Characterizations of some complexity classes
between O} and A}

Jorge Castro
Carlos Seara

Report LSI-90-27




Abstract

We give some characterizations of the classes PNVP[O(log* n)]. First, we show that these classes
are equal to classes AC*~1(NP). Second, we prove that they are also equivalent to some
classes defined in the Extended Boolean hierarchy. Finally, we show that there exists a strong
connection between classes defined by polynomial time Turing machines with few queries to an
NP oracle and classes defined by small size circuits with NP oracle gates. With these results
we solve open questions arosed by K. W. Wagner and by E. Allender and C. B. Wilson.

Resum

En aquest report donem algunes caracteritzacions de les classes PNP [O(log" n)]. En primer lloc
demostrem que aquestes classes sén iguals a les classes AC*-! (NP). A continuacié provem que
les classes anteriors s6n també equivalents a algunes classes definides en la jerarquia Booleana Ex-
tesa. Finalment demostrem que existeix una forta connexié entre classes definides per maquines
de Turing de temps polindmic amb poques preguntes a un oracle NP i classes definides per
circuits de tamany petit amb portes oracle que consulten conjunts a NP. Amb aquests resultats
resolem problemes oberts plantejats per K. W. Wagner i per E. Allender i C. B. Wilson.



Characterizations of some complexity classes between 62 and A;’\;‘\(,{ )

Jorge Castro* Carlos Seara
Dept. Llenguatges i Sistemes Informatics Dept. Matemdtica Aplicada IT
Universitat Politécnica de Catalunya Universitat Politécnica de Catalunya
Pau Gargallo 5 Pau Gargallo §
08028 Barcelona, Spain 08028 Barcelona, Spain

E-mail: castroOlsi.upc.cs
Abstract

We give some characterizations of the classes PNP[O(log* n)). First, we show that these classes
are equal to classes AC*¥~!(NP). Second, we prove that they are also equivalent to some
classes defined in the Extended Boolean hierarchy. Finally, we show that there exists a strong
connection between classes defined by polynomial time Turing machines with few queries to an
NP oracle and classes defined by small size circuits with NP oracle gates. With these results
we solve open questions that arose in [Wa-88] and [AW-90).

1. Introduction

Wagner gave in his paper [Wa-88] some characterizations of the class ©5. One of them charac-
terizes ©F as the class of languages recognized by polynomial time Turing machines which make
at most O(logn) queries to an N P oracle on inputs of length n. Another one characterizes ©}
as the class of languages obtained by placing polynomial bounds on the levels of the Extended
Boolean hierarchy.

Wilson introduced the notion of relativized circuits by allowing oracle gates in the circuits,
and he has studied properties of relativized versions of NC and AC. He defined an oracle gate
as a k-input, one-output gate which, on an input z of length k, will produce the value 1 on its
output edge if and only if z is in the specified oracle set. For NC classes each oracle gate counts
as a depth logarithmic in the number of its input wires, while for AC classes these gates count 1.
The motivations of these definitions are argued in [Wi-87) and [Wi-90] (compare also with the
notion of NC'-reducibility introduced in [Co-85]). In this paper we only consider relativizations
to sets in N P; note that with this restriction we can only obtain classes of languages which are
included in Aj. The first motivation of our work was to find relationships between these classes
and those mentioned in [Wa-88].

Below we show connections between classes of languages recognized by polynomial time
Turing machines which make polylog queries to an NP oracle and other classes defined on
different ways. More exactly, in section 3 we show that the class of languages defined by PVFP
Turing machines with at most O(log* n) queries is the same as the class defined by AC*~! circuits
with oracle gates in NP. In section 4 we characterize the Extended Boolean hierarchy for some
superpolynomial bounding functions such as the classes just mentioned. Finally, in section 5
we show a last characterization as the class of languages which are reducible to languages in
NP via circuits of polylog size. With these results we solve questions asked by Wagner and by
Allender and Wilson in their papers [Wa-88] and [AW-90].

* Work partially supported by the ESPRIT II Basic Research Actions Program of the EC under contract no. 3075,
project ALCOM.



2. Deflnitions and notation

We fix the notation that we shall use in the following sections.

Definition For any class C, PC denotes the class of languages accepted by deterministic
polynomial time machines using a set in C as oracle.

LeP° < 3IBeC:L<F B

Definition For all k > 1, P€[O(log* n)] is the class of languages in PC that are accepted by
machines that make at most O(log* n) queries on inputs of length n.

L € P°[O(log" n)] <= 3B € C: L <fio(10gr n) B-

Since queries to any oracle of NP can be translated into queries for SAT, PNP = pSAT,
We use these terms as synonyms and we also use the terms PNP[O(log* n)] and P547[O(log* n))]
as equivalent. For any string z, we write |z| for the length of z.

Deflnition Plfv P is the class of languages accepted by deterministic polynomial time Turing
machines using an oracle B € NP such that, on any input a list of all the queries is formed
before any of them is made.

The classes ©F = PNP[O(logn)] and A} = PNP are well known, and the first one has a lot
of different characterizations as is shown in [Wa-88]. The Boolean hierarchy has been studied
independently by different authors who gave equivalent definitions for this hierarchy. In the
Section 8 of [Wa-88] the reader can find the definitions and main results about the Boolean
hierarchy. In the Section 9 of that paper, it is introduced the Extended Boolean hierarchy as
the hierarchy of classes NP(r) (r is a function) defined as follows:

A€ NP(r) < 3B € NP such that cg(z,i+ 1) < cp(z,i) for all i, i < r(|z|) and
ca(z) = ngfn cgp(z,i) mod 2;

where c,4 denotes the characteristic function of the set A. It was known that NP(n®(1)) = 05
and NP (2"0(1)) = AF, but similar results for other superpolynomial bounding functions were
not known.

For definitions and notation about circuits we follow Wilson [Wi-87] [Wi-90]. A Boolean
circuit with bounded fan-in is an acyclic directed graph whose nodes are labelled with an oper-
ator. 1'odes of indegree zero are the input and constant ones, nodes of indegree one are labelled
by negations and nodes of indegree two are labelled by and and or operators. Circuits with
unbounded fan-in have no restriction on the indegree of nodes labelled and or or. Since we are
interested in deciding set membership, the circuits have only a single output gate; the circuit
accepts an input string if the length of the string in binary is the same as the number of input
gates of the circuit and the circuit outputs 1 when the string is given on its input gates.

The size of the circuit is the number of nodes of the circuit and its depth is the length of the
longest directed path from the input to the output in the graph. The size represents a measure
of the hardware resource and the depth is a measure of the parallel time. A circuit family {C,},
n > 1 accepts a set L if, for all n, C,, has n input nodes and accepts only those strings in L of
length n. Note that, if the n'? circuit could be independent of the (n — 1)** circuit then there
would exist a family of circuits which would accept a nonrecursive set. Therefore, it is necessary
to require some kind of uniformity in the description of the circuits {C,}, n > 1. We shall use
in this paper one of the most frequently used concepts of uniformity:



Definition A circuit family {C,} is O(logn)-uniform if there is a logspace deterministic
Turing machine which on any input of length n outputs an encoding of C,,.

Classes of languages NC = |J,,, NC* and AC = |J k>0 AC* are defined as follows:

L € NC*(AC*) <= 3{C,.}, n > 1, bounded fan-in (unbounded fan-in) circuits O(logn)-
uniform with size O(n®(")) and depth O(log* n) which recognizes L.

In this paper we work with relativized circuits. In these circuits oracle gates are allowed
which can determine the membership of a string in an oracle set. In an NC circuit an oracle gate
which has k input bits is defined to have size 1 and depth [log k]. In an AC circuit (unbounded
fan-in) the size and depth of these gates is 1.

We shall use the notation AC*(4) for the class of languages recognized by a family of
unbounded fan-in circuits with polynomial size and O(log* n) depth using A as oracle; and we
define AC[’§] (A) as the class obtained if we restrict the circuits to at most i oracle gates on each
path from an input node to the output node.

3. Relating PNP[O(log* n)] with AC*-1(NP)

Let us begin characterizing ©F as the class of languages recognized by families of circuits of
polynomial size, constant depth and with at most one oracle gate on each path from an input
node to the output node.

Proposition 1 PNP[O(logn)] = ACﬂ](NP)

Proof Let MSAT be a fixed polynomial time Turing machine that makes at most clogn
queries to SAT on inputs of length n. We define the language:

L = {(z,y) | the answer to the query number ly] + 1 of MSAT running on z is “YES”
supposing that the string y records the answers to the first |y| queries}

We consider also the language:

L' = {(2,a) | M accepts z using a as oracle string (the answer
to the k** query is interpreted as the k'* bit of a)}

It is easy to see that the language L is in NP and the language L’ is in P. We shall use these
languages as oracles to simulate the machine MSAT by a family of circuits. The Figure 1 shows
the member of this family which operates on inputs of length n.
On input z, this circuit has a first level of queries (z,y) € L for all y, |y| < clogn; with the
answers it can determine the right answers to the queries of M54T on z. Moreover, in the same
level, the circuit asks if (z,a) is in L' for all a, |a] < clogn. Note that in this level there are
only a polynomial number of queries because the length of y and a are logarithmic. When the
circuit knows what is the right string y of answers of M54T on z, it chooses the suitable a with
the help of a selector circuit.

The other inclusion is trivial considering that AC{;(NP) is included in Plfv P and this one
is equal to PYP[O(logn)] (Th. 5.4 [Wa-88]). G



Input =

(2,2) (=,0)--- (z,00...0) :----. (z,2) (z,1)-+ (,11...1) (2,00...0):----- (z,11...1)
eL?|[err] ---[err| - eL?|[err] - [er? eL| ceeee € L'
0 0 0 gf]_ Eﬁl 1
A A
|
A ...... A

| T Selector circuit

Figure 1.

Buss and Hay [BH-88] showed that, for polynomial time Turing machines, a constant num-
ber of rounds of parallel queries to SAT can be reduced to one round of parallel queries. By
a round of parallel queries to SAT we mean that the Turing machine writes a set of strings
separated by delimiters on a query tape and then invokes an oracle for § AT} the oracle returns
a string of YES/NO answers on an answer tape which specify membership of each query string
to SAT. Note that within one round of parallel queries, all of them must be formulated be-
fore any answer are known. Using this fact it is not difficult to prove that AC®(NP) is equal
to PNP[O(logn)]: observe that every language belonging to the first class is recognized by a
polynomial time. Turing machine which makes a constant number of rounds of parallel queries
to SAT and then, by [BH-88] it can be recognized by another one which makes only one round
of parallel queries. Finally, considering the equality Plfv P = PNP[O(log n)] mentioned before,
we have:

Proposition 2 PNP[O(logn)] = ACO(NP) a
Now, we shall generalize this last result by allowing more queries to § AT, more exactly, we

ask about O(log* n) queries to SAT. First we prove the following proposition.

Proposition 3  For all k > 1, PNP[O(log* n)] C AC*-!(NP)

Proof We proceed by induction on k:

k =1, it is part of Proposition 2.



Input =

|
Initial configuration of MSAT op z

circuit circuit circuit
for for | 0 eeeees for
Lin Lyn p(n),n

Configuration of MSAT on z afier clog*~! n queries

circuit circuit circuit
for for | eeeee for
Ll,n L2,n Lp(n),n

---------

Configuration of M54 on z after clog* n queries

l
[ Circuit O |

Figure 2.

We suppose that the result is true up to k — 1 by induction hypothesis. Fix a polynomial
time Turing machine M with at most clog®n queries to SAT on inputs of length n, and let us
consider the following languages:

Li,n = {y | MSAT starting at the configuration y reaches after clog*~'n
queries a configuration which has a 1 as the first bit }

Lyn={y | M5AT gtarting at the configuration y reaches after clogt~'n
queries a configuration which has a 1 as the second bit}

Lypinyn = {y | MSAT gtarting at the configuration y reaches after clog*~!n
queries a configuration which has a 1 in the p(n)th bit}

where p(n) is a polynomial bounding the length of configurations corresponding to inputs of
length n.

Note that in these languages there may exist configurations y such that M54T does not
reach them on any input. It is clear that all these languages are in PN?[0O(log*~! n)] and then,
by induction hypothesis, all of them have AC*~2(N P) circuits. Now, let C,, be the circuit on
inputs of length n described by Figure 2.



This circuit on input z computes in logn levels the configuration f of MSAT on z after all the
queries have been done. All the levels are equal and they are composed by AC¥~2(N P) circuits
for Ly,n, L2,ny- - - Lp(n),n Placed in parallel. The circuit C,, ends with a small circuit O € AC°(P)
which computes whether z € L (MSAT) knowing what is the configuration f.

Clearly, the language accepted by the family of circuits {Cp,}, n > 11is L (M SAT), this
family is logspace uniform, have polynomial size and O(log* 1 n) depth. a

Now, we shall see that the inclusions in proposition 3 are actually equations.
Theorem 4 For all k > 1, PNP[O(logk n)] = AC*Y(NP)

Proof We only have to prove that AC*-1(NP) C PNP [O(log* n)]. Given a circuit with
oracle gates we define the level of a query as follows: queries at the first level are the queries

that depend on no other queries, queries at the second level all depend on some query at the
first level, and so on.

Let {Cn} be a family of circuits in AC*~!(NP) with depth d(n) € O(log*~! n) and p(n)
a polynomial bound on the number of queries in each level. We define X as the set formed by
sequences (Z, i1, 1z, . . ., i4(n), 0) belonging to {0,1}*x{0,1,...,p(n)}*™ x {0,1} (where n = Ed)]
such that there exist strings 4, 4,,..., Ag(ny in {0,1}<P() each of them representing possible
answers to the queries at levels 1,2,..., d(n) respectively and verifying the following:

Agy(n) has Jd(n) “YES” answers and these answers are correct if the inputs to queries of level

d(n) are computed from z, 4;, 4, ..., Ad(n)-1-

Ag(n)-1 has Jd(n)-1 “YES” answers and these answers are correct if the inputs to queries

of level d(n) — 1 are computed from z, 4y, 4,..., Ad(n)-2-

A; has j; “YES” answers and these answers are correct if the input to the circuit is z.
Finally, (j1,72,-.., Ja(n), 0') 2 (41,1,..., 1d(n), 0), Wwhere > denotes the lexicographical order
and o' € {0,1} is the output of the circuit C, on input z taking 4;, 4s,..., Ay, as the
answers to the queries.

Facts:
1. XeNP.
2. X is closed by lexicographical < order: if (a1,a2,...,84(n), 0a) < (b1,bs,..., ba(n), 0b) and
(z, b4, bs,..., bd(n), o) € X, then (z,a;,ay,..., @d(n)) Oq) is also in X.
3. Fixed z of length n, we define

(ml,mz,...,md(,,),om) = max{(il,ig,...,id(,,),o,') | (z,il,ig,...,id("),o.-) € X}

This maximum verifies:

m; is the number of “YES” answers of C,, on input z at the first level of queries.
my is the number of “YES” answers of C, on input z at the second level of queries.

......

My(n) i the number of “YES” answers of C,, on input z at the d(n)'? level of queries.
Or, is the value computed by the circuit.

6



Fact 1 is easy to prove if we note that the circuits have polynomial size and, in each level
of queries, we only have to check the “YES” answers (of queries to SAT') supposing that it is
known what were the answers of queries in previous levels.

Fact 2 is an easy consequence of the definition of X.

To show fact 3 just observe that the tuple (k1, k2, ..., ky(n), 0x) where k; is the number of
“YES” answers of C, on input z at the first level of queries, k; is the number of “YES” answers
of C,, on input z at the second level of queries. .. and o is the value computed by C,, on input
z, satisfies that (z, k,, k;,.. -y kd(n), 0k) € X. Moreover, if there was (z,4;,1,,.. “y1d(n), 0i) € X
such that (z,1;,1,,..., id(n), 0i) > (2, k1, kgy..., kd(n), ok) it would imply that either

35, 1<j < d(n) iy = kyy.o.nyijog = kjg, i > kj

or otherwise o; > o,. In the first case, §; = kj,...,%;_; = kj_; implies that the queries answered
“YES” in the first j — 1 levels of queries must be exactly the same (remember the meaning of
ki’s). Therefore, queries to oracle gates of level j are the same in both cases and i; > k; is
an obvious contradiction. On the other hand, in the second case, if 0; > o, and for all 7
1< j < d(n)is i; = k;, using a similar argument we also get a contradiction.

Now, using facts 1, 2 and 3, it is easy to prove that AC*-1 (NP) C PNP[O(log* n)]. Given
an input z of length n to the circuit C, we can determine if Ch, accepts z with a Turing machine
which proceeds as follows:

Using binary search, it determines

(ml,mg,. . .,md(,,),o,,.) = ma.x{(il,ig,. . .,id(,,),o,') I (z,il,ig, . .,id(,.),o.-) € X};

this can be done with at most d(n) log p(n) queries to X (observe that d(n)logp(n) € O(log* n)).
Then it accepts z iff 0,, = 1. This Turing machine recognizes the language accepted by the
circuits.

Finally, knowing that X € NP by fact 1, we may conclude that

L({Cn},n 2 1) € PVP[O(log" n)]

o

Similar sets, but simpler, were defined by Buss and Hay to show that, for reducibility to

the N P-complete problem $AT, polynomial time truth-table reducibility via Boolean circuits
is equivalent to logspace truth-table reducibility via Boolean formulas (Th. 2 [BH-88]).

4. The Extended Boolean hierarchy with superpolynomial bounding functions

Cai and Hemachandra introduced the Boolean hierarchy in [CH-86]. They considered the
boolean functions:

hl(zl) =2
hok (21, 22y . .., 22k) = hok_1(21, 22, - .., Zak_1) A —Z2x
h2k+1(=1, Z2yecey z2k+1) = hzk(zl, T2yeeny zzk) V Z341

for all k, k > 1. With these functions they define the classes of languages N P(k):

A€ NP(k) < 3B,,...,B; € NP such that
ca(z) = hi(ep,(2),...,ep,(z)) for all z.

7



Finally, they defined the Boolean hierarchy

BH = | | NP(k).
k>1

Kabler, Schoning, Wagner and Wechsung gave in their papers [KSW-87] and [WW-85)
different definitions of the Boolean hierarchy. With the results presented in [WW-85] it could

be proved that all three definitions are equivalent; they gave the following characterization for
NP(k):

A€ NP(k) <> 3B € NP such that cp(z,i+1) < cp(z,4) for alli, i < k and
ca(z) = 1F | ep(z,i) mod 2.

From these results and those presented in [Be-87], it could be proved that the Boolean hierarchy
coincides with the constant query classes:

BH = P]P[0(1)] = PNP[O(1)).

The Extended Boolean hierarchy considers classes N P(r) for non-constant bounding func-
tions r. Naturally, classes N P(r) are defined as

A € NP(r) <= 3B € NP such that cp(z,i + 1) < ep(z, i) for all 4, i < r(|z|) and
ca(z) = X7 cp(2, i) mod 2.

It is shown in [BH-88] and [Wa-88] that NP (n°M) = ©%. Also, in the second paper it is proved
that
NP (2""“’) = AL,

Wagner asked in his paper [Wa-88] what could be said about other superpolynomial bounding
functions. We answer this question below, using ideas from the proof of Theorem 4.

Theorem 5 Forall k > 1,

PNP[O(logk n)] = NP (no(‘%*“ "))

Proof (2) Given a set A € NP(b(n)), where b(n) € nCUo8" ™' n) we know by definition that
there exists a set B € NP such that

cp(z,i+ 1) < ep(z,i) foralli < b(|z|) and
o|=])
ca(z) = Z cp(z,i) mod 2.

i=1

We consider a Turing machine M with oracle B which on input z works as follows:

First, it determines the maximum i such that (z,i) € B. By the first property of B this
can be done with a binary search with only log b(|z|) queries to B.

Second, using the second property of B, M accepts z iff i is odd.

Clearly, L(M) = A, M works in polynomial time and makes at most O(log* n) queries on
inputs of length n.



(C) By the theorem 4, it is sufficient to prove that ACk—1(NP) C NP (no('°s“‘ ).
Given {Cpn}, n > 1 a family of circuits in AC*~1(NP) with depth d(n) € O(log*~? n) and
P(n) a polynomial bound on the number of queries in each level, we define the set X as in the

proof of theorem 4. Remember facts 1, 2 and 3 that this set verifies. From fact 3, it is easy to
see that

z € L(C,) < (m= max{(il,ig,...,id(,.),o.-) | (281,92, ., 4a4(n), 0i) € X }) is odd.

Obviously, \
m < 2p(n)d(n) € nO(log -1 n).

Now, considering B = {(z,1) | (2,i) = (2, (i1, 42, .. ., $a(n) 0i)) € X} and using facts 1 and 2,
we may conclude that
L({Cu},n21) € NP (nOles'™'m))

5. PNP[O(log* n)] and circuits of small size

Allender and Wilson showed in their paper [AW-90] that for functions b(n) bounded by a poly-
nomial in n, NP (O(b(n))) is equal to the class of languages which are reducible to languages
in NP via reductions of size logb(n) + O(1). Thus, as a consequence, they obtained circuit
characterizations of PNP[O(logn)]. However, it was not know whether similar results hold for
other kinds of bounding functions. Now, we shall prove that the same results remain true for
bounding functions b(n) < 2"°*"’.

o(1)

Proposition 8 For any bounding function 5(n) < 2*°"°, NP (0O(b(n))) is equal to the class
of languages which are reducible to languages in N P via reductions of size log b(n) + O(1).

Proof (C) This direction can be done following exactly the (left to right) proof of Theorem
4 of [AW-90]. Given A € NP (b(n)) let B be the set in NP such that

l.z€ A <= max{i<b(n)| (z,i) € B} is odd.
2. If (z,i) € B, then (z,i—1) € B

First, query if (z,10...0) is in B; call the answer to this query b;. Next query if (z,b;1...0) is
in B. It is clear how to proceed. Note that exactly [log b(n)] gates are necessary.

(2) Let 4 be reducible to SAT via circuits {Cp}, n > 1 of size log b(n) + O(1). Let us
suppose that these circuits have depth d(n) and at most p(n) queries per level. Note that d(n)
and p(n) can not be superpolynomial functions.

We define the set X as in the proof of Theorem 4 (but with the new bounds d(n) and p(n)).
Clearly, facts 1, 2 and 3 remain true. Now, as in the proof of Theorem 5, we have

z € L(Cn) <= (m =max {(i1,42,...,i4(n), 0i) | (2,41,82,+ -y id(n), 0:) € X}) is odd;

where {; < p(n). Thus
m < 2p(n)4™ < b(n)



Now, from Theorem 5 and Proposition 6 we have a new characterization for PNP [O(log* n)].

Corollary 7 For all k > 1, PNP[O(log* n)] is equal to the class of languages which are
reducible to languages in NP via circuits of size O(log* n).

This corollary gives a strong connection between classes defined by polynomial Turing
machines with few queries to an NP oracle and classes defined by small size circuits with
N P oracle gates.

Conclusions

We have shown different characterizations for some complexity classes between ©F and Af. In
particular, we have determined what the classes of languages AC* reducible to NP are and we
have obtained circuit characterizations for the Extended Boolean hierarchy with superpolynomial
bounding functions. However, all the circuit characterizations are based on AC* circuits or on
circuits of small size; we have not obtained characterizations based on NC* circuits, but will
continue our work in this direction.

It seems an interesting problem to study the NC* complexity classes with oracle gates in
NP and to show relationships between these classes and those present in this paper. Concretely,
it would be nice to show that NC(NP) = @%: in this case the well known inclusions AC°® C
NC! C L would collapse when the relativized versions to NP were considered, in contrast with
the general relativized case (see [Wi-87]). On the other hand, if the equality N CY(NP)= 0}
fails we would find an irregular situation: while it holds that AC® C NC! C L unrelativized,

the first and the last relativized to NP counterparts would coincide, but the middle one would
not.

Acknowledgements

We are very grateful to José L. Balcazar for reading earlier versions of this paper and for many
interesting suggestions. We would like to thank Eric Allender, Birgit Jenner and Chris Wilson
for helpful discussions which took place in Barcelona, during the Structure Conference 1990.

References

(AW-90] E. Allender, C. B. Wilson, Width-Bounded Reducibility and Binary Search over Complezity
Classes, Proc. 5th IEEE Conference on Structure in Complexity Theory, (1990), pp. 122-
129.

[Be-87] R. J. Beigel, Bounded queries to SAT and the Boolean hierarchy, To appear in TCS.

[BH-88] S. Buss, L. Hay, On truth-table reducibility to SAT and the difference hierarchy over NP,
Proc. 3th IEEE Conference on Structure in Complexity Theory, (1988), pp. 224-233.

[CH-86] J. Cai, L. A. Hemachandra, The Boolean hierarchy: hardware over NP, Proc. 1st IEEE
Conference on Structure in Complexity Theory, (1986), pp- 105-124.

[Co-85] S. Cook, A tazonomy of problems with fast parallel algorithms, Information and Control,
(1985), vol. 64, pp. 2-22.

[KSW-87] J. Kébler, U. Schoning, K. W. Wagner, The difference and the truth-table hierarchies for
NP, R.ALR.O. 21(1987), pp. 419-435

[Wa-88] K. W. Wagner, Bounded query computations, Proc. 3th IEEE Conference on Structure in
Complexity Theory, (1988), pp. 260-277.

10



[WW-85] G. Wechsung, K. W. Wagner, On the Boolean closure of NP, manuscript 1985 (extended
abstract as: Wechsung G., On the Boolean closure of NP, Proc. Conf. Fundam. Comp.
Theory, Cottbus 1985, LNCS 199(1985), 485-493.

[Wi-87] C. B. Wilson, Relativized NC, Math. Systems Theory, (1987) pp. 13-29, vol. 20.
[Wi-90] C. B. Wilson Decomposing NC and AC, SIAM J. Comput. (1990) pp. 384-396 vol. 19, 2.

11





