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Abstract

C. Elegans is a nematode worm which is a very popular organism used in all kinds of research in biology.
It is widely used because its complete genome has been completely determined, as well as each of the cells
of its body and the worms are transparent, permitting a variety of structural investigations.

In this project we will focus in the mechanics of the organisms that have a similar shape in their
bodies, which are called worm-like organisms. This organisms are characterized by its sinusoidal shape and
movement, and they can be analyzed in a simple one-dimensional model.

We will study with more detail from a theoretical and a practical point of view the different forces that
act in the system and which characteristics allows the movement of the organism. We will develop a code
in Matlab to have a better understanding of the forces and check our theoretical analysis.
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1. Introduction

Motion is a short but powerful word in this world we live in. We can find motion from big objects like
planets and galaxies to small ones like atoms. We even can find them in the amazing life around us, like
birds flying in the sky, cats walking in a street or fish swimming in the sea. We also can find it in a
microscopic level, like protozoos or bacteria trying to find new nutrients exploring the environment.

It is in this microorganism world where we will focus this study. In this microscopic level, the bacteria
and rest of living creatures swim in a very low Reynolds number, which produces some interesting facts
such as if we have a reciprocal motion, the organism stays in the same place, due to the negligible inertia as
it can be read in more detail in [1]. Hence, this microorganism have adopted different types of locomotion
that allow them to swim. In [2] we can see some different types of locomotion, but with these we can see
that it is not trivial to study the motion of all organisms, because each species have developed different
strategies to move.

Because of the complexity of each of this motions, we have to study each case thoughtfully using the
model which is more accurate in each case. We have to choose carefully which aspects of the motion
are more important to model in a simpler manner without forgetting important aspects. In [3] we can
see different models of important aspects of the biology and the importance of choosing one model over
another one when we are studying the same object.

In this thesis, we will study the movement of a certain case of organisms: the worm like organisms. For
that we will assume that we have a one-dimensional rod representing the organism discretized in nodes in
a two-dimensional environment (we will not allow deformations in the third dimension), so the motion will
be restricted to a plane.

Figure 1: Two deformed Caenorhabditis elegans (C. elegans) worm stained and under different mutations.
Courtesy of Michael Krieg’s laboratory at Institut fo Fotonic Sciences (ICFO) [6]
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Numerical simulation of worm-like motion

1.1 Goal of the thesis

The main purpose of this thesis is to study the different forces that have an important outcome in the
shape and deformation of the rod and to study the properties of the rod and the environment that allow
the motion of its center of mass.

Figure 2: Rod discretized with all the forces we will take into account

In Figure 2 we show a representation of all the forces that we will study in this thesis. The forces gb are
the bending forces, the forces gs are the stretching forces, the blue F is the external force of the system,
the gη are the viscous forces and the red fi−1, fi and fi+1 are the forces in which each active moment Mi

of a node xi is decomposed. We also show in Figure 2 the velocity vi of a node and the angle θi that forms
a segment with the adjacent one (which we will use for the bending forces).

1.2 Outline of the thesis

At the beginning we will study the elastic forces, which will be the bending and stretching of the segments
in which we will divide the rod. We will apply external forces and we will put some boundary conditions to
see different deformations.

Later, we will assume that the organism is in a viscous environment, so we will have to add to the
rest of forces a viscous force, which will be proportional to the velocity in which the rod is deforming and
against it. In this case we will see that we would be able to erase the boundary conditions and the rod will
be more free to move.

Finally, we will also apply some internal moments which represent the movement that the organism
produce to move. We will study its deformations and shape and we will use different types of moment
distribution along the nodes of the rod to see in which conditions the rod changes its center of mass and
in which conditions it does not.
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2. Methodology

We will divide the rod into n segments (hence we will have n + 1 nodes). We will also assume that the
discretized rod has initial total length L = 1.

First we will study the bending and the stretching forces. Both are elastic forces which come from
elastic potentials energies which we will have to minimize to find the equilibrium of forces. The total
elastic energy is:

W el = W b + W s (1)

and the balance equations that we are going to solve are:

dW el

dxi
= gη

i + gm
i + fexti , for i = 1, ..., n + 1 (2)

where gη
i is the viscous force, gm

i is the force produced at node i by active moments and fexti is the
external force, all of them applied at node xi . In figure 3 we represented the elastic forces.

Figure 3: Elastic forces in the rod

Later, we will also take into account viscous forces, which are proportional to the velocity in which the
rod is deforming and against it. In that section we will separate the forces in the case that we have an
isotropic friction environment or the rod have different frictions with the environment.

Finally we will study the internal moments that the rod produce to change its shape. We will find the
explicit equations and we will study the conditions under which the rod changes its center of mass or not.
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Numerical simulation of worm-like motion

2.1 Bending Forces

In this subsection we will assume the simplest case that we can have: we subject the rod to an external con-
stant force F and we only take into account as interior forces the elastic force due to the bending of the row.

We will assume that the elastic bending force comes from the following potential:

W b =
1

2
kb

n∑
i=2

θ2
i (3)

where kb is the elastic bending constant and θi is the angle that form the line that goes through xi−1

and xi with the line that goes through xi and xi+1.

We have chosen this potential because if the three nodes are aligned we have that the angle is 0 and
therefore the elastic energy is also 0, while if we increase the bending of the system, the angle increases
and with it the elastic potential. However, we could have chosen a different elastic bending potential and
have a different bending force.

As an additional note, it is important to notice that we exclude the segments of the rod (i = 1 and
i = n + 1) because the end nodes cannot form a segment with an adjacent segment.

Figure 4: System of three nodes with the angle θi
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Returning to the elastic potential, we will use an approximation of θi to have easier calculations, which
is the following one:

θi ≈ sin(θi ) =
(xi+1 − xi) ∧ (xi − xi−1)

‖xi+1 − xi‖ ‖xi − xi−1‖
(4)

This approximation is good enough because if we do not have small angles, we can use a larger number
of nodes in the discretization to obtain it.

We even can go further and consider another approximation, that is that the nodes are equidistant and
that the segments have norm:

‖xi − xi−1‖ ≈
L

n
(5)

Therefore, we obtain the approximation:

θi ≈
n2

L2
(xi+1 − xi) ∧ (xi − xi−1) =

n2

L2
(xi+1 − xi)

t J2 (xi − xi−1) (6)

where J2 is the matrix:

J2 =

[
0 1
−1 0

]
Furthermore, we can rewrite it as:

θi ≈
1

2

n2

L2
(Xi )t J6 Xi (7)

where J6 is the matrix:

J6 =

 0 −J2 J2

J2 0 −J2

−J2 J2 0


and Xi is the vector:

Xi =


xi−1

xi

xi+1


Therefore, we have an expression of the elastic potential that we will use:

W b =
1

2
kb

n∑
i=2

(
1

2

n2

L2
(Xi )t J6 Xi

)2

(8)

7



Numerical simulation of worm-like motion

Now that we have the potential, we will compute the total elastic force gb, which is the assembly of
the joint contribution:

gb
i = kb θi

∂θi
∂Xi

(9)

where

∂θi
∂Xi

=



∂θi
∂xi−1

∂θi
∂xi

∂θi
∂xi+1


=

n2

L2
J6Xi (10)

Therefore, with the assembly of the values of gi for all the interior nodes, we arrive to the total elastic
force gb. The linearization of this force necessary to solve the non-linear system in (2) can be found in
Appendix A.1.

2.2 Stretching Forces

In this subsection we describe the forces of stretching that come from a potential:

W s =
1

2
ks

n∑
e=1

(le − l0)2

l20
=

1

2
ks

n∑
i=1

(‖xi+1 − xi‖ − l0)2

l20
(11)

with l0 being the original size of the segment (we assume initial equidistant nodes, so it will be the
same value for all the nodes) and ks being a elastic constant due to stretching.

Hence, the forces are:

gs
i =

∂W s

∂Xi
= ks

‖xi+1 − xi‖ − l0
l20

{
−ei

ei

}
(12)

with Xi being

Xi =

{
xi

xi+1

}

and ei =
xi+1 − xi

‖xi+1 − xi‖
.

The linearization of this force contribution, necessary for the numerical solution of the non-linear
equations in (2) is given in Appendix A.2.

8



2.3 Viscous forces

We will now assume that the rod is placed in a viscous environment. Therefore, we also have to take into
account forces due to the interaction of the rod with the fluid around it or the substrate below it. It is
important to remark that when using viscous forces, the problem becomes well-posed even if no Dirichlet
conditions are employed. Mathematically, the viscous terms can be considered as a regularization term in
the resulting Jacobian matrix.

We will divide this subsection in two cases: i) The interaction with the environment has an isotropic
viscosity, and ii) The rod have a different viscosity depending on the tangential and normal movement of
the rod.

2.3.1. Isotropic viscosity

This force will be in each node of the form:

gη
i = −η vi (13)

with η being the viscosity parameter and vi being the velocity of the node xi.

Hence, with the rest of forces, the balance equation in (2) becomes:

gb + gs = f + gη (14)

Replacing the expression of gi
η from (13), we obtain:

−η dx

dt
= gb + gs − f (15)

which is an ODE of 1st order. To solve it, we will use Backward Euler (to avoid problems of stability):

xk+1 = xk − h

η

(
gb(xk+1) + gs(xk+1)− f

)
(16)

with x0 = X(0), the initial position of the nodes and h is the time-step.

We can also rewrite it as:

gb + gs − gη = f (17)

with gη =
n∑

i=1

−η
xk+1

i − xk
i

h
.

Now, for computing Newton-Raphson as before, we have to compute the Jacobian of the viscous force,
which is:

Kη = −η
h

Id (18)
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Numerical simulation of worm-like motion

Hence, the Jacobian matrix of g(xk) = gb + gs − gη − f is:

K = Kb + Ks −Kη (19)

2.3.2. Non-Isotropic viscosity

Similar as before, because we have a different force in each node which is proportional to the velocity,
but in this case we separate the velocity of the node in a tangential and a normal part:

gη
i = −(ηt vt + ηn vn) (20)

with vt and vn being the tangential and normal velocity of the node, each one multiplied by a different
viscosity constant.

In this case, however, we do not have such a simple expression of the Kη as before. To compute it,
we have to study separately the tangential and normal velocity of the nodes according if they are interior
nodes or external nodes:

1. Interior Nodes

For interior nodes, we divide the node velocity vi into a tangential part and a normal part projecting
the velocity into a normal vector n:

vn = (vi · n) n

vt = vi − vn
(21)

where n = J e3 with e3 =
xi+1 − xi−1

‖xi+1 − xi−1‖
.

Figure 5: System of three nodes with the normal vector defined
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2. Exterior Nodes

For the first and last node, we will project the velocity in the tangential part defined by the segment
of the adjacent node and define the normal part as the substraction of that from the velocity:

vt = (vi · t) t

vn = vi − vn
(22)

where t =
xi+1 − xi

‖xi+1 − xi‖

Figure 6: First node with tangential vector t

With this tangential and normal forces, we would be able to find the Kη assembling in each of the
nodes. And with that, we would use Newton-Raphson to solve the non-linear system. The expression of
the Jacobian is explicitely given in Appendix A.3.

2.4 Active moment forces

Now we will also impose active moments in the nodes of the rod. These represent the muscle activity that
the worm-like organism exerts.

Given a scalar measure of the moment Mi at a node i , here we are going to derive the explicit equations
of the three equivalent forces that we will apply in 3 consecutively nodes. We can see this forces in figure
7.

In each configuration of 3 nodes, xi−1, xi and xi+1, we will apply forces, denoted respectively fi−1, fi

and fi+1, due to the active moment Mi . The sum of the three forces has to be equal to zero, so that no
net force is actually applied. Therefore in each system of 3 consecutively nodes, we have that:

fi+1 + fi + fi−1 = 0 (23)
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Numerical simulation of worm-like motion

Figure 7: Active forces applied on 3 consecutive nodes, xi−1, xi and xi+1, and equivalent to the active
moment Mi at node xi.

We also impose that the sum of all the static moments at node i in the system of 3 consecutively nodes
have to be 0 (otherwise we would induce an external net rotation). Therefore:

(xi−1 − xi)× fi−1 + (xi+1 − xi)× fi+1 = 0 (24)

Hence:

(xi−1 − xi)× fi−1 = (xi − xi+1)× fi+1 (25)

We can rewrite (xi−1 − xi)× fi−1 as:

||fi−1|| · ||xi−1 − xi|| · sin(αi ) = fi−1 li (26)

where fi is the modulus of fi and li is:

li = ||(xi−1 − xi)− (xi−1 − xi) n nt || = |e3
t (xi − xi−1)| (27)

li+1 = |et
3 (xi − xi+1)| (28)

where e3 =
xi+1 − xi−1

‖xi+1 − xi−1‖
.

Hence, we have that the static moments satisfy the equation: fi−1 li = fi+1 li+1.

Finally, we have that in each system there is an input of moments, hence, that resultant moment is
equal to the difference between the two moments involved in the system (which have different orientation
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of rotation). Therefore, we have:
fi−1 li + fi+1 li+1 = Mi (29)

In conclusion, for the active moments, we have to solve the system:

fi+1 + fi + fi−1 = 0

fi−1 li = fi+1 li+1

fi−1 li + fi+1 li+1 = Mi

(30)

where Mi is the moment applied onto node xi.

If we add the second and third formula, we get:

fi−1 li =
Mi

2
⇒ fi−1 =

Mi

2

1

li
n (31)

with n being a vector, that we will define later, that points into the direction of the force.

Now, if we substitute it in the second formula we have:

fi+1 =
li
li+1

fi−1 =
Mi

2

1

li+1
⇒ fi+1 =

Mi

2

1

li+1
n (32)

Finally, if we plug-in both explicit formulas of the forces in the first one, we obtain:

fi = −Mi

2

(
1

li
+

1

li+1

)
n (33)

We decide that the forces will be in the direction perpendicular to the vector from xi−1 to xi+1, so we
would have that n will be:

n = J
xi+1 − xi−1

‖xi+1 − xi−1‖
(34)

As before, we compute the Newton-Raphson method to solve the non-linear system of equations. The
explicit expression of the Jacobian Km can be found in Appendix A.4.

2.5 Center of Mass of the system

In this subsection we will show under which conditions, with all the forces that we have explain before, the
center of mass of the system does not change.

We remember that the center of mass of a body is defined as:

xCM =

n+1∑
i=1

mi xi

n+1∑
i=1

mi

(35)
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Numerical simulation of worm-like motion

We will also say that a system of forces is self-equilibrated if the sum of nodal contributions is equal to 0.

Before the proposition, we have to make the following remarks:

• Remark 1 : The elastic potentials are invariant by a rigid body motion.

Proof. Under rigid body motions, angles and lengths remain unchanged. Since our elastic potentials
depend solely on lengths and angles, the potential energy will be invariant if the body is subjected
to such rigid body motions. That is, for an arbitrary constant displacement ū, (not necessary equal
along x and y,), we have that

W b(x + ū) = W b(x) (36)

and

W s(x + ū) = W s(x) (37)

• Remark 2 : The active moments and the elastic forces are self-equilibrated.

Proof. By construction the active moments satisfy:

n+1∑
i=1

gm
i = 0 (38)

Therefore, they are self-equilibrated.

The elastic forces come from a potential which is invariant for a rigid motion (Remark 1), and thus
are not affected by an arbitrary constant displacement. Indeed, if we use a Taylor approximation for
the bending potential:

W b(x + u) = W b(x) + ut ∂W
b(x)

∂x
+ ut ∂

2W b(x)

∂x2
u + ... (39)

and we use that W b(x + u) = W b(x) (Remark 1), we have that all the terms except the first one
must be 0. Therefore, we have, for arbitrary constant translation

u = ux {1, 0, 1, 0, ..., 1, 0}t + uy {0, 1, 0, 1, ..., 0, 1}t (40)

we have:

ut ∂W
b(x)

∂x
= ut gb(x) = (ux)t

n+1∑
i=1

gb
i ,x + (uy )t

n+1∑
i+1

gb
i ,y = 0 (41)

We can do the same for the stretching forces to see that they are also self-equilibrated.
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Proposition The center of masses of an elastic body in an isotropic and homogeneous frictional or
viscous environment and contracting by a system of self-equilibrated active forces remains still, i.e. uCM = 0

Proof. For each instant of time t, we have the balance equation:

n+1∑
i=1

(
gb
i + gs

i − gη
i − gm

i

)
= 0 (42)

where gb
i is the bending force, gs

i is the stretching force, gη
i is the viscous force and gm

i is the moment
force at the node xi .

From Remark 2 we know that the elastic forces and the active moments are self-equilibrated. Therefore,
we can reduce equation (42) to:

−
n+1∑
i=1

gη
i = 0 (43)

As we recall from (13) we have that gη
i = −η vi with vi being the velocity of the node xi . Hence. we

have that:

0 = −
n+1∑
i=1

gη
i = η

n+1∑
i=1

vi = η (n + 1) vCM (44)

because all the masses of the nodes mi are constant. Therefore, we have vCM = 0, which implies
xCM = constant, so uCM = 0.

Finally, it is important to notice that in the case that viscosity or friction with the environment is not
isotropic or homogeneous (different values in different directions or positions), the proposition fails. In the
result section we will show that indeed the center of mass can move for non-isotropic viscosity depending
on the distribution of moments that we apply to the system.
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Numerical simulation of worm-like motion

3. Numerical Tests

In this section we will explain the results we have arrived using a code made in Matlab to compute the
deformation of the worm-like organism and its center of mass.

We will assume that the total initial length of the rod is L = 1, it is discretized in n + 1 nodes and
the initial position of the rod is horizontal (unless we say something else). We will also assume that the
deformations and displacements are only two-dimensional.

The method that we will use to solve the non-linear systems is the Newton-Raphson method (mentioned
before), and in the case of viscosity, we will use the Backward Euler method to solve the ODE that we obtain.

3.1 Bending Forces

In this subsection we will assume that we only have bending forces acting in the rod and that we have an
external vertical force F in the last node of the rod.

As the bending forces are translation and rotation-invariant, we have to impose some Dirichlet condi-
tions on the bar to have only one solution of the system. On the one hand, we will assume that the first
node and the vertical component of the second node are clamped (ux

1 = uy
1 = uy

2 = 0). On the other
hand, as we only have bending forces and a vertical external force, we have that the Jacobian matrix Kb

have zero values in the rows corresponding to the horizontal components, so we have to assume that the
horizontal components of the nodes are fixed, i.e. ux

i = 0, to have a unique solution.

In Figure 8 we can see different deformations according to different values of the parameter kb with
the same force value F = 0.1. We can see that if he have a larger value, the rod is more rigid and it bends
less, while if the value is smaller, the rod is easier to bend.

If we keep the same value of kb but change the number of nodes of the discretization, we see that the
number of nodes also affects the bending of the rod. In Figure 9 we see the if we increase the number of
nodes the rod bends more. That’s because when we add new nodes, we are adding more joints and thus
increasing the compliance of the rod.

16



Figure 8: Equilibrium of the rod discretized in 41 nodes and with an external force F = 0.1 changing the
parameter kb

Figure 9: Equilibrium of the rod with fixed kb = 1 and F = 0.1 changing the number of nodes.

3.2 Stretching Forces

In this subsection we will assume that we have all the elastic forces (bending and stretching) and we will
apply different external forces in the last node. In all the cases we have to impose some Dirichlet conditions
to have a unique solution, so we will assume (as before) that the first node is fixed.

17



Numerical simulation of worm-like motion

First, we will study the stretching forces under a horizontal external force in the last node. It will help
us to study the parameter ks , because we will have bending energy equals to zero, so it will not interfere
with the results. We will assume a bigger force, F = 10, to have a more visualized picture. We can see in
Figure 10 the rod at equilibrium when ks = 1 and the relation between the parameter ks , the force F and
how much the end node deforms.

We can see that the deformation is proportional to the force applied in subfigure 10b and that if we
decrease the parameter ks , the rod can deform more.

(a) Equilibrium when ks = 1
(b) Relation between the displacement of the horizontal
component of the end node and the force F .

Figure 10: At right: Equilibrium when F = 10 in the horizontal and diagonal stretching with n + 1 = 41
nodes, kb = 1. At left: Relation of F and uxn+1 for different values of ks .

Second, we will study the stretching forces when the force is diagonal, to check that the orientation of
the rod does not affect the equations, i.e. it can handle arbitrary rotations. In this case, we will start with
the rod diagonal as initial condition because it is a good initial condition for the Newton-Raphson method.
If we had the rod horizontal, for any force F (as small as we could) we would have a big displacement of
the nodes, so the method may fail its convergence.

In Figure 10a we can see that the the constant ks behaves as in the horizontal case (in terms of stretch-
ing) and the relation between force and deformation (subfigure 10b) is the same that in the horizontal
case, so it does not depend on the orientation of the rod.

18



3.3 Viscous forces

Now we will also assume that the rod is placed in a viscous environment. This produces viscous forces
that go against the displacement of the nodes. This forces depend on the velocity of the nodes, so we
will have to use a method to discretize the time and solve the ODE. We have decided to use Backward
Euler to avoid any problem of stability, but we could have used others as the mid-point rule or Forward Euler.

It is important to notice that the jacobian matrix of the viscous forces relaxes the matrix K of the
Newton-Raphson method. Therefore, the requirement of Dirichlet conditions becomes unnecessary in this
case.

We are going to consider a horizontal rod with a vertical external force F = 10 which will be applied
in nt = 16 steps. As in the previous subsections, we are going to show the role of η in the deformation of
the rod by looking a the different deformations that we obtain for different values of η.

In Figure 11 we see the variations of the parameter η. We can see that if we increase η the viscous
forces are stronger, so it allows less to the rod to deform (while if we decrease it, the nodes have more
freedom to move). Of course, if we had a very large F we would have that after some steps the rod would
only displace in the vertical direction (while the x-component would remain into the center of the rod).

Figure 11: Equilibrium with n + 1 = 41 nodes, kb = 1, ks = 1 and a vertical force F = 10
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3.4 Active Moments

In this subsection we will assume that we do not have the external force F , but the rod itself produces
active moments to change its form. From the Methodology section we know that the active moments are
self-equilibrated, so if we have an isotropic environment we are in the conditions of the proposition and
therefore the center of mass will remain fixed in all the examples.

3.4.1. Single Active Moment

(a) Distribution of Moments along the rod

(b) Equilibrium of the rod (c) Center of Mass of the system

Figure 12: Simulation of a single active moment with n + 1 = 41 nodes, kb = 1, ks = 1 and η = 0.5 and
constant active moment in the middle node M = 0.4, applied in 16 steps.

Here we will consider the case where we put only an active moment in the middle node (we can see it
in Figure 12a, where we have the distribution of moments along the nodes of the rod). We will continue
to assume that we have viscous forces and with the nodes free to move. Then, we can see that it makes
as spike, as we can see in Figure 12b.
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Notice that the spike is in the upward direction in 12a and in the down direction in 12b because we
impose the active moments in the down direction, as we can see in the Methodology section.

If we increase the moment applied M we would have a larger spike. We also can see numerically in 12c
that the center of mass remains fixed always, as we expected.

3.4.2. Constant Active Moment

Now we will consider the case where all the nodes (except the first and last node) have the same active
moment value (see subfigure 13a). We can see in subfigure 13b that the equilibrium is satisfied when we
have an elliptic arc. Finally, we can see in subfigure 13c that the center of mass remains fixed, as a numeric
check of the proposition before.

(a) Distribution of moments along the rod

(b) Equilibrium of the rod (c) Center of Mass of the system

Figure 13: Moment distribution, equilibrium and center of mass of the system with n + 1 = 41 nodes,
kb = 1, ks = 1 and η = 0.5 and constant active moment in all node M = 0.4, applied in 16 steps.
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From now on in this section we will study three different distributions of moments and we will study
the differences that they have in its center of mass according to if the organism have different viscosities
to move in the environment or not. In all the cases we will use n+1 = 41 nodes, kb = 1, ks = 1 and η = 0.5.

We will start with an isotropic viscosity environment. In this case, as the active moment forces are
self-equilibrated, we are in the conditions of the proposition before and therefore we must have that the
center of mass remains fixed in the three types of moment distribution.

3.4.3. Oscillatory Spatial Active Moment in Isotropic Environment

First we are going to consider that we have a spatial distribution of moments of the form:

Mi = A sin(kxi ) , with i = 2, ..., n (45)

where Mi is the active moment applied at node i , A is the amplitude of the active moment and k is
the wave number.

In Figure 14 we can see the moment distribution, deformation and the variation of the center of mass
when A = 0.4 and with 2 different values of k.

3.4.4. Oscillatory Temporal Active Moment in Isotropic Environment

Second, we will consider that we have that all the active moments in the nodes are the same constant
value, but this time we will change this constant value along the time. For example, we will consider a
sinusoidal function such as:

Mi = A sin(ωt) , for i = 2, ..., n and for t = 1, ..., nt (46)

with ω being the angular frequency. In Figure 15 we can see some plots (moment distribution, defor-
mation and center of mass) changing the parameter ω when A = 0.4.

3.4.5. Oscillatory Time-Space Active Moment (Wave) in Isotropic Environment

Finally, we are going to consider a wave across time and space of the form:

Mi = A sin(ωt − kxi) , for i = 2, ..., n and for t = 1, ..., nt (47)

with ω being the angular frequency and k the wave number.

In Figure 16 and 17 we see some plots with different values of k and ω. On the one hand the subfigures
16a and 17a we have represented the evolution of the moment at space (each color represents a fixed time
t). On the other hand, the subfigures 16b and 17b represents the evolution of the moments in each node
(at the left part we can see from which node position starts and how it evolves along time).
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(a) Distribution of moments along the rod (b) Distribution of moments along the rod

(c) Equilibrium of the rod (d) Equilibrium of the rod

(e) Center of Mass of the system (f) Center of Mass of the system

Figure 14: Simulations with an oscillatory spatial distribution of moments with isotropic and non-isotropic
viscosity. Left: k = 2π. Right: k = 6π.
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(a) Distribution of moments along time (b) Distribution of moments along time

(c) Equilibrium of the rod (d) Equilibrium of the rod

(e) Center of Mass of the system (f) Center of Mass of the system

Figure 15: Simulations with an oscillatory temporal distribution of moments with isotropic and non-isotropic
viscosity. Left: ω = 2π. Right: ω = 6π.
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(a) Distribution of moments along the rod (b) Distribution of moments along time

(c) Equilibrium of the system (d) Center of Mass of the system

Figure 16: Simulations of the wave with ω = 2π and k = 2π with isotropic and non-isotropic viscosity.

As we can see in 16d and 17d we can see that the center of mass remains fixed always (the red and
blue lines) because we are in an isotropic viscous environment (see Proposition of the Methodology Section).

3.4.6. Oscillatory Active Moments in Non-Isotropic Environment

Finally, we are going to see what happens in the case that we have different viscosity in the tangential
and normal direction. The fact that we do not have isotropic viscosity translates into the fact that we
cannot apply the proposition that we gave before, so we have to study each case in particular to see if the
center of mass changes or not. In all the simulations we will use ηt = 0.1 and ηn = 1.

We can check again Figures 14, 15 and 16 to see how the non-isotropic viscosity affects in an oscillatory
spatial distribution of moments, an oscillatory temporal and a wave-like distribution. We can see that the
difference of viscosities change the final deformation of the rod at the spatial and temporal oscillations (see
subfigures 14e, 14f , 15e and 15f ), but the center of mass remains fixed (we have that the yellow and purple
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(a) Distribution of moments along the rod (b) Distribution of moments along time

(c) Equilibrium of the system (d) Center of Mass of the system

Figure 17: Simulations of the wave with ω = 6π and k = 6π with isotropic and non-isotropic viscosity.

cercles that correspond to the non-isotropic environment overlap the blue and red ones corresponding to
the isotropic one).

However, the same does not happen in the wave-like case. There we can see in 16c and 17c that the
rod has moved to the left direction, hence the center of mass have changed in both cases. We can see
it more clearly in 16d and 17d , where we see that the lines do not overlap anymore and the horizontal
component have decreased in both.
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4. Conclusions and future work

In this thesis we have modelled the main forces that act in a worm-like organism and check from a com-
putational point of view the meaning of the parameters involved.

We have also shown analytically and numerically that the main difference between an organism that
can change its viscosity along the tangent direction and another one that cannot is that the first one is
able to swim through the viscous environment while the second one will always remain in the same place.
This is crucial for the survival of the organism, because if it cannot swim it will not be able to search and
find new nutrients to live.

In future analysis, we can study the affectation of the different parameters between them and study
which of them are better for the organism to be able to swim from one place to another one. In this
work we have not searched for optimal parameters for displacement, and considered strategies other than
sinusoidal or periodic active moments. The study of optimal strategies is relevant not only to understand
how worm-like organism move, but also for the design of similar artificial robots or snake-like shapes may
be able to crawl at a minimum energy cost in microscopic (drug delivery) or macroscopic systems (risk
emergencies or hazardous situations) systems. We could use Machine Learning techniques to find the
optimal parameters for the organism to move along the optimal path.

In this thesis we have considered the main forces that act in an organism when we have a small Reynolds
number, so we have neglected all the inertial forces. In a future work we could add this forces and study
how changing the inertia and the viscosity affect the deformation and the swimming of the organism.

Finally, can also try to find new ways to move along the viscous environment. We have only considered
when the deformations are all in a 2-dimensional plane, but it can also move in a third dimension. For
example, the worm-like organism could bend in a way that a part of its body is in the third dimension and
therefore that part is not affected by the viscosity of the environment, so it would be able to move its center
of mass. We could also improve the model considering instead of a 1-dimensional rod, a 3-dimensional
object that can rotate in the tangent direction, doing a movement similar to a screwdriver when we apply
it into a nail.
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A. Appendix

A.1 Bending Jacobian

In the bending section of the methodology of the thesis we have seen that the expression of the bending
force is:

gb
i = kb θi

∂θi
∂Xi

= kb

(
1

2

n2

L2

(
Xi
)t

J6 Xi

) (
n2

L2
J6Xi

)
where J6 is the matrix:

J6 =

 0 −J2 J2

J2 0 −J2

−J2 J2 0


and Xi is the vector:

Xi =


xi−1

xi

xi+1


Therefore, if we derivate this force, we will have the matrices Ki

b, and the total matrix Kb will be the
assembly of all this matrices:

Ki
b =

∂gi

∂Xi
=

n2

L2
kb

(
J6θi +

n2

L2
J6Xi

(
J6Xi

)t)

A.2 Stretching Jacobian

Here we will do the calculations of the Jacobian matrix that comes from the stretching forces (Ks). This
matrix will be the assembly of different matrices Ks

i :

Ks
i =

[
(1) (2)
(3) (4)

]
where:

(1) =
∂

∂xi

(
∂

∂xi
(Ws)

)
= ks

∂

∂xi

(
‖xi+1 − xi‖ − l0

(l0)2
(−ei)

)
= ks

∂

∂xi

(
‖xi+1 − xi‖ − l0

(l0)2

)
(−ei)

t + ks
‖xi+1 − xi‖ − l0

(l0)2

∂

∂xi
(−ei)

=
ks

(l0)2

(
ei ei

t +
(‖xi+1 − xi‖ − l0)(Id− ei ei

t)

‖xi+1 − xi‖

)
=

ks
(l0)2

(
(‖xi+1 − xi‖ − l0)Id + l0 ei ei

t

‖xi+1 − xi‖

)
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(2) =
∂

∂xi+1

(
∂

∂xi
(Ws)

)
= ks

∂

∂xi+1

(
‖xi+1 − xi‖ − l0

(l0)2
(−ei)

)
= ks

∂

∂xi+1

(
‖xi+1 − xi‖ − l0

(l0)2

)
(−ei)

t + ks
‖xi+1 − xi‖ − l0

(l0)2

∂

∂xi+1
(−ei)

= ks

(
ei

(l0)2
(−ei)

t +
‖xi+1 − xi‖ − l0

(l0)2

(−Id + ei ei
t)

‖xi+1 − xi‖

)
= − ks

(l0)2

(
(‖xi+1 − xi‖ − l0)Id + l0ei ei

t

‖xi+1 − xi‖

)

(3) =
∂

∂xi

(
∂

∂xi+1
(Ws)

)
= ks

∂

∂xi

(
‖xi+1 − xi‖ − l0

(l0)2
(ei)

)
= ks

∂

∂xi

(
‖xi+1 − xi‖ − l0

(l0)2

)
(ei)

t + ks
‖xi+1 − xi‖ − l0

(l0)2

∂

∂xi+1
(ei)

= ks

(
(−ei)

(l0)2
ei

t +
‖xi+1 − xi‖ − l0

(l0)2

(−Id + ei ei
t)

‖xi+1 − xi‖

)
= − ks

(l0)2

(
(‖xi+1 − xi‖ − l0)Id + l0ei ei

t

‖xi+1 − xi‖

)

(4) =
∂

∂xi+1

(
∂

∂xi+1
(Ws)

)
= ks

∂

∂xi+1

(
‖xi+1 − xi‖ − l0

(l0)2
(ei)

)
= ks

∂

∂xi+1

(
‖xi+1 − xi‖ − l0

(l0)2

)
(ei)

t + ks
‖xi+1 − xi‖ − l0

(l0)2

∂

∂xi+1
(ei)

= ks

(
ei

(l0)2
ei

t +
‖xi+1 − xi‖ − l0

(l0)2

(Id− ei ei
t)

‖xi+1 − xi‖

)
=

ks
(l0)2

(
(‖xi+1 − xi‖ − l0)Id + l0 ei ei

t

‖xi+1 − xi‖

)
Therefore, if we rewrite this matrix expression a bit, we have:

Ks
i =

ks
l20 le

[
((le − l0) Id + l0eiei

t) − ((le − l0)) Id + l0eiei
t)

− ((le − l0) Id + l0eiei
t) ((le − l0) Id + l0eiei

t)

]
with le = ‖xi+1 − xi‖.
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A.3 Viscosity Jacobian

Here we will do the calculations of the viscosity jacobian matrix Kη when we have a different viscosity in
the tangential and normal velocity of the nodes.

1. Interior Nodes

We remember that for the interior nodes we had that the normal and tangential velocity are:

vn = (vi · n) n

vt = vi − vn

where n = J e3 with e3 =
xi+1 − xi−1

‖xi+1 − xi−1‖
.

On the one hand, with some calculatios, we obtain:

∂

∂xi−1
(e3) =

−Id + e3 e3
t

‖xi+1 − xi−1‖
=

−N

‖xi+1 − xi−1‖

∂

∂xi
(e3) = 0

∂

∂xi+1
(e3) =

Id− e3 e3
t

‖xi+1 − xi−1‖
=

N

‖xi+1 − xi−1‖

where we have defined N := Id− e3 e3
t to simplify calculations.

On the other hand, we have that:

∂

∂xi−1
(vi) = 0

∂

∂xi
(vi) =

Id

h

∂

∂xi+1
(vi) = 0

Therefore, as:

∂

∂xi−1
(vi · n) = J

(
−N

‖xi+1 − xi−1‖

)
vi

∂

∂xi
(vi · n) =

Id

h
n =

1

h
n
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∂

∂xi+1
(vi · n) = J

N

‖xi+1 − xi−1‖
vi

we have that:

∂

∂xi−1
(vn) = n

(
J

(
−N

‖xi+1 − xi−1‖

)
vi

)t

+ (vi · n)

(
−N

‖xi+1 − xi−1‖

)

∂

∂xi
(vn) = n

(
Id

h
n

)t

∂

∂xi+1
(vn) = n

(
J

N

‖xi+1 − xi−1‖
vi

)t

+ (vi · n) J
N

‖xi+1 − xi−1‖

For the tangential forces, we have:

∂

∂xi−1
(vt) =

∂

∂xi−1
(vi)−

∂

∂xi−1
(vn) = − ∂

∂xi−1
(vn)

∂

∂xi
(vt) =

∂

∂xi
(vi)−

∂

∂xi
(vn) =

Id

h
− ∂

∂xi
(vn)

∂

∂xi+1
(vt) =

∂

∂xi+1
(vi)−

∂

∂xi+1
(vn) = − ∂

∂xi+1
(vn)

2. Exterior Nodes

The expressions for the exterior nodes (first and last) are:

vt = (vi · t) t

vn = vi − vn

where t =
xi+1 − xi

‖xi+1 − xi‖

In this case we arrive to a similar result as before:

∂

∂xi
(t) =

−Id + t tt

‖xi+1 − xi‖
=

−M

‖xi+1 − xi‖

∂

∂xi+1
(t) =

Id− t tt

‖xi+1 − xi‖
=

M

‖xi+1 − xi‖

with M = Id− t tt . We also have:

∂

∂xi
(vi · t) =

Id

h
t +

−M

‖xi+1 − xi‖
vi

32



∂

∂xi+1
(vi · t) =

M

‖xi+1 − xi‖
vi

Therefore:

∂

∂xi
(vt) = t

(
Id

h
t +

−M

‖xi+1 − xi‖
vi

)t

+ (vi · t)

(
−M

‖xi+1 − xi‖

)

∂

∂xi+1
(vt) = t

(
M

‖xi+1 − xi‖
vi

)t

+ (vi · t)

(
M

‖xi+1 − xi‖

)
∂

∂xi
(vn) =

Id

h
− ∂

∂xi
(vt)

∂

∂xi+1
(vn) = − ∂

∂xi+1
(vt)

A.4 Torque Jacobian

In this subsection of the appendix we will compute the derivatives that we need in order to compute the
total jacobian Km.

Previous to that we are going to compute some of the derivatives that we will need later:

∂

∂xi−1
(‖xi+1 − xi−1‖) = − xi+1 − xi−1

‖xi+1 − xi−1‖
= −e3

∂

∂xi−1
(e3) =

∂

∂xi−1

(
xi+1 − xi−1

‖xi+1 − xi−1‖

)
=
−Id + e3 e3

t

‖xi+1 − xi−1‖
∂

∂xi
(‖xi+1 − xi−1‖) = 0

∂

∂xi
(e3) = 0

∂

∂xi+1
(‖xi+1 − xi−1‖) =

xi+1 − xi−1

‖xi+1 − xi−1‖
= e3

∂

∂xi+1
(e3) =

∂

∂xi+1

(
xi+1 − xi−1

‖xi+1 − xi−1‖

)
=

Id − e3 e3
t

‖xi+1 − xi−1‖

To simplify calculations (and formulas), we will define:

N = Id− e3 e3
t

Ui = xi−1 − xi

Ui+1 = xi − xi+1

Then:
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∂

∂xi−1
(l−1
i ) = −Ui · e3

l3i

(
e3 −

N Ui

‖xi+1 − xi−1‖

)

∂

∂xi
(l−1
i ) =

Ui · e3

l3i
e3

∂

∂xi+1
(l−1
i ) = −Ui · e3

l3i

N Ui

‖xi+1 − xi−1‖

∂

∂xi−1
(l−1
i+1) =

Ui+1 · e3

(li+1)3

(
N Ui+1

‖xi+1 − xi−1‖

)

∂

∂xi
(l−1
i+1) = −Ui+1 · e3

(li+1)3
e3

∂

∂xi+1
(l−1
i+1) =

Ui+1 · e3

(li+1)3

(
e3 −

N Ui+1

‖xi+1 − xi−1‖

)
Therefore, we obtain that the derivatives of the forces are:

∂

∂xi−1
(fi−1) =

Mi

2

(
∂

∂xi−1
(l−1
i ) n +

1

li

∂

∂xi−1
(n)

)
=

Mi

2

[(
−Ui · e3

(li )3

[
e3 −

N Ui

‖xi+1 − xi−1‖

])
n− 1

li
J

N

‖xi+1 − xi−1‖

]
∂

∂xi
(fi−1) =

Mi

2

(
∂

∂xi
(l−1
i ) n +

1

li

∂

∂xi
(n)

)
=

Mi

2

[(
Ui · e3

l3i
e3

)
n

]
∂

∂xi+1
(fi−1) =

Mi

2

(
∂

∂xi+1
(l−1
i ) n +

1

li

∂

∂xi+1
(n)

)
=

Mi

2

[(
−Ui · e3

l3i

N Ui

‖xi+1 − xi−1‖

)
n +

1

li
J

N

‖xi+1 − xi−1‖

]

∂

∂xi−1
(fi) =

Mi

2

[(
∂

∂xi−1

(
l−1
i

)
+

∂

∂xi−1

(
(li+1)−1

))
n +

(
1

li
+

1

li+1

)
∂

∂xi−1
(n)

]
∂

∂xi
(fi) =

Mi

2

[(
∂

∂xi
(l−1
i ) +

∂

∂xi
((li+1)−1)

)
n +

(
1

li
+

1

li+1

)
∂

∂xi
(n)

]
∂

∂xi+1
(fi) =

Mi

2

[(
∂

∂xi+1
(l−1
i ) +

∂

∂xi+1
((li+1)−1)

)
n +

(
1

li
+

1

li+1

)
∂

∂xi+1
(n)

]
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∂

∂xi−1
(fi+1) =

Mi

2

(
∂

∂xi−1
((li+1)−1) n +

1

li+1

∂

∂xi−1
(n)

)
=

Mi

2

[(
Ui+1 · e3

(li+1)3

N Ui+1

‖xi+1 − xi−1‖

)
n− 1

li+1
J

N

‖xi+1 − xi−1‖

]
∂

∂xi
(fi+1) =

Mi

2

(
∂

∂xi
((li+1)−1) n +

1

li+1

∂

∂xi
(n)

)
= −Mi

2

[(
Ui+1 · e3

l3i+1

e3

)
n

]
∂

∂xi+1
(fi+1) =

Mi

2

(
∂

∂xi+1
((li+1)−1) n +

1

li+1

∂

∂xi+1
(n)

)
=

Mi

2

[(
Ui+1 · e3

(li+1)3

[
e3 −

N Ui+1

‖xi+1 − xi−1‖

])
n +

1

li+1
J

N

‖xi+1 − xi−1‖

]

A.5 Center of Masses (Alternate proof)

Here we can see a proof of the proposition of the center of mass using potentials.

Proposition The center of masses of an elastic body in an isotropic and homogeneous frictional or
viscous environment, upon a suitable time discretization of the viscous forces, and contracting by a system
of self-equilibrated active forces remains still, i.e. uCM = 0.

Proof. We will prove it when the self-equilibrated active forces are constant.

We first show that our mechanical problem is equivalent to finding the minimum of a potential V (u).
We have discretized the time due to the viscous forces, so we have to show that our problem is equivalent
to find:

min
uk+1

V (uk+1) = min
uk+1

{
W b(uk+1) + W s(uk+1) + W η(uk , uk+1)− (uk+1)t fm

}
(48)

with W b and W s being the bending and stretching potentials respectively that we have seen in the
Methodology section, with fm being the vector of moment forces and with W η being defined as:

W η(uk , uk+1) =
η h

2

(
uk+1 − uk

h

)t (
uk+1 − uk

h

)
(49)

We are going to show that our problem is indeed equivalent to minimize the term in brackets in equation
(48).

On the one hand, we know from the bending section that the derivative of W b(x) is gb(x) and from
the stretching section that the derivative of W s(x) is gs(x). On the other hand, we have that

∂W η(uk+1)

∂uk+1
= η

uk+1 − uk

h
= −gη(uk+1) (50)
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Finally, if we derive (uk+1)t fm with respect to uk+1 we obtain fm (remember that as hypothesis
we have assume that the self-equilibrated active forces are constant). Therefore we would arrive to the
equation:

gb(uk+1) + gs(uk+1)− gη(uk+1)− gm = 0 (51)

which is the balance equation that we have to solve in our problem if active forces are constant (inde-
pendent of displacements).

Now, we will decompose the optimal solution u∗ = ū + δu with ū being a constant vector field equal
to the mean value of u∗, i.e.

ū =
1

|Γ|

∫
Γ
ρ u∗dΓ =

n+1∑
i=1

mi ui

n+1∑
i=1

mi

(52)

where Γ is the domain of the rod, and due to the discretization, we equalise to the last term. Therefore
the mean value of δu is 0, that is δu = 0.

We will show that V (δu) < V (ū + δu) for ‖u‖ > 0 and therefore, the optimization problem must
satisfy ū = 0.

Notice that:

(ūk+1)t fm = (ūxex + ūyey)t



...
fm
i−1

fm
i

fm
i+1

...


= 0 (53)

where ex =
{

1 0 ... 1 0
}t

and ey =
{

0 1 ... 0 1
}t

and both are constant values of all the components
of ū.

We also have that the potentials of the bending and stretching energy are invariant by a translation,
as we have seen in Remark 1 before the proposition in the Methodology section.

Finally, we will see the viscosity pseudo-potential. Since we are considering the incremental displacement
within a time-step, and without loss of generality, we can assume that uk = 0. Therefore:

W η(uk , uk+1) =
ηh

2

(
uk+1 − uk

h

)t (
uk+1 − uk

h

)
=
η

2

((
uk+1

)t
uk+1

h

)
=: W η(uk+1) (54)
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Hence:

W η(ūk+1 + δuk+1) =
η

2 h

(
ūk+1 + δuk+1

)t (
ūk+1 + δuk+1

)
=

η

2 h

(
(ūk+1)t ūk+1 + 2(ūk+1)t δuk+1

)
+ (δuk+1)t δuk+1

=
η

2 h
‖ūk+1‖2 + W η(δuk+1)

(55)

where we have applied that ūt δu = 0 because the mean value of δu is zero and ū is a constant vector.

Therefore, if we add all together, we have that at each increment k of the Backward Euler method we
have:

V (ū + δu) = W b(δu) + W s(δu) +
η

2 h
‖ūk+1‖2 + W η(δu)− (δu)t fm

= V (δu) +
η

2 h
‖ūk+1‖2 > V (δu)

(56)

for all ‖ū‖ > 0.

Hence, as we have said before, we have from the optimality condition of the solution that ū = 0, which
implies that the center of mass of the rod remains fixed for each increment, and therefore also throughout
the motion..

We can extend this proof for the case when the self-equilibrated active forces are displacement dependent
fm(u) linearizing the non-linear system and applying a similar proof of the independent-displacement case
for each iteration.
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