λ0 \ {m} is either diffeomorphic to
R2 if I only contains the identity, or it is diffeomorphic to R2/Z = R×S1 (an infinite
cylinder) if I = Z. Notice that the possibility that I = Z2 is not considered because
R2/Z2 is a torus, hence compact, contradicting the non-compactness of Λ0 \ {m}.

To solve if the connected components of Λ0 \ {m} are infinite planes or infinite
cylinders, we study the neighbourhood of the critical point m. The action of the
system near m is symplectically linearizable (as Eliasson explains in [Eli90]), i.e.
there exists a symplectic chart in which the Hamiltonian vector fields of f1 and f2 are
linear combinations of the standard focus-focus vector fields X1 and X2 associated to
the quadratic forms f1 and f2. Moreover, the coefficients of these linear combinations
form an invertible 2× 2 matrix Mc which is locally constant along each fiber Λc. As
f2 has periodic orbits in any neighbourhood of m (see Equation 7.2), the isotropy
group is necessarily the group formed by the integer multiples of the period, so it’s
isomorphic to Z. In conclusion, the connected components of Λ0 \ {m} are infinite
cylinders.

Now, notice that in one of these infinite cylinders there are two infinitesimal
generators of the action of the system which are globally defined, X1 and X2, con-
structed as a combination of the initial generators Xf1 and Xf2 of the system. In
particular they are built exactly through the combination provided by M−1

c . As we
see in Equation 7.2, these vector fields are transversal to each other and, hence, as
X2 generates the periodic orbits, X1 describes an axis of the cylinder.

Finally, we check that there is only one connected component in Λ0 \ {m}, by
showing that the entire Λ0 \ {m} is connected. As we already know, the punctured
set Λ0 \ {m}, by construction, has only one or two connected components. This is
because Λ0 is connected, but removing the point m could divide the leaf into two
connected components. One of these two would be associated to the stable manifold
of X1 at m and the other one to the unstable manifold of X1 at m (recall that we
know that the local behaviour of the system near m is given by 7.2).

We fix now a point x in the unstable manifold of X1, so close to m that it is
contained in a neighbourhood U of m which is S1 invariant (i.e.: invariant through
X2). The flow of X1 with initial condition x, as the time increases, goes out of U .
But, as the dynamics on the infinite cylinder force the flow take only finite time to
leave any compact subset, and since the manifold with boundary Λ0 \U is compact,
the image x(t) of x through the flow of X1 must necessarily leave Λ0 \ U at some
finite time t0. In other words, it has to enter U again. And it is clear from the local
structure of the flow near m that x(t) can enter U (a neighbourhood of m only via
the stable manifold.

Therefore, the stable and the unstable manifolds are connected to each other,
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Figure 7: A simple singular leaf of focus-focus type.

and hence they are equal and there is only one connected component in Λ0 \ {m}.
We conclude that Λ0 is homeomorphic to a cylinder whose ends are compactified in
a unique point, the focus-focus singularity m (see Figure 7). It can also be thought
as a pinched torus, or as a sphere with two points identified.

7.2 The neighbourhood of a simple focus-focus leaf

As we have seen, the leaf Λ0 of a simple focus-focus singularity is topologically a
pinched torus. In this section, we present a characterization of the neighbouring
leaves through some invariants.

First of all, we recall that the Liouville-Arnold-Mineur Theorem states that as
neighbouring leaves of a singular simple leaf Λ0 are regular, they are tori if they are
compact manifolds.

Now, we define the Hamiltonian vector field t1X1 + t2X2 in coordinates (c1, c2)
on R2, where X1 and X2 are the vector fields associated to the components f1 and
f2 of the momentum map F (which defines the foliation). If (c1, c2) is a regular
value of F we know by the Liouville-Arnold-Mineur Theorem that the set of values
(t1, t2) which make the flow of the Hamiltonian vector field t1X1 + t2X2 be periodic
of period 1 are a sublattice of R2 called the period lattice [VuN03].

But this period lattice collapses when c tends to the critical value (0, 0), as we
already know that in the leaf Λ0 only one period survives (the one associated to the
periodic orbits of the transversal circles in the pinched torus) and the other period
goes to infinity (the one associated to the axis of the torus or the homoclinic orbit).

Nevertheless, we see that we can "follow" the collapse of the period lattice as c
tends to 0. Let Ω be a small neighbourhood of m where the symplectic linearization
of the system (F = (f1, f2)) explained in the previous section is valid and fix a point
A in the intersection of the regular leaf Λc and Ω. We denote by S1(A) the orbit of A
through the action of f2, which we know that is 2π-periodic. For c 6= 0, let τ1(c) > 0
be the time necessary for the flow of X1 to send S1(A) to itself for first time (after
an entire loop around the torus leaf Λc, see Figure 8). As X1 and X2 commute, τ1
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is independent of the point A ∈ S1(A) that is chosen. We denote A′ the image of A
through this map and denote by τ2(c) the time necessary for the flow of X2 to send
A′ to A. τ2(c), again, does not depend on the choice of p ∈ S1(A).

Figure 8: Neighbourhood of a simple focus-focus singularity.

Now, we have that the vector fields τ1X1 +τ2X2 and 2πX2 both define 1-periodic
flows. For this reason, the basis {(τ1, τ2), (0, 2π)} is a Z−basis for the period lattice.
This is important because the singularity classification depends on the nature of this
basis when c tends to 0.

Finally, we present a result that quantifies the divergence of the period when the
collapse happens. In this way, we will be able to define a 1-form that we can assure
is closed.

Theorem 7.4. The following functions extend to smooth and single-valued functions
in a neighbourhood of c = 0.{

σ1(c) = τ1(c) +R(ln c)

σ2(c) = τ2(c)− I(ln c)
(7.3)

Where ln c is any determination of the complex logarithm and c = (c1, c2) is identified
with c1 + ic2. Besides, the 1-form defined by σ := σ1dc1 + σ2dc2 is closed.

At this point, we can state the main result that allows to characterize the neigh-
bourhood of a simple focus-focus leaf

Theorem 7.5. Let S be the unique smooth function defined in some neighbourhood
of 0 ∈ R2 such that dS = σ (its existence is guaranteed by the Poincaré lemma)
and such that S(0) = 0. Then, the Taylor expansion of S at c = 0 is a symplectic
invariant of the singular Liouville foliation of focus-focus type at a simple focus-focus
leaf. It is denoted by (S).

This result, which goes down to the level of 1-forms, can be more elegantly stated
in the following way:
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Theorem 7.6. The set of equivalence classes of germs of singular Liouville foliations
of focus-focus type at a simple focus-focus leaf is in natural bijection with R[[X,Y ]]0,
which is the algebra of real formal power series in two variables with vanishing con-
stant term.

Our rigidity theorems of Section 4 apply for compact actions and, hence, we can
not use them to state rigidity for the focus-focus singular leaf, which arises from
a non-compact action. The invariants defined by San Vu Ngoc (see Theorem 7.5)
characterize not only the focus-focus singularity but its whole invariant leaf. Then,
it is a natural question to ask if rigidity of the singular focus-focus leaf could be
proved using some closeness conditions on these invariants.

On the other hand, the cotangent lift (see the cotangent models for non-degenerate
singularities presented in Section 6) provides a local modal valid in the neighbourhood
of a point. To get the symplectic normal form for the system in the neighbourhood
of a leaf one needs to cover this neighbourhood by action-angle neighbourhoods and
glue them back. In [MVuN05] it is proved that there exist a moduli of symplectic
structures. In a future work we plan to identify Vu Ngoc’s invariants with an action
on the cotangent models.
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8. The saddle-focus singularity, a physical example

In the restricted three body problem (R3BP), it occurs one of the most studied bi-
furcations in the sense of dynamical systems, the Hopf Bifurcation. It is a bifurcation
that happens at two fixed points denoted by L4 and L5 when a one-dimensional pa-
rameter µ goes through a constant value µ1, the so-called Routh Mass. This section
is devoted to describe this singularity, which is sometimes also called the saddle-focus
singularity.

A brief summary of what it will be explained in this section os the following. At
points L4 and L5, the matrix of the linearized system of the R3BP can have three
types of eigenvalues:

• ±iω1,±iω2, if 0 < µ < µ1 = (1−
√

69/9)/2,

• ±ωi with double multiplicity, if µ = µ1, and

• ±α± iβ, if µ1 < µ < 1/2.

For the case µ < µ1, the Lyapunov Center Theorem applies and it gives the
existence of a family of periodic orbits, while for the case µ > µ1, the classical Stable
Manifold Theorem explains the behaviour of the system at the critical point. Finally,
for the case µ = µ1, it is necessary to analyze the system through some symplectic
changes of coordinates6 and scalings.

We will introduce the restricted three body problem and then we are going to
focus on the discussion of the Hopf Bifurcation at L4 and L5. For that, we will
previously state the Lyapunov Center Theorem and its proof. After a quite general
study of the Hopf Bifurcation in a general quadratic Hamiltonian system, we are
going to check that it is exactly the bifurcation that arises at L4 when µ goes through
µ1 in the R3BP. At the end, we will conclude with real examples of objects found
near the points L4 and L5 of different subsystems of the Solar System.

8.1 The restricted planar three body problem

The restricted planar three body problem is a classical problem in Celestial Mechanics
which, even being a quite simple model, suffices to explain accurately enough some
phenomena that occur, for instance, in the Solar System.

The R3BP can be seen as the classical three body problem (3BP) in rotating
coordinates and restricted to the plane, with the assumption that one of the three
bodies has infinitesimally small mass while the other two, the primaries, have finite
mass. The motion of the two primaries is assumed, for this model, to be in circular
orbits around each other. For this reason, is natural to take rotating coordinates,
with the center of mass of the two finite masses placed at the origin. The aim of the

6If ϕ : (z, t) 7→ ϕ(z, t) : U ⊂ R2n+1 → R2n is a change of variables and satisfies that Dzϕ ∈
Sp(2n,R), i.e., is a symplectic matrix, then we say that it is a symplectic change of coordinates.
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model is precisely to study the motion of the third body due to the attraction of the
primaries.

The formulation of the R3BP is the following. Consider the rotating coordinates
u1, u2, u3, v1, v2, v3 ∈ R2, the u’s accounting for the positions and the v’s accounting
for the conjugate momenta of the particles 1, 2, 3 in the plane. Let m1,m2 be the
masses of the two primaries and ε2 << 1 the mass of the small particle. The
Hamiltonian of the R3BP is

H3 =
‖v3‖2

2ε2
− uT3 Kv3 −

2∑
i=1

ε2mi

‖u3 − ui‖
+

2∑
i=1

uTi Kvi +
m1m2

‖u1 − u2‖
(8.1)

where K = J2.

Through a symplectic change of variables, it is possible to pass from the total
version of the R3BP to a partial version that focuses on the dynamics of the small
mass [MO17]. The Hamiltonian of the small mass, assuming its coordinates to be
(x1, x2) for the position and (y1, y2) for the conjugate momentum is

H =
‖y‖2

2
− xTKy − µ

d1
− 1− µ

d2
(8.2)

where µ ∈ (0, 1/2] is the mass of the first primary, 1−µ is the mass of the second
primary, d2

1 = (x1 − 1 + µ)2 + x2
2 and d2

2 = (x1 + µ)2 + x2
2. We will denote µ

d1
+ 1−µ

d2

by U(x). In this rotating coordinates setting, the first primary is placed at (1−µ, 0)
and second primary is at (−µ, 0), in such a way that the origin is the center of mass
of the two primaries. The equations of motion derived from this Hamiltonian are{

ẋ = ∂H
∂y = y +Kx

ẏ = −∂H
∂x = Ky + ∂U(x)

∂x

(8.3)

In search of the equilibrium, one solves the equations in (8.3) for ẋ = ẏ = 0
and obtains the new equation x + ∂U/∂x = 0. This equation has five solutions,
the libration points, as it can be seen in Figure 9. Three of them lie on the line
through the two primaries and are called L1,L2,L3. The other two are symmetric
to each other with respect to the horizontal axis x2 = 0 and both of them form an
equilateral triangle with the primaries. They are called L4,L5 and their coordinates
are (1/2− µ,±

√
3/2).

Among these five equilibrium points of the R3BP, L4,L5 are stable but L1,L2,L3

are not. For this reason, one expects periodic orbits around L4 and L5. The next
step consists on calculating the spectrum of these two equilibrium points, which is
equivalent to calculate the eigenvalues of the linear part of the system (8.3) there.

To study the linearized system at L4 (for L5 it is equivalent), we denote its
coordinates by (ξ1, ξ2,−ξ2, ξ1) and apply a translation to the original coordinates to
center the system there. Hence, the transformation we apply is the following
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Figure 9: Position of the five equilibrium points in the R3BP.

u1 = x1 − ξ1, u2 = x2 − ξ2, v1 = y1 + ξ2, v2 = y2 − ξ1 (8.4)

which is symplectic. Now, we expand the Hamiltonian H in (8.2) in the new
variables u, v and obtain

H =
1

2
(v1 + v2) + u2v1 − u1v2 −

1

2
(U11u

2
1 + 2U12u1u2 + U22u

2
2) +O3(u) (8.5)

Computing the linear part of the system, and recalling that for L4 we have that
(ξ1, ξ2) = (1/2−µ,

√
3/2), we obtain that the characteristic polynomial of the linear

part of (8.5) at the libration point L4 is

p(λ) = λ4 + λ2 +
27

4
µ(1/µ) (8.6)

The solutions of (8.6) are λ2 = 1/2(−1 ±
√

1− 27µ(1− µ)). They depend im-
portantly on µ, that we recall that is the mass-ratio parameter and takes values in
(0, 1/2]. For µ = µ1 = (1 −

√
69/9)/2, the Routh Mass, the discriminant vanishes

and the solutions are λ = ±i/
√

2 with multiplicity two. For µ < µ1, the solutions are
purely imaginary eigenvalues of the form λ = ±iω1,±iω2. For µ > µ1, the solutions
are complex with non zero real part and can be written in the form µ = ±α± iβ.

We can conclude that, for µ > µ1, the system is not stable at a neighbourhood
of L4, because their linearization has eigenvalues with positive real part. On the
contrary, for µ ≤ µ1, the eigenvalues of the linearization of the system are purely
imaginary, so it is necessary to discuss if they give rise to some kind of central

75



Master Thesis

equilibrium or periodic orbits at L4. This has to be analyzed through the higher
order terms of (8.5) and one discovers, as we show in the next sections, that a special
bifurcation occurs in this system for µ = µ1.

8.2 The Hopf Bifurcation

The change in the nature of the eigenvalues of the linear part of the Hamiltonian
system corresponding to the R3BP when the mass ratio parameter µ goes through
µ1 = (1 −

√
69/9)/2 leads to an essential change in the behaviour of the system (a

bifurcation). In order to study it, we will need an important result, the Lyapunov
Center Theorem, basic in dynamical systems.

8.3 Lyapunov Center Theorem

Theorem 8.1 (Lyapunov Center Theorem). Suppose that the system ẋ = f(x) has a
non-degenerate integral and has an equilibrium point with exponents (eigenvalues of
the linear part) +ωi,−ωi, λ3, . . . , λm. If λi/iω is not an integer for any i = 3, . . . ,m,
then it exists a one-parameter family of periodic orbits that are born at the equilibrium
point. Besides, the periods of the orbits in this family tend exactly to 2π/ω when
approaching the equilibrium point along the family.

Proof. Take x = 0 as the equilibrium point. The equation ẋ = f(x) can be rewritten
as ẋ = Ax+ g(x), with A a constant matrix accounting for the linear part and g(x)
a function of x without linear part at the critical point, i.e. ∂g/∂x(0) = 0.

Now, do a scaling of the system by the change x → εx and get ẋ = Ax +O(ε).
When ε = 0, the system is linear and by hypothesis it ha as solution of the form
φ(t) = exp (At)a, with a a constant non zero vector and such that its period is
2π/ω. The multipliers of the periodic solution are the eigenvalues of the matrix
exp (A2π/ω), which, by hypothesis, are 1,1,exp (2πλi/ω) for i = 3, . . . ,m. Again, by
hypothesis, they are not 1 for any i = 3, . . . ,m, because λi/iω is not an integer for
any i = 3, . . . ,m. This implies that the periodic solution φ(t) is elementary.

An elementary orbit in a system with a non-degenerate integral can be continued,
so there exists a periodic solution of the scaled system of the form ϕ(t) = exp (At)a+
O(ε) which, deescalating, becomes ϕ(t) = ε exp (At)a+O(ε2), which is exactly what
we wanted to prove.

8.4 Study of the Hopf Bifurcation

In the case of the R3BP, when µ < µ1 and µ is close to µ1, the Lyapunov Center
Theorem states that, as the quotient of eigenvalues (frequencies) is not an integer,
there exist two one-parameter families of periodic solutions emanating from the li-
bration point L4 (also from L5). They are associated to the frequencies ω1 and ω2,
respectively.
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On the contrary, when µ1 < µ < 1/2, the fact that the eigenvalues of the linear
system have non-zero real part implies by the Stable Manifold Theorem that there are
no periodic orbits around L4. The following part of the essay is dedicated to study
what happens to the periodic solutions when µ goes through µ1 = (1−

√
69/9)/2.

At µ = µ1 = (1 −
√

69/9)/2, the linear part of the Hamiltonian system of the
restricted three body problem has as eigenvalues ±

√
2/2i with multiplicity two. This

is the value of µ for which we say that the bifurcation occurs. As the Lyapunov Center
Theorem doesn’t apply here, the analysis has to be carried studying the system for
values of µ close to µ1, in order to see what exactly happens with the two families of
periodic solutions that emerge from the origin when µ < µ1 and escape away when
µ > µ1.

To perform the analysis, we will use the canonical form of a Hamiltonian with
eigenvalues ±iω with multiplicity two, which is exactly the case of the R3BP when
µ = µ1.

In canonical form, the Hamiltonian of the system in the variables (ξ1, ξ2, η1, η2)
is [MO17]

H0 =
√

2/2(ξ2η1 − ξ1η2) + 1/2(ξ2
1 + ξ2

2) (8.7)

and the corresponding Hamiltonian linear system of differential equations is ż =
Az, where

A =


0

√
2/2 0 0

−
√

2/2 0 0 0

−1 0 0
√

2/2

0 −1 −
√

2/2 0

 (8.8)

The plan now is to study smooth perturbations of the Hamiltonian H0. First,
we define three quantities that are function of the (ξ1, ξ2, η1, η2) variables and will
simplify the notation:

Γ1 = ξ2η1 − ξ1η2, Γ2 = 1/2(ξ2
1 + ξ2

2), Γ3 = 1/2(η2
1 + η2

2)

In function of these quantities, the Hamiltonian H0 is simply written as H0 =√
2/2Γ1 + Γ2. Now, assume initially, for simplicity, that the perturbation of H0 is

quadratic and can be expanded through the parameter ν as H = H0 + νH1 + · · · . If
H is in normal form, the terms of order 1 and higher (in ν) can always be expressed
as functions of Γ1 and Γ3 only, i.e.:

H(ν) = H0 + νH1 + · · · =
√

2/2Γ1 + Γ2 + ν(aΓ1 + bΓ3) + · · · (8.9)

Here, we apply a change to complex coordinates, which is symplectic:

y1 = ξ1 + iξ2, y2 = ξ1 − iξ2, y3 = η1 + iη2, y4 = η1 − iη2,
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Notice that y1 = ȳ2 and y3 = ȳ4. In these new coordinates, if w = (y1, y2, y3, y4),
the system of differential equations is ẇ = B0w + νB1w + · · · , where

B0 =


−
√

2/2i 0 0 0

0
√

2/2i 0 0

0 −1
√

2/2i 0

−1 0 0 −
√

2/2i

 (8.10)

and

B1 =


−ai 0 0 b

0 ai b 0
0 0 ai 0
0 0 0 −ai

 (8.11)

Considering the terms at order zero and one in ν, the characteristic polynomial
of the system is

(
λ2 + (

√
2/2 + νa)2

)2
+ 2νb

(
λ2 − (

√
2/2 + νa)2

)
+ ν2b2 (8.12)

and has roots λ = ±(
√

2/2+νa)i±
√
−bν. These eigenvalues are pure imaginary

if bν > 0, whereas they acquire a non-zero real part if bν < 0. This is coherent with
the behaviour at L4 that we already know near µ = µ1, as, for values of µ bigger
than µ1, the eigenvalues acquire a real part, and for values of µ lower than µ1, the
eigenvalues remain pure imaginary.

Now we consider a general perturbation to the Hamiltonian H0, i.e. it has H(ν)
as the quadratic part but has also the rest of the terms than appear in general when
written in normal form:

H(ν) =
√

2/2Γ1 + Γ2 + ν(aΓ1 + bΓ3) + 1/2(cΓ2
1 + 2dΓ1Γ3 + eΓ2

3) + · · · (8.13)

Now, we notice that the Γ’s, in the y’s variables are written as

Γ1 = i(y2y4 − y1y3), Γ2 = y1y2, Γ3 = y3y4

and we apply the following scaling to the y’s variables and also to the ν, which
is symplectic (with multiplier ε3):

y1 → ε2y1, y2 → ε2y2, y3 → εy3, y4 → εy4, ν → ε2ν

Thanks to this scaling, we obtain a new Hamiltonian system (8.14) which will
satisfy some convenient properties that will allow us to analyze the behaviour of the
system near the value 0 of all the introduced parameters.
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H(ν) =
√

2/2Γ1 + ε(Γ2 + νbΓ3 + 1/2eΓ2
3) +O(ε2) (8.14)

Dropping the terms in O(ε2), the differential equations of motion associated to
H(ν) become: 

ẏ1 = −
√

2/2iy1 + ε(νby4 + ey3y
2
4)

ẏ2 = +
√

2/2iy2 + ε(νby3 + ey2
3y4)

ẏ3 = +
√

2/2iy3 − εy2

ẏ4 = −
√

2/2iy4 − εy1

(8.15)

In compact notation, if w = (y1, y2, y3, y4), equation 8.15 can be written as

ẇ = Cw + εf(w, ν) (8.16)

where C = diag(−
√

2/2i,+
√

2/2i,+
√

2/2i,−
√

2/2i)

and f(w, ν) = (νby4 + ey3y
2
4, νby3 + ey2

3y4, y2, y1).

The matrix C satisfies, naturally, that exp(CT ) = I, for T = 2π/(
√

2/2) = 2
√

2π.
And the function f(w, ν) has the property that f(eCtw, ν) = eCtf(w, ν) for all t. For
the equation (8.16), we try with an ansatz of the form w(t) = e(1−ετ)Ctv, where τ is
a parameter that will be linked with the correction of the period of the emanating
orbits, and v is a constant vector (that, like in w, satisfies that v1 = v̄2 and v3 = v̄4.
The function w(t) is a solution of (8.16) if the following equality is satisfied:

τCv + f(v, ν) = 0 (8.17)

Besides, if v satisfies (8.17), then the solution w(t) = e(1−ετ)Ctv is a periodic
solution of the system (8.16), with period 2

√
2π/(1 − ετ) = 2

√
2π · (1 + ετ + · · · ).

Now, we find the conditions that v = (v1, v2, v3, v4) and τ have to fulfill to solve
(8.17): 

−i
√

2/2τv1 + νbv4 + ev3v
2
4 = 0

+i
√

2/2τv2 + νbv3 + ev2
3v4 = 0

+i
√

2/2τv3 − v2 = 0

−i
√

2/2τv4 − v1 = 0

(8.18)

The condition that emerges from combining the first and fourth equations (and
also from the second and third ones) is:

τ2/2− ev3v4 = bν (8.19)

Now, we set v3 = α1 + iα2 and, hence, v4 = α1 − iα2. Then, we compute
v1 = −

√
2/2τ(α2 + iα1) and v2 = −

√
2/2τ(α2 − iα1). We can state now that the
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solutions of (8.16) are of the form

w(t) = e(1−ετ)Ct·(−
√

2/2τ(α2+iα1), −
√

2/2τ(α2−iα1), α1+iα2, α1−iα2), (8.20)

as long as τ2/2− e(α2
1 + α2

2) = bν.

We see that this is a family of periodic solutions that depends on 3 parameters,
α1, α2, τ . If we set r2 := v3v4 = α2

1 + α2
2, then we can fix r to determine a circle of

periodic solutions that corresponds to one periodic orbit. Because of this, w(t) can
bee seen as a 2-parameter family of periodic orbits parametrized by the parameters
r and τ .

The condition τ2/2 − er2 = bν, which the family of solutions has to satisfy, has
to be analyzed by separate in essentially two different cases, depending on the sign
of e. The one that interests us is the first case, when e > 0 (see Figure 10), because
it corresponds to the bifurcation at L4.

Figure 10: Solutions of 8.19 (where v3v4 = r2) for e > 0.

In Figure 10 we sketch the curves that solve (8.19) in the case e > 0, assuming
that b > 0 without loss of generality, as a change in the sign of b is equivalent to a
change in the sign of ν. We only plot solutions for r > 0, as it is the only domain
that is necessary to study.

We see that, for a fixed ν > 0 the graph of the points (r, τ) that are solution of
(8.19) form a hyperbola with one branch at the upper plane and the other one in
the lower plane. For ν = 0, the solutions form two straight lines through the origin,
one at each half-plane. For a fixed ν < 0, the solutions form a hyperbola with only
one branch at r > 0.

We recall that τ is a parameter that accounts for the deviation of the period
(T = 2

√
2π) of the periodic orbits that emanate from the origin, in particular through

the expression T/(1− ετ). Meanwhile, r is a parameter that determines the length
of v3, and hence the length of v1, v2 and v4. More precisely, fixing r determines the
circles where the coordinates v1, v2, v3, v4 of the periodic orbits remain. In summary,
a point (r, τ) in the graph at Figure 10 corresponds to a periodic orbit of the system
8.16 with period 2

√
2π/(1− ετ) and radius r. We remark that r = 0 corresponds to

the origin of the system, so it is the value that corresponds to L4.
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Knowing this, we can proceed to study the bifurcation, i.e. the change in the
behaviour of solutions where ν goes through 0.

We observe that, when ν > 0, there are two curves of solutions emanating from
the axis r = 0. It means that there are two families of periodic solutions that grow
from L4. Indeed, the characteristic polynomial (8.12) has two pairs of pure imaginary
conjugated solutions and, by Lyapunov Center Theorem, there have to exist these
two families of periodic solutions that emanate from the origin.

When ν = 0, we observe that the two branches of the hyperbola that appeared
for ν > 0 converge to the origin and become two lines of solutions that meet exactly
there, at the origin, and correspond to two families of periodic solutions. This is
really interesting and a discovery achieved thanks to the change of coordinates and
scaling, because for ν = 0, the characteristic polynomial (8.12) has two conjugated
solutions of multiplicity two, hence the Lyapunov Center Theorem didn’t apply.

Finally, when ν < 0, the two lines at the origin are degenerated and converted
into a single curve, a branch of the hyperbola that doesn’t go through r = 0. Hence,
in the case ν < 0, there is a unique family of periodic solutions that, besides, don’t
pass through the origin. This is consistent with the fact that, for ν < 0, the solutions
of (8.12) have non-zero real part, and so there is a neighbourhood of the origin where
there can not be periodic solutions.

Condensing, there are two families of periodic orbits that emanate from the origin
when ν > 0, these two remain when ν = 0 and transform to a single family of periodic
solutions that moves away from the origin when ν < 0. This bifurcation is called the
Hopf Bifurcation.

One can show now that the conclusions that we achieved are still valid if we
consider the terms in O(ε2) in Equation (8.14). We don’t do it here but it can be
found on [MO17]. The tracing back of the solutions to get them in the original
coordinates ξ1, ξ2, η1, η2 can be only performed implicitly, but we notice that there
is no problem in its definition domain because the changes applied all the way where
scalings and symplectic transformations, so invertible.

8.5 Application to the restricted three body problem

In the restricted problem, what occurs at L4 and L5 when the mass-ratio parameter
µ passes through the value of µ1 = (1 −

√
69/9)/2 ' 0.03852 is exactly the Hopf

Bifurcation. For µ < µ1, there are two Lyapunov families of periodic solutions
emanating from L4, that still exist when µ = µ1, and that converge to a single
family that moves away from L4 when µ > µ1. Let us show it.

The Hamiltonian (8.2), up to quadratic order, can be expanded the following way
at the libration point L4 [MS71]

H =
y2

1 + y2
2

2
− x1y2 + x2y1 +

1

8
x2

1 −
3
√

3

4
(1− 2µ)x1x2 −

5

8
x2

2 (8.21)

A small perturbation of the parameter µ of the form µ = µ1+ν leads to the Hamil-
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tonian matrix B0 + νB1 + · · · , where B0 and B1 are (8.10) and (8.11) respectively.
This matrix has eigenvalues λ = ±

√
2/2i±

√
−bν. As we know that the characteristic

polynomial at L4 is (8.6) and its roots are λ = ±
√

(1/2)(−1±
√

1− 27µ(1− µ)),
by term comparison we obtain that b = −3

√
69/2, so b < 0.

One can also compute terms and obtain that the sign of what we called e in (8.19)
is positive [Dep68]. Hence, we can apply the analysis from the Hopf Bifurcation here
and conclude that the bifurcation that occurs at L4 is precisely this one.

The last detail that we have to take into account is that in the development of
the Hopf Bifurcation and, by the way, also in Figure 10, we assumed b to be positive.
But we have found that b < 0 in the R3BP, so the conclusions that we extracted
for ν > 0 there are valid for ν < 0 here, and vice-versa. This doesn’t suppose any
contradiction, but on the contrary, as we know that in the R3BP, there are two
families of periodic orbits that emanate from L4 when the perturbation µ = µ1 + ν
goes through negative ν’s, and there are no orbits growing from L4 when ν is negative.
And now we know more, because the characterization of the Hopf Bifurcation allows
us to say that for the particular case µ = µ1, the two families of periodic orbits that
emanate from L4 still exist.
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9. Conclusions and open problems

We demonstrated the new Theorem 4.2 on the equivalence of the cotangent lifts of
close actions of a compact group on a compact manifold. It is a result on rigidity of
group actions that contributes to the stability theory for actions started by Palais
[Pal61b]. In particular, it is an analogue version to Theorem 3.11 for the case of
actions obtained via the cotangent lift of close group actions. This makes it really
interesting for applications in the field of mathematical physics, as the technique
of the cotangent lift is a big tool in the study of Hamiltonian systems. Indeed, we
applied it to obtain Theorems 4.4 and 4.13 which state rigidity of a class of singular
compact leaves of integrable systems.

While proving Theorem 4.2, we wondered whether a slightly stronger result might
also be true. In particular, we thought that relaxing the condition of compactness
of the group and, instead, asking the actions to be proper, we could still obtain
equivalence. In precision, what we conjectured is the following result.

Conjecture 9.1. Let G be a locally compact Lie group and (M,ω) a compact sym-
plectic. Let ρ1, ρ2 : G ×M −→ M be two proper actions which are C1 − close. Let
ρ̂1, ρ̂2 be the cotangent lifts of ρ1, ρ2, respectively. Then, there exists a symplectomor-
phism that conjugates ρ̂1 and ρ̂2.

Some of the most interesting cases of integrable Hamiltonian systems, for instance
the semitoric integrable system with a focus-focus singularity considered in Section
7 or the integrable system with a saddle-focus singularity considered in Section 8 are
given by actions of the form Tk×Rl. These are not compact actions because including
any Rl component makes the Lie group non-compact, although local compactness
is not lost. The conjecture, then, would also have an immediate application on
integrable Hamiltonian systems.

When trying to prove this conjecture with the same procedure used in the proof
of Theorem 5.5, we could not overcome the problem of averaging over a non-compact
Lie group. That is, averaging over the elements of a Lie group is well defined for com-
pact Lie groups but it may not converge for groups which are only locally compact.
More precisely, Equation 5.10 may not converge if the Lie group G is non-compact.
Nevertheless, we think that the averaging of the vector field over the elements of a
non-compact group can be well defined if the vector field satisfies some conditions.
For instance, in our case, Xt satisfies ιXtωt = −α for a 1-form α which, at its turn,
satisfies ω1 − ω0 = dα. It could mean, in some way, that the integrand in 5.10,
ρ̂(g)∗(Xt), is so small that the integral does not diverge. The proof, however, is
still lacking and we hope it is a future step in the way of developing new results on
rigidity of Lie group actions on symplectic manifolds.

The Hamiltonian formulation of mechanical systems is based on considering the
dynamical problems on cotangent bundles and then, the use of the cotangent lift
becomes natural. The cotangent models considered in Section 6 for the three basic
types of non-degenerate singularities can be the starting point of a new formulation
of integrable systems with singularities, considering that there is still a huge work
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to do in the study of degenerate singularities. By the way, because of this lack of
a complete theory for degenerate singularities, a little new result concerning degen-
erate singularities such as the one we obtained in Theorem 4.13 is already a nice
improvement.

At this point, we hope that it has become clear for the reader that, in general, a
result on rigidity of group actions usually has interesting applications in the theory of
integrable Hamiltonian systems, and that the symplectic approach is really powerful.
Proving stability for a class of singular Hamiltonian systems is just one little example
of what symplectic geometry and, in general, Poisson geometry can provide to the
theory of Hamiltonian systems.

From a dynamical point of view, the results included in this paper can be un-
derstood as a weak KAM theorem where Hamiltonian perturbations occur in the
subclass of integrable systems. It would be interesting to explore the weak analogues
for focus-focus singularities which can be seen as a cotangent lift as shown in Section
6.6. Those singularities are infinitesimally stable [MVuN05] and stable [Mir14] how-
ever it is not possible to follow the guidelines above due to the lack of compactness
of the group S1 × R.

The mathematical models for non-degenerate singularities based on the cotangent
lift, namely the elliptic, hyperbolic and focus-focus models constructed in Section
6, are formally correct and well-defined as the cotangent lift of Lie group actions.
Nevertheless, there is work to do in order to apply rigidity results on these models
because the three arise from the cotangent lift of a non-compact action. This is not
a problem for the elliptic singularity, because it is already a compact action by itself
(without the cotangent lift). Indeed in this case we have been able to apply our
rigidity result (Theorem 4.2). The idea that we have is that it is possible to work
on the focus-focus model to obtain that it is actually possible to also apply to it the
rigidity result for compact close actions.

The focus-focus model comes from the cotangent lift of S1×R (see Section 6.6),
and the complexification of S1 ∼= SO(n,R) gives SO(n,C), which is diffeomorphic
to S1 × R. The cotangent model of the focus-focus singularity, then, can be seen as
the cotangent lift of the complexification of the compact Lie group S1. Our idea is
to use the fact that Lie group action of S1 is compact in order to apply a complex
version of our rigidity results, which require compactness. If we could prove that
rigidity of the S1 action is preserved along a complexification and a cotangent lift,
then we could arrive to some rigidity also for the singular focus-focus model.

When we were studying the model of the simple focus-focus singularity in complex
coordinates z1 = q1 + iq2, z2 = p1 + ip2 (see Section 7), we wondered if its structure
motivated a slightly more complex model, the quaternionic model. We considered the
quaternionification of the cotangent lift, which can be created through the following
change of variables:

qi = xi + xi+1i+ yij + yi+1k, (9.1)

where qi ∈ H is a quaternion. Nevertheless, until the moment we have observed that
the quaternionic formulation is way too tight to adapt to a proper model for this

84



singularity, so we leave this approach, as well as a hypothetical octonionic approach
(inspired by the constructions of Cohl Furey in [Fur12]) for a future research.

Another application of the cotangent models of non-degenerate singularities which
we plan to explore is that of geometric quantization. It is clear how to compute a
cotangent bundle (see for instance [Woo92]) but the role of the cotangent lift in
this classical approach to quantization seems not be explored yet. In [HM10, MP15,
MPS20] the authors follow the recipe due to Kostant with the aid of a sheaf cohomol-
ogy computation obtaining models with infinite dimensional contributions in the case
of hyperbolic and focus-focus singularities. We plan to adopt a more primitive ap-
proach and take advantage of the cotangent models for non-degenerate singularities
with the hope of reducing out the infinite dimensional contributions in the Kostant
model. We are investigating these models with professor Eva Miranda.

Finally, the b-symplectic version of cotangent models for integrable systems,
which has not been included in this master thesis but can be found on [KM17],
is one of the tools being exploited by the author in a paper which is in preparation,
in collaboration with Baptiste Coquinot from École Normale Supérieure and Eva
Miranda. We are working on a physical interpretation of the twisted b-cotangent
lift model in the context of magnetism. Besides, we believe that results obtained by
Victor Ginzburg in [Gin96] can be adapted to the b-symplectic case, obtaining exis-
tence of periodic orbits in manifolds with boundary also in the context of a charged
particle in a magnetic field.
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[MVuN05] Eva Miranda and San Vũ Ngoc. A singular Poincaré lemma. Int. Math. Res. Not., pages
27–45, 2005.

[MZ04] Eva Miranda and Nguyen Tien Zung. Equivariant normal form for nondegenerate singu-
lar orbits of integrable Hamiltonian systems. Ann. Sci. École Norm. Sup. (4), 37(6):819–
839, 2004.

[Pal60] Richard Palais. Local triviality of the restriction map for embeddings. Commentarii
Mathematici Helvetici, 34:305–312, 01 1960.

[Pal61a] Richard Palais. Equivalence of nearby differentiable actions of a compact group. Bulletin
of The American Mathematical Society - BULL AMER MATH SOC, 67, 10 1961.

[Pal61b] Richard Palais. Equivalence of nearby differentiable actions of a compact group. Bulletin
of The American Mathematical Society - BULL AMER MATH SOC, 67, 10 1961.

[PN09] Álvaro Pelayo and San Ngoc. Constructing integrable systems of semitoric type. Acta
Mathematica, 206:93–125, 03 2009.

[San98] Vu Ngoc San. Bohr-sommerfeld conditions for integrable systems with critical manifolds
of focus-focus type. arXiv Mathematics e-prints, 1998.

[Tho72] René Thom. Stabilité structurelle et morphogénèse. W. A. Benjamin, Inc., Reading,
Mass., 1972. Essai d’une théorie générale des modèles, Mathematical Physics Monograph
Series.
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