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Abstract
In the first experimental realization of dilute Bose–Bose liquid drops using two hyperfine states of
39K some discrepancies between theory and experiment were observed. The standard analysis of
the data using the Lee–Huang–Yang beyond mean-field theory predicted critical numbers which
were significantly off the experimental measurements. Also, the radial size of the drops in the
experiment proved to be larger than expected from this theory. Using a new functional, which is
based on quantum Monte Carlo results of the bulk phase incorporating finite-range effects, we can
explain the origin of the discrepancies in the critical number. This result proves the necessity of
including finite-range corrections to deal with the observed properties in this setup. The
controversy on the radial size is reasoned in terms of the departure from the optimal concentration
ratio between the two species of the mixture.

1. Introduction

In the last years, there has been an increasingly high interest in understanding dilute, ultracold quantum
Bose–Bose mixtures. The focus on this study increased dramatically after the theoretical proposal by Petrov
[1] on the formation of self-bound liquid drops. These liquid drops are stabilized by beyond-mean-field
effects and can appear in mixtures of two Bose–Einstein condensates with repulsive intraspecies and
attractive interspecies interactions. The drops originate from a delicate balance between the collapsed state,
predicted by mean-field (MF) theory, and the repulsive character of the first beyond mean-field term
(Lee–Huang–Yang, LHY). The same perturbative theoretical scheme predicts self-binding in
low-dimensional mixtures [2, 3] and dipolar systems [4, 5]. Recently, these predicted quantum drops have
been observed in several experiments [6–9] and they resemble the well-known liquid Helium drops
[10, 11]. However, the inner density in the Bose–Bose drops is about five orders of magnitude smaller than
in 4He [10, 11]. Therefore, these new quantum drops extend the realm of the liquid state to much lower
densities than any previous existing classical or quantum liquid.

In the two labs [6, 8] where the drops have been observed, the Bose–Bose mixture is composed of two
hyperfine states of 39K. In the first experiment by Cabrera et al [6], the drops are harmonically confined in
one of the directions of space whereas in the second one by Semeghini et al [8] the drops are observed in
free space. This difference in the setup makes that in the first case the drops are not spherical like in the
second experiment. This also affects the critical number, that is, the minimum number of atoms required to
get a self-bound state. The measured critical numbers differ significantly between the two labs due to the
different shape of the drops, the ones in the confined case being smaller than in the free case. In both works,
the experimental results for the critical number are compared with the MF + LHY theory. The agreement
between this theory and the drops produced in free space is quite satisfactory in spite of the large errorbars
of the experimental data that hinder a precise comparison. However, in the confined drops of reference [6],
where the critical numbers are significantly smaller than in the free case, the theoretical predictions do not
match well the experimental data.
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Ultradilute liquid drops, which require beyond-mean field corrections to be theoretically understood,
offer the perfect benchmark to explore possible effects beyond MF + LHY theory [12] which usually play a
minute role in the case of single-component gases [13, 14]. Indeed, several theoretical studies [15–19]
indicate a strong dependence of the equation of state of the liquid on the details of the interatomic
interaction, even at very low densities. This essentially means it is already possible to achieve observations
outside the universal regime, in which all the interactions can be expressed in terms of the gas parameter
na3, with a the s-wave scattering length. The first correction beyond this universality limit must incorporate
the next term in the scattering series, that is the effective range reff [20, 21], which in fact can be quite large
in these drops and in alkali atoms in general [22, 23].

Motivated by experiments with quantum drops, we have investigated the self-bound quantum mixture
composed of two hyperfine states of 39K using nonperturbative quantum Monte Carlo (QMC) methods.
Direct QMC simulations [24] of finite particle-number drops, as produced in experiments, would serve as a
great test of mean-field theory but, unfortunately, this is not yet achievable because of the large number of
particles in realistic drops (N > 104). Yet, the problem can be addressed in the density functional theory
(DFT) spirit, relying on the Hohenberg–Kohm–Sham 2nd theorem [25], which guarantees that a density
functional exists that matches exactly the ground-state solution. To build a functional for the quantum
Bose–Bose mixture, we have carried out calculations in bulk conditions using the diffusion Monte Carlo
(DMC) method, an exact QMC technique applicable to systems at zero temperature. Using that functional
we can access to energetics and structure of the liquid drops in the same conditions as in the experiment.
We focus on the data obtained by Cabrera et al [6] in the confined setup since it is in that case where
discrepancies between MF + LHY theory were observed.

The rest of the paper is organized as follows. In section 2, we introduce the theoretical methods used for
the study and discuss the way in which the density functional is built. Section 3 comprises the results
obtained for the bulk liquid using the available scattering data of the 39K mixture. The inclusion of the
effective range parameters in the interaction model allows for a better agreement with the measured critical
numbers. Finally, we summarize the most relevant results here obtained and derive the main conclusions of
our work.

2. Methods

We study a mixture of two hyperfine states of 39K bosons at zero temperature. The Hamiltonian of the
system is

H =

N∑
i=1

− �
2

2 m
∇2

i +
1

2

2∑
α,β=1

NαNβ∑
iα ,jβ=1

V (α,β)(riα jβ ), (1)

where V (α,β)(riα jβ ) is the interatomic potential between species α and β. The mixture is composed of
N = N1 + N2 atoms, with N1 (N2) bosons of type 1 (2). The potentials are chosen to reproduce the
experimental scattering parameters, and we have used different model potentials to investigate the influence
of the inclusion of the effective range. The microscopic study has been carried out using a second-order
DMC method [26], which allows for an exact estimation of the ground-state of the mixture within some
statistical errors. DMC solves stochastically the imaginary-time Schrödinger equation using a trial
wavefunction as importance sampling which guides the diffusion process to regions of expected large
probability (see additional details on the DMC method in the appendix A). In the present case, we used a
trial wavefunction built as a product of Jastrow factors [27],

Ψ (R) =
N1∏
i<j

f (1,1)(rij)
N2∏
i<j

f (2,2)(rij)
N1,N2∏

i,j

f (1,2)(rij), (2)

where the two-particle correlation functions f(r) are

f α,β(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f2b(r) r < R0

B exp

(
−C

r
+

D

r2

)
, R0 < r < L/2

1, r > L/2.

(3)

The function f2b is the solution of the two-body problem for a specific interaction model. This is connected
to the long-range phonon wavefunction [27] with coefficients B, C and D, which are adjusted to match the
continuity condition of the wavefunction, its first derivative, and the zero derivative at r = L/2. R0 is the

2



New J. Phys. 22 (2020) 053045 V Cikojevíc et al

Figure 1. Dependence of the equation of state on the effective range for selected potential models, compared with MF + LHY.
Full circles are calculations using POT1, and we illustrate the convergence to negligible finite-size effects starting from N = 100
(lower points), 200, 400, 500 to N = 600 (upper points). Dashed lines are fits to the DMC data with equation (11).

matching point to be variationally optimized, and L = (N/ρ)1/3 is the size of the simulation box. Our study
shows that there is a weak dependence of the variational energy on R0 once scaled in L units, and thus it has
been kept as R0 = 0.9L/2 for all the cases. A careful analysis of imaginary time-step dependence and
population size bias has been carried out, keeping both well under the statistical error.

Within density functional theory (DFT), we seek for a many-body wavefunction built as a product of
single-particle orbitals,

Ψ(r1, r2, . . . , rN ) =
N∏

i=1

ψ(ri). (4)

These single-particle wavefunctions, which in general are time-dependent, are obtained by solving the
Schrödinger-like equation [28],

i�
∂ψ

∂t
=

(
− �

2

2 m
∇2 + Vext(r) +

∂Eint

∂ρ

)
ψ, (5)

where Vext is an external potential acting on the system and Eint is an energy per volume term that accounts
for the interparticle correlations. The differential equation (5) is solved by propagating the wavefunction ψ

with the time-evolution operator
ψ(t +Δt) = e−iHΔtψ(t). (6)

To this end, we have implemented a three-dimensional numerical solver based on the Trotter
decomposition of the time evolution operator [29, 30] with second-order accuracy in the timestep Δt, as
follows

e−iHΔt = e−iΔtV(R′)/2e−iΔtKe−iΔtV(R)/2 +O(Δt2), (7)

with K and V the kinetic and potential terms in equation (5).

3. Results

In order to go beyond the MF + LHY density functional we have carried out DMC calculations of the bulk
liquid. In the mixture of 39K under study, we call the state |F, mF〉 = |↓〉 = |1, 0〉 as component 1, and the
state |F, mF〉 = |↑〉 = |1,−1〉 as component 2. In figure 1, we show the energy per particle of the 39K
mixture as a function of the density, using three different sets of potentials in the Hamiltonian (1):

(a) Hard-core interactions (HCSW) with diameter aii, i = 1, 2, for the repulsive intraspecies interaction,
and a square-well potential with range R = a11 and depth V0 for the interspecies potential. The three
potentials reproduce the s-wave scattering lengths for the three channels,

(b) POT1 stands for a set of potentials which reproduces both the s-wave scattering lengths and effective
ranges of the three interacting pairs of the 39 K mixture. To model the interactions, we have chosen a
square-well square barrier potential [31] for the 11 channel, a 10–6 Lennard-Jones potential [32] for
the 22 channel, and a square-well potential of range R and depth V0 [13] in the 12 channel,

(c) POT2 also reproduce both the s-wave scattering lengths and effective ranges, by using a sum of
Gaussians in the 11 channel, a 10–6 Lennard-Jones potential in the 12 channel, and finally a soft-sphere
square well in the 22 channel.

3
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Figure 2. DMC energy per particle as a function of the density (circles), starting from B = 56.230 G (lower points) to
B = 56.639 G (upper points). Energy and density are normalized to E0 and ρ0, given in equations (9) and (10), respectively.
Dashed lines are fits with equation (11). Full line is the MF + LHY theory (equation (8)).

In all cases, the attractive interatomic potential does not support a two-body bound state. We have
obtained the s-wave scattering length and effective range of the potentials using standard scattering theory
[20, 21]. More specific details of the model potentials are reported in the appendix A.

We compare our DMC results to the MF + LHY theory, which can be compactly written as [1]

E/N

|E0/N| = −3

(
ρ

ρ0

)
+ 2

(
ρ

ρ0

)3/2

, (8)

assuming the optimal concentration of particles from mean-field theory, N1/N2 =
√

a22/a11. The energy
per particle E0/N at the equilibrium density of the MF + LHY approximation ρ0 and ρ0 itself is

E0/N =
25π2

�
2|a12 +

√
a11a22|3

768ma22a11

(√
a11 +

√
a22

)6 , (9)

ρ0a3
11 =

25π

1024

(
a12/a11 +

√
a22/a11

)2

(
a22/a11

)3/2
(

1 +
√

a22/a11

)4 . (10)

In figure 1, we report DMC results for the equation of state corresponding to a magnetic field
B = 56.337 G, one of the magnetic fields used in experiments. We show the convergence of the results on
the number of particles in the simulation for the particular case of POT1 set of potentials. As we can see,
the convergence is achieved with N = 600. We have repeated this analysis for all the potentials and, in all the
magnetic field range explored, we arrive to convergence with similar N values. We have investigated the
dependence on the effective range by repeating the calculation using the HCSW and POT2 potentials. As it
is clear from figure 1, only when both scattering parameters, the s-wave scattering length and the effective
range, are imposed on the model potentials we get an approximate universal equation of state, mainly
around the equilibrium density. The equation of state so obtained shows a significant and overall decrease
of the energy compared to the MF + LHY prediction, with a correction that increases with the density.
Instead, using the HCSW potentials, which only fulfill the s-wave scattering lengths, the energies obtained
are even above the MF + LHY prediction. A similar behavior has been previously shown to hold in
symmetric (N1 = N2) Bose–Bose mixtures [16].

Equations of state of the bulk mixture, for the seven values of the magnetic field used in the experiments
(B = 56.230 G to B = 56.639 G), are shown in figure 2. The DMC results are calculated using the model
POT1, but the differences with the other set POT2 are not significant. In all cases, we take the mean-field
prediction for the optimal ratio of partial densities ρ1/ρ2 =

√
a22/a11. We have verified in several cases that

this is also the concentration corresponding to the ground state of the system in our DMC calculations, i.e.,
the one that gives the minimum energy at equilibrium. The DMC results are compared with the MF + LHY
equation of state (8). Overall, a reduction of the magnetic field, or equivalently an increase in
|δa| = a12 +

√
a11a12, leads to an increase of the binding energy compared to the MF + LHY

approximation. This happens clearly due to the influence of the large experimental effective range, since in
the limit of zero range one would observe overall repulsive beyond-LHY terms (see also figure 1 and
reference [16]).

DMC energies for the 39K mixture are well fitted using the functional form

E/N = αρ+ βργ , (11)

as it can be seen in figure 2. These equations of state, calculated within the range of magnetic fields used in
experiments, are then used in the functional form (5) with Eint = ρ E/N. With the new functional, based on
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Figure 3. Dependence of the critical atom number on the magnetic field. Full circles are predictions using the QMC functional
within DFT with the interaction potentials which reproduce both a and reff . Diamond points are data from the experiment [6].
Empty points show the prediction using the QMC functional with the HCSW model potentials.

Table 1. Critical atom number to form a droplet in a harmonic trap Vz =
1
2 mω2

z z2, where aho =
√

�/(mωz) =
0.639μm is the same value as in the experiment [6]. εr = |NQMC

c − NMFLHY
c |/NMFLHY

c is the relative error.

B(G) NQMC
c NMFLHY

c εr NQMC
c − NMFLHY

c

56.23 3500 4650 0.25 −1150
56.337 4200 5570 0.25 −1370
56.395 5000 6200 0.19 −1200
56.4 5100 6250 0.18 −1150
56.453 6000 7000 0.14 −1000
56.511 7000 8050 0.13 −1050
56.574 8500 9800 0.13 −1300
56.639 113 00 127 00 0.11 −1400

Table 2. Critical atom number for spherical free drops [8]. εr = |NQMC
c − NMFLHY

c |/NMFLHY
c is the relative error.

B(G) NQMC
c NMFLHY

c εr NQMC
c − NMFLHY

c

56.23 160 00 158 00 0.01 200
56.337 246 00 249 00 0.01 −300
56.395 327 00 339 00 0.04 −1200
56.4 353 00 355 00 0.01 −200
56.453 472 00 477 00 0.01 −500
56.511 691 00 706 00 0.02 −1500
56.574 114 000 119 000 0.04 −5000
56.639 230 000 236 000 0.03 −6000

our DMC results, we can study the quantum drops with the proper number of particles which is too large
for a direct DMC simulation.

Results for the critical atom number Nc at different B are shown in figure 3 in comparison with the
experimental results of reference [6]. To make the comparison reliable, we have included the same
transversal confinement as in the experiment. In particular, theoretical predictions are obtained within DFT,
using a Gaussian ansatz φ = exp

(
−r2/(2σ2

r ) − z2/(2σ2
z )
)
. When the equation of state of the bulk takes into

account the effective range of all the pairs we observe an overall decrease of Nc with respect to the MF +

LHY prediction. Interestingly, if we use the HCSW model potentials, with essentially zero range, our results
are on top of the MF + LHY line (see the points at B = 56.23 G, B = 56.337 G and B = 56.453 G in
figure 3). The observed decrease of Nc leads our theoretical prediction closer to the experimental data in a
significant amount and in all the δa range, clearly showing the significant influence of the effective range on
the Nc values. Experiments on quantum droplets were performed either in the harmonic trap [6] or in a
free-drop setup [8]. Predictions of Nc for these two geometries are given in tables 1 and 2, using MF + LHY
and QMC functionals. The absolute difference of predicted Nc values between the two functionals are about
1000 atoms. On the other hand, the relative difference is much higher in the harmonically-trapped system
because the presence of an external trap significantly reduces Nc.

A second observable measured in experiments is the size of the drops. The radial size of a N = 15 000
drop for different values of the magnetic field was reported in reference [6]. In figure 4, we compare the
experimental values with different theoretical predictions. We observe a slight reduction in size using QMC

5
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Figure 4. Dependence of the radial size of a N = 15 000 drop on the external magnetic field, or equivalently the residual s-wave
scattering length. Lines are predictions under MF + LHY theory; full line is a prediction with x = 1, dashed and dotted lines are
fits of experimental sizes using a parameter x.

Figure 5. Values of x = N2/N1

√
a22/a11 which reproduce the experimental size of a N = 15 000 drop (figure 4) within the MF

+ LHY theory, as a function of the magnetic field. Points are the values which reproduce the size, and lines are power-law fits of x
as a function of the magnetic field B. Note that two solutions exist since the choice of naming each component is twofold.

functionals, compared to MF + LHY theory, which is a consequence of the stronger binding produced by
inclusion of finite range interactions. Since the experimental data go to the opposite direction, it means that
drops size can not be explained solely in terms of the non-zero effective range. One possible explanation for
this clear disagreement could be a deviation from the optimal relative number of particles, which can occur
in non-equilibrated drops or when one of the components has a large three-body recombination coefficient.
Let us define x = N2/N1

√
a22/a11. Then, x = 1 stands for the optimal relative particle number, i.e., the

concentration corresponding to the ground-state of the system. We have investigated the behavior of both
the MF + LHY and QMC functionals under variations in x, and both predict an increase in the drop size
proportional to the deviation from x = 1. Using the MF + LHY functional, we have obtained the x values
that fit the experimental size for every B (figure 4). We report the result of this analysis in figure 5; notice
that there is a symmetry on x and so only its absolute deviation from one is important. This result clearly
shows the sensitive dependence of drop structural properties on the relative atom number. We also carried
out a similar analysis in the case of the spherical drops obtained in reference [8]. In that case, it is observed
that both the MF + LHY and QMC results with x = 1 are compatible with the measured sizes within the
(large) experimental error bars. Therefore, it seems that the transversally confined drops are more sensitive
to the value of x, probably because they are not spherical and their size can only grow in two directions of
space instead of three.

As we can see in figure 5, the value for x becomes 1 (optimal value) when the drop composed by 15 000
particles is studied at the highest magnetic field. This can be understood if we observe that the critical
number for this magnetic field matches approximately this number of atoms (see figure 3). When the
number of atoms of a drop is larger than the critical number (lower B in figure 4) x departs from one. This
can be better understood if one calculates the drop phase diagram as a function of x. The result is plotted in
figure 6. As the number of particles is approaching the critical one, the range of possible values of x, which
support a drop state, is reducing. This is a supporting fact that drops close to the critical atom number
observed in the experiment fulfill the condition x = 1. On the other hand, there is an increasing range of
relative particle concentrations for which a drop can emerge as the number of particles increases.

6



New J. Phys. 22 (2020) 053045 V Cikojevíc et al

Figure 6. Phase diagram of 39K at B = 56.230 G using MF + LHY theory, spanned with x = N2/N1

√
a22/a11 and the total

particle number N, normalized with the critical atom number Nc evaluated at x = 1 [1].

Figure 7. Dependence of the radial size σr on the number of particles. The size is obtained from the variational ansatz, since
close to the critical atom number the density profile in the radial direction is well approximated by a Gaussian. In both
functionals, it is assumed that the relative concentration is optimal N2/N1 =

√
a11/a22 . QMC functional includes the correct

finite-range reff through POT1 set of potentials, figure 1.

Close to the critical atom number, the density profile of a drop can change drastically depending on the
functional. We illustrate this effect in figure 7 for a magnetic field B = 56.337 G. In the figure, we show the
dependence of the radial size on the number of particles, with the same harmonic confinement strength as
in one of the experiments [6]. We observe a substantial difference between the MF + LHY and QMC
functional results, mainly when N approaches the critical number Nc.

4. Discussion

Experiment in reference [6] showed a significant disagreement between the measured data and the MF +

LHY perturbative approach. In order to determine the possible origin of these discrepancies we have
pursued a beyond MF + LHY theory which incorporates explicitly the finite range of the interaction. To
this end, we have carried out DMC calculations of the bulk liquid to estimate accurately its equation of
state. We have observed that the inclusion in the model potentials of both the s-wave scattering length and
the effective range produces a rather good universal equation of state in terms of these pair of parameters.
Excluding the effective range, significant differences are obtained from these universal results. This relevant
result points to the loss of universality in terms of the gas parameter in the study of these dilute liquid
drops.

Introducing the DMC equation of state into the new functional, following the steps which are standard
in other fields, such as DFT in liquid helium [10], we derive a new functional that allows for an accurate
study of the most relevant properties of the drops. In particular, we observe that the inclusion of finite range
effects reduces the critical atom number in all the magnetic field range approaching significantly the
experimental values. On the other hand, our QMC functional is not able to explain the clear discrepancy
between theory and experiment about the size of the drops. We attribute this difference to the dramatic
effect on the size that small shifts on the value of x produce. Our analysis provides a reasonable explanation
of this feature: above the critical atom number the window of stability of the drops increases from the single
point x = 1 to a range of values that, in absolute terms, grow with the number of particles. With the
appropriate choice of x, one can obtain agreement with the experiment.

The drops produced in the different setup of reference [8] are spherical since all magnetic confinement
is removed. The corresponding critical numbers in this case are larger than in the confined setup [6] and
MF + LHY theory accounts reasonably well for the observed features. We have applied our formalism also
to this case and the corrections are not zero but relatively less important than in the case analyzed here.
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Appendix A

A.1. Diffusion Monte Carlo
The diffusion Monte Carlo (DMC) method provides exact energy for Bose systems at zero temperature,
within some statistical noise [26]. The starting point of the DMC method is the N-body Schrödinger
equation written in imaginary time τ = −it

− ∂Ψ

∂τ
= ĤΨ, (12)

with Ĥ the Hamiltonian of the system. To reduce the variance, one uses importance sampling by solving the
Schrödinger equation. This is made by introducing the wavefunction f = ψTφ, where φ is the ground-state
many-body wavefunction and ψT is a trial wavefunction. The trial wavefunction that we use (equations (2)
and (3)) reproduces the expected behavior at small and large distance between atom pairs, thus focusing the
sampling where it is physically most likely. The wavefunction f is represented numerically by a set of walkers,
different coordinate configurations of f, and it evolves in time as

− ∂f

∂τ
= − �

2

2 m
∇2f − �

2

2 m
∇
(

Ff
)
+ (EL(R) − Eref)f , (13)

where F = ψ−1
T ∇RψT, EL = ψ−1

T ĤψT and Eref is the reference energy used to stabilize the DMC simulation.
We employ the short-time Trotter decomposition up to second order in the timestep to iterate the
equation (13) [26]. There are several biases in the DMC method, which are reduced when (i) the simulation
time is large enough, (ii) the number of walkers is large enough, and (iii) when the time-step is small
enough. In our study, the time-step dependence is well eliminated for Δτ = 0.2 × ma2

11/� and the
population bias by using nw = 100 walkers. Thus, the error estimates that we report come only from the
inherent statistical noise of Monte Carlo simulations. The calculations of the bulk liquid are performed in a
simulation box with periodic boundary conditions. We have studied the convergence to the thermodynamic
limit by performing a set of calculations with different total atom numbers, for a given fixed density.
Convergence of the energy per particle is achieved for N ≈ 600 for all the magnetic fields.

A.2. Interaction potentials
For the system under study, 39 K, we only know two scattering parameters, that is the s-wave scattering
length and the effective range. In order to model the interaction potentials with those parameters, we have
used three different set of potentials. Notice that, for a given set of just two scattering parameters, there is an
uncountable number of corresponding potentials. We have used the HCSW potentials to investigate
mixtures only in the limit of zero range. However, this set of potentials cannot reproduce the scattering
parameters of 39 K given in table 3. In order to fulfill both scattering conditions, s-wave scattering lengths
and effective ranges, the interaction potentials need to have a more elaborate shape. To this end, we use the
POT1 and POT2 set of potentials (figure A.1). These particular choices of interaction models are somewhat
arbitrary, since we have focused only on reproducing two scattering parameters, but they are able to match
the experimental scattering parameters in all the channels. On the other hand, all the potentials that we use
do not support a two-body bound state.

A.3. HCSW potentials
In the HCSW set of potentials, intraspecies repulsion is modeled by the hard-core interaction

Vii(r) =

⎧⎨
⎩
∞, r < aii

0, r � aii

(14)

for i = 1, 2. The s-wave scattering length of this potential corresponds to the diameter of the hard core.
Interspecies attraction is modeled by the attractive square well potential
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Table 3. Scattering parameters [33], s-wave scattering length a and the effective range reff in units of Bohr radius a0,
as a function of the magnetic field B.

B(G) a11(a0) reff
11 (a0) a22(a0) reff

22 (a0) a12(a0) reff
12 (a0)

56.230 63.648 −1158.872 34.587 578.412 −53.435 1021.186
56.337 66.619 −1155.270 34.369 588.087 −53.386 1022.638
56.395 68.307 −1153.223 34.252 593.275 −53.360 1022.617
56.400 68.453 −1153.046 34.242 593.722 −53.358 1022.616
56.453 70.119 −1150.858 34.136 599.143 −53.333 1023.351
56.511 71.972 −1148.436 34.020 604.953 −53.307 1024.121
56.574 74.118 −1145.681 33.895 610.693 −53.278 1024.800
56.639 76.448 −1142.642 33.767 616.806 −53.247 1025.593

Figure A.1. POT1 and POT2 potentials in each of the channels which reproduce the s-wave scattering lengths and effective
ranges for B = 56.337 G.

V12(r) =

⎧⎨
⎩
−V0, r < R0

0, r � R0

(15)

The s-wave scattering length and effective range of the attractive square well can be found in reference [13].

A.4. POT1 potentials
For the POT1 set of potentials, we use the following

V11(r) =

⎧⎪⎪⎨
⎪⎪⎩
−V0, r < R0

V1, R0 � r < R1

0, r � R1

(16)

9
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V12(r) =

⎧⎨
⎩
−V0, r < R0

0, r � R0

(17)

V22(r) = V0

[( r0

r

)10
−
( r0

r

)6
]

(18)

The scattering parameters in the 11 channel can be found in reference [31], in the 12 channel in reference
[13], and in the 22 one in reference [32]. The effective range of the 12 potential was found numerically by
solving the two-body scattering problem [20].

A.5. POT2 potentials
For the POT2 set of potentials, we use the following

V11(r) = −V0 exp

[
− r2

2r2
0

]
+ V1 exp

[
− (r − r1)2

2r2
0

]
(19)

V12(r) = V0

[( r0

r

)10
−
( r0

r

)6
]

(20)

V22(r) =

⎧⎪⎪⎨
⎪⎪⎩

V0, r < R0

−V1, R0 � r < R1

0, r � R1

(21)

The scattering parameters for the potential in the 11 channel are found numerically [20]; the ones for the 22
channel can be obtained from reference [31].
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