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Abstract

This Master’s Degree Thesis investigates periodic solutions to nonlinear equations involving
integro-differential operators. We show the existence and we describe these solutions for gen-
eralized Benjamin-Ono type nonlinearities, using a variational formulation and a constrained
minimization argument. We show that there exists a minimal period for which nontrivial solu-
tions exist, and we also provide stability and qualitative properties of these solutions. Further-
more, in the case of the fractional Laplacian and with suitable exponents of the nonlinearity,
we prove that the period where constrained minimizers change from constant to nonconstant is
strictly smaller than the period for which the unique positive constant solution loses stability.
Within the literature, the articles [5, 10], which concern two problems closely related to ours,
claimed that these two values of the period coincide. Their arguments to prove such claim were
incomplete but, if they could be completed, they would also work for our equation. In this
work we show that this task cannot be carried out, since we find an explicit range of parameters
(concerning the fraction of the fractional Laplacian and the pure power in the nonlinearity) for
which the equality does not hold.
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1 Introduction

This Master’s Degree Thesis concerns the study of periodic solutions to nonlinear equations for
integro-differential operators. This kind of equations appear in many physical contexts where
the modelling involves nonlocal interactions. Our motivation is to better comprehend the class
of periodic solutions of such equations through a variational approach. We summarize our two
main contributions in this direction.

• The existence of periodic solutions to integro-differential equations with Benjamin-Ono
nonlinearities is shown in [6, 7]. In this work we generalise this results by considering
integro-differential operators (such as, but not restricted to the Fractional Laplacian) and
nonlinearities other than pure powers but with similar properties. Using a constrained
minimization argument called the Nehari manifold method, we prove the existence of peri-
odic solutions and of minimal periods for which nontrivial solutions exist. This procedure
also gives us stability and qualitative properties of these periodic solutions. With these
results we try to overcome the lack of a phase plane analysis in the nonlocal framework,
in comparison to the local setting, where it is given by the theorem of existence and
uniqueness of ODEs.

• In the articles [5, 10], which concern two problems closely related to ours, the value of the
period where constrained minimizers change from constant to nonconstant was claimed to
coincide with the period for which the trivial solution loses stability. Their arguments to
prove such claim were incomplete but, if they could be completed, they would also work
for our equation. The main achievement of this work is to show that such task cannot
be carried out. We show this by finding an explicit range of parameters (concerning the
fraction of the fractional Laplacian and the pure power in the nonlinearity) for which the
equality does not hold.

We will primarily study the structure of periodic solutions to semilinear equations of the
form

LKu = f(u) in R, (1)

where u : R→ R and LK is an integro-differential operator defined by

LKu(x) := lim
ε↘0

∫
{y∈R:|x−y|>ε}

(
u(x)− u(y)

)
K(|x− y|) dy, (2)

whenever the integral and the limit make sense. In the sequel, we will omit the limit of truncated
integrals in the definition of LK , that is, the principal value sense. The kernel K is such that

λ

t1+2s
≤ K(t) ≤ Λ

t1+2s
for all t > 0, (3)

for some constants 0 < s < 1 and 0 < λ ≤ Λ. Such condition implies that limt→0 tK(t) = +∞
and limt→+∞ tK(t) = 0. We will further assume that tK(t) is strictly decreasing in t. That is
to say,

t2K(t2) < t1K(t1) for all 0 < t1 < t2. (4)

The well-known s-fractional Laplacian (−∆)s corresponds to K(t) = cst
−1−2s, where

cs :=
s4sΓ(1/2 + s)√
πΓ(1− s)

(5)
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and clearly satisfies (4).

In the periodic setting, a crucial remark is that the standard Fourier basis of sinus and
cosinus are eigenfunctions of (−∆)s. Consequently, the integro-differential operators have a
simple representation in the Fourier side through multipliers. This led Cabré, Mas and Solà-
Morales to consider in [6] semilinear equations in the form Lu = f(u) for general multiplier
operators given by

Lu(x) =
∑
k∈Z

`
(
πk
L

)
uke

iπk
L
x, (6)

where u(x) =
∑

k∈Z uke
iπk
L
x is a 2L-periodic function regular enough, and ` : R → R denotes

the symbol of L. As it was seen in [6], if we set

`K(ξ) :=
1

|ξ|

∫
R

(
1− cos(y)

)
K

(
|y|
|ξ|

)
dy for ξ ∈ R \ {0} , and `K(0) := 0, (7)

then we recover LK from (6) simply by taking ` = `K . In the literature, the operator L represents
the dispersion in simplified models for wave propagation. For instance, Bona and Chen in [8]
studied the general nonlinear wave equation

vt − Lvx + g(v)x = 0 for x ∈ R, t ≥ 0, (8)

and it is easily seen that travelling-wave solutions v(x, t) ≡ u(x−ct) of (8) are given by solutions
to Lu = f(u), for suitable nonlinearities f . This is precisely the motivation behind this thesis
and the works [6, 7].

There are many models in the literature that are represented by equations like (1). Such is the
case of the Benjamin-Ono equation (−∆)1/2u = −u+u2 from theoretical hydrodynamics [4, 12].
This model can be extended to the generalized Benjamin-Ono equation (−∆)su = −u+ |u|p−1u
for 0 < s < 1 and 1 < p < 1+2s

1−2s .

In this direction, we look for periodic, even and positive solutions to

LKu = −u+ g(u) in R, (9)

for some nonlinearity g satisfying certain properties to be mentioned afterwards. This equation is
the integro-differential version of the generalized Benjamin-Ono equation, replacing the nonlinear
term up for a more general nonlinearity g(u). The case g(u) = up where 1 < p < 1+2s

1−2s is fully
covered in the work of Cabré, Mas and Solà-Morales [7].

We will prove the existence of solutions to (9) as critical points of an associated functional
applied to 2π-periodic functions. Consequently, we shall study how LK behaves with respect
to rescaling. Given µ > 0 and u : R → R, define v : R → R by u(x) = v(µx). This way, for
x′ = µx, a change of variables shows that

LKu(x) =

∫
R

(
v(µx)− v(µy)

)
K(|x− y|) dy

=

∫
R

(
v(x′)− v(y)

) 1

µ
K

(
|x′ − y|
µ

)
dy = µ2sLKµv(µx),

(10)

where we have set

Kµ(t) :=
1

µ1+2s
K

(
t

µ

)
for all t > 0.
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Let us note that, by (3),

λ

t1+2s
≤ Kµ(t) ≤ Λ

t1+2s
for all t > 0 and all µ > 0, (11)

so both K and Kµ have the same growth estimates independently of µ > 0. In the case of the
fractional Laplacian, we have K = Kµ. Moreover, by (4),

µ2s1 Kµ1(t) < µ2s2 Kµ2(t) for all 0 < µ1 < µ2 and all t > 0. (12)

We develop a constrained minimization method where all the functions under consideration
have the same period, namely 2π. In this direction, let L > 0 and u : R→ R be a positive and
2L-periodic solution to (9). If we write

u(x) = w( πLx), (13)

then w : R→ R is 2π-periodic and considering (10) for µ = π/L,

LKπ/Lw = −
(L
π

)2s
w +

(L
π

)2s
g(w). (14)

With this we observe that finding nontrivial 2π-periodic solutions to (14) is equivalent to finding
nontrivial 2L-periodic solutions to (9). This allows us to consider (14) as the starting point of
the constrained minimization method, with the benefit that all the functions under consideration
have the same period, independently of L > 0.

Let EL be the functional defined by

EL(v) :=
1

2

(∫ π

−π
LKπ/Lv v +

(L
π

)2s ∫ π

−π
v2
)
−
(L
π

)2s ∫ π

−π
G(v) for v ∈ Hs

ep,π, (15)

with G(v) =
∫ v
0 g. The space Hs

ep,L, which will be described in more detail in Section 2, refers
to the space of 2L-periodic and even functions v : R→ R such that∫ L

−L
|v|2 +

∫ L

−L

∫
R

|v(x)− v(y)|2

|x− y|1+2s
dy dx < +∞.

Let c(L) be the minimal value for EL on Hs
ep,L \ {0}, that is to say,

c(L) := inf
{
EL(v) : v ∈ Hs

ep,π, v 6≡ 0
}
. (16)

If w ∈ Hs
ep,π is a positive minimizer of c(L), we will show that w solves (14). As a result,

every positive minimizer w of c(L) yields a 2L-periodic and even solution u to (9). From the
minimization procedure we will also prove that there exists a unique period L∗ for which the
only minimizers of EL are constant functions if L < L∗ and nonconstant functions if L > L∗.

In the sequel, we will further assume that the nonlinearity g ∈ C1+ε(R) for some ε > 0 and
is such that

(g1) g(0) = g′(0) = 0,

(g2) g(u)/|u| is strictly increasing in (−∞, 0) and (0,+∞),

(g3) G(u)/u2 → +∞ as |u| → +∞,

(g4) There exist µ > 2 and R > 0 such that 0 < µG(u) ≤ g(u)u for all |u| ≥ R,
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(g5) |g(u)| ≤ C (1 + |u|p) for some C > 0 and 1 < p < 1+2s
1−2s ,

(g6)
∫ a
−a g ≥ 0 for all a > 0.

Note that g(u) = |u|p−1u with 1 < p < 1+2s
1−2s satisfies all the above conditions. Under these

assumptions, we will see that there exists a unique real number u0 > 0 such that g(u0) = u0,
therefore a unique constant solution to (9) and a critical point of (15). In particular, its energy
is

EL(u0) = 2π
(L
π

)2s(u20
2
−G(u0)

)
. (17)

Our approach to find minimizers of the energy is based on the Nehari manifold method,
since a constrained minimization argument like that of [7] is no longer available for nonlinearities
more general than pure powers. We give a description of the Nehari manifold method in Section
3, while further details may be found in [15], a complete survey on this method. Denoting
Φ(v) = EL(v), this method consists of finding a minimizer for Φ amongst a subset N called
Nehari manifold that contains all critical values of Φ. In particular, we can write our functional
Φ as

Φ(v) =
1

2
‖v‖2 − I(v), (18)

with

‖v‖2 :=

∫ π

−π
LKπ/Lv v +

(L
π

)2s ∫ π

−π
v2 and I(v) :=

(L
π

)2s ∫ π

−π
G(v). (19)

We will see that ‖v‖ defines a norm in Hs
ep and that, if g satisfies (g1)-(g6), we will be able to

apply the Nehari manifold method on Φ.

Once the minimization procedure is done, we study the stability of the solutions u obtained
through the constrained minimizers of EL. This leads to the study of the spectrum of the
linearized operator associated to (9) acting on Hs

ep,L, that is,

Lu,Lψ := LKψ + ψ − g′(u)ψ for ψ ∈ Hs
ep,L. (20)

One can easily see that the eigenvalues of Lu,L form a nondecreasing sequence σ1 (Lu,L) ≤
σ2 (Lu,L) ≤ σ3 (Lu,L) ≤ ... We will prove that, for minimizers, the first eigenvalue is always
strictly negative while the second one is nonnegative. As a result, we can find an upper bound
for the threshold L∗ introduced above looking at the linearized operator at the constant solution
u ≡ u0. More precisely, under the assumption (4), there exists a unique L0 > 0 such that

`K( π
L0

) = g′(u0)− 1, (21)

where `K is given in (7). We will show that L∗ ≤ L0. This constant L0 is the precise period for
which the nontrivial constant solution to (9) loses stability, that is, σ2(Lu0,L) > 0 for L < L0

and σ2(Lu0,L) < 0 for L > L0. For the fractional Laplacian case, we get

L0 = π
(
g′(u0)− 1

)− 1
2s .

All these results are the generalization of Theorem 1.4 of [7] and are fully described in
Theorem 1.1 below, whose proof is given in Section 4.

Theorem 1.1. Let g satisfy (g1)-(g6). Then, for every L > 0, we have 0 < c(L) < +∞ and
the infimum in (16) is attained. Every minimizer is of class C1+2s and does not vanish in R.
In particular, there always exists a positive minimizer.
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Let w ∈ Hs
ep,π be such that EL(w) = c(L) and w > 0 in R and set u(x) = w( πLx). Then, u is

a 2L-periodic, of class C1+2s, even and positive solution to LKu = −u+g(u) in R. Furthermore,
σ1 (Lu,L) < 0 ≤ σ2 (Lu,L), where Lu,L is the linearized operator at u given by (20).

Finally, there exists a unique L∗ > 0 for which the following holds:

(i) If 0 < L < L∗ then c(L) = EL(u0) and it is only attained at constant functions.

(ii) If L > L∗ then c(L) < EL(u0) and c(L) is only attained at nonconstant functions.

(iii) It holds that L∗ ≤ L0, where L0 is given in (21). Moreover, for LK = (−∆)s, we have

that L0 = π (g′(u0)− 1)−
1
2s .

In all three cases EL(u0) given by (17) is the energy of u0, the constant positive nontrivial
solution to (9).

However, from our arguments above we cannot tell whether the values L∗ and L0 coincide
or not. From now on, we will focus on positive solutions to

(−∆)su = −u+ up, (22)

for some 1 < p < 1+2s
1−2s if 0 < s < 1/2 and 1 < p < +∞ if 1/2 ≤ s < 1. In [7] Cabré, Mas,

and Solà-Morales find 2L-periodic and even positive solutions to (22) through a constrained
minimization method. Their arguments are the following: for L > 0 and u : R → R a positive
and 2L-periodic solution to (22), we set

u(x) =
(
π
L

) 2s
p−1 v

(
π
Lx
)
.

Then, v : R→ R is 2π-periodic and solves

(−∆)sv = −
(L
π

)2s
v + vp. (23)

Thus, as in our case, finding nontrivial 2L-periodic solutions to (22) is equivalent to finding
nontrivial 2π-periodic solutions to (23). This allows them to consider (23) as the starting point
to develop a constrained minimization method, where all the functions under consideration in
(23) are 2π-periodic, independently of L > 0.

Then they define the functional

EL(w) :=

∫ π
−π (−∆)sw w +

(
L
π

)2s ∫ π
−π w

2(∫ π
−π |w|p+1

) 2
p+1

for w ∈ Hs
ep,π, w 6≡ 0, (24)

and also
c(L) := inf

{
EL(w) : w ∈ Hs

ep,π, w 6≡ 0
}
. (25)

They see that any positive minimizer w of c(L) in Hs
ep,π satisfies the associated Euler-Lagrange

equation

(−∆)sw = −
(L
π

)2s
w + c(L)

(∫ π

−π
|w|p+1

)− p−1
p+1

wp, (26)

thus taking

v = c(L)
1
p−1

(∫ π

−π
|w|p+1

)− 1
p+1

w and u(x) =
(
π
L

) 2s
p−1 v

(
π
Lx
)
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they see that v and u solve (23) and (22), respectively.

From their minimization procedure, they are able to prove that there exists a unique period
L∗ for which the only minimizers of c(L) are constant functions if L < L∗ and nonconstant
functions if L > L∗. Moreover, they also see that

L0 = π (p− 1)−
1
2s (27)

is the precise period for which u ≡ 1, the nontrivial positive constant solution to (22), loses
stability, hence L∗ ≤ L0.

In [5] Berestycki and Wei use a constrained minimization argument to find solutions to
−∆u = −u + up in an infinite strip with Neumann boundary conditions. In their work they
also show the existence of a critical period for which the minimizers change from constant to
nonconstant (that is, the analog of our L∗), and a unique period for which the trivial solution
loses stability (that is, the anlalog of our L0). Despite that their scenario is different than ours,
the approach used in [7] strongly relies on the ideas from [5]. In [5] they claim that these two
special periods coincide, which in our scenario would read as L∗ = L0, although their proof of
the equality is not complete. Indeed, they prove the analog of L∗ ≤ L0 and that, if L∗ > L0,
then there is a contradiction.

In [10], for the energy functional associated to the fractional Yamabe problem, it is also
claimed that L∗ = L0. Although our scenario differs from the one they consider, the arguments
they use to prove such claim would also apply to our case. However, there is a gap in their
arguments for proving the inequality analogous to L0 ≤ L∗, at some point they assume the
positiveness of an eigenfunction that must be orthogonal to a nontrivial constant function. Con-
sequently, their arguments only yield an estimate from above, which, in our setting, correspond
to L∗ ≤ L0.

These difficulties when proving L∗ = L0 suggested that perhaps one would have L∗ < L0

in some cases. Here, we indeed find a specific range of parameters s and p for which L∗ < L0.
To do so, we shall find a period L < L0 and a function u ∈ Hs

ep,π such that EL(u) < EL(1),
thus asserting that c(L) is not attained by the nontrivial positive constant solution, yielding
L∗ ≤ L < L0.

In Theorem 1.2 below we see that the nontrivial positive constant solution bifurcates to a
local family of nonconstant periodic solutions to (22) exactly when it loses its stability. Thus,
suitable candidates u ∈ Hs

ep,π to have less energy would be those belonging to the bifurcated
branch.

Theorem 1.2. Let f ∈ C6(R) satisfy f(0) = 0 and f ′(0) > 0. Assume s ∈ (0, 1) and let
α ∈ (0, 1) be such that 1 < 2s + α < 2. Then, for some small ν > 0 there exist maps a ∈
(−ν, ν) 7→ ua ∈ C2s+α(R) and a ∈ (−ν, ν) 7→ L(a) ∈ (0,+∞) of class C4 for which ua is a C4

periodic solution of
(−∆)su = f(u) in R (28)

having, for a 6= 0, minimal period 2L(a) and such that u0 ≡ 0 and L(0) = L0, which is given by
(27).

Moreover, for each a, ua is an even function of x of the form

ua(x) = a cos
(

π
L(a)x

)
+ ava

(
π

L(a)x
)

where va is an even and 2π-periodic function such that
∫ π
−π va(y) cos(y) dy = 0 and approaching

v0 ≡ 0 in the norm of C2s+α(R) as a → 0. Also, L(a) = L(−a), that is, it is an even function
with respect to a.
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We require f to be at least of class C6(R) in Theorem 1.2 because, in order to show that
these bifurcated solutions have strictly less energy that the constant solution, we will need to
take up to four derivatives with respect to a of ua(x). The most convenient way to allow that is
to prove that a 7→ ua is of class C4 into the space C2s+α(R). This justifies the need of at least
five continuous derivatives of f . However, there will be one more derivative needed to apply the
theorem on bifurcation from a simple eigenvalue.

Next, we will apply the method and ideas behind this result to f(u) = −u + up whenever
f ∈ C6(R). We note that u0 ≡ 1 satisfies f(u0) = 0 and f ′(u0) = p− 1 > 0, which are precisely
the hypothesis of Theorem 1.2.

In Section 5 we will prove that, for a small enough, EL(a)(ua) < EL(a)(1) is equivalent to

Q(p) > 0, where Q(p) := 1 +
(
1 − 3

4(22s−1)
)
p. The coefficient of p in Q(p) changes sign, from

negative to positive, at s = 1
2
ln(7/4)
ln 2 ≈ 0.4036... With this, a simple calculation yields that

Q(p) > 0 whenever {
0 ≤ p < 4(22s−1)

3−4(22s−1) if s < 1
2
ln(7/4)
ln 2 ,

0 ≤ p < +∞ if s ≥ 1
2
ln(7/4)
ln 2 .

Therefore, for these range of parameters s and p (and recalling that we also need f ∈ C6), the
bifurcated solutions will have strictly less energy that the constant solution. Hence, it remains to
be seen when do these bifurcated solutions have smaller periods than L0. For λ(a) = (L(a)/π)2s

for the family of solutions obtained in Theorem 1.2 we have λ(0) = (L(0)/π)2s and λ′(0) = 0.
Moreover, we have that λ′′(0) > 0 if s ≥ 1/2, so the period grows initially independently of the

value of p > 1. But when s < 1/2 we see that λ′′(0) < 0 in the region p > 2(22s−1)
2−22s and so the

period decreases initially, that is, L(a) < L(0) = L0 for a small enough.

The first statement of the following theorem gives conditions on (s, p) for which, for a small
enough, the energy of the bifurcated solution ua is strictly smaller than the energy of the constant
solution u0 ≡ 1, that is, EL(a)(ua) < EL(a)(1). The second statement gives conditions on (s, p)
for which, for a small enough, EL(a)(ua) < EL(a)(1) and the periodicity of this bifurcated solution
is strictly smaller than L0, that is L(a) < L0, and therefore L∗ < L0.

Theorem 1.3. Let 0 < s < 1, p > 1 be such that for f(u) = −u + up, f ∈ C6(R) and let

s̃ ∈ (0, 1/2) be the unique solution to 1+2s̃
1−2s̃ = 4(22s̃−1)

3−4(22s̃−1) . Then,

(i) For a small enough, we have EL(a)(ua) < EL(a)(1) if one of the following holds:

(i-a) 0 < s < 1
2
ln(7/4)
ln(2) and 1 < p < 4(22s−1)

3−4(22s−1) ,

or

(i-b) 1
2
ln(7/4)
ln(2) < s < 1 and 1 < p < +∞,

which are nonempty regions in (s, p).

(ii) We have L∗ < L0 if one of the following holds:

(ii-a) 1
2
ln(3/2)
ln(2) < s ≤ s̃ and

2(22s−1)
2−22s < p < 4(22s−1)

3−4(22s−1) ,

or

(ii-b) s̃ < s < 1/2 and
2(22s−1)
2−22s < p < 1+2s

1−2s ,
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which are nonempty regions in (s, p), see Figure 1.

Note that in the first statement we do not distinguish whether 1 < p < 1+2s
1−2s or not, even

though we consider 1
2
ln(7/4)
ln(2) < s < 1/2. This is so because EL is well defined independently

of p and the theorem on the existence of the bifurcating branch, namely Theorem 1.2, does
not require the nonlinearity to be subcritical from the point of view of the fractional Sobolev
embedding. Nevertheless, in order to have L∗ well defined and to compare it with L0, we must
require 1 < p < 1+2s

1−2s if 0 < s < 1/2.

Figure 1: Whenever f ∈ C6(R), for a small enough, the region between the red and blue curves
is where L(a) < L0 and the region below the black curve is where EL(a)(ua) < EL(a)(1). The
intersection, shaded green and yellow, is where L∗ < L0 and corresponds to the regions described
in (ii-a) and (ii-b) in Theorem 1.3, respectively.

Regarding the structure of the Thesis, in Section 2 we state the functional preliminaries that
will be used in the sequel. There we present the well-known function spaces where we will work,
in addition to enunciating some properties of integro-differential operators on the Fourier side
and regularity results for periodic solutions.

In Section 3 we give the basic definitions and results of critical point theory, as well as a brief
introduction to the Nehari manifold method. There we state the main results on this method,
which will be used in some parts of this work. Finally, Sections 4 and 5 are entirely devoted
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to the proofs of the three original results of this work, namely Theorem 1.1, Theorem 1.2 and
Theorem 1.3.
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2 Functional preliminaries

In this section we give some preliminaries regarding the spaces of periodic functions and the
regularity results that will be used throughout Sections 4 and 5. All these results, and their
corresponding proofs can be found in more detail in [7].

2.1 Function spaces

Given 1 ≤ p ≤ ∞ and L > 0 we define

Lpp,L :=
{
u : R→ R : u(x) = u(x+ 2L) for a.e. x ∈ R, ‖u‖Lp(−L,L) < +∞

}
,

Lpep,L :=
{
u ∈ Lpp,L : u(x) = u(−x) for a.e. x ∈ R

}
,

where

‖u‖Lp(−L,L) :=

∫ L

−L
|u|p (1 ≤ p <∞), ‖u‖L∞(−L,L) := ess sup

x∈(−L,L)
|u(x)|.

Note that Lpp,L refers to 2L-periodic functions and Lpep,L to 2L-periodic functions which are even
with respect to x = 0, this is the reason behind the subscripts p,L and ep,L. Given 0 < s < 1
we define

Hs
p,L :=

{
u ∈ L2

p,L : [u]s,L < +∞
}
,

Hs
ep,L := Hs

p,L ∩ L2
ep,L,

where

[u]2s,L :=

∫ L

−L

∫
R

|u(x)− u(y)|2

|x− y|1+2s
dy dx.

In a similar manner, for α > 0 and 0 < β ≤ 1 we define

Cαp,L :=
{
u ∈ L∞p,L : u(j) is continuous in R ∀j ≤ bαc, ‖u‖Cα < +∞

}
,

Cαep,L := Cαp,L ∩ L∞ep,L,

where

‖u‖Cα := max
j∈N∪{0}, j≤bαc

sup
x∈R
|u(j)(x)|+ [u(bαc)]Cα−bαc(R),

[u]Cβ(R) := sup
x,y∈R x 6=y

|u(x)− u(y)|
|x− y|β

.
(29)

Here b·c denotes the integer part and u(j) stands for the jth derivative of u. One has the chain
of inclusions Cs+εp,L ⊂ Hs

p,L ⊂ L2
p,L, for all ε > 0. For the sake of simplicity, we will omit the

subscript L when L = π, that is, we will simply write

Lpp, L
p
ep, ‖ · ‖Lp , Hs

p, H
s
ep, [·]s, Cαp , Cαep

to refer to the different spaces and norms of 2π-periodic functions. We recall that the standard
norm in W s,2(−π, π) is given by

‖u‖2W s,2(−π,π) := ‖u‖2L2 + [u]2W s,2(−π,π),
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where [·]2W s,2(−π,π) is the classical Gagliardo W s,2-seminorm defined by

[u]2W s,2(−π,π) :=

∫ π

−π

∫ π

−π

|u(x)− u(y)|2

|x− y|1+2s
dy dx.

It is clear that [u]W s,2(−π,π) ≤ [u]s for all u. Moreover, the following lemma shows that, in fact,
[·]s and [·]W s,2(−π,π) are comparable when applied to even 2π-periodic functions.

Lemma 2.1. There exists a constant C > 0, depending only on s, such that

[u]W s,2(−π,π) ≤ [u]s ≤ C[u]W s,2(−π,π) (30)

for all even 2π-periodic function u : R→ R.

From (30) we deduce that Hs
ep = L2

ep ∩W s,2(−π, π). The following lemma and (3) show

the intuitive fact that
∫ L
−L uLKu and [u]2s,L are comparable, and therefore, that

∫ L
−L uLKu and

[u]2W s,2(−π,π) are comparable when applied to 2π-periodic even functions.

Lemma 2.2 ([6]). Let 0 < s < 1 and LK be as in (2) and (3). Let u, v : R→ R be 2L-periodic
functions in L2(−L,L) for which LKu and LKv belong to L2(−L,L). Then,∫ L

−L
vLKu =

∫ L

−L
uLKv

=
1

2

∫ L

−L

∫
R

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(|x− y|)dy dx.

(31)

Now we shall define the norm in Hs
ep with which we will work in order to apply the Nehari

method. Let L > 0 and 0 < s < 1, we define

[u]2 :=

∫ π

−π

∫
R

(
u(x)− u(y)

)2
Kπ/L(x− y) dy dx

and

‖u‖2 :=
(L
π

)2s
‖u‖2L2 +

1

2
[u]2. (32)

Note that for K as in (3), we have Kπ/L as in (11). Then, (11) yields that [u] is comparable to
[u]s and thus to [u]W s,2(−π,π) by (30) if u is even. As a result, ‖u‖ is comparable to ‖u‖W s,2(−π,π)
in Hs

ep, with the constants of comparability depending on L, λ and Λ. In the sequel we will use
several properties of the fractional Sobolev spaceW s,2, such as the fractional Sobolev embeddings
and the fractional Poincaré Inequality. These results can be found in [11].

In the periodic setting, the standard Fourier basis of sinus and cosinus are eigenfunctions of
LK . This property will be particularly used in several computations of Section 5. More precisely,
we have the following result.

Lemma 2.3 ([6]). Let K satisfy (3) and let L > 0. Then,

LK
(
cos
(
πk
L ·
))

(x) = `
(
πk
L

)2s
cos
(
πk
L x
)

LK
(
sin
(
πk
L ·
))

(x) = `
(
πk
L

)2s
sin
(
πk
L x
) (33)

for all k ∈ Z and all x ∈ R. Moreover,

λ

cs
|ξ|2s ≤ `K(ξ) ≤ Λ

cs
|ξ|2s (34)

for all ξ ∈ R, where cs is given in (5). If LK = (−∆)s then `K(ξ) = |ξ|2s.

13



2.2 Regularity Results

We conclude this section by giving some regularity results for weak solutions involving integro-
differential operators on periodic solutions. We start by recalling the suitable notion of weak
solution introduced in [6] for the periodic framework.

Definition 2.4. Let L > 0 and set I = (−L,L), given 2L-periodic functions u and f belonging
to L1(I), we say that u is a weak 2L-periodic solution to LKu = f in R if∫

I
uLKϕ =

∫
I
fϕ

for all 2L-periodic ϕ ∈ C∞(I).

Theorem 2.5 ([6]). Let 0 < s < 1 and f ∈ Cβ(R) for some β > 0. Let L > 0 and u ∈ L∞(R) be
a 2L-periodic function. If u is a weak periodic solution to LKu = f(u) in R then u ∈ Cβ+2s−ε(R),
for all ε > 0.

Lemma 2.6 ([7]). Let 0 < s < 1/2, 1 ≤ p < 1+2s
1−2s and f : R2 → R be such that

|f(x, t)| ≤ C0 (1 + |t|p) (35)

for some C0 > 0 and all (x, t) ∈ R× [0,+∞). Let u : R→ R be a positive 2π-periodic function
such that ‖u‖L2 + [u]s < +∞. Assume that u is a weak periodic solution of

LKu = f(x, u) in R.

Then, ‖u‖L∞ ≤ C for some constant C > 0 depending only on s, p, C0 and ‖u‖W s,2(−π,π).

Corollary 2.7 ([7]). Let 0 < s < 1 and let f ∈ Cβ(R) for some β > 0. Let u ∈ Hs
ep be a positive

weak periodic solution of LKu = f(u) in R. Assume that one of the following holds:

(i) 1/2 < s < 1,

(ii) 0 < s < 1/2 and
|f(t)| ≤ C (1 + |t|p) (36)

for some C > 0 and 1 ≤ p < 1+2s
1−2s , and all t ≥ 0,

(iii) s = 1/2 and (36) holds for some C > 0 and 1 ≤ p < +∞, and all t ≥ 0.

Then u ∈ Cβ+2s−ε(R) for all ε > 0.

With these results, we can assert that any weak periodic solution to (9), obtained minimiz-
ing a suitable functional and thus solving the associated Euler-Lagrange equation, is in fact a
classical solution to (9).
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3 The Nehari manifold method

As we have mentioned before, we want to find solutions to (14) as minimizers, and hence critical
points, of the energy functional (15). The purpose of this section is to explain the Nehari
manifold method, which will be used in Section 4 to find minimizers of the above-mentioned
energy functional. In the following, we present the definitions and results of critical point theory
that will be further used to develop the Nehari manifold method.

Let E be a real Banach space and Φ ∈ C1(E,R) a functional such that Φ(0) = 0. The
Fréchet derivative of Φ at u, Φ′(u) is an element of the dual space E∗ and we will denote Φ′(u)
evaluated at v ∈ E by Φ′(u)v.

In Section 4 we will take E = Hs
ep, a real Hilbert space, in particular a real Banach space

and Φ(v) defined by (18) and (19), belonging to C1(Hs
ep,R).

Definition 3.1. A point u ∈ E is called critical if Φ′(u) = 0. The corresponding value c = Φ(u)
is a critical value or a critical level.

Definition 3.2. We say that (un) ⊂ E is a Palais-Smale sequence if (Φ(un)) is bounded and
Φ′(un)→ 0 in the operator norm sense in E∗, the continuous dual of E. Moreover, if Φ(un)→
c ∈ R and Φ′(un)→ 0, then (un) is a (PS)c-sequence.

Definition 3.3. We say that the functional Φ satisfies the Palais-Smale condition (or (PS)c-
condition) if each Palais-Smale sequence (or (PS)c-sequence) has a convergent subsequence.

It is therefore clear that if a Palais-Smale sequence converges to u (maybe through a sub-
sequence), then u is a critical point. Let us now assume that the unit sphere S in E is a
submanifold of class (at least) C1 and let Φ ∈ C1(S,R).

Theorem 3.4. If Φ is bounded below and satisfies the Palais-Smale condition, then c := infS Φ
is attained and is a critical value of Φ.

The Nehari manifold method, like the Mountain Pass Theorem and the Linking Theorem
(see, [14, 16]) is a variational technique used to find critical points of an energy functional
through a minimization procedure. We present the main definitions and results of this method
following the approach of Szulkin and Weth in [15].

Assume we have a critical point u 6= 0 of Φ. Then, u must belong to

N :=
{
u ∈ E \ {0} : Φ′(u)u = 0

}
.

Therefore, N becomes a natural constraint when looking for nontrivial (that is, u 6= 0) critical
points of Φ. We shall call N the Nehari manifold (even though in general it may not be a
manifold). Setting

c := inf
u∈N

Φ(u) (37)

one hopes that c is attained at some u0 ∈ N and that u0 is a critical point, all this under
appropriate conditions on Φ.

Definition 3.5. A function ϕ ∈ C(R+,R+) is said to be a normalization function if ϕ(0) = 0,
ϕ is strictly increasing and ϕ(t)→ +∞ as t→ +∞.

Let us denote S := S1(0) = {u ∈ E : ‖u‖E = 1}, we assume that
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(A1) There exits a normalization function ϕ such that

u 7→ ψ(u) :=

∫ ‖u‖
0

ϕ(t)dt ∈ C1(E \ {0} ,R),

J := ψ′(u) is bounded on bounded sets and J(w)w = 1 for all w ∈ S.

(A2) For each w ∈ E \ {0} there exists sw ∈ (0,+∞) such that if aw(s) := Φ(sww), then
α′w(s) > 0 for 0 < s < sw and a′w(s) < 0 for s > sw.

(A3) There exists δ > 0 such that sw ≥ δ for all w ∈ S and for each compact subset W ⊂ S
there exists a constant CW such that sw ≤ CW for all w ∈ W.

From (A1) one can see that S is a C1-submanifold of E and the tangent space of S at w is given
by

Tw(S) = {z ∈ E : J(w)z = 0} .

The intuition behind these assumptions is that there exists δ > 0 such that for all w ∈ S,
αw(s) attains a unique maximum sw ≥ δ > 0 in (0,+∞) and thus 0 = α′w(sw) = Φ′(sww)w.
Consequently, sww is the unique point on the ray s 7→ sw, s > 0 that intersects N , with
Φ(sww) > Φ(0) = 0. From this, one deduces that c in (37), if attained, is positive and that
u0 ∈ N is a critical point whenever Φ(u0) = c, which motivates the following definition.

Definition 3.6. We say u0 ∈ N is a ground state solution if Φ(u0) = c.

We will now state the main results of the abstract Nehari manifold theory.

Definition 3.7. We define the mappings m̂ : E \ {0} → N and m : S → N by setting

m̂(w) := sww and m := m̂|S

Under these assumptions, for any w ∈ E \ {0} the map m̂ sends w to the unique point sww
where N intersects the ray s 7→ sw. It also does so with certain regularity, as stated in the
following result.

Proposition 3.8. Let Φ satisfy (A2) and (A3).Then,

(i) The mapping m̂ is continuous.

(ii) The mapping m is a homeomorphism between S and N , and the inverse of m is given by
m−1(u) = u/‖u‖ for all u ∈ N .

Definition 3.9. We define the functionals Ψ̂ : E \ {0} → R and Ψ : S → R given by

Ψ̂(w) := Φ(m̂(w)) and Ψ := Ψ̂|S .

This way, for any w ∈ E \ {0} the functional Ψ̂ gives us the value of Φ at the unique point
sww where N intersects the ray s 7→ sw. This gives us a relationship between critical points of
Ψ and that of Φ, as will be stated in the next two results.

Proposition 3.10. Let E be a Banach space that satisfies (A1) and let Φ satisfy (A2) and (A3).
Then, Ψ̂ ∈ C1(E \ {0} ,R) and

Ψ̂′(w)z =
‖m̂(w)‖
‖w‖

Φ′(m̂(w))z for all w, z ∈ E, w 6= 0.
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Corollary 3.11. Let E be a Banach space that satisfies (A1) and let Φ satisfy (A2) and (A3).
Then,

(i) Ψ ∈ C1(S,R) and

Ψ′(w)z = ‖m(w)‖Φ(m(w))z for all z ∈ Tw(S).

(ii) If (wn) is a Palais-Smale sequence for Ψ, then (m(wn)) is a Palais-Smale sequence for Φ.
Conversely, if (un) ⊂ N is a bounded Palais-Smale sequence for Φ, then (m−1(un)) is a
Palais-Smale sequence for Ψ.

(iii) w is a critical point of Ψ if and only if m(w) is a nontrivial critical point of Φ. Moreover,
the corresponding values of Ψ and Φ coincide and infS Ψ = infN Φ.

Note that with this result we have a minimax characterization for the infimum of Φ over N .
Indeed,

c = inf
u∈N

Φ(u) = inf
w∈E\{0}

max
s>0

Φ(sw) = inf
w∈S

max
s>0

Φ(sw).

Finally, we present one of the main results of the Nehari manifold method and the one that we
will use, which gives sufficient conditions for the existence of a ground state.

Theorem 3.12. Let E be a Hilbert space and suppose that Φ(u) = 1
2‖u‖

2 − I(u), for u ∈ E,
where

(i) I ′(u) = o (‖u‖) as u→ 0,

(ii) s 7→ I ′(su)u/s is strictly increasing for all u 6= 0 and s > 0,

(iii) I(su)/s2 → +∞ uniformly for u on weakly compact subsets of E \ {0} as s→ +∞,

(iv) The operator I ′ is completely continuous (or weak-to-strong continuous), that is, if un ⇀ u,
then I ′(un)→ I ′(u).

Then, equation Φ′(u) = 0 has a ground state solution.
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4 Periodic solutions to nonlinear integro-differential equations

This section is wholly devoted to the proof of Theorem 1.1. We will use the function spaces and
notation introduced in Section 2 and the critical point theory and the Nehari manifold method
developed in Section 3. Throughout all this section, we will assume that the nonlinearity g
satisfies (g1)-(g6) and that EL and c(L) are defined by (15) and (16), respectively. The following
course of action to prove Theorem 1.1 is inspired by the proof of Theorem 1.4 in [7].

The first step is to show that, using the Nehari manifold method, the infimum in (16) is
always attained, which is the purpose of Lemma 4.1. For this we need g to satisfy (g1), (g2),
(g3) and (g5). Next, if (g5) and (g6) hold, in Lemma 4.2 we prove that there is a strictly positive
minimizer of EL(w) belonging to C1+2s

ep and solving (14). Then, defining u as in (13) we finally
get a positive solution to (9), which was our first objective in this work.

Assuming (g1), (g2), (g3) and (g4) we are able in, Lemma 4.3, to find the unique nontrivial
positive constant solution u0 to (9) and its associated energy EL(u0). Clearly, u0 is also the
unique nontrivial solution to (14). Afterwards, in Lemma 4.4 we see that if for some period L
the infimum c(L) is not attained by u0 then it will no longer be attained by u0 for any period
greater than L.

In a similar direction, if g satisfies (g5) we see in Lemma 4.5 that the minimizers of EL(w)
are constant if the period is small enough. In Lemma 4.7 we find the sign of the first and second
eigenvalues of Lu,L when u is a minimizer, as mentioned in the introduction. To this purpose,
a technical result is needed, namely Lemma 4.6.

Lemma 4.1. Given L > 0, we have 0 < c(L) < +∞ and there exists w ∈ Hs
ep such that w 6≡ 0

and EL(w) = c(L).

Proof. We will apply the Nehari manifold theory we have developed so far. In order to use

Theorem 3.12, let us take E = Hs
ep a Hilbert space with the norm ‖v‖2 =

(
L
π

)2s‖v‖2L2 + 1
2 [v]2

previously defined in (32), we shall see that Φ(v) defined in (18) satisfies the hypothesis of the
theorem. To check them, we will follow the ideas for a similar problem presented in [15].

By the sake of comfort, let us denote Î(v) =
∫ π
−π G(v). Then, I(v) defined in (19) satisfies

the hypothesis of the theorem if and only if Î(v) does so, the constant
(
L
π

)2s
does not play any

role at all here. Abusing of notation, we rename I(v) to Î(v).

We endow the dual continuous space of Hs
ep with the usual norm ‖F‖Hs

ep,R defined by

‖F‖Hs
ep,R = sup

v∈Hs
ep\{0}

|F (v)|
‖v‖

,

for all F : Hs
ep → R. To prove (i), we shall see that for all ε > 0 there exists δ > 0 such that, if

‖u‖ ≤ δ then
‖I ′(u)‖Hs

ep,R

‖u‖
≤ ε.

Since g satisfies (g1) we have that g(u) = o(u) as u→ 0, which together with (g5) implies that
for each ε > 0 there is Cε such that

|g(u)| ≤ ε|u|+ Cε|u|p, for some 1 < p < 1+2s
1−2s .

It is clear that I ′(u)v =
∫ π
−π g(u)v. Combining this, (g5), Hölder inequality and the fractional

Sobolev embeddings (Theorem 6.7 of [11], note that p+ 1 < 2
1−2s , where the right hand side the

18



fractional critical Sobolev exponent) we have

|I ′(u)v| ≤
∫ π

−π
|g(u)||v| ≤

∫ π

−π
(ε|u||v|+ Cε|u|p|v|) ≤ ε‖u‖L2‖v‖L2 + Cε‖u‖pLp+1‖v‖Lp+1

≤ C‖v‖W s,2

(
ε‖u‖W s,2 + Cε‖u‖pW s,2

)
≤ C‖v‖ (ε‖u‖+ Cε‖u‖p) ,

which gives us
‖I ′(u)‖Hs

ep,R

‖u‖
≤ C

(
ε+ Cε‖u‖p−1

)
→ Cε for ‖u‖ → 0,

because p > 1, from which we obtain (i).

Let 0 < s < r and u 6= 0, let us recall that g satisfies (g2), that is, g(u)
|u| is strictly increasing

in (−∞, 0) and (0,+∞). Then,

I ′(su)
u

s
=

∫ π

−π
g(su)

u

s
=

∫
[−π,π]∩{u6=0}

g(su)

su
u2

<

∫
[−π,π]∩{u6=0}

g(ru)

ru
u2 =

∫ π

−π
g(ru)

u

r
= I ′(ru)

u

r
,

which gives us (ii).

To check (iii), we proceed by contradiction; let W ⊂ Hs
ep \ {0} be weakly compact and

assume there exist M > 0, sn → ∞ and (un)n≥1 ⊂ W such that I(snun)/s2n < M , for all
n ≥ 1. Note that (un)n≥1 ⊂ W has a weakly convergent subsequence, which we rename un
and it is bounded, because it is included in the weakly compact subset W. If u denotes its
limit, then ‖u‖ ≤ lim inf ‖un‖. In particular, we have a bounded subsequence, in Hs

ep, which
is compactly embedded in L2(−π, π). Therefore, un → u in L2(−π, π) and, maybe through
another subsequence, we have un → u a.e in (−π, π). In particular, u(x) 6= 0 in a set of positive
measure.

We have |snun(x)| → +∞ for almost every x such that u(x) 6= 0 because W is a weakly
compact subset of Hs

ep \ {0}. Then, Fatou’s Lemma and (g3) yield

M ≥ lim inf
n

I(snun)

s2n
= lim inf

n

∫ π

−π

G(snun)

s2n
= lim inf

n

∫ π

−π

G(snun)

(snun)2
u2n

≥
∫ π

−π
lim inf

n

G(snun)

(snun)2
u2n → +∞,

which is a contradiction, and so we have that I satisfies (iii).

Finally, to see (iv), that I is completely continuous, we must see that if (un) ⊂ Hs
ep converges

weakly to u ∈ Hs
ep then the linear functional I ′(un) converges to I ′(u) in the operator norm.

Let un ⇀ u in Hs
ep, then (un) is a bounded sequence in Hs

ep, which is compactly embedded in
Lp+1(−π, π). Therefore, we can find a subsequence (unk) ⊂ Hs

ep converging almost everywhere
to a 2π-periodic even function u such that ‖unk − u‖Lp+1 → 0.

Let v ∈ Hs
ep, an application of Hölder inequality, together with the Fractional Sobolev

Embedding yields

|I ′(un)v − I ′(u)v| ≤
∫ π

−π
|g(un)− g(u)||v| ≤ ‖g(un)− g(u)‖

L
p+1
p
‖v‖Lp+1

≤ C‖g(un)− g(u)‖
L
p+1
p
‖v‖W s,2

≤ C‖g(un)− g(u)‖
L
p+1
p
‖v‖,
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from which we deduce that

‖I ′(un)− I ′(u)‖Hs
ep,R ≤ C‖g(un)− g(u)‖

L
p+1
p
.

Furthermore, since (g5) holds and g is continuous, by Krasnoselskii’s Theorem (see Theorem
C.2 in [14]) we have that

‖g(un)− g(u)‖
L
p+1
p
≤ C‖un − u‖Lp+1 → 0, as n→∞.

Hence, I ′(un) converges to I ′(un), we have checked that I satisfies (iv).

Finally we apply Theorem 3.12 to our functional Φ; there exists w ∈ Hs
ep \ {0} a ground

state solution, that is, c(L) = EL(w). Note that c(L) being positive is a direct consequence of
the Nehari manifold method.

The following result states that the minimizers of EL are strictly positive and regular enough
to be classical solutions to (14).

Lemma 4.2. Let L > 0 and w ∈ Hs
ep be such that EL(w) = c(L). Then w ∈ C1+2s

ep and w does
not vanish. Moreover, there always exists minimizer w such that w > 0 in R and solves (14).

Proof. We first prove that if w ∈ Hs
ep is such that EL(w) = c(L) then either w ≥ 0 or w ≤ 0

in R. Suppose that there exist measurable sets U, V ⊂ [−π, π], both with positive Lebesgue
measure, such that w(x) > 0 > w(y) for all x ∈ U , y ∈ V . Then

∣∣|w(x)|−|w(y)|
∣∣ < |w(x)−w(y)|

for all (x, y) ∈ U × V , hence ∫ π

−π
LKπ/L |w| |w| <

∫ π

−π
LKπ/Lw w,

where we also used that the kernel K(t) is positive and Lemma 2.2. Note also that condition
(g6) implies

−I(w) + I(|w|) =

∫ π

−π
G(|w|)−G(w) =

∫ π

−π

∫ |w|
w

g(y)dy ≥ 0.

But then c(L) ≤ EL(|w|) < EL(w) = c(L), which is a contradiction with the fact that w is
assumed to be a minimizer. This means that either w ≥ 0 or w ≤ 0 almost everywhere. In fact,
we have −I (−|w|) + I(|w|) ≥ 0. Moreover, since w does not change sign, EL(|w|) ≤ EL(−|w|).
Hence, we can always take |w| as the minimizer of EL.

If we take ϕ ∈ Hs
ep then w + εϕ ∈ Hs

ep for all ε ∈ R. Since EL(w) = c(L), a computation
shows that

0 =
d

dε

∣∣∣∣
ε=0

EL(w + εϕ)

=

∫ π

−π
LKπ/Lw ϕ+

(L
π

)2s ∫ π

−π
wϕ−

(L
π

)2s ∫ π

−π
g(w)ϕ

=

∫ π

−π

(
LKπ/Lw +

(L
π

)2s
w −

(L
π

)2s
g(w)

)
ϕ.

Since this holds for all ϕ ∈ Hs
ep, w weakly solves in (0, π), and thus in R by parity and periodicity,

the semilinear equation

LKπ/Lw = fL(w), where fL(t) := −
(L
π

)2s
t+
(L
π

)2s
g(t). (38)
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Note that fL ∈ C1+ε(R) because g ∈ C1+ε(R). Additionally, fL satisfies the growth estimate
(36). Since w ≥ 0, using Corollary 2.7 we deduce that ‖w‖C1+2s < +∞. In particular, LKπ/Lw
makes sense pointwise and (38) holds in the classical sense.

Let us now prove that actually w does not vanish anywhere. If there exists x ∈ R such that
w(x) = 0 then, using (38), (11) and w(y) ≥ 0 for all y ∈ R, we deduce that

0 = fL(w(x)) = LKπ/Lw(x) = −
∫
R
w(y)Kπ/L(|x− y|)dy ≤ 0,

which shows that w vanishes identically. But we already know that w 6≡ 0 because it is a critical
point of EL on the Nehari manifold, thus we conclude that w > 0 on R, as desired.

The following lemma assures the existence of a special nontrivial solution to (9), the positive
constant solution.

Lemma 4.3. There exists a unique u0 > 0 such that g(u0) = u0. Moreover, its energy is that
given by (17) and u0 is the unique positive constant solution to (9).

Proof. Thanks to (g1) and (g2) we have that h(u) := g(u)
|u| is a strictly increasing well defined

continuous function for all u ≥ 0, with h(0) = 0. Moreover, (g3) and (g4) imply that h(u)→ +∞
as u→ +∞. Therefore, there exists a unique u0 > 0 such that h(u0) = 1 because h(u) is strictly
increasing.

Thanks to the following lemma we can prove that if for some Lw > 0 the minimizer w is
nonconstant, then the minimizer for L > Lw is also nonconstant.

Lemma 4.4. Suppose that there exists a nonconstant function w ∈ Hs
ep such that c(Lw) =

ELw(w) for some Lw > 0. Then, c(L) < EL(u0) for all L > Lw.

Proof. Since K is positive and w is nonconstant, by (31) and (12) we see that

0 <

∫ π

−π
LKπ/Lw w <

(
L

Lw

)2s ∫ π

−π
LKπ/Lww w.

Therefore, using EL(u0) given in (17),

c(L) ≤ EL(w) =
1

2

(∫ π

−π
LKπ/Lw w +

(L
π

)2s ∫ π

−π
w2

)
−
(L
π

)2s ∫ π

−π
G(w) ≤

(
L

Lw

)2s

ELw(w)

=

(
L

Lw

)2s

c(Lw) ≤
(
L

Lw

)2s

ELw(u0) = EL(u0).

The following result proves that the only minimizers of c(L) are constant functions if L is
small enough.

Lemma 4.5. If w ∈ Hs
ep, w > 0, EL(w) = c(L) and L > 0 is sufficiently small, then w is

constant.
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Proof. We begin recalling that our functional Φ(v) is given by Φ(v) = 1
2‖v‖

2 − I(v), with

‖v‖2 =
(
L
π

)2s‖v‖2L2 + 1
2 [v]2 and I(v) =

(
L
π

)2s ∫ π
−π G(v), and that we write EL(v) = Φ(v). A

priori, [v]2 depends on L, that is

[v]2 :=

∫ π

−π

∫
R

(
u(x)− u(y)

)2
Kπ/L(x− y) dy dx,

but (11) ensures us that [v]2 is comparable to [v]2W s,2(−π,π) and these constants of comparability

do not depend on L. Let w > 0 be a minimizer of EL and denote c := EL(w). By Lemma 4.2
we know that w solves

LKπ/Lw +
(
L
π

)2s
w =

(
L
π

)2s
g(w). (39)

Then, since g(w) ≥ 0 for w ≥ 0, g satisfies (g4) and w > 0 solves (39) we have that

1

2
‖w‖2 = c+ I(w) = c+

(
L
π

)2s ∫ π

−π
G(w)

= c+
(
L
π

)2s ∫
{|w|≤R}∩[−π,π]

G(w) +
(
L
π

)2s ∫
{|w|>R}∩[−π,π]

G(w)

≤ c+ 2π
(
L
π

)2s‖G‖L∞(−R,R) +
1

µ

(
L
π

)2s ∫
{|w|>R}∩[−π,π]

g(w)w

≤ c+ 2π
(
L
π

)2s‖G‖L∞(−R,R) +
1

µ

(
L
π

)2s ∫ π

−π
g(w)w

= c+ 2π
(
L
π

)2s‖G‖L∞(−R,R) +
1

µ

∫ π

−π

(
LKπ/Lw w +

(
L
π

)2s
w2
)

= c+ 2π
(
L
π

)2s‖G‖L∞(−R,R) +
1

µ
‖w‖2,

and thus, we estimate

‖w‖2 ≤ 2µ

µ− 2

(
c+ 2π

(
L
π

)2s‖G‖L∞(−R,R)

)
.

To prove the result, we argue by contradiction. Assume that there exist Lj ↘ 0 and nonconstant

functions wj ∈ Hs
ep such that ELj (wj) = c(Lj), for all j ∈ N. Define bj :=

(Lj
π

)2s
and M :=

max(1, λ−1). Now, for j ≥ j0 big enough we have bj < 1 and

‖wj‖2W s,2(−π,π) ≤ ‖wj‖
2
L2 + [wj ]

2
s ≤

2

bj

(
bj‖wj‖2L2 +

1

2
[wj ]

2
s

)
≤ 2

bj
max

(
1, λ−1

)
‖wj‖2

≤ 2M

bj

2µ

µ− 2

(
cj + 2πbj‖G‖L∞(−R,R)

)
= 4M

µ

µ− 2

(
cj
bj

+ 2π‖G‖L∞(−R,R)

)
Notice that cj ≤ ELj (u0) = 2πbj

(
u20
2 −G(u0)

)
. Then, we have that

‖wj‖2W s,2(−π,π) ≤ 4M
µ

µ− 2

(
cj
bj

+ 2π‖G‖L∞(−R,R)

)
≤ 2π4M

µ

µ− 2

(
u20
2

+ ‖G‖L∞(−R,R) + |G(u0)|
)
.

Therefore, ‖wj‖2W s,2(−π,π) ≤ C for all j big enough. In case that 1/2 < s < 1 the Sobolev

inequality directly yields that ‖wj‖L∞ ≤ K for all j big enough, and if 0 < s ≤ 1/2 we can
appeal to Lemma 2.6 to get a uniform bound of the L∞ norm.
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Thanks to Lemma 4.2 we can set hj := w′j ∈ C2s(R). By differentiating in (39) we see that
hj solves

LKπ/Lhj = −bjhj + bjg
′(wj)hj . (40)

Observe that
∫ π
−π hj = 0 because wj is 2π-periodic. Combining the fractional Poincaré inequality

[2] with (40) and the uniform bound A of ‖wj‖L∞ , we see that

‖hj‖2L2 ≤ C
∫ π

−π

∫ π

−π

|hj(x)− hj(y)|2

|x− y|1+2s
dydx ≤ C

∫ π

−π
LKπ/Lhj hj

≤ C
{
bj‖hj‖2L2 + bj‖g′‖L∞(−A,A)‖hj‖2L2

}
≤ Cbj‖hj‖2L2 ,

(41)

where C > 0 does not depend on j. Recall that limj→∞ bj = limj→∞

(
Lj
π

)2s
= 0. Then, (41)

shows that there exists j0 ∈ N such that ‖hj‖2L2 ≤ 1
2‖hj‖

2
L2 for all j ≥ j0, which means that

w′j = hj = 0 for all j ≥ j0. This contradicts the fact that wj is a nonconstant function for all
j ∈ N.

Now we would like to obtain some spectral properties of the linearized operator associated
to (9) and the minimizers of c(L). Before we do that, we first need the following technical result.

Lemma 4.6. Let L > 0, w ∈ Hs
ep, w > 0 be such that EL(w) = c(L) and ϕ ∈ Hs

ep. Then,

(sw)′ :=
d

dh

∣∣∣∣
h=0

sw+hϕ = − 1∫ π
−π(g′(w)w − g(w))w

∫ π

−π
(g′(w)w − g(w))ϕ.

Proof. Let v ∈ Hs
ep \ {0} and define αv(s) : [0,+∞) → R by αv(s) = Φ(sv). By the Ne-

hari manifold method, condition (A2) assures that there exists sv > 0 such that Φ(svv) =
maxs∈(0,∞) Φ(sv), so it must be α′v(sv) = 0 and α′′v(sv) ≤ 0. Then,

0 =
d

ds

∣∣∣∣
s=sv

(
1

2
‖svv‖2 −

(L
π

)2s ∫ π

−π
G(sv)

)
= sv‖v‖2 −

(L
π

)2s ∫ π

−π
g(svv)v,

which gives us an implicit expression for sv. For v = w + hϕ, we have that sw+hϕ is given by

‖w + hϕ‖2sw+hϕ =
(L
π

)2s ∫ π

−π
g(sw+hϕ(w + hϕ))(w + hϕ).

Let us differentiate with respect to h and evaluate at h = 0, taking into account that sw = 1 (
because w is in the Nehari manifold). Then, we have

2 〈w,ϕ〉+ ‖w‖2(sw)′ =
(L
π

)2s ∫ π

−π

(
g′(w)(ϕ+ (sw)′w)w + g(w)ϕ

)
,

where 〈w,ϕ〉 denotes the scalar product in Hs
ep that induces ‖ · ‖ and given by

〈w,ϕ〉 =

∫ π

−π
LKπ/Lw ϕ+

(L
π

)2s ∫ π

−π
wϕ.

Since w is a minimizer, by Lemma 4.2 we have w solves (14) and hence 〈w,ϕ〉 =
(
L
π

)2s ∫ π
−π g(w)ϕ,

for all ϕ ∈ Hs
ep. Then,

2

∫ π

−π
g(w)ϕ+ (sw)′

∫ π

−π
g(w)w =

∫ π

−π

(
g′(w)(ϕ+ (sw)′w)w + g(w)ϕ

)
,
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and finally, solving for (sw)′, we obtain the desired result. Now, (g2) implies g′(u)u > g(u) for
all u > 0 and since w > 0, note that

0 > α′′w(1) = −
∫ π

−π
(g′(w)w − g(w))w,

which assures us that (sw)′ is indeed well defined.

Lemma 4.7. Let w ∈ Hs
ep be such that EL(w) = c(L) and w > 0. Let u be as in (13). Then,

for every ψ ∈ Hs
ep,L,

0 ≤
∫ L

−L
Lu,Lψ ψ +

1∫ L
−L (g′(u)u− g(u))u

(∫ L

−L

(
g′(u)u− g(u)

)
ψ

)2

. (42)

In particular, σ1 (Lu,L) < 0 ≤ σ2 (Lu,L), where (Lu,L) denotes the linearized operator acting on
Hs

ep,L functions, given by (20), and σ1 (Lu,L) and σ2 (Lu,L) denote its first and second eigenval-
ues, respectively.

Proof. To obtain this kind of result, one would study the variation of the functional under a small
perturbation of its minimizer. However, our constrained minimization method consists of finding
minimizers of the functional Φ restricted to the Nehari subset N , so a general perturbation on
a minimizer w would fall outside N and therefore its energy would not be comparable to that
of w, because w may not be a minimizer in the whole space.

However, let ϕ ∈ Hs
ep \ {0} and define ρ(h) := Ψ̂(w + hϕ). It has been seen in Proposition

3.10 that

ρ′(h) = sw+hϕΦ′(sw+hϕ(w + hϕ))ϕ.

Since w is a minimizer on N we now have that ρ(h) has a minimum at h = 0, that is, ρ′(0) = 0
and ρ′′(0) ≥ 0. Hence, we compute

ρ′′(0) = (sw)′Φ′(sww)[ϕ] + swΦ′′(sww)[swϕ+ (sw)′w,ϕ]

= Φ′′(w)[ϕ,ϕ] + (sw)′Φ′′(w)[w,ϕ],

because sw = 1 and Φ′(w) = 0. Here, Φ′′(w)[ξ, η] denotes the second Fréchet derivative and it
is given by

Φ′′(w)[ξ, η] = 〈ξ, η〉 −
(L
π

)2s ∫ π

−π
g′(w)ξη, for all ξ, η ∈ Hs

ep.

Furthermore, note that the linearized equation of (14) is given by

Lw,Lψ := LKπ/Lψ +
(
L
π

)2s
ψ −

(
L
π

)2s
g′(w)ψ for ψ ∈ Hs

ep,

and, therefore, ∫ π

−π
Lw,Lϕ ϕ = Φ′′(w)[ϕ,ϕ].

If we use the value of (sw)′ found in Lemma 4.6 and the fact that 〈w,ϕ〉 =
(
L
π

)2s ∫ π
−π g(w)ϕ

given by Lemma 4.2, we obtain

0 ≤
∫ π

−π
Lw,Lϕ ϕ+

(
L
π

)2s∫ π
−π (g′(w)w − g(w))w

(∫ π

−π

(
g′(w)w − g(w)

)
ϕ

)2

. (43)
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Using the change ψ(x) = ϕ( πLx) and that u(x) = w( πLx), one can rewrite (43) as (42), we omit
the details.

Using the expression of σ2 (Lu,L) in terms of a Rayleigh quotient, we have

σ2 (Lu,L) = max
V⊂Hs

ep,L subspace,

dim(V )=1

inf
ψ∈Hs

ep,L∫ L
−L vψ=0, ∀v∈V

∫ L
−L Lu,Lψ ψ∫ L
−L ψ

2
.

Take V = span {g′(u)u− g(u)} ⊂ Hs
ep. Given ψ ∈ V ⊥, (42) yields

0 ≤
∫ L

−L
Lu,Lψ ψ.

Therefore, σ2 (Lu,L) ≥ 0 as desired.

The estimate for σ1 (Lu,L) is easier because

σ1 (Lu,L) = inf
ψ∈Hs

ep,L

∫ L
−L Lu,Lψ ψ∫ L
−L ψ

2
≤
∫ L
−L Lu,Lu u∫ L
−L u

2
=

∫ π
−π u(g(u)− g′(u)u)∫ L

−L u
2

< 0.

where we have used that u > 0 solves the equation and that g satisfies (g2).

With all these Lemmas we are now able to give the proof of Theorem 1.1 by combining them
properly.

Proof of Theorem 1.1. The first statements in the theorem follow from Lemmas 4.1, 4.2 and 4.7.
Hence, it remains to show (i), (ii) and (iii).

Let u0 be as in Lemma 4.3. Observe that

Lu0,Lψ = LKψ + (1− g′(u0))ψ for ψ ∈ Hs
ep,L.

Since
{

cos
(
πk
L x
)}

k≥0 is an orthogonal basis of Hs
ep, thanks to (33) we can easily find all the

eigenvalues of Lu0,L when acting on Hs
ep,L. More precisely, (7) gives us

`K(πkL ) =

∫
R

1− cos(y)

|y|
L|y|
π|k|

K

(
L|y|
π|k|

)
dy

for all k ∈ Z \ {0} and `K(0) = 0. By (4) we can see that 0 ≤ `K(πk1L ) ≤ `K(πk2L ) for all
|k1| ≤ |k2|. From this and (33) we obtain that

σ1(Lu0,L) = 1− g′(u0) < 0,

σ2(Lu0,L) = `K( πL) + 1− g′(u0),

where the constant function and cos
(
π
Lx
)

are the corresponding eigenfunctions in Hs
ep,L for

σ1(Lu0,L) and σ2(Lu0,L), respectively. The strictly negative sign of σ1(Lu0,L) is due to the fact
that, since g(u0) = u0 > 0 and g satisfies (g2), namely g′(u)u > g(u) for all u > 0, then
g′(u0) > 1. Observe that

σ2(Lu0,L) = `K( πL) + 1− g′(u0) (44)

is a continuous and strictly decreasing function with respect to L > 0 because of (4). Moreover,
using (34) we get(π

L

)2s λ
cs

+ 1− g′(u0) ≤ σ2(Lu0,L) ≤
(π
L

)2s Λ

cs
+ 1− g′(u0),
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from which we deduce that limL→0 σ2(Lu0,L) > 0 > limL→+∞ σ2(Lu0,L) since g′(u0) > 1. As a
result, there exists a unique L0 > 0, for which σ2(Lu0,L0) = 0, that is, (21) holds for a unique
L0 > 0. Moreover, σ2(Lu0,L) > 0 if L < L0 and σ2(Lu0,L) < 0 if L > L0. Furthermore, if
EL(u0) = c(L), then σ2(Lu0,L) ≥ 0 by Lemma 4.7, which leads to L ≤ L0.

Define
L∗ := sup {L > 0 : c(l) = El(u0) for all 0 < l ≤ L} . (45)

Assume v0 is a constant positive minimizer of El, by Lemma 4.2 v0 is a constant positive solution
to (14), which, by Lemma 4.3 has a unique constant positive solution, namely u0. Therefore, it
must be v0 = u0 and c(l) = El(u0).

We claim 0 < L∗ ≤ L0 < +∞. Indeed, Lemma 4.5 yields L∗ > 0 and if it were L∗ > L0,
then for some L0 < L < L∗ we would have c(L) = EL(u0), so that u0 would be a minimizer,
with σ2(Lu0,L) < 0, a contradiction with the characterization of minimizers of Lemma 4.7.

By definition, there exists {Lk}k∈N such that Lk > L∗ for all k ∈ N, Lk → L∗ when k →∞
and c(Lk) < ELk(u0). This means that c(Lk) is attained by a nonconstant positive function,
thus Lemma 4.4 yields c(L) < EL(u0) for all L > Lk and all k ∈ N. Hence,

L∗ = inf {L > 0 : c(l) < El(u0) for all l ≥ L} . (46)

It is clear that any L∗ satisfying both (45) and (46) must be unique. Moreover, (45) and Lemma
4.4 ensure that if L < L∗ then c(L) is only attained by constant functions, and (46) shows that
if L∗ < L then c(L) is only attained by nonconstant functions. We have proven (i) and (ii).

For (iii), we have already seen that L∗ ≤ L0, the inequality L∗∗ ≤ L∗ is a direct con-
sequence of (ii). For LK = (−∆)s we have `K( πL) = ( πL)2s and thus 0 = σ2(Lu0,L0) yields

L0 = π (g′(u0)− 1)−
1
2s .
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5 Bifurcated solutions of small amplitude

This whole section is entirely devoted to the proof of Theorems 1.2 and 1.3. We start directly
with the proof of Theorem 1.2, a result inspired by Cabré, Mas and Solà-Moarles in [7].

Proof of Theorem 1.2. This result is a slight modification of Theorem 1.5 in [7] and hence the
proof will be basically that of [7], except for some functional setting changes. Here we will just
comment on these changes we have done to adapt the aforementioned proof to our case.

We begin with the same strategy: in order to find 2L-periodic solutions to (28) we define

u(x) = u( πLx) so that (28) becomes (−∆)su =
(
L
π

)2s
f(u). As a matter of fact, let us call

λ =
(
L
π

)2s
and u to this new unknown u. We remark that from now on u will be 2π-periodic

and our unknowns will be pairs (λ, u) such that

(−∆)su− λf(u) = 0 (47)

The statement of the theorem is just a result of bifurcation from a simple eigenvalue. The proof
of Theorem 1.5 in [7] is based on Theorem 4.1 of [3, Chapert 5] and uses the same notation.
Recall that we write L2

ep to denote the space of L2(−π, π) functions that are (a.e.) even and
2π-periodically extended to all of R. We define the functional spaces X := C2s+α(R) ∩ L2

ep and
Y := Cα(R) ∩ L2

ep. We also define

F(λ, u) = (−∆)su− λf(u),

for which we want to solve F(λ, u) = 0.

Let us see that F ∈ C5(R×X,Y ). Thanks to our hypothesis in s and α, namely 1 < 2s+α < 2
we have that (−∆)s+ Id is an isomorphism between X and Y that is of class C5 with respect to
λ as a bounded linear map from X to Y . The isomorphism property is deduced from the linear
inhomogeneous equation (−∆)su+ u = f1, when f1 ∈ Y . A bounded weak solution can be first
obtained in Fourier series and then the regularity results of Theorem 2.5 can be applied. The
fact that the operator is of class C5 with respect to λ is clear because F is linear in λ.

Now we shall see that the map u 7→ f(u) is of class C5 from Y to itself. This will yield
that the map u 7→ f(u) is of class C5 from X to Y thanks to the continuous linear embedding
X ⊂ Y . We will use the Banach algebra property of Cα(R), namely that if u1, u2 ∈ Cα(R) then
also u1u2 ∈ Cα(R) and ‖u1u2‖Cα ≤ C‖u1‖Cα‖u2‖Cα , for some C > 0.

The fifth Fréchet derivative of u
F7→ f(u) is the multilinear mapping defined by

F (5)(u) : Cα(R)× Cα(R)× Cα(R)× Cα(R)× Cα(R) −→ Cα(R)

(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) 7→ f (5)(u)ϕ1ϕ2ϕ3ϕ4ϕ5

so we shall see that indeed f (5)(u)ϕ1ϕ2ϕ3ϕ4ϕ5 belongs to Cα(R) for all u ∈ Cα(R) and that
F (5) is continuous as an operator from Cα(R) to the space of continuous multilinear maps from⊗5

i=1C
α(R) to Cα(R), that we will denote by L(

⊗5
i=1C

α(R), Cα(R)) endowed with its usual
operator norm ‖·‖L(⊗5

i=1 C
α(R),Cα(R)). The other four first Fréchet derivatives are treated equally,

we omit the details.

By simplicity, let us denote g := f (5) and h := f (6), hence g ∈ C1(R) and h ∈ C(R).
Note that if g(u) belongs to Cα(R) then the Banach algebra property of Cα(R) will give us
g(u)ϕ1ϕ2ϕ3ϕ4ϕ5 ∈ Cα(R). Let’s see this, namely, that g(u) is continuous and ‖g(u)‖Cα < ∞.
The continuity of g(u) is clear by being a composition of two continuous functions.
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Regarding the Cα-norm, every u ∈ Y = Cα(R)∩L2
ep must be bounded because it is continu-

ous and periodic, so let M > 0 and K := [−M,M ] such that u(x) ∈ K, for all x ∈ R. Then, we
have ‖g(u)‖L∞(R) ≤ ‖g‖L∞(K) < ∞ and ‖h(u)‖L∞(R) ≤ ‖h‖L∞(K) < ∞. Now, for all x, y ∈ R
such that x 6= y the mean value theorem gives us

|g(u(x))− g(u(y))|
|x− y|α

≤ |h(ξ)| |u(x)− u(y)|
|x− y|α

≤ ‖h‖C(K)[u]Cα < +∞,

for some ξ in the segment joining u(x) and u(y), hence belonging to K. As a result, we obtain
that ‖g(u)‖Cα < +∞ and thus f (5)(u) ∈ Cα(R).

Now let us see that F (5) is continuous. We will see that, for every u ∈ Cα(R),

‖F (5)(u)− F (5)(vn)‖L(⊗5
i=1 C

α(R),Cα(R)) → 0,

for all vn → u in Cα(R). Given u ∈ Cα(R), let ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 ∈ Cα(R) and vn ∈ Cα(R)
with vn → u in Cα(R). In particular, we have that ‖vn‖Cα ≤ ‖u‖Cα + 1 < M + 1, for all n big
enough. Now,

‖
(
F (5)(u)− F (5)(vn)

)
(ϕ1, ϕ2, ϕ3, ϕ4, ϕ5)‖Cα = ‖

(
f (5)(u)− f (5)(vn)

)
ϕ1ϕ2ϕ3ϕ4ϕ5‖Cα

≤ C‖f (5)(u)− f (5)(vn)‖Cα
5∏
i=1

‖ϕi‖Cα ,

from which we deduce that

‖F (5)(u)− F (5)(vn)‖L(⊗5
i=1 C

α(R),Cα(R)) ≤ C‖g(u)− g(vn)‖Cα ,

Let us study ‖g(u)− g(vn)‖Cα . Given x, y ∈ R we have

|
(
g(u)− g(vn)

)
(x)−

(
g(u)− g(vn)

)
(y)| = |

(
g(u(x))− g(u(y))

)
−
(
g(vn(x))− g(vn(y))

)
|

=

∣∣∣∣(u(x)− u(y))

∫ 1

0
h
(
tu(x) + (1− t)u(y)

)
dt

−(vn(x)− vn(y))

∫ 1

0
h
(
tvn(x) + (1− t)vn(y)

)
dt

∣∣∣∣ .
Adding and subtracting (u(x) − u(y))

∫ 1
0 h
(
tvn(x) + (1 − t)vn(y)

)
dt and using the triangular

inequality, we can estimate the expression above by two terms that we bound independently.
The first one is∣∣∣∣(u(x)− u(y))

∫ 1

0
h
(
tu(x) + (1− t)u(y)

)
− h
(
tvn(x) + (1− t)vn(y)

)
dt

∣∣∣∣ ≤ [u]Cα |x− y|αε.

This is so because h is uniformly continuous, it is continuous and defined inK1 := [−M−1,M+1]
a compact set, note that both tu(x)+(1− t)u(y) and tvn(x)+(1− t)vn(y) are bounded by M+1
for all n big enough, and |u(z)− vn(z)| < δ(ε) uniformly for all z ∈ R, for all n big enough. The
second term is∣∣∣∣((u(x)− u(y))− (vn(x)− vn(y))

) ∫ 1

0
h
(
tvn(x) + (1− t)vn(y)

)
dt

∣∣∣∣
≤ ‖h‖C(K1)

∣∣∣∣u(x)− u(y)

|x− y|α
− vn(x)− vn(y)

|x− y|α

∣∣∣∣ |x− y|α ≤ ‖h‖C(K1)[u− vn]Cα |x− y|α.
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Finally, we see that

|
(
g(u)− g(vn)

)
(x)−

(
g(u)− g(vn)

)
(y)|

|x− y|α
≤ ε[u]Cα + ‖h‖C(K1)[u− vn]Cα → 0,

for n→ +∞. Thus [g(u)− g(vn)]Cα → 0 as n→ +∞. Moreover,

|g(u(x))− g(vn(x))| ≤ |h(ξx)| |u(x)− vn(x)| ≤ ‖h‖C(K)‖u− vn‖C(R),

for some ξx between u(x) and vn(x), in particular ξx ∈ K for all n big enough. As a result,
‖g(u)− g(vn)‖L∞(R) → 0 as n→ +∞. From these two estimates we finally obtain

‖F (5)(u)− F (5)(vn)‖L(⊗5
i=1 C

α(R),Cα(R)) → 0 as n→ +∞,

for all vn → u in Cα(R), that is, F (5) is continuous and therefore F : u 7→ f(u) is of class C5

from Y to itself.

From this point onwards, one can check the other hypothesis exactly as in [7] and obtain the
desired result. Note that the bifurcation point is (λ∗, 0), with λ∗ = f ′(0)−1, and thus, the set
F−1 {0} consists, in a neighbourhood of (λ, u) = (λ∗, 0), solely of {u = 0} and a curve (λ(a), ua)
with (λ(0), u0) = (λ∗, 0) and of class C4 in the parameter a. There is a loss of one degree of
differentiability due to a factorization that is needed in the method of Lyapunov-Shmidt, see
the details in [3].

In the sequel, we will assume that EL and c(L) are defined by (24) and (25) respectively. To
determine whether L∗ < L0 or not we just need to see that that there exists a function u ∈ Hs

ep

and a period L < L0 such that u has less energy than the constant nontrivial solution u0 ≡ 1.
That is, we need

EL(u) =

∫ π
−π u(−∆)su+

(
L
π

)2s ∫ π
−π u

2

‖u‖2
Lp+1

<
(
L
π

)2s
(2π)

p−1
p+1 = EL(u0),

which is the same as asking(∫ π

−π
u(−∆)su+

(
L
π

)2s ∫ π

−π
u2
)p+1

<
(
‖u‖p+1

Lp+1

)2
(EL(u0))

p+1 . (48)

If (48) holds, since EL is homogeneous, then the minimizer of EL will automatically be noncon-
stant and thus L∗ ≤ L < L0. To this purpose, we consider the scalar λ(a) = (L(a)/π)2s and
the 2π-periodic and even function ua given by the proof of Theorem 1.2, that is, (λ(a), ua) is
the unique curve of solutions to (47) of class C4 with respect to the parameter a. The following
results focus on obtaining suitable expressions for the terms appearing in (48) when we take
u = ua and L = L(a).

As usual, we say that ga = o(a4) provided |ga|
a4
→ 0 as a→ 0.

Lemma 5.1. Under the setting of Theorem 1.2, ua is a 2π-periodic even function of x of the
form

ua(x) = 1 + a cos(x) +
1

2!

(
c20 + c22 cos(2x)

)
a2

+
1

3!
c33 cos(3x)a3 +

1

4!

(
c40 + c42 cos(2x) + c44 cos(4x)

)
a4 + wa(x),

(49)

with constants c20, c22, c33, c40, c42, c44 depending on s, p and wa ∈ C2s+α(R) such that
‖wa‖C2s+α

a4
→ 0

as a→ 0, that is, ‖wa‖C2s+α = o(a4).
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We denote cnk the constant accompanying the term cos(kx)an in the above expression.

Proof. We know that a 7→ ua ∈ C2s+α(R) is of class C4, with u0 = 1. Hence, Taylor’s theorem
for Banach spaces (see [9]) gives us

ua = 1 + (∂au0)a+
1

2
(∂2au0)a

2 +
1

3!
(∂3au0)a

3 +
1

4!
(∂4au0)a

4 + va,

with va ∈ C2s+α(R) and ‖va‖C2s+α = o(a4). In order to find the Taylor coefficients for ua, we
will take derivatives with respect to a in the identity (−∆)sua = λ(a)f(ua). That is,

(−∆)s∂aua = λ′(a)f(ua) + λ(a)f ′(ua)∂aua (50)

Since L(a) is even, so is λ(a), hence λ′(0) = 0. Moreover, λ(0) = f ′(1)−1 and f(1) = 0. Thus,
writing it for a = 0 we have

(−∆)s∂au0 − ∂au0 = 0

Now, (−∆)s−Id diagonalizes in the basis of cosinus and, furthermore, cos(x) is its kernel. Hence,
we have that

∂au0 = cos(x).

Differentiating (50) with respect to a, we obtain

(−∆)s∂2aua = λ′′(a)f(ua) + 2λ′(a)f ′(ua)∂aua

+ λ(a)f ′′(ua) (∂aua)
2 + λ(a)f ′(ua)∂

2
aua.

(51)

Writing it for a = 0 we have

(−∆)s∂2au0 − ∂2au0 =
f ′′(1)

f ′(1)
cos2(x)

=
f ′′(1)

2f ′(1)
+
f ′′(1)

2f ′(1)
cos(2x)

and therefore, knowing that cos(x) is in the kernel of the right hand side and it must be orthog-
onal to ∂2au0 by Theorem 1.2, we have that

∂2au0 = − f
′′(1)

2f ′(1)
+

f ′′(1)

2 (22s − 1) f ′(1)
cos(2x),

from which we deduce that

c20 = − f
′′(1)

2f ′(1)
, c22 =

f ′′(1)

2(22s − 1)f ′(1)
. (52)

Differentiating (51) with respect to a we find

(−∆)s∂3aua = λ′′′(a)f(ua) + 3λ′′(a)f ′(ua)∂aua + 3λ′(a)f ′′(ua) (∂aua)
2

+ 3λ′(a)f ′(ua)∂
2
aua + λ(a)f ′′′(ua) (∂aua)

3

+ 3λ(a)f ′′(ua)∂aua∂
2
aua + λ(a)f ′(ua)∂

3
aua.

(53)

Writing it for a = 0 and using the expressions we already know for ∂au0 and ∂2au0 and the fact
that λ′(a) = 0 we obtain

(−∆)s∂3au0 − ∂3au0 = 3λ′′(0)f ′(1) cos(x) + f ′′′(1)f ′(1)−1 cos3(x)

+ 3
f ′′(1)

f ′(1)
cos(x)

(
− f

′′(1)

2f ′(1)
+

f ′′(1)

2 (22s − 1) f ′(1)
cos(2x)

)
.
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Using that cos3(x) = 3
4 cos(x) + 1

4 cos(3x) and cos(x) cos(2x) = 1
2 cos(x) + 1

2 cos(3x) we get

(−∆)s∂3au0 − ∂3au0 = 3

(
λ′′(0)f ′(1) +

1

4

f ′′′(1)

f ′(1)
−
(
f ′′(1)

f ′(1)

)2(1

2
− 1

4

1

22s − 1

))
cos(x)

+

(
1

4

f ′′′(1)

f ′(1)
+

3

4

1

22s − 1

(
f ′′(1)

f ′(1)

)2
)

cos(3x).

Now, by the same reason as before, the right hand side has to be orthogonal to cos(x), the kernel
of the left hand side. Also, since cos(3x) is an eigenfunction to (−∆)s−Id with eigenvalue 32s−1,
we obtain

λ′′(0) =
1

f ′(1)

[
−1

4

f ′′′(1)

f ′(1)
+

(
1

2
− 1

4

1

22s − 1

)(
f ′′(1)

f ′(1)

)2
]

(54)

and

∂3au0 =
1

32s − 1

(
1

4

f ′′′(1)

f ′(1)
+

3

4

1

22s − 1

(
f ′′(1)

f ′(1)

)2
)

cos(3x),

from which we deduce that

c33 :=
1

32s − 1

(
1

4

f ′′′(1)

f ′(1)
+

3

4

1

22s − 1

(
f ′′(1)

f ′(1)

)2
)
.

Differentiating (53) with respect to a, we find

(−∆)s∂4aua = λ(4)(a)f(ua) + 4λ′′′(a)f ′(ua)∂aua + 6λ′′(a)f ′′(ua) (∂aua)
2

+ 6λ′′(a)f ′(ua)∂
2
aua + 4λ′(a)f ′′′(ua) (∂aua)

3

+ 12λ′(a)f ′′(ua)∂aua∂
2
aua + 4λ′(a)f ′(ua)∂

3
aua

+ λ(a)f (4)(ua) (∂aua)
4 + 6λ(a)f ′′′(ua) (∂aua)

2 ∂2aua

+ 3λ(a)f ′′(ua)
(
∂2aua

)2
+ 4λ(a)f ′′(ua)∂aua∂

3
aua + λ(a)f ′(ua)∂

4
aua.

Writing it for a = 0, since λ′′′(0) = 0 because λ(a) is even, we obtain

(−∆)s∂4au0 − ∂4au0 = 6λ′′(0)f ′′(1) cos2(x) + 6λ′′(0)f ′(1)∂2au0

+
f (4)(1)

f ′(1)
cos4(x) + 6

f ′′′(1)

f ′(1)
cos2(x)∂2au0

+ 3
f ′′(1)

f ′(1)

(
∂2au0

)2
+ 4

f ′′(1)

f ′(1)
cos(x)∂3au0.

Using the expressions we have for ∂2au0 and ∂3au0, and that

cos2(2x) =
1

2
+

1

2
cos(4x)

cos(x) cos(3x) =
1

2
cos(2x) +

1

2
cos(4x)

cos4(x) =
3

8
+

1

2
cos(2x) +

1

8
cos(4x)

we end up having

(−∆)s∂4au0 − ∂4au0 = C0 + C2 cos(2x) + C4 cos(4x)
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for some constants C0, C2 and C4. Since 1, cos(2x) and cos(4x) are eigenfunctions to (−∆)s−Id,
whose kernel cos(x) is orthogonal to ∂4au0, we finally obtain

∂4au0 = c40 + c42 cos(2x) + c44 cos(4x).

which concludes the proof.

In the sequel there will appear expressions like ga :=
∫ π
−π va(x)dx, where va ∈ Cβ(R),

for some β > 0 and ‖va‖Cβ = o(a4). Then, one has ga = o(a4). Indeed, we can bound
|ga| ≤ 2π‖va‖L∞(−π,π) ≤ 2π‖va‖Cβ and the property follows.

Lemma 5.2. Under the setting of Theorem 1.2, let ua be as in (49). Then,∫ π

−π
ua(−∆)sua = π

(
a2 + 22s

(
1

2
c22

)2

a4 + o(a4)

)
.

Proof. Let us write ua in terms of cos(x), cos(2x), ... . We have

ua = 1 +
1

2
c20a

2 +
1

4!
c40a

4 + a cos(x) +

(
1

2
c22a

2 +
1

4!
c42a

4

)
cos(2x)

+
1

3!
c33a

3 cos(3x) +
1

4!
c44a

4 cos(4x) + va(x),

with va = o(a4). Applying (−∆)s, one gets

(−∆)sua = a cos(x) + 22s
(

1

2
c22a

2 +
1

4!
c42a

4

)
cos(2x)

+ 32s
1

3!
c33a

3 cos(3x) + 42s
1

4!
c44a

4 cos(4x) + wa(x),

where wa(x) = (−∆)sva(x) ∈ Cα(R) and is such that ‖wa‖Cα = o(a4). This is so thanks to
‖va‖C2s+α = o(a4) and ‖wa‖Cα = ‖(−∆)sva‖Cα ≤ C‖va‖C2s+α (see [13, Chapter 2]).

Now we multiply it by ua and we integrate it. Using the orthogonality of the terms we get∫ π

−π
ua(−∆)sua = π

{
a2 + 22s

(
1

2
c22a

2 +
1

4!
c42a

4

)2

+32s
(

1

3!
c33a

3

)2

+ 42s
(

1

4!
c44a

4

)2

+ o(a4)

}

= π

(
a2 + 22s

(
1

2
c22

)2

a4 + o(a4)

)
,

.

which conclude the proof.

Lemma 5.3. Under the setting of Theorem 1.2, let ua be as in (49). Then,

λ(a)

∫ π

−π
u2a = 2πλ(0) + π

( (
1 + 2c20

)
λ(0) + λ′′(0)

)
a2

+ π

(
λ(0)

(
1

3!
c40 +

1

2

(
c20
)2

+

(
1

2
c22

)2
)

+
1

2
λ′′(0)

(
1 + 2c20

)
+

2

4!
λ(4)(0)

)
a4 + o(a4).
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Proof. If we square ua and then integrate it in (−π, π), using again the orthogonality properties
of {cos(kx)}k≥0 and their L2-norms we find that∫ π

−π
u2a = π

{
2

(
1 +

1

2
c20a

2 +
1

4!
c40a

4

)2

+ a2 +

(
1

2
c22a

2 +
1

4!
c42a

4

)2

+ o(a4)

}

= π

{
2

(
1 + c20a

2 +

(
2

4!
c40 +

(
1

2
c20

)2
)
a4

)
+ a2 +

(
1

2
c22

)2

a4 + o(a4)

}

= π

{
2 +

(
1 + 2c20

)
a2 +

(
1

3!
c40 +

1

2

(
c20
)2

+

(
1

2
c22

)2
)
a4 + o(a4)

}
.

Moreover, thanks to Theorem 1.2 we have a 7→ λ(a) is an even function of class C4 and thus
Taylor’s theorem yields

λ(a) = λ(0) +
1

2
λ′′(0)a2 +

1

4!
λ(4)(0)a4 + o(a4).

Finally we multiply both terms. Arranging them in powers of a we obtain the result.

Lemma 5.4. Under the setting of Theorem 1.2, let ua be as in (49). Then(∫ π

−π
ua(−∆)sua + λ(a)

∫ π

−π
u2a

)p+1

= O0
e +O2

ea
2 +O4

ea
4 + o(a4),

with the coefficients

O0
e = [2πλ(0)]p+1 ,

O2
e = [2πλ(0)]p+1 p+ 1

2λ(0)

[
1 +

(
1 + 2c20

)
λ(0) + λ′′(0)

]
,

O4
e = [2πλ(0)]p+1

{
p+ 1

2λ(0)

[
2

4!
λ(4)(0) +

1

2

(
1 + 2c20

)
λ′′(0)

+λ(0)

(
1

3!
c40 +

1

2

(
c20
)2

+

(
1

2
c22

)2
)

+ 22s
(

1

2
c22

)2
]

+
1

[2λ(0)]2

(
p+ 1

2

)[
1 +

(
1 + 2c20

)
λ(0) + λ′′(0)

]2}
.

Proof. Firstly, we use Lemma 5.2 and Lemma 5.3 to obtain∫ π

−π
ua(−∆)sua + λ(a)

∫ π

−π
u2a = f0 + f2a

2 + f4a
4 + o

(
a4
)
,

with the coefficients

f0 = 2πλ(0),

f2 = π
[
1 +

(
1 + 2c20

)
λ(0) + λ′′(0)

]
,

f4 = π

[
2

4!
λ(4)(0) +

1

2

(
1 + 2c20

)
λ′′(0) + λ(0)

(
1

3!
c40 +

1

2

(
c20
)2

+

(
1

2
c22

)2
)

+ 22s
(

1

2
c22

)2
]
.

Now, if we define

F (a) :=

∫ π

−π
ua(−∆)sua + λ(a)

∫ π

−π
u2a

= f0 + f2a
2 + f4a

4 + o
(
a4
)
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then, using the binomial theorem for the real exponent p+ 1 (see [1]) and considering
(
p+1
2

)
:=

p(p+1)
2 , we have that

F (a)p+1 = fp+1
0 + (p+ 1)fp0 f2a

2 +

(
(p+ 1)fp0 f4 +

(
p+ 1

2

)
fp−10 f22

)
a4 + o

(
a4
)

= [2πλ(0)]p+1 + πp+1(p+ 1) [2λ(0)]p
[
1 +

(
1 + 2c20

)
λ(0) + λ′′(0)

]
a2

+ πp+1

{
(p+ 1) [2λ(0)]p

[
2

4!
λ(4)(0) +

1

2

(
1 + 2c20

)
λ′′(0)

+λ(0)

(
1

3!
c40 +

1

2

(
c20
)2

+

(
1

2
c22

)2
)

+ 22s
(

1

2
c22

)2
]

(
p+ 1

2

)
[2λ(0)]p−1

[
1 +

(
1 + 2c20

)
λ(0) + λ′′(0)

]2}
a4 + o

(
a4
)

= O0
e +O2

ea
2 +O4

ea
4 + o

(
a4
)
,

which concludes the proof.

Lemma 5.5. Under the setting of Theorem 1.2, let ua be as in (49). Then,(
‖ua‖p+1

Lp+1

)2
= 4π2 + 4π2

[(
p+ 1

2

)
+ (p+ 1)c20

]
a2

+ π2
[
4

(
(p+ 1)

2

4!
c40 +

1

4

(
p+ 1

2

)(
2
(
c20
)2

+
(
c22
)2))

+

((
p+ 1

2

)
+ (p+ 1)c20

)2
]
a4 + o

(
a4
)
.

Proof. Let us remember that ua is of the form

ua(x) = 1 + a cos(x) +
1

2!

(
c20 + c22 cos(2x)

)
a2

+
1

3!
c33 cos(3x)a3 +

1

4!

(
c40 + c42 cos(2x) + c44 cos(4x)

)
a4 + va(x),

with va ∈ C2s+α(R) and ‖va‖C2s+α = o(a4). Using the binomial theorem, we have that

(ua(x))p+1 = 1 + (p+ 1)a cos(x) +

[(
p+ 1

2

)
cos2(x) + (p+ 1)

1

2!

(
c20 + c22 cos(2x)

)]
a2

+

[
(p+ 1)

1

3!
c33 cos(3x) +

(
p+ 1

2

)
cos(x)

1

2!

(
c20 + c22 cos(2x)

)]
a3

+

[
(p+ 1)

1

4!

(
c40 + c42 cos(2x) + c44 cos(4x)

)
+

(
p+ 1

2

)(
1

2!

(
c20 + c22 cos(2x)

))2

+

(
p+ 1

2

)
1

3!
c33 cos(x) cos(3x)

]
a4 + ṽa,

with ṽa ∈ C2s+α(R) and ‖ṽa‖C2s+α = o(a4). Now we integrate it using the orthogonal properties
of {cos(kx)}k≥0 in order to obtain∫ π

−π
up+1
a = 2π + π

[(
p+ 1

2

)
+ (p+ 1)c20

]
a2

+ π

[
(p+ 1)

2

4!
c40 +

1

4

(
p+ 1

2

)(
2
(
c20
)2

+
(
c22
)2)]

a4 + o
(
a4
)
.
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Finally, we square it and we arrange the terms in orders of a to obtain the result.

Lemma 5.6. Under the setting of Theorem 1.2, let u0 ≡ 1. Then,(
EL(a)(u0)

)p+1
= (2π)p−1 λ(0)p+1 + (2π)p−1

p+ 1

2
λ(0)pλ′′(0)a2

+ (2π)p−1
[
p+ 1

4!
λ(0)pλ(4)(0) +

(
p+ 1

2

)
λ(0)p−1

(
1

2
λ′′(0)

)2
]
a4 + o

(
a4
)
.

Proof. We know that EL(a)(u0) = λ(a) (2π)
p−1
p+1 and we recall the Taylor expansion for λ(a),

namely

λ(a) = λ(0) +
1

2
λ′′(0)a2 +

1

4!
λ(4)(0)a4 + o(a4).

Then, we just raise λ(a) (2π)
p−1
p+1 to the power p+ 1 using the binomial theorem and we arrange

the terms in orders of a as we have done in the proof of Lemma 5.4.

Lemma 5.7. Under the setting of Theorem 1.2, let ua be as in (49). Then,(
EL(a)(u0)

)p+1
(
‖ua‖p+1

Lp+1

)2
= O0

d +O2
da

2 +O4
da

4 + o
(
a4
)

with the coefficients

O0
d = [2πλ(0)]p+1 ,

O2
d = [2πλ(0)]p+1

{
(p+ 1)

λ′′(0)

2λ(0)
+

(
p+ 1

2

)
+ (p+ 1)c20

}
,

O4
d = [2πλ(0)]p+1

{
(p+ 1)

λ′′(0)

2λ(0)

[(
p+ 1

2

)
+ (p+ 1)c20

]
+ (p+ 1)

2

4!
c40

+
1

4

(
p+ 1

2

)[
2
(
c20
)2

+
(
c22
)2]

+
1

4

[(
p+ 1

2

)
+ (p+ 1)c20

]2
+(p+ 1)

λ(4)(0)

4!λ(0)
+

(
p+ 1

2

)(
λ′′(0)

2λ(0)

)2
}
.

Proof. Notice that
(
‖ua‖p+1

Lp+1

)2
and

(
EL(a)(u0)

)p+1
are given by Lemma 5.5 and Lemma 5.6

respectively, we multiply them and we arrange the terms in orders of a.

Now, let us define the quantities

Da =
(
EL(a)(u0)

)p+1
(
‖ua‖p+1

Lp+1

)2
,

Ea =

(∫ π

−π
ua(−∆)sua + λ(a)

∫ π

−π
u2a

)p+1

.

In order to see if (48) holds, we shall see 0 < Da − Ea. The following lemma gives us an
expression for this difference.

Lemma 5.8. Let Cp := [2πλ(0)]p+1 > 0 and f(u) = −u + up, for some p > 1 such that
f ∈ C6(R). Then,

Da −Ea =
Cp
8
p(p+ 1)(p− 1)

{
1 +

(
1− 3

4(22s − 1)

)
p

}
a4 + o

(
a4
)
.
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Proof. Note that we can use Theorem 1.2 and all the previous Lemmas for f(u) = −u+up with
p > 1 such that f ∈ C6(R). We will study the difference Da−Ea using the expressions we have
thanks to Lemma 5.4 and Lemma 5.7. Moreover, for f(u) = −u + up and the expressions for
λ′′(0) in (54) and c20, c

2
2 in (52) we now have

λ(0) =
1

p− 1
,

λ′′(0) =
1

p− 1

[
−p(p− 2)

4
+

(
1

2
− 1

4

1

22s − 1

)
p2
]
,

c20 = −p
2

=⇒
(
p+ 1

2

)
+ (p+ 1)c20 = 0 and 1 +

(
1 + 2c20

)
λ(0) = 0,

c22 =
p

2

1

22s − 1
=⇒

(
c22
)2

=
p2

4

1

(22s − 1)2
.

(55)

Let us begin by writing

Da −Ea =
(
O0
d −O0

e

)
+
(
O2
d −O2

e

)
a2 +

(
O4
d −O4

e

)
a4 + o

(
a4
)
,

we easily see that the zero order term vanishes, so let us now study the second order term. We
have

O2
d −O2

e = Cp

(
(p+ 1)

λ′′(0)

2λ(0)
+

(
p+ 1

2

)
+ (p+ 1)c20 −

p+ 1

2λ(0)

[
1 +

(
1 + 2c20

)
λ(0) + λ′′(0)

])
= 0,

and so the second order term also vanishes. Hence, we investigate the fourth order term.

O4
d −O4

e = Cp

{
(p+ 1)

λ′′(0)

2λ(0)

[(
p+ 1

2

)
+ (p+ 1)c20

]
+ (p+ 1)

2

4!
c40 +

1

4

(
p+ 1

2

)[
2
(
c20
)2

+
(
c22
)2]

+
1

4

[(
p+ 1

2

)
+ (p+ 1)c20

]2
+

p+ 1

4!λ(0)
λ(4)(0) +

(
p+ 1

2

)(
λ′′(0)

2λ(0)

)2

− 1

[2λ(0)]2

(
p+ 1

2

)[
1 +

(
1 + 2c20

)
λ(0) + λ′′(0)

]2 − p+ 1

2λ(0)

[
2

4!
λ(4)(0)

+
1

2

(
1 + 2c20

)
λ′′(0) + λ(0)

(
1

3!
c40 +

1

2

(
c20
)2

+

(
1

2
c22

)2
)

+ 22s
(

1

2
c22

)2
]}

.
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Note that we are able to cancel out both λ(4)(0) and c40. Grouping the other terms,

O4
d −O4

e = Cp

{
p

4
(p+ 1)

(
c20
)2

+
p

8
(p+ 1)

(
c22
)2

+ p
p+ 1

2

(
λ′′(0)

2λ(0)

)2

− p+ 1

2

(
1 + 2c20

) λ′′(0)

2λ(0)

−p+ 1

4

(
c20
)2 − p+ 1

2

(
1

2
c22

)2

− p+ 1

2λ(0)
22s
(

1

2
c22

)2

− pp+ 1

2

(
λ′′(0)

2λ(0)

)2
}

= Cp

{
1

4
(p+ 1)(p− 1)

(
c20
)2

+
1

8
(p+ 1)(p− 1)

(
c22
)2

−p+ 1

4

(
1 + 2c20

) λ′′(0)

λ(0)
− p+ 1

2λ(0)
22s
(

1

2
c22

)2
}

= Cp

{
1

16
p2(p+ 1)(p− 1) +

1

8
(p+ 1)(p− 1)

(
c22
)2

+
1

4
(p+ 1)(p− 1)

λ′′(0)

λ(0)
− 1

8
(p+ 1)(p− 1)22s

(
c22
)2}

=
Cp
4

(p+ 1)(p− 1)

{
p2

4
− 1

2
(22s − 1)

(
c22
)2

+
λ′′(0)

λ(0)

}
.

Finally we write the values for c22 and λ′′(0) given in (52) and (54) respectively, to get

O4
d −O4

e =
Cp
4

(p+ 1)(p− 1)

{
p2

4
− p2

8

1

22s − 1
− p(p− 2)

4
+

(
1

2
− 1

4 (22s − 1)

)
p2
}

=
Cp
4

(p+ 1)(p− 1)

{
p2

4
− p2

8

1

22s − 1
− p2

4
+
p

2
+
p2

2
− p2

4

1

22s − 1

}
=
Cp
4

(p+ 1)(p− 1)

{
p2

2
− 3

8

p2

22s − 1
+
p

2

}
=
Cp
8
p(p+ 1)(p− 1)

{
1 +

(
1− 3

4(22s − 1)

)
p

}
,

and thus we conclude the proof.

We have just seen that

Da −Ea =
Cp
8
p(p+ 1)(p− 1)

{
1 +

(
1− 3

4(22s − 1)

)
p

}
a4 + o(a4)

=
Cp
8
p(p+ 1)(p− 1)Q(p)a4 + o(a4),

for Q(p) := 1 +
(
1− 3

4(22s−1)
)
p. Since

Cp
8 p(p+ 1)(p− 1) > 0 for p > 1, the sign of Da −Ea will

be that of Q(p), for a small enough. With this we are finally able to give the proof of Theorem
1.3.

Proof of Theorem 1.3. As we have previously said, if (48) holds for some u ∈ Hs
ep and some

L < L0 then we will have that L∗ < L0. Using the bifurcated solution (λ(a), ua), we have seen
that, for u = ua and L = L(a), (48) holds whenever Da − Ea > 0. Using Lemma 5.8, this will
be the case whenever Q(p) > 0, for a small enough (and f(u) = −u+ up is of class C6(R)).

Note that Q(p) = 1 +
(
1 − 3

4(22s−1)
)
p is a polynomial of degree one. Now, it can easily be

seen that for 0 < s < 1
2
ln(7/4)
ln 2 and 1 < p < 4(22s−1)

3−4(22s−1) we have Q(p) > 0. Similarly, we also have

Q(p) > 0 for s ≥ 1
2
ln(7/4)
ln 2 and 1 < p < +∞. This shows (i).
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Moreover, for 0 < s < 1/2 we have that λ′′(0) given by (55) is such that λ′′(0) < 0,

whenever 2(22s−1)
2−22s < p. This means that the period decreases initially with the amplitude, that

is, L(a) < L(0) = L0 for a small enough.

Then, we have L∗ < L0 if p < 1+2s
1−2s (to ensure L∗ is well defined) and both Da−Ea > 0 and

λ′′(0) < 0 hold, which take place exactly for the regions that are precisely described in (ii).
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