

TESTBED PLATFORM FOR CYBERSECURITY USE
CASES

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya

by

Enric Ruhi Velasco

In partial fulfilment

of the requirements for the degree of

MASTER IN ADVANCED TELECOMMUNICATIONS
TECHNOLOGIES (MATT)

Advisor: Josep Rafael Pegueroles Valles

Barcelona, May 2020

 1

Title of the thesis: Testbed platform for Cybersecurity Use cases

Author: Enric Ruhi Velasco

Advisor: Josep Rafael Pegueroles Valles

Abstract

In the cybersecurity world, having not only theoretical but also practical experiences is
crucial. Cybersecurity Use Cases (UCASES) is a subject from the master’s degree in
advanced telecommunication technologies (MATT) that provides the opportunity to see
penetration testing and cybersecurity from a practical standpoint.

This thesis’ objective is to provide a stable and up to date testbed for UCASES,
composed of multiple virtual machines, vulnerable and non-vulnerable. In addition, it also
contains a practical beginner’s guide based on the guide provided by the lecturer of the
subject, Josep Rafael Pegueroles Valles, and a virtual machine with all tools the students
will need to follow the guide and the subject UCASES.

 2

Aquest treball està dedicat als meus pares i la meva germana, els quals han estat al meu
costat en tot moment, durant tot el màster, donant-me suport i recolzant les meves
decisions.

Moltes Gracies!

 3

Acknowledgements

First, I would like to thank my supervisor Josep Rafael Pegueroles Valles. He had infinite
patience with me and did far more for me than his role as supervisor required. Without
him and his dedication and patience this project would have never been done.

 4

Revision history and approval record

Revision Date Purpose

0 09/04/2020 Document creation

1 07/05/2020 Document revision

2 11/05/2020 Document correction

3 15/05/2020 Document revision

4 18/05/2020 Document correction

5 22/05/2020 Document final revision

Written by: Reviewed and approved by:

Date 09/04/2020 Date 22/05/2020

Name Enric Ruhi Velasco Name Josep Rafael
Pegueroles Valles

Position Project Author Position Project Supervisor

 5

Table of contents

Abstract .. 1

Acknowledgements .. 3

Revision history and approval record .. 4

Table of contents .. 5

List of Figures ... 7

List of Tables .. 8

1. Introduction .. 9

1.1. Statement of the problem ... 9

1.2. Motivation ... 9

1.3. Solution .. 10

1.4. Objectives .. 10

1.5. Work plan, milestones and task diagram .. 10

2. Technology used or applied in this thesis .. 14

2.1. Virtual labs.. 14

2.1.1. HackTheBox & TryHackMe ... 14

2.2. Tools .. 15

2.2.1. Reconnaissance .. 15

2.2.2. Exploiting ... 17

3. Project development .. 18

3.1. Virtualization platform ... 18

3.1.1. Why this three requirements? .. 18

3.1.2. Choosing the platform ... 19

3.2. Updating UCASES ... 19

3.2.1. Tools ... 19

3.3. Virtual Machines ... 20

3.3.1. Attacker ... 20

3.3.2. Victims ... 21

4. Results .. 22

4.1. Scenario ... 22

4.2. Reconnaissance ... 23

 6

4.2.1. Recon-ng ... 23

4.2.2. Nmap .. 25

4.2.3. Scapy .. 26

4.2.4. NSE ... 27

4.2.5. Nessus .. 28

4.2.6. Netcat .. 30

4.2.7. Nikto .. 30

4.3. Exploiting .. 30

4.3.1. Metasploit .. 30

4.3.2. Empire ... 32

5. Budget ... 33

6. Conclusions and future development ... 34

6.1. Difficulties ... 34

6.2. Testing ... 34

6.3. Future developments .. 35

Bibliography .. 36

Glossary ... 38

 7

List of Figures

Figure 1: Logo TryHackMe & Hack the Box .. 15

Figure 2: Recon-ng ASCII when starting the framework ... 16

Figure 3: Scapy ASCII when starting the framework ... 16

Figure 4: Nessus logo ... 16

Figure 5: Metasploit logo .. 17

Figure 6: UCASES testbed network .. 23

Figure 7: Setting a NAMESERVER ... 24

Figure 8: Recon-ng database showing reverse-resolve findings 24

Figure 9: File of AV domains used by cache-snoop .. 25

Figure 10: Full TCP SYN scan output ... 26

Figure 11: OS fingerprinting on the vulnerable Windows 2008 machine. 26

Figure 12: TCPdump output of challenge #2 ... 27

Figure 13: Missing reset [R] response from target's ports 10 & 11 that are "filtered" 27

Figure 14: Content of the "script.db" file .. 28

Figure 15: sshv1.nse finds SSH in port 23 .. 28

Figure 16: Nessus scan of UCASES target machines ... 29

Figure 17: Populated Metasploit services table ... 31

Figure 18: Hashdump of Windows credentials .. 31

Figure 19: Real time screen of Windows machine .. 32

 8

List of Tables

Table 1: Budget .. 33

 9

1. Introduction

1.1. Statement of the problem

The Universitat Politècnica de Catalunya (UPC) started, last year (2019-20); a new
master called Master in Advanced Telecommunication Technologies (MATT) this master
has multiple sub-tracks, one of them being cybersecurity.

UCASES is a recommended subject for the cybersecurity track in this master. Its
objective is to introduce the students to the different penetration testing tools and its uses
from a practical point of view. To summarize, the students have an “attacker” machine,
with penetration testing tools, and through the semester, the students followed an
extensive guide that explained how to use those tools. These tools, were used against
“victim” machines that were installed locally on the student’s PC in a virtual environment.

After the first iteration of this subject, with feedback from the students, the lecturer
spotted some problems. The ones that were more impactful for the students were the
following.

First, the students had to put together their own virtual environment and VMs, that caused
problems for some parts of the subject, since the OS the students used as “victim”
machines were secure enough that some parts of the practices were straight up cut off by
the victim OS security. That was solved at the time by tinkering with the OS security
settings, but was inconsistent for some students, since not every student had the same
version of the OS, and it took time off the lab work, and made the scenario feel too
unrealistic.

Second, some of the labs were prepared for older versions of the tools, so some steps of
the lab guide were outdated and were not working for the versions of the tools the
students had installed in their “attacker” machine (LTS / latest). This made the students
take too much time on a specific part of the subject. Either going back to a previous
version of the tool that is not the latest/LTS or going through the documentation of the
tool.

Finally, some of the labs, could be done on a random environment legally, but if they are
done without any care, that might have unexpected outcomes for the target. For example,
a scan of a target environment done by multiple students at the same time, even if
unlikely, might cause DoS for the target environment. This could be a temptation if the
students itself needs to, for example, open ports before doing a port scan to have some
meaningful results and not all ports closed/filtered, again making the practices feel too
unrealistic.

1.2. Motivation

The previously stated problems might not seem important at first glance, but as a former
student of the subject, I know all these problems pile up. We need to take into account
that UCASES is an introduction to penetration testing tools, and most of the students will
not have previous experience with them at all. Thus, having a consistent and stable set

 10

up for the students is important since it will be the first experience with penetration testing
for some of them. In addition, this subject contains a lot of information and the time
constrain is a factor. Having problems with the testing environment or the guide can put a
hindrance on the learning experience of the students. Finally, the cybersecurity world is in
constant change, using old version of the tools does not set a good example neither a
good experience for the students.

1.3. Solution

The solution implemented in this project is a penetration testing testbed for the subject
Cybersecurity Use cases (UCASES). The testbed must be easily installable by the
students, maintainable and updateable for the lecturer of the subject.

The testbed must contain the necessary “victim” VMs to be able to perform the lab
exercises for the subject.

In addition, we will make a guide explaining the basics of the tools, how to use them
(theory) and where and how to test them in practice (e.g. URLs, VMs). Moreover, it will
contain a small installation guide of the testbed and solutions for possible problems the
students might encounter.

Furthermore, an attacker VM will be provided, with all the necessary tools for the students
to do the practices.

This project is not a continuation of any other project or thesis. However, we used the first
iteration of the UCASES subject as a starting point.

1.4. Objectives

The main objectives of this project can be summarized as follows:

 Create a stable testbed for the UCASES subject.

 Provide an “attacker” VM with all the necessary tools to carry out the subject.

 Write an updated lab guide on how to perform all the practices with the updated
tools.

1.5. Work plan, milestones and task diagram

The project was divided in five main work packages (WP) with their corresponding
internal tasks.

The first package consisted in obtaining the “attacker” OS that will be used for all the
UCASES labs and installing / updating the tools to their latest / LTS if necessary.

The next two packages are the main part of this project and they encompass the updating
part of the project. From the updated tools from the “attacker” OS, create the new guide
and set up the necessary VMs to execute the lab exercises.

The fourth package consisted in doing tests and double-checking of the work done on
WP: P2 and WP: P3.

Finally, the fifth task consisted in writing the necessary documentation for the UPC.

 11

Testbed platform for Cybersecurity Use cases WP ref: P1

Major constituent: Kali Linux SO preparation

Short Description: Prepare an up to date kali
Linux VM to test and choose the tools that will
be used for the project

Start date: 10/01/2020

End date: 12/01/2020

Internal task T1: Download the latest LTS Kali Linux version ISO for Virtual Box.

Internal task T2: Update and upgrade the tools.

Internal task T3: Export updated state as a VM for the students.

Testbed platform for Cybersecurity Use cases WP ref: P2

Major constituent: Lab update

Short Description: Using the material
provided on the first iteration of UCASES as
reference, update practices and environments.

Start date: 12/01/2020

End date: 23/03/2020

Internal task T1: Recon-ng.

Internal task T2: NMAP.

Internal task T3: Scapy & TCP dump.

Internal task T4: NSE.

Internal task T5: Nessus.

Internal task T6: Netcat.

Internal task T7: Set up VMs and its network to be able to do the reconnaissance
lab.

Internal task T8: Msfconsole.

Internal task T9: Meterpreter.

Internal task T10: Metasploit.

Internal task T11: Empire.

Internal task T12: Set up VMs and its network to be able to do the reconnaissance
lab.

 12

Testbed platform for Cybersecurity Use cases WP ref: P3

Major constituent: UCASES Guide

Short Description: Write the guide for the
students to be able to start using and practicing
with the tools from the work package P2

Start date: 20/01/2020

End date: 29/03/2020

Internal task T1: Write basic explanation about the tools.

Internal task T2: Introduction guide for the tools.

Internal task T3: How to test and start playing with the tools.

Testbed platform for Cybersecurity Use cases WP ref: P4

Major constituent: Global Testing

Short Description: Test work package P3
guides to make sure they make sense and
keep working as we update or change the OS.

Start date: 20/01/2020

End date: 29/03/2020

Internal task T1: Quick overview test of previous working functionalities.

Internal task T2: Full extensive test at the end of P3.

Testbed platform for Cybersecurity Use cases WP ref: P5

Major constituent: Documentation

Short Description: Write this document Start date: 13/01/2020

End date: 01/04/2020

Internal task T1: Write the TFM document to present to the UPC and the tribunal.

Internal task T2: Other documentation.

 13

WP# Task# Short Title Milestone / Deliverable Date (Week)

P2 T3 Kali Linux ready Attacker OS that will be
used for the TFM is
available.

2

P3 T7 Reconnaissance lab Finished the
reconnaissance “chapter”
update (VMs & tools)

6

P4 T12 Exploiting lab Finished the exploiting
“chapter” update (VMs &
tools)

11

P5 T3 UCASES Guide Finished writing UCASES
guide

12

P6 T2 Testing Final testing 12

P5 T2 TFM Documentation End of TFM 13

 14

2. Technology used or applied in this thesis

The goal for this chapter is to present different options and already existing products,
available at the time, which would solve the problem tackled in this project. This chapter
will present them, see what characteristics they have and see why we discarded them
and decided to build our own, custom, testbed. In addition, we will introduce the tools
used in the guide, and therefore in UCASES. Note that, in this chapter, we will not see
what we do with those tools in the guide / UCASES. That information can be found in
chapter 4.

2.1. Virtual labs

First, mention that we discarded any paid environment right away. Many of these
penetration-testing environments offer a vulnerable environment to do reconnaissance on,
and it contains vulnerable virtual machines to infiltrate and exploit. Some of them cover
the contents of UCASES; offer a guide, support and a certificate if you complete them.
However, the fact that there is a need for a paid subscription, per user in most cases,
makes these options (e.g. pentesterlab [1], offensive security proving grounds [2]) not
viable to solve the problem at hand.

On the other hand, there are some free and interesting options to choose from, but since
there are a lot of options, we will look at the most promising ones.

2.1.1. HackTheBox & TryHackMe

Both of these environments, HackTheBox [3] and TryHackMe [4] (See logos in Figure 1),
have both, a paid and a free version. Even if the free version has limitations is still a good
penetration environment for novices. It has systematic exercises, with hints to solve them
and a form to put the answer to make sure it is correct. Moreover, it has a discussion
forum and discord if the user has any problems with the exercise. On top of that, there
are write-ups available with the different solutions provided by other users.

Even if these are great options for novices to start, and have a lot of good material, both
of them had the same problems.

First, both of them are missing some part of the UCASES course. Even if both of these
sites cover far more than the subject itself, most of it is advanced stuff out of the scope of
the subject. UCASES is an introductory subject and one of its objectives is to introduce
the students to many tools without going too deep into any of them.

Second, and most important, the lecturer would not have control over anything inside
those environments. If the subject UCASES uses a third party, it needs to be constant.
Most of this environments change from one year to another, and this can be a major
problem for the responsible, since some part of the subject might break from one
semester to another without notice, or even mid semester.

 15

Figure 1: Logo TryHackMe & Hack the Box

2.2. Tools

The tools used in UCASES can be separated in the two following main groups:

 Reconnaissance

 Exploiting

First, we will see the reconnaissance tools. These tools are used, as his name indicates,
for scouting and gathering information about a target usually using information publically
available on the internet, commonly known as Open-source intelligence or OSINT. It is
important to note, that even if no laws specifically prohibits the actions done with this
tools, such as port scans, doing reconnaissance without permission of the target can
cause trouble and even carry a lawsuit.

Second, we will see exploiting tools. With these tools, the objective is usually to gain
control over a target machine and actively manipulate it to achieve some goal. Unlike
reconnaissance, the use of these tools on any third party machine without written
permission is strictly illegal and is what most people consider “hacking”.

2.2.1. Reconnaissance

The reconnaissance tools used in UCASES are the following:

 Recon-ng: “Web Reconnaissance framework written in Python. Complete with
independent modules, database interaction, built in convenience functions,
interactive help, and command completion, Recon-ng provides a powerful
environment in which open source web-based reconnaissance can be conducted
quickly and thoroughly.” [5].

 16

Figure 2: Recon-ng ASCII when starting the framework

 Nmap: “Nmap ("Network Mapper") is a free and open source utility for network
discovery and security auditing.” [6]

 NSE: “The Nmap Scripting Engine (NSE) is one of Nmap's most powerful and
flexible features. It allows users to write (and share) simple scripts to automate a
wide variety of networking tasks.” [7]

 Scapy: “Scapy is a Python program that enables the user to send, sniff and
dissect and forge network packets. This capability allows construction of tools that
can probe, scan or attack networks.” [8]

Figure 3: Scapy ASCII when starting the framework

 Nessus: “network vulnerability scanner that uses the Common Vulnerabilities and
Exposures architecture for easy cross-linking between compliant security tools.”
[9]

Figure 4: Nessus logo

 17

 Netcat: “Computer networking utility for reading from and writing to network
connections using TCP or UDP.” [10]

 Nikto: “Nikto is a web server assessment tool. It is designed to find various
default and insecure files, configurations and programs on any type of web
server.” [11]

2.2.2. Exploiting

The exploiting tools used in UCASES are the following:

 Metasploit: “Penetration testing platform that enables you to find, exploit, and
validate vulnerabilities. It provides the infrastructure, content, and tools to perform
penetration tests and extensive security auditing” [12]

Figure 5: Metasploit logo

 Empire: “Empire is a pure PowerShell post-exploitation agent built on
cryptologically-secure communications and a flexible architecture.” [13]

 18

3. Project development

In this section it is covered the process and the decision-making made during the
development of the testbed, as well as other minor details that might be of interest and
utility. This project is divided in three main blocks:

 Attacker machine: OS for the virtual machine that the students will use to
perform the labs.

 Victim machines: Multiple OS, vulnerable and not, that will constitute the testbed
and the ones the students will target during the labs.

 UCASES guide / tool upgrade: Development of an extensive guide for the
subject, with the latest versions of the tools used, and the necessary information
to start using them.

Moreover, a question that rose pretty early was “What virtualization platform will we use?”
this question, even if is not one of the main blocks per se, is an impactful decision needed
to be make almost at the start of the project.

3.1. Virtualization platform

This was the first major decision took for this project. Selecting a friendly, free and active
virtualization platform was important. One of our objectives was to make the testbed easy
to use & install for the students, and easy to use or modify and update for anyone. For
this reason, we kept in mind that the testbed we developed in this project checked the
following requirements.

 Easy to use: User friendly, we want a virtualization platform that has almost no
learning curve and that is intuitive to manage.

 Free & active: As everything on this project, the software must be free to prevent
extra cost for the students or the university. It also needs to be active since an
active community and dev team is usually a signal of stability for the software.

 Should be able to “evolve”: We kept in mind that this testbed should not be a
final product, others should be able to modify it and change it without major issues.

3.1.1. Why this three requirements?

The first requirement was straightforward; we did not want the students to spend half a
month, or more, of a four-month course learning how to use a virtualization platform, or
anyone who would want to expand or update the testbed to find a stiff learning curve only
to understand the virtualization software.

Next, as mentioned previously, if a software have an active community and development
team, usually means long-term stability. We did not want to do all the set up for the
testbed and that within two years that setup (VM networking, ISO files, etc.), see that any
of it was no longer supported with all the problems for the lecturer of UCASES, or anyone
who would like to update the platform, that the deprecation of the software might carry.

 19

Moreover, is easier to find help and to solve any problem a student might encounter, that
we did not expect or foresee, and therefore, the solution would not be available in the
guide of this project.

In addition, as we said before, the students should not pay anything to study this subject
(aside from its enrolment fee), nor the university should incur in extra expenses.

Furthermore, we did not even consider using “non-official/illegal” source to obtain
proprietary software, and make the students look for them.

Finally, the cybersecurity world evolves fast, tools and software can change drastically
within a year so, that is the reason for the point “Should be able to evolve”. Any one
should be able to take the testbed, guide and the concepts used for this project, and be
able to add or change anything to keep it up to date or expanding it. Adding a VM or
changing a part of the guide to fit a change on a tool/concept or even adding a new tool,
should not be an issue to anyone. Change in this world is inevitable and constant so one
of this project’s objectives was to make the change easy.

3.1.2. Choosing the platform

Once we had the requirements for the virtualization platform, we just needed to look for
the most used and popular virtualization platforms, since we wanted an active community
and support.

On searching, we found two main candidates as the “most popular”: VMware, Virtual Box.
There were others (e.g. Hyper-V [14] (Windows only), Parallels [15] (Mac)) but the OS
limitations, the usability (Not friendly for new users) or that they were simply not free
discarded them for our project.

Is important to note, that the option of using Docker [16] containers, with Docker instead
of VMs was considered. It was tempting to go deep inside this technology and it looked
like a promising option for creating a testbed with containers instead of virtual machines,
but it clashes with one of the “requirements” of this project. It would not be easy to use, at
least not at first; Docker has a learning curve with it, which could be a problem for the
students and for anyone trying to expand the project. Even if Docker is a powerful and,
once you have some experience with it, easy to use tool. It takes some starting learning
curve that would take valuable time from the actual subject UCASES.

This left the two major products at the time, Oracle’s VirtualBox [17] and VMware [18].
Since this project was not about a benchmarking of virtualization products and VirtualBox
and VMware Workstation (free) are similar, we opted for the 100% free and open source
tool VirtualBox.

3.2. Updating UCASES

3.2.1. Tools

To be able to decide what VMs we would use for our testbed, first, we needed to decide
what tools we wanted to use on UCASES. This was similar to the first iteration done of
the subject, but a check was needed to see if any of the tools have been deprecated. The
tools will be divided in two main groups, reconnaissance and exploiting.

 20

The reconnaissance part will not affect the VMs themselves, but their ports and the
network they are in to.

The reconnaissance tools that UCASES will dip on are the following: Recon-ng, Nmap,
Scapy, NSE, Nessus, Netcat and Nikto.

The exploting activily will interact with the VM and try gain control of it and use its
features such as shell, webcam, etc.

The exploiting tools UCASES features are two: Metasploit and Empire.

The process of updating the tools was straightforward. First, we updated all the tools to
the latest/LTS version, making sure all the tools were not deprecated or had any major
issues. Next, we read the changelogs of the updates and the latest documentation, when
available. After that, we proceeded to redo the entire UCASES subject (labs) with the
new tools and taking notes of the changes. After that, we did a third iteration of the labs,
knowing the changes beforehand. On this iteration, we wrote the guide, trying to think out
of the box to try to spot possible problems the students might face (e.g. tool not on the
PATH) and giving solutions to them. Finally, once the guide was done, a final iteration
was done for each part and one globally, to make sure there was nothing amiss.

3.3. Virtual Machines

3.3.1. Attacker

To be able to do the UCASES subject the students need a machine with, at least, all the
tools they would use during the course. Even if all the tools are available for almost any
Linux distribution, we choose Kali Linux as the attacker machine. We will now look at the
reasons that lead to that decision.

Kali Linux [19] has been, and still is, the penetration testing OS by default for most of the
community and there are reasons for that.

All the tools the average penetrating tester might need are already pre-installed. On the
past Kali might have been a harsh OS for people used to Windows or MAC since the GUI
was not a focus for its developers nor was a priority for the users of the OS. This has
changed drastically the last years. The GUI of Kali Linux has improved greatly, the tools
are sorted by utility and since the last versions, and it has an “undercover” mode that
makes it similar to windows 10. That might be useful for some users so the change is not
that hard, and it is a nice touch since Kali is heavily related to black hat hacking, due to
people misinformation, so this makes it easier to use it without problems.

One other option was to use Ubuntu 18.04 [20] LTS “Bionic Beaver”, the latest LTS. This
would have been the option if Kali did not update the GUI on the latest versions; there
was no major benefit on using this OS over Kali. However, there is a disadvantage; unlike
Kali Linux, the tools are not pre-installed on Ubuntu. Manually installing all the tools we
need for this machine would be a time waste without any reward for doing it.

In addition, we considered other penetration testing distributions similar to Kali, such as
BackBox [21], Parrot Security OS [22], BlackArch [23] and more. The ones that stood out
were BlackBox and Parrot Security.

 21

We choose Kali over BlackBox for multiple reasons. First, even if they are quite similar,
Kali has a bigger community and a big Bug Bounty program [24], BlackBox has none,
which makes Kali a better option on the long run since both of those things note a long-
term software/product.

For Parrot Security OS what made us discard it was that it is relatively new. Since we
said earlier that the cybersecurity world is in constant change and there are always new
tools, this might seem like a poor or hypocritical decision. Why would we update to later
version of tools and then discard a new OS?

The reason for this is that the tools we use are stable and have been used for a long
time; they are not new, just updated. On the other hand, brand new products on
cybersecurity come and go as fast as the field evolves. This means that a new OS might
disappear if not successful or something happens. We are not saying that Parrot OS is
bad or is going to fail, is just that Kali is a safer option with almost no drawbacks.

In conclusion, even after a broad search for a better option of the classic Kali Linux, no
OS had any major benefit to justify the security and stability that Kali provides. To
summarize, Kali Linux was the better OS for this project.

3.3.2. Victims

The “victim” or target machines are the VMs that will form the testbed itself, these
machines will be used as test subject for the tools for the length of the course. We need
two kinds of VM, one group that is vulnerable and exploitable, and another that is
relatively secure so the students can see the difference from one to the other on some
parts of UCASES.

Almost all of the modern or up to date operating systems already have a good AV (e.g.
Windows defender) or defence mechanisms. Therefore, any modern OS such as
Windows 10 will do the trick for the secure operating systems in our environment. Since it
will be used for introduction to penetration testing, none of the attacks or exploits used
should be able to affect them, without intentionally disabling the security that is.

For this testbed, we will be using Windows 10 as a secure machine since it is the most
commonly used OS and can be a good example that, even if the scenario we provide in
the tested makes it look easy to scan the target environment or take control of a machine.
In reality, it is not that easy at all. In fact, most modern operating systems will simply not
let you even download a file with a payload in it, even less execute it.

On the other hand, our vulnerable machines will be two a windows 2008 and an Ubuntu
14.04. To be more precise, we will use the Metasploitable 3 [25] VMs. As said earlier,
UCASES introduces many tools but it does not dives deep in any one. We choose this
machine because it brings the opportunity to explore more than what the subject covers
for metasploit, since these machines have been built to use metasploit on. There are free
guides and videos available online using metasplot to break into these machines, which
makes it a good option for the students to expand the skills and knowledge obtained on
UCASES.

 22

4. Results

In this section, we will do an overview of the final version of the guide. We will describe
the scenario from the testbed, explain how we used all the tools mentioned in previous
chapters, and see what specific parts of the tools we used, since most, if not all of them,
are extensive and deep enough to have a subject for themselves. As we did for other
chapters, we will separate the tools in two groups: reconnaissance and exploiting. Note
that this is an overview of what is done in UCASES, for a more detailed explanation on
how UCASES uses the tools and for what purposes, please look at the full guide provided
at the annexes.

4.1. Scenario

The final scenario of the testbed is composed of two vulnerable machines (Windows
2008, Ubuntu 14.04); one secure machine (Windows 10) and an attacker machine (Kali
Linux). All of these machines will be run inside a virtualization platform, in our case.
VirtualBox and they will be group together in a NAT network. Using the NAT network
option for networking on the virtualization platform will make it possible that the machines
can see each other and have access to internet without port forwarding via a “fake”
internal network that connects all the machines together. This is important since we need
visibility between the attacker and the target machines in most of the labs, and access to
the internet in some small parts of some practices. We can see a diagram of what the
scenario looks like in the Figure 6. Is important to note that with this configuration, the
machines will have access to each other, the host and the internet, but not the host nor
LAN will have access to them without a setup of port forwarding. This is not a problem for
this project, but it is important to be aware of it.

 23

Figure 6: UCASES testbed network

4.2. Reconnaissance

4.2.1. Recon-ng

Recon-ng is a vast tool. It is composed of modules and each module does a specific job.
The objective of this lab is for the students to gain familiarity with recon-ng and its user
interface, be able to navigate within its framework and see how potent it actually is to
gather information. We take a look at two specific modules “reverse-resolve” and “cache-
snoop” that could be used for a task of gathering information for a penetration tester. It
also exemplifies how to manage the recon-ng database and its default files. This lab is
one of the few parts of the UCASES that does not use the testbed itself but a public
network.

 24

First, the lab starts with an introduction on how to navigate through the different options of
recon-ng, set a “nameserver”, use the Linux shell from within recon-ng itself and search
for modules.

Figure 7: Setting a NAMESERVER

Next, we use “reverse-resolve” that takes a block of IP addresses and sends PTR
lookups to a DNS server to determine which of those IP addresses resolve into names.
With this part, the students see how to define a netblock, select and use a module, and
how recon-ng stores the information gathered from running the module in to its internal
database. In this part of the lab, the students can see how to use this module and how it
store its information to the recon-ng’s database. We can see the output of that database
after the scan in Figure 8.

Figure 8: Recon-ng database showing reverse-resolve findings

After that, we use “cache-snoop”, which does a DNS cache snooping against a target and
associates this records with antivirus update sites, to give the possible AV the target is
using. In this section, the students can see the results that give the tool, but more
important, they see that this specific tool uses a file of AV domains (see output in Figure
9) to run and note that this file could be modified to fit the needs. This happens with other
modules and tools and it is an important thing see.

 25

Figure 9: File of AV domains used by cache-snoop

4.2.2. Nmap

Nmap is an extremely useful tool used for network discovery. This lab is separated in two
parts. The objective of this first part is to see some of the options that Nmap provides,
such as scan through a network range, port range, different kinds of scans (TCP & UDP)
and analyse what happens when the packets contains bad checksums. The second
part’s objective is to see the OS fingerprinting option of Nmap, how accurate it is, and see
the file that feature uses to decide what the target’s OS is.

In this first part of the lab, the students will use tcpdump to analyse the traffic and see
what is happening “behind the scenes”. The students will use the Windows 10 machine
and one of the Metasploitable ones, this way they will be able to see the difference in
timing and results when the traffic is or is not filtered. In this practice, they also will see
how to store the information of the nmap scans. We can see an example of a full scan of
all port in Figure 10.

 26

Figure 10: Full TCP SYN scan output

On the second part of the lab, focuses on OS fingerprinting, and the students will be able
to see how Nmap can deduce what OS has the target if enough information is provided,
and how can this be prevented if the traffic is filtered. They will also look at the files Nmap
uses to use as its default behaviour (e.g., what ports will be scanned if no port is
specified). We can see an example of the output of the OS fingerprinting in Figure 11.

Figure 11: OS fingerprinting on the vulnerable Windows 2008 machine.

4.2.3. Scapy

Scapy is a packet manipulation program. It is able to create packets of a wide range of
protocols, send and capture them, proving, unit testing, attacks, network discovery and
more.

In this lab, we want the students to solve different “challenges” with Scapy. The objective
is to browse the documentation to find the options necessary to create specific packets.
We also ask them to use tcpdump commands to sniff those packets.

This lab’s objective is not only to familiarize the students with the concept of constructing
specific packets, that could be useful in penetration testing, but also to grow more used to
browsing the documentation of Scapy & tcpdump to figure out a way to solve an
“obstacle” using a specific tool. This skill is highly useful on penetration testing since
there are many tools with an extensive documentation.

 27

This lab consist in four challenges.

First, the students will see the default Scapy behaviour and will be able to compose a
simple command.

Second, some complexity is added making a loop on the packet sending and adding a
payload that they will be able to see on the tcpdump, as we can see in the Figure 12 with
the payload “UCASES_Challenge”.

Figure 12: TCPdump output of challenge #2

Third, the students will recreate an old DoS attack, parched long ago, that consisted in
sending a packet with the same IP and port of the recipient.

Fourth, using Scapy and tcpdump, we dig a little bit more in the state “filtered” seen in
previous Nmap labs. We can see in the Figure 13 that the port 10 & 11 are filtered not
providing response and port 5347 is open providing it.

Figure 13: Missing reset [R] response from target's ports 10 & 11 that are "filtered"

4.2.4. NSE

Nmap Scripting Engine (NSE) is one of the most powerful features of Nmap. It allows the
use of scripts within Nmap. We can create our custom scripts or use the ones already
created by other people to automatize process that are repetitive or done multiple times
with this tool. The objective of this lab is to take a peek at the scripts already present in
Nmap, use some of them to see what they do (robots.txt.nse, nbstat.nse), look at some
SMB scripts and finally look at the source code of sshv1.nse, and see why Nmap does a
scan when we ask for it to execute a script.

First, the students will look at the file “script.db” (see the start of the file in Figure 14)
within the Nmap files to see that there are all the scripts listed, and that those scripts
have been categorized. We also will use the “wc” (Word Count) command to see how
many scripts are there for a specific category.

 28

Figure 14: Content of the "script.db" file

Then, they will use the “http-robots.txt.nse” script to pull the robots.txt file from any
website. This file is used to tell web crawlers to ignore specific directories or pages on a
website that the owner does not want listed on search engines. It can be a good source
of information for attackers, but is important to note that this file is not a security measure.
It can be accessed and read by anyone with access to the document root of the web
server.

After that, we will use “nbstat.nse” script, this script works like the “nbtstat.exe” command
included in some versions of Windows, which pulls NetBIOS-over-TCP statistics,
including machine names, MAC addresses and usernames. Using this with our
vulnerable machines as target will return the MAC information of the machine and more.
The students will be able to check it out easily with “ipconfig –all” (windows) or “ip a”
(Linux).

Next, the students will take a look at all the smb scripts and the different types Nmap
already have (vuln, enum, etc.).

Finally, the students will use “sshv1.nse” specifying the port 22, and answer the question
“What happens if we are running SSH in a different port?” To answer this, they will look at
the source code of the script, start an ssh daemon in port 23 (or any other except 22),
and see that indeed the script finds the port 23 with ssh, as we can see in the Figure 15,
and that’s because the port scan Nmap does before running the script.

Figure 15: sshv1.nse finds SSH in port 23

4.2.5. Nessus

Nessus is a vulnerability scanner. Unlike most of other practices, this one do not require
the use of the terminal, aside for the installation of the package if needed. The objective
of this lab is to see what Nessus is capable of and to see what a scan in to our
environment machines retrieves. Also it the students will familiarize themselves with its

 29

GUI. Nessus is a proprietary software, and it has payed versions, with many features, but
it also has an “essentials” version targeted for students and cybersecurity novices that will
allow us to test it and what it is capable to do on a small scale.

In this lab, the students will see, first, how to create a Nessus policy, a custom template
defining what actions are performed during a Nessus scan. The students will, at least see,
systematically most of what a Nessus policy configuration offers. From basic settings of a
user authentication credentials, plugin selection and details, SSH configurations,
password guessing, brute forcing of users, etc. After that, they will use that policy to
launch a full scan to our three target machines (Windows 10, Linux 14.04 and Windows
2008), we can see the result of the scan in the Figure 16, and they will explore the results
and see how that scan can be exported.

Figure 16: Nessus scan of UCASES target machines

 30

4.2.6. Netcat

The objective of this lab is to show the students Netcat, introduce them to the command if
they never used it, and to see some different examples and cases of Netcat. This is a
short lab in comparison to others, but we deemed important to see the tool working, for
the people who never used it before, and to play a little with it with different scenarios (e.g.
Chat between two machines, port scanning, etc.).

In this lab, first, the students will use Netcat between two machines to simulate a simple
chat. Since Netcat can be installed on Windows, it can be done with any of the machines.
After that, the students will gather information from connection strings from clients, for
example Netcat on the port 22 of the target will reveal a SSH service. Then, using the
browser to access a port where Netcat is listening to capture different User-Agent strings
for different browsers. Finally, we will use the command line together with Netcat, to
“create” a monitoring tool to verify if a service is still running.

4.2.7. Nikto

Nikto is a vulnerability scanner. It is used “behind the scenes” as plugins for modern
scanners, one example of a scanner that uses Nikto is Nessus, the scanner we saw in
point 4.2.5 this chapter.

The objective of this lab is to introduce Nikto to the students, in this lab we will not enter
in much detail in any part of the tool, but just see the basics on how to use the tool and do
some basic scans. Since Nikto, as we said before, is used in the majority of automated
scans, we thought important to at least introduce the tool and see how its basics works.

First, the students will do a quick check of the Nikto documentation provided inside the
terminal itself (classics “-help” flag and “man” command). After that, they will perform a
basic scan of a target host with only the IP and see the results and the time it takes. Next,
they will be more specific in what the scan targets, such as ports and protocols, and see
that the scan is faster. Then, the students will combine Nmap in a “greppable” format with
Nikto to see how the two tools could be combined. Finally, we will introduce the mutate
and test (-T) flags briefly so the students can see that we only scratch the surface of the
tool.

4.3. Exploiting

4.3.1. Metasploit

Metasploit is a well-known and extensive penetration-testing platform with build in utilities
and commands, such as nmap. This lab is one of the longest in UCASES, and it is
separated in two main parts, reconnaissance and exploiting.

The objective of this lab is to perform an attack on our Windows 2008 Metasploitable
machine, being the final objective to gain a shell with root access on the said machine.
The students will see a small mock example of what is a penetration testing attack. They
will start gathering information using knowledge of previous labs. Then, with that
information will look for an attack vector exploiting the vulnerable services the machine
has. From there, using Metasploit, they will try to introduce a malicious payload to exploit
those vulnerabilities thus completing the attack.

 31

First, the student will populate the Metasploit database, using the build in nmap command
(db_nmap). This information would be among the lines of: what ports are open, what
services are running on those ports, what version of the services, etc. We can see an
example on the Figure: 17. To do this part they will need to review what was explain on
the nmap lab.

Figure 17: Populated Metasploit services table

Once the reconnaissance part is done, the objective will be to gain root access to the
target, to do so the students will try to introduce a malicious payload into the target using
the information obtained previously. There are many ways to gain root access in the
vulnerable machine, but the guide explains a non-direct way using two vulnerable
services. First, the students will exploit a non-root service providing them a shell with
local privileges and a payload in the Windows file system. From there, the students will
need to find another vector to gain direct root access or, as it explained in the guide,
exploiting another service with root access, but only in Java context, and from there
executing the payload left previously thus gaining root access on a system context.
Finally, the students will explore what they can do with the root access for example
“hashdump” to output the Windows password hashes, as we can see on Figure 18 or
“screenshar” to have real time feed of the victim screen as shown in Figure 19.

Figure 18: Hashdump of Windows credentials

 32

Figure 19: Real time screen of Windows machine

4.3.2. Empire

Empire is similar to Metasploit, but specific to PowerShell. The objective of this lab is for
the students to see some of the Empire features on a basic level. Contrary to the
Metasploit lab, this lab will not pay attention on the exploitation process; will introduce the
malicious file forcefully on a non-real scenario, focusing on the objective on seeing some
of the Empire modules.

First, the students select and set up an http listener, a process that will listen for a
connection from the target machine. Then, they will create a stager to run an agent via
PowerShell out of a “.bat” file. After that, the students will introduce that file into the target
system, even if the malicious file is detected. Next, the student will test multiple
information gather modules.

First, “situational_awarness/host/winenum” that without admin access will pull some
valuable information.

Second, “privesc/powerup/allchecks” that will look for privilege escalation.

Third, the students will try “credentials/powerdump” but it will need admin access. To gain
the elevated privileges they will use “privesc/ask”, that will prompt the user with a pop up
to ask for admin (Most users would click “Yes” without a second hesitation). Once the
students have admin, they will dump the hashed passwords of the target.

Finally, the students will end with some fun exploring modules from the “trollsploit” family.

 33

5. Budget

This project was developed using open source tools such as virtual box, Kali Linux OS,
Metasploitable OS, etc. This means that those tools have no cost for our project since
they are completely free and publically available. Any tools that are not open source a
free version is used so no additional cost is added from those tools either.

We will consider the salary of an engineer as approximately 32.000 €/year working 40
hour/week and 4 weeks/month. That makes the hourly salary of about 25 €/hour. The
duration of this project is 12 ECTS credits that makes about 300 hours.

Concept Cost

Engineer 7000 €

Table 1: Budget

 34

6. Conclusions and future development

This thesis has been able to develop a suitable testbed for the MATT’s subject UCASES,
This testbed contains four virtual machines used on different labs of the subject, from
reconnaissance analysis, to penetration testing and exploiting.

In addition, this thesis also provides a VM with all the necessary tools that the students
would need for UCASES, with the latest versions at the time.

Finally, it also contains a detailed guide for the subject that contains all the necessary
information to be able to perform the mandatory tasks to study UCASES. This includes a
systematic guide on how to set up the required scenario for the UCASES’ labs, how to
solve the most common problems the students might encounter, and finally, a complete
explanation introducing the tools and some guided exercises to see how those tools work.

6.1. Difficulties

There have been two main difficulties, we did not foresee, when developing this project,
and they were the following:

 Too many options at each step

 Missing or loose documentation.

These problems did not break the planning or made us make major changes to the thesis.
The issue they caused was a heavy time impact on the project.

The first drawback we faced was having too many options. Starting this project, we
realized right away that we would need to make some decisions, what we did not
anticipate is the vast amount of options, this decisions had. One example is the attacker
OS, we have seen the options we balanced at the end, but there are plenty of operating
systems that can be used for this project and that we looked at (e.g. Fedora, Gentoo
Linux, tails, Pentoo [based on Gentoo], etc.) and this are just a couple of them. As we can
see, even if you discard some of them quickly, going through, and looking at them,
consumes an absurd amount of time.

The second obstacle we dealt with was the loose or missing documentation on some of
the tools. UCASES uses many tools along its semester, and not all of these tools’
documentation is clear or easily found. Moreover, we wanted to do specific labs, with
specific steps to introduce the tool, so many tutorials were of no use. An example of that
issue was Recon-ng, which most of the documentation or tutorials found were outdated
since the last major version change. This leads to first, look for a reliable source to start
(such as the help command) and go from there, leading to a trial and error to find what
we want for each specific part of the lab.

6.2. Testing

The testing done for the project is straightforward. UCASES can be divided in multiple
labs, and the guide has been developed as such. Once the testbed was running we
updated the labs separately, systematically and making sure, no problems were found

 35

along the way. When the entire guide was finished, we did all the labs over again from a
clean testbed and Kali, making sure all worked and the commands were correct. If any
problem was found, (e.g. tool not included to path), we added the solution to the guide to
make sure that if a student bumps on that problem, he can easily solve it.

6.3. Future developments

This project could be just a starting point to creating a virtual environment within the
UPC’s servers. This route of development creates two main proposals to expand this
project.

First, this testbed could be deployed within the university servers to create a full virtual
environment so the students only need to install Kali Linux or any other attacker machine
they want and attack the virtual environment within the UPC. Even if this task might not
merit a master thesis, the creation of a continuous integration platform to be able to
modify, add, reset, etc. the VMs does. This would make the process of modifying the
virtual environment much more easy and safe by the lecturer. Having automated tests to
make sure any change done to the environment does not break any existing lab is a
priceless feature to have.

Second, UCASES is not the only subject within the cybersecurity track form MATT that
would benefit from a testbed, for example the subject Network Security (NS), had some
practices that were done within the student’s computer. That carried some problems due
a different configurations and VMs.

To summarize, here are the proposals to expand and continue this project:

 Deploy the testbed to UPC servers and create a CI platform to be able to modify
the testbed easily and securely.

 Expand the testbed to encompass multiple MATT subjects to standardize the
student’s environments to prevent inconsistency problems and, if necessary
update the labs.

 36

Bibliography

[1] «TryHackMe,» [Online]. Available: https://tryhackme.com/. [Accessed: 02/2020].

[2] «Pentesterlab,» [Online]. Available: https://pentesterlab.com/. [Accessed: 02 /020].

[3] «HackTheBox,» [Online]. Available: https://www.hackthebox.eu/. [Accessed: 02/2020].

[4] «Offensive-security.com,» [Online]. Available: https://www.offensive-security.com/labs/.
[Accessed: 02/2020].

[5] «Tools.kali.org,» [Online]. Available: https://tools.kali.org/information-gathering/recon-ng.
[Accessed: 01/2020].

[6] «Nmap.org,» [Online]. Available: https://nmap.org/. [Accessed: 01/2020].

[7] «Nmap.org,» [Online]. Available: https://nmap.org/book/nse.html. [Accessed: 02/2020].

[8] «Scapy.readthedocs.io,» [Online]. Available:
https://scapy.readthedocs.io/en/latest/introduction.html. [Accessed: 02/2020].

[9] «SearchNetworking,» [Online]. Available:
https://searchnetworking.techtarget.com/definition/Nessus. [Accessed: 02/2020].

[10] «En.wikipedia.org,» [Online]. Available: https://en.wikipedia.org/wiki/Netcat. [Accessed:
02/2020].

[11] «Cirt.net,» [Online]. Available: https://cirt.net/nikto2-docs/introduction.html. [Accessed:
03/2020].

[12] «Tools.kali.org,» [Online]. Available: https://tools.kali.org/exploitation-tools/metasploit-
framework. [Accessed: 03/2020].

[13] «GitHub,» EmpireProject/Empire, [Online]. Available:
https://github.com/EmpireProject/Empire/wiki. [Accessed: 03/2020].

[14] «Docs.microsoft.com,» microsoft, [Online]. Available: https://docs.microsoft.com/es-
es/virtualization/hyper-v-on-windows/about/. [Accessed: 01/2020].

[15] «Parallels.com,» [Online]. Available: https://www.parallels.com/es/. [Accessed: 02/2020].

[16] «Docker,» [Online]. Available: https://www.docker.com/. [Accessed: 02/2020].

 37

[17] «Virtualbox.org,» Oracle, [Online]. Available: https://www.virtualbox.org/. [Accessed:
02/2020].

[18] «VMware,» [Online]. Available: https://www.vmware.com/. [Accessed: 02/2020].

[19] «Kali.org,» [Online]. Available: https://www.kali.org/. [Accessed: 02/2020].

[20] «Releases.ubuntu.com,» [Online]. Available: https://releases.ubuntu.com/18.04.4/.
[Accessed: 02/2020].

[21] «BackBox.org,» [Online]. Available: https://www.backbox.org/. [Accessed: 02/2020].

[22] «Parrotsec.org,» [Online]. Available: https://www.parrotsec.org/. [Accessed: 02/2020].

[23] «Blackarch.org,» [Online]. Available: https://blackarch.org/. [Accessed: 02 2020].

[24] «Offensive-security.com,» [Online]. Available: https://www.offensive-security.com/bug-
bounty-program/. [Accessed: 02/2020].

[25] «GitHub,» rapid7, [Online]. Available: https://github.com/rapid7/metasploitable3.
[Accessed: 02/2020].

 38

Glossary

AV – Antivirus

CI – Continuous Integration

CtF – Capture the Flag

DoS – Denial of Service

GUI – Graphical User Interface

NSE – Nmap Scripting Engine

OS – Operative System

UPC - Universitat Politècnica de Catalunya

UCASES – Cybersecurity Use Cases (UPC subject)

VM – Virtual Machine

