A framework

for polynomial time query learnability

Osamu Watanabe

Report LSI-90-31

o MMoocoEy Y

G)‘r{q J

G

A Framework for

Polynomial Time Query Learnability*

Osamu Watanabe

Dept.of Computer Science, Tokyo Institute of Technology, Tokyo 152, Japan
watanabe@cs.titech.ac.jp

July 7th, 1990

1. Introduction

The purpose of this paper is to prepare a formal framework for studying “polynomial
time query learnability”. Suppose someone, who is called a teacher, has some set, which
is called a (target) concept, in his mind. The learning notion considered in this paper is to
obtain the description of the concept by asking queries on it to the teacher. This type of
learning is called learning via queries or query learning. In particular, we are interested
in polynomial time query learning, i.e., query learning that terminates within polynomial
time.

Angluin [Ang87] showed a learning algorithm for regular sets, where deterministic
finite state automata (in short, dfa) are used for describing regular sets. The learning
achieved by this algorithm is a typical example for polynomial time query learning. For
any regular set X, Angluin’s algorithm S, asks queries about X and obtains the de-
scription of X, i.e., a dfa that accepts X. Queries asked by S, are one of the following
types:

(1) A membership queryw; that is, S, presents a string w to the teacher and asks whether

wisin X.

*This is an extended version of a part of [Wa90]. The preparation of this paper was done while
the author was visiting Departament de Llenguatges i Sistemes Informatics, Universitat Politécnica de
Catalunya, and supported in part by ESPRIT II Basic Research Actions Program of the EC under
contract No. 3075 (project ALCOM) and by Grant in Aid for Scientific Research of the Ministry of

Education, Science and Culture of Japan under Grant-in-Aid for Co-operative Research (A) 02302047
(1990).

(2) An equivalence query M; that is, S, presents a dfa M to the teacher and asks
whether L(M) (i.e., the set accepted by M) is equivalent to X. For this type of
query, S4 expects a counterezample to the equivalence conjecture (i.e., a string in
(L(M)— X)U(X — L(M))) if L(M) is not equivalent to X. (Thus, this type of query
is more precisely called an equivalence query requiring a counterezample.)

For any regular set X, S4 obtains the minimum state dfa M x for X if each query is
answered correctly w.r.t. X. Furthermore, it outputs Mx within polynomial time w.r.t.
the number of states in Mx and the length of the longest counterexample. Thus, we can
consider that the class of regular sets (or, more precisely, the class of regular sets repre-
sented by dfa) is polynomial time learnable by using membership and equivalence queries.
It has been asked [Ang87, Ang88, BR87, Ish89, Sak88] whether similar learnability results
hold for the other concept classes such as the class of regular sets represented by regular
expressions, the class of context-free languages represented by context-free grammars, etc.
This paper provides a formal framework for investigating this type of polynomial time
learnability.

There are several learning models, and for some of them, a reasonable framework has
been already established that provides notations and notions necessary for our discussions.
However, those frameworks are not suitable for our type of learning. In what follows, we
review major learning notions and point out the difference from ours.

Gold [Gol67] introduced a learning notion that is usually called the identification in
the limit or the EX identification. For this learning notion, we have a framework that
is commonly used now (see, e.g., [AS83)]). Furthermore, such a framework has been
extended [GS89] in order for studying “query learning”. However, in this traditional type
of learning, the main issue is the learnability within finite amount of time and is not the
learnability within a given amount of time. In other words, the framework is for recursion
theoretical learning and is not suitable for resource bounded learning.

On the other hand, the PAC learning introduced by Valiant [Val84] concerns resource
bounded, in particular, polynomial time bounded learning. Due to the fundamental works
in this field [BEHW86, PV88, PW88, War89}, we have now what could be called a “frame-
work” for the PAC learning (see, e.g., [PW88]). However, the learning notion considered
in that framework is “passive learning” because learning algorithms are regarded as func-
tions that compute the description of a target concept from a set of examples that are
given as an input data. In other words, such a framework does not consider the situation
where learners can ask questions about a target concept. (Note that the philosophy of

“Probably Approximately Correct (PAC)” itself does not contradict to a query learning

2

model at all. Indeed, Valiant considered “query learning” briefly in [Val84]. However,
the present framework for the PAC learning seems too restrictive for discussing query
learning; see also Section 4.3.)
In this paper, we prepare notations and clarify notions that are necessary for discussing
the time bounded version of query learning. We will consider the following points:
(1) How can we specify a target concept class, and what kind of concept classes are
reasonable?
(2) How can we describe and analyze our learning algorithms?
(3) What is an appropriate definition for the goal of learning? In other words, in which
situation can we claim appropriately that ‘a i:a.rget concept has been learned’?
The first two points are mainly matters of notations, which will be settled by choosing
and/or introducing appropriate ones. On the other hand, the third point concerns the
definition of learning notion itself. Here we will propose three definitions each of which

defines a different learning notion. Some examples will be given to motivate those defini-

tions.

Preliminaries
In this paper we follow standard definitions and notations in computational complexity
theory; the reader will find them in a standard text book such as [HU79, BDG8S].

Throughout this paper, we use a fixed alphabet ¥ that contains {0,1}. A symbol
1 & ¥ is used to denote “undefined”. By a string we mean element of £*, and by a
language we mean a subset of £.*. We use ¢ to denote the null string. For any set A, let
A to denote the complement of 4, i.e., £* — A; for any set A and B, let A/ B denote
the set (A — B)U (B — A). The length of a string z is denoted by |z|. Let A" is used to
denote the set {z € A : |z| < n}.

We use some reasonable encoding schema over I for several objects; e.g., nonnegative
integers, deterministic/nondeterministic finite automata, regular expressions, right-linear
grammars, context-free grammars, Turing machines, boolean circuits, etc. We can assume,
e.g., that the length of the string encoding a dfa M with input alphabet X is polynomially
related to the number of states in M. In the following, we will not distinguish an object
and the string encoding it. For example, we use N to denote both the set of nonnegative
integers and the set of their binary notations. We consider the following pairing function
Azy.(z,y): for any string = and y, (z,y) is a string of length 2(|z| + |y| + 1) from which
one can decode both z and y in linear time. For each n > 2, this pairing function can be

easily extended to an n-tuple function Az, ..., z,.(z1, ..., 2,).

2. Representation Class

In this section the framework concerning “target concept” is discussed. We first determine
our way to specify a target concept class. We adopt the way that has been used in the
PAC learning [PW88, War89], and specify a concept class in terms of “representation
class”. There are representation classes whose polynomial time non-learnability is almost
trivial from their definition. In order to avoid some of such ill-natured cases, we propose
conditions for representation classes.

We should notice that the polynomial time learnability of a given concept class may
largely depend on a way of describing the concepts. For example, we know by Angluin’s
algorithm that the class of regular sets represented by dfa is polynomial time query learn-
able; on the other hand, it is still open whether the same learnability result holds for the
class of regular sets represented by regular expressions. Thus, the learning problem is
not well specified until we determine both a concept class and a way of representing the
concepts.

This point has been already noticed in the PAC learning. Indeed, it is observed
[PW88] that the descriptive power of representation language is a significant factor for the
existence of an efficient PAC learning algorithm. Motivated this observation, researchers
have started specifying concept classes more precisely by using “representation class”
[PW88, War89]. We will follow this idea and adopt almost the same notation for our
framework.

A representation class is a five-tuple (R, ®,p,T';,T;), where
- Iy and I'; : finite sets, called an alphabet for representationsand an alphabet for concepts

respectively,
- R : a subset of I'}, called a representation language,
- @ : a function from R into T}, called a semantic function or concept mapping, and
- p: a function from R to N, called a size function.
(Note that the notation differs slightly from [PW88, War89]. In [PW88] a representation
class was a pair, in [War89] it became a four-tuple, and now it is defined by a five-tuple!
But do not worry; the last three components are, as we will soon see, usually omitted.)

For each r € R, the set &(r) is called a (farget) concept. And the class of concepts
{®(r) : » € R} is called a concept class. Since we are using the fixed alphabet ¥, we
will omit specifying alphabets I'; and T'y. A size function p is also omitted when it is the
length function, i.e., Az.|2|. Thus, a representation class is often written as (R, ®).

Although we are not really ready to define the notion of “polynomial time learning

algorithm” formally, it might be better to give a rough explanation on this notion at this
point. Let C = (R, ®,p) be any representation class. A learning algorithm for C is an
algorithm S such that for every concept X (or, more precisely, every 7 € R), S obtains
a representation 7’ for X (= ®(r)) by asking queries on X. Note that the output 7’ is
not necessarily the same as 7. We say that S is polynomial time if for every r € R, its
running time for learning ®(r) on input p(r) is polynomially bounded by some polynomial
in p(r). (Note that these definitions are still not precise; the formal ones will be given at
Section 4.)

Now we present some examples of representation classes. In the following examples,

we often omit explaining semantic functions when they are clear from the context.

Example 2.1. First consider representation classes from formal language theory.

- DFA = (R, ®ua, pdta), Where Rys, is the set of dfa (encoded in ¥*), and for any
T € Ryga, Pasa(r) is the set accepted by dfa (encoded by) » and pys(r) is the number of
states in the dfa (encoded by) r.

- NFA = (Ruga, Pufay Puta), Wwhere Ry, is the set of nondeterministic finite automata, and
for any © € Rygay pufa(r) is the number of states in r.

- REG = (Ryeq, Preg), where R, is the set of regular expressions,

- RG = (R, &), where R, is the set of right-linear grammars,

- CFG = (R, ® 5,), where Ry is the set of context-free grammars written in Chomsky

normal form,

- REG-CFG = (Ryegerg) Besg), where Ryegery C R is the set of context-free grammars

that generate regular sets, and
- PTM = (Rptm, ®pim), Where Ry, is the set of polynomial time Turing machines.

Now Angluin’s algorithm S 4 is explained more precisely by saying that ‘S, is a learn-
ing algorithm for DFA.’ The existence of a similar learning algorithm for the other
representation classes except PTM has been left open. (For PTM, we can prove that such
a learning algorithm does not exist; see the later discussion of this section.) Notice that
one can easily modify a learning algorithm for NFA to one for RG, and vice versa. Again

such an equivalence relation has not been known for the others.

Example 2.2. We show some examples concerning geometrical concepts. We define
representation classes for “ball” and “polygon” in [0, 1]F.

Basically, we represent a ball by its center and its radius, and represent a polygon by
its vertices. For these purposes, we need to encode points in [0,1]* by %*. Here we use

the following simple encoding schema.

Let us first consider [0,1]. Clearly, all the points cannot be encoded into 3*; that is,
every coding schema works only on some countable subset of [0,1]. Our coding schema
works for the set of numbers in [0,1) whose binary representation is finite; let B[0,1]
denote it, and in general, let B[a,] denote the set [a,b] N B([0,1]. We encode B|[0,1] over
{0,1} as follows: for every z € B[0,1], the code of z is the shortest w € {0,1}* such that
0.w is a binary representation of z. (Note that the null string encodes the number 0. in
B[0,1].) By using our tupling function, we can extend this encoding schema to B[0, 1]*,
the set of points in [0,1)* whose coordinates have finite binary representations. In the
following, we identify a point in B[0,1]* and its code.

Now define the following representation classes:

- 2-BALL = (Ry-pani, ®3-van),
where - Rypa1 = {(u,d) : u € B[0,1]? and d € B0, 1]}, and
- for any (u,d) € Ry-pan, ®2-van((u,d)) = {v € B[0,1)? : d(u,v) < d}.
(Where d(u,v) is the distance between u and v.)
- 2-POLYGON = (Rj-polygon, ®2-polygon),
where - Ry-polygon = {(1, .y w) : w1, ..., s € B[0,1]2}, and
- for any (w1, ...,) € Ra-polygon, ®2-polygon({1, -y wr)) = P(ug, ...,) N B[O, 1]2.
(Where P(ui,...,) is the polygon determined by vertices uy, ..., u;.)

The concepts specified by these representation classes are regarded as “ball” and
“polygon” in B[0,1]? respectively. For any k > 1, representation classes k-BALL and
k-POLYGON, which respectively corresponds k-dimensional balls and k-dimensional poly-

gon, are defined similarly.

Example 2.3. A boolean circuit or a logical circuitis an acyclic circuit consisting of gates
that achieve basic boolean operations such as =, A, and V. We consider only boolean
circuits with one output gate, and regard such circuits as acceptors. For any circuit C
with n input gates and any a,, a,, ..., a, € {0,1}, let C(a,...,a,) denote the output of C
when ay, as, ..., a, are given to the 1st, 2nd, ..., nth input gates respectively; we say that
C accepts a string aa,+--a, (€ {0, 1}*) if C(a,...,a,) = 1. Thus, we can use boolean
circuits for representing sets of strings. Now we define a representation class as follows:
CIR = (Rcir, ®cir), where R is the set of circuits, and for any circuit » € R, Q.ir(r) is
the set of strings accepted by r.

The main motivation of preparing our framework is to investigate “polynomial time

query learnability” formally and to develop some methods to determine whether a given

6

concept class has a polynomial time learning algorithm. For this purpose, however, our
definition of “representation class” may be too naive because one can define several strange
representation classes for which polynomial time (non-)learnability is clear. Since we can-
not obtain a good insight into “polynomial time learnability” through the investigation
of such ill-natured representation classes, we had better exclude them from our consider-
ation. Here we propose conditions for excluding some (but not all) such representation

classes.

In the following, let C = (R, ®, p) denote any representation class.

Condition for Size Function
Even in the case that a size function is not the length function, it is natural to assume

that the size of each representation r, p(r), reflects its length, |r|. Indeed, in most cases

we can assume the following condition:

Condition for Size Func.: 3p:a polynomial,Vr € R [|| < p(p(r))].

By this condition we can avoid such an extreme case that C has no polynomial time
learning algorithm because some representations are too long compared with their size

and thus are not even printable within polynomial time w.r.t. their size.

Condition for the Syntaz of Representation Language

Recall the equivalence query used in Angluin’s algorithm, i.e., the type of query that asks
whether a query string r represents the same set as the concept. For this type of query,
we usually assume that r is in R, i.e., a query string is a syntactically correct; otherwise,
we may be able to abuse teacher’s ability to answer to equivalence queries for deciding
whether a given word is in R. One way to avoid such abusing (or to guarantee that a
query string is always in R) is to assume that the syntax check for R is not difficult;
thereby, a learner can check whether a query string is in R or not by itself. This is the

motivation for the following condition.

Condition for Rep. Class: R ¢ P.

This condition may not be necessary for “subconcepts”. For example, consider the
representation class REG-CFG defined at Example 2.1. Clearly, Ryegeg is not in P; how-

ever, this representation class is still “reasonable” if we consider the problem of learning
REG-CFG by using a teacher for CFG. That is, REG-CFG is, though it is not a reason-

able representation class, still a reasonable representation subclass of CFG.

7

Condition for the Complezity of Concepts

Suppose that a representation class C' can express concepts of a higher complexity class
than P. It is reasonable to consider that such a representation class is too complicated
to be learned by some polynomial time learning algorithm. Indeed, we can easily prove
that if C' can express DTIM E(2P°Y) sets, then C is not polynomial time learnable. This
fact motivates us to introduce a condition concerning the computational complexity of
concepts.

Note that such a condition that every concept isin P (i.e., {®(r) : » € R} C P)is still
weak for our purpose. Take the representation class PTM for example. Note that PTM
satisfies the condition; however, we can easily prove that PTM has no polynomial time
learning algorithm. What follows is the idea of the proof: Define a sequence of sets {L;}i>:
such that each L; diagonalizes the ith polynomial time learner, i.e., L; is designed so that
it is not learnable by the ¢th polynomial time learning algorithm; thereby, we can conclude
that no polynomial time learning algorithm exists for {L;}i>1. Since any polynomial time
algorithm can be diagonalized by some polynomial time algorithm, we can define {L;};>:
so that each L; is recognized by some polynomial time Turing machine. That is, {L;}i>:
C {®ptm(r) : 7 € Ryim}. Therefore, no polynomial time learning algorithm exists for the
concept class {®pem(r) : 7 € Ryem}. The construction of {L;}i>1 has worked because the
above condition requires a polynomial time upper bound for each concept respectively.

This observation leads us to the following uniform upper bound condition.

Uniform P-Computability Condition:

JM : a polynomial time Turing machine,

Vr € R,Yu € B* [u € ®(r) « M accepts (r,u) .

A similar condition is considered in [War89).

We can easily show that each representation class defined at Example 2.1 (except
PTM) satisfies this condition; those proofs are left to the reader. On the other hand,
there are some interesting representation classes that do not satisfy this condition. For
example, if P # NP, then a representation class for “pattern language” [Ang80] does not
satisfy this condition because the membership problem for some pattern language is NP-
complete [Ang80]. Thus, the reader should be aware that the Uniform P-Computability
Condition may exclude some interesting representation classes as well as uninteresting

ones.

3. Learning System

We define our computational model for query learning protocols. In order to describe
learning protocols, we introduce “learning system”, which is similar to interactive proof
systems [GMRB85] (where “prover” and “verifier” in the interactive proof system are re-
placed by “teacher” and “learner” in the learning system).

Intuitively, a learning system is a pair of a teacher and a learner that can communicate
each other during the execution of the system. Consider a learning system that is designed
for learning some representation class C = (R, ®). The goal of the system is to have the
learner to obtain (i.e., output) a representation » € R of a target concept that is made
known only to the teacher. Here we describe this idea more formally.

A learning system (S,T) is a pair of a Turing machine S and an oracle function T,
where § is called a learner and T is called a teacher. Note that a teacher T is regarded
not as a machine but as a function; that is, we are assuming that T' can somehow answer
to queries tmmediately. We take such a computation model because our interest is not
“teaching strategy” but “learning strategy”. (For the sake of simplicity, however, we will
treat a teacher T' as a machine in the following explanation.)

A learning system (S,T) is regarded as a pair of Turing machines that shares one
work tape. On the other hand, some of those tapes are used for specific purposes. The

following are the tapes used in (S, T):

a communication tape:

a read-write work tape shared by S and T,
an target tape:

a read-only tape for T and not accessible by S,
an input tape, an output tape, and work tapes:

ordinary input, output, and work tapes for S not accessible by 7.

Note that T has access only to the communication tape and the target tape. (Later, in
Section 4.2, we will consider one variation such that an input tape is also accessible by
a teacher.) The communication tape is used for the communication between S and T
(see the explanation in the next paragraph). The role of the target tape is to let the
teacher T' know a target concept. Thus, a representation r of a target concept, a target
representation, is usually written on the target tape; this situation intuitively means that
T knows the concept that is represented by 7. Teacher T who knows 7 (or, more precisely,

T with r on the target tape) is written as “T(r)”.

Let (S5,T) be any learning system. Prior to the execution, an input z and a target
representation r are given respectively on the input tape and the representation tape.
Then the computation of (S, T) (which is written as (S, T(r))(z)) starts from S, executes
S and T in turn, and finally halts at S. More specifically, S and T run as follows:

(1) S starts from its initial state, writes a query string on the communication tape, enters

a query state, and stops;

(2) T writes an answer to the query asked at (1) on the communication tape, and stops;

(3) S resumes its execution, - - -.

(k) S resumes its execution, enters a final state, and halts.
If § outputs y on its output tape and halts with an accepting state at (k), we say that
(S,T(r))(z) outputs y (and write (S, T(r))(z) = y).
Obviously, the learning problem becomes trivial if learners can ask any queries (or
teachers can answer to any queries). Thus, in the study of query learning, we put a strong
restriction on the types queries and answers and discuss learnability under the restriction.
Here we explain four query types and two answer types that are often considered in many
different contexts. (In [Ang88] the reader will find a good survey on several query types
that have been proposed in the literature.)
Suppose that we are learning some target concept X in the concept class represented
by C = (R, ®). We consider the following query types:
membership query (Mem): for a query string' v, the query asking whether v € X,
equivalence query (Equ): for a query string r, the query asking whether &(r) = X,
subset query (Sub): for a query string r, the query asking whether ®(r) C X, and
superset query (Sup): for a query string r, the query asking whether &(r) D X.

For each query, an answers from a teacher is in one of the following:
yes/no answer: either 1 (meaning ‘yes’) or 0 (meaning ‘no’), and
answer with a counterexample: either a string w in £* (meaning ‘w is a counterexample
to the query’) or 1 (meaning ‘no counterexample exists’).

We consider only yes/no answers to membership queries.

Let C = (R, ®) be any representation class. A teacher T is called consistent with C
(or, more simply, a teacher for C) if for every r € R, T(r) provides correct answers w.r.t.

®(r). We can state “consistency” more specifically by choosing query types and answer

! A teacher must be informed on the type of a query being asked; thus, precisely speaking, each query
string should contain such information. However, by “query string” we often mean the string that is

being asked.

10

types. For example, a teacher is called an (Mem,Sub;E'qu)-teacher consistent with C (or,
more simply, a (Mem,Sub;Equ)-teacher for C) if it replies yes/no answers to membership
queries and subset queries, and answers with a counterexample to equivalence queries, and

those answers are correct w.r.t. C. A tuple such as (Mem,Sub;Equ) is called a teacher

type.

Example 3.1. It is easy to check that Angluin’s learning algorithm S, satisfies the fol-
lowing property:

(C.1) VT :a (Mem;Equ)-teacher for DFA, Vr € Ras
[(Sa, T(r))(z) =m0],
where 7¢ is the minimum state dfa for ®4¢. (7).

(NOTE: Since S4 needs no input string, z can be any string in £*.)

Intuitively, this property means that from every consistent (Mem;Equ)-teacher for DFA,
S4 can obtain the minimum state dfa for a target regular set; or we can claim more simply

that $4 can learn DFA from every (Mem;Equ)-teacher for DFA.

Finally, we introduce some notations for measuring the time complexity of a learning

system. For any learning system (S,T'), we define the following complexity measures:

for every input z and target representation r,
#qs(z; T(r) 4 the number of counterexample queries asked by S
during the computation (S, T(r))(z), and
for every input z, target representation r, and i, 0 < i < #qs(z; T(r)),
#steps(z,1; T(r)) 4 the number of steps spent by S
after it receives the answer to the ith counterexample query

until it asks the next counterexample query, or halts.

Since we are ignoring the computation by T, the system’s execution time is measured by

the following timeg:

for every input = and target representation r,

times(z; T(r)) & yHsET0) Lteno(z: T(r)).
=0

Example 3.2. The following property for Angluin’s algorithm S, is easily verified:

11

(C.2) 3Ip,q: polynomials,
VT : a (Mem;Equ)-teacher for DFA, Vr € Ry,
[() #45,(2i T(r)) < p(no), and
() Vi,0 < i < fqs, (23 T(r)) [steps, (2, T(r) < ai +1)] 1,
where ng is the number of states in the minimum state dfa for ®4a(7), and

l; is the length of the answer to the ith counterexample query.

This intuitively means that S, halts within polynomial time w.r.t. the size of dfa and
the length of counterexamples. Indeed, from (C.1) and (C.2), S4 can be regarded as a

polynomial time “exact” query learning algorithm for DFA. (See the following section for
details.)

4. Polynomial Time Learnability

In this section, we clarify the goal of learning problems and the notion of “polynomial
time”, thereby obtaining our formal definition for “polynomial time learnability”.

We first define “exact learning”, which is natural formalization for the learning achieved
by many query learning algorithms [Ang87, BR87, Ish89, Sak88]. We point out that the
goal of learning considered there may be too hard for many representation classes. Note
that we have been able to prove that some of representation classes are polynomial time
learnable in this strong learning notion; this is because we have been using (e.g., [Ang87))
(i) a weak definition for “polynomial time”, and (ii) rather complicated query types.
Here, by weakening the goal considered in “exact learning”, we introduce two learning
notions: “bounded learning” and “bounded statistical learning”. Those learning notions
are weaker than “exact learning”, but they are still reasonable; furthermore, they provide

more natural settings for studying polynomial time query learnability.

4.1. Exact Learning

The query learning algorithms that have been proposed in the literature are designed to
achieve the following type of learning: For any learning system (S,T) and any represen-

tation class C' = (R, ®,p), we say that (S, T) learns C (or S learns C from T) if

(E.L) Vre R,Vn>p(r)
[(5,T(r))(n) = 7' such that &(r') = &(r) |.

We refer to this type of learning as ezact learning. Note that in the above learning

condition we assume that n, which is called a target size bound, is given to S as an input.

12

We take this assumption since it is often assumed, and furthermore, it simplifies our
discussions; however, such an assumption may not be essential for the exact learning.

In the exact learning, the notion of “polynomial time” is defined as follows: Let
C = (R, ®,p) be any representation class. For any functions ¢, and t2, a learner S for C
is called (¢1,1,)-time if

VT: a teacher for C, Vr € R, Vn > p(r)
[(i) #gs(n;T(r)) < ti(n), and
(ii) V2,0 <1 < #q5(n; T(r)) [#steps(n,i; T(r)) < to(max(n,ly, ..., ;)],

where [; is the length of the answer to the jth counterexample query Js

A learner is called polynomial time if it is (p,q)-time for some polynomials p and q. In
a word, a polynomial time learner is a learning algorithm that halts within polynomially
many steps in both a target size bound and the length of counterexamples.

Now we define “polynomial time learnability” in the exact learning. Let C be any
representation class. For any teacher type o, we say that C is polynomial time learnable

from a-teachears if

3§ : a polynomial time learner,
VT : an a-teacher for C

[(5,T) learns C in the exact learning sense .

The above algorithm S is called a polynomial time learning algorithm for C.

For example, it follows from (C.1) and (C.2) at Example 3.1 and 3.2 that Angluin’s
algorithm is polynomial time learning algorithm for DFA; hence, DFA is polynomial time
learnable from (Mem;Equ)-teachers.

Notice that when measuring learner’s time complexity, we are considering not only an
input, i.e., a bound for target representation size, but also the length of counterexamples.
Because we include this latter factor when discussing “polynomial time”, we have such a
strange case that a polynomial time learner does not halt in polynomial time w.r.t. target
representation size. On the other hand, this latter factor is in some sense necessary,
without this, the polynomial time learnability notion (for the exact learning) does not
make sense, or at least becomes very weak.

According to the learning condition (E.L), learning algorithms have to work with such
unfriendly teachers that always reply with a very long counterexample; thus, it is almost

obvious that we have to consider the length of counterexamples when measuring S’s time

13

complexity because S cannot even read those counterexamples in “polynomial time” w.r.t.
a target size bound. Even if we assume that teachers are friendly, i.e., they give shortest
counterexamples, there is the case [Ang87] that the shortest counterexamples are much
longer than target representations, and thus again, § cannot read those counterexamples

in “polynomial time” w.r.t. a target size bound. We show one extreme case.

Proposition 4.1. There exists {r;};>; such that

(i) {ri}i>1 € Reg, and
(ii) Vf : recursive, vi [|z > f(|~]) 1,

where z; is one of the shortest elements in $g(r;).

Proof. Hartmanis constructed [Har79; Theorem 6] a class of context-free grammars
{G.‘},’Zl that generate regular sets {L"}"Zl such that for every recursive function f and
almost all i, we have |M;| > f(|G;|), where M; is the minimum state automaton for L;.

By an argument similar to his, we can prove that this {G;}:>: satisfies the proposition.
0

This proposition shows that when learning {r;}:>1, no recursive function can bound
the length of the shortest nontrivial counterexample w.r.t. target representation size.
Thus, if we consider a time bound that depends only on a target size bound, then any
learning algorithm for CFG (that needs to read at least one nontrivial counterexample) has
no recursive time bound. Note that this observation has twointerpretations: (a) [Ang87]it
is a justification for defining “polynomial time” by considering both target representation
size and counterexample length, and (b) it illustrates that the goal considered in the exact
learning is too hard for many representation classes. In the following discussions, we take

the latter interpretation and search for weaker notions of learning.

4.2. Bounded Learning

One way to avoid the difficulty explained above and to use a more natural time bound, e.g.,
a time bound depending on a target size bound, is to give up obtaining a representation
that denotes a target set ezactly. Suppose that there is no counterexample of length
< 10 to what you conjectured; then you can be satisfied with your conjecture since
you will find no trouble (in your life) by regarding it as an answer. This motivates the

following type of learning: For any learning system (S,T) and any representation class

C = (R, ®,p), we say that (S,T) learns C if

14

(BL) VreR,Vn2>p(r), Vm>0
[(S,T(r))((n,m)) = 7' such that ®(r')<™ = §(r)<™ |.

The second parameter m of an input is called a length bound. We refer to this type of
learning as bounded learning.

The following point should be remarked here: In the bounded learning, although the
learning condition does not insist on of a learner identifying a target set exactly, it still
requires that a learner should obtain, for any given length bound m, a representation that
denotes a target set up to length m. As shown in the following example, a length bound

is sometimes regarded as the degree of precision.

Example 4.1. Consider the problem of learning representation class 1-BALL = (R;-pan,
®1-ban) defined at Example 2.2.

Intuitively, 1- BALL represents 1-dimensional balls — closed intervals — in [0, 1]; i.e.,
each (2,d) € Ry-pay represents [z — d,z + d]. Recall that we consider only numbers that
are encodable by the following simple coding scheme: for each z € [0,1], the code of =
is the shortest w € {0,1}* such that 0.w is a binary representation of z. Thus, more
precisely, for each (z,d) € Ri-van, the concept @1 pai((z,d)) represented by (z,d) is the
set {w € {0,1}* : w encodes a number in [z —d, z+d]}, which is denoted by B[z —d, z +d].
In the following we do not distinguish a string and the number it denotes; by “the digits
of a number” we mean the length of the string denoting the number.

We show a learning algorithm Sz that learns 1-BALL from (Mem;Sup)-teachers. The

following is its outline.

prog Sp (input (n,m));

begin

{ We use X to denote a target set.}

(1) v « some point in X;

(2) w « some point in X such that v —1/2™ ¢ X;

(3) w « some point in X such that w+1/2™ ¢ X;
d — (w—u)/2; = « u+d;
output (z,d)

end.

At (1), Sp obtains some point v in X by using one superset query. For example, Sp

can ask whether [0,0] (= ®;-pan((0,0))) is a superset of X; if the answer is no, then it

15

can obtain some point in v as a counterexample (if yes, on the other hand, then Sy can
conclude that X is B[0,0]).

At (2), Sp computes u, a right extreme point of X with 1/2™ precision. Since some
point v in X is already known, we can use the ordinary binary search to find u by using
membership queries; for example, we first ask whether u; = 0 € X?; if not, we ask
whether u; = (u; +v)/2 € X7?; if so, we ask whether uz = (uy + 41)/2 € X; - - - until we
obtain u;, € X such that u, — 1 /2™ ¢ X. Furthermore, we can assume that no u’ with
less than m digits exists in [uy — 1/2™,4;] N X. Similarly, Sp computes w, a left extreme
point of X with 1/2™ precision.

Finally, Sp outputs (z,d) that represents the interval B[z, w]. Note that the interval
B[u,w] may not be exactly the same as X; however, it follows from the construction that
every number in X A B[u,w| has more than m digits. In other words, (z,d) represents X
up to length m. Therefore, Sp learns 1-BALL in the bounded learning sense. Although

an algorithm becomes more complicated, a similar idea works for any k-BALL, k > 2.

In the bounded learning, we measure the time complexity of a learner in terms of
input » and m, i.e., target representation size and length bound. Let C = (R,®,p) be
any representation class. For any function ¢ from N x N to N, a learner S for C is called

t-time if

VT: a teacher for C, Vr € R, Vn > p(r), Vm >0 [times((n,m);T(r)) < t(n,m) |.

A learner is called polynomial time if it is Anm.p(n + m)-time for some polynomial p.

Since length of queries are not considered in the above definition, we have to assume
that a teacher is “friendly” or “efficient”, i.e., he always gives a reasonably short coun-
terexample. Note that one can think of several different conditions for such “friendly”
teachers. Here we present one such condition.

We first modify our learning system model so that a teacher also has access to an input
tape. Then our condition is stated as follows: For any polynomial b (where b(m) > m for
all m > 0), a teacher T for C is called a b-bounded teacher if

Vr € R, Vn > p(r), Ym > 0,
Vg : a counterexample query for which a counterexample of length < b(m) exists

[T(r) on (n,m) replies a counterexample of length < b(m) to q]

16

Note that, for example, the set of b-bounded (Mem;Equ)-teachers for C is a proper subset
of that of (Mem;Equ)-teachers for C. That is, the “b-bounded” notion is a restriction on
teachers.

Now define “polynomial time learnability” in the bounded learning. Let C be any
representation class. For any teacher type a, we say that C is polynomial time learnable

from polynomially bounded a-teachers if

3b : a polynomial, 35 : a polynomial time learner,
VT : a b-bounded a-teacher for C
[(S,T) learns C in the bounded learning sense |.

The above algorithm S is called a polynomial time learning algorithm for C.

Example 4.2. The learning algorithm Sp explained at Example 4.1 gives an essential
idea for learning 1-BALL in polynomial time from polynomially bounded (Mem;Sup)-
teachers.

Indeed, by modifying Sp, we can obtain a polynomial time learning algorithm that
learns 1-BALL from every (Mem;Sup)-teacher for 1-BALL. That is, we do not need
the restriction “polynomially bounded” in this case; therefore, we claim that 1-BALL is

polynomial time learnable from (Mem;Sup)-teachers.

We have defined two polynomial time learnability notions: the one in the exact learn-
ing and the one in the bounded learning. Although one may expect, from the definition,
that the former is stronger than the latter, such a relation is not always clear. The

following is one of easily provable relations.

Proposition 4.2. For any representation class C, if C is polynomial time learnable from
(Mem;Equ)-teachers in the exact learning sense, then it is polynomial time learnable from
polynomially bounded (Mem;Equ)-teachers in the bounded learning sense. (The proof is

easy; it is left to the interested reader.)

4.3. Bounded Statistical Learning

In our framework, we are assuming that teachers can magically return an appropriate
answer. This assumption simplified learning problems and let us concentrate on studying
learning strategies. On the other hand, we should be careful for not abusing this assump-

tion. That is, we should be careful for not creating nor using complicated query types;

17

otherwise, we may be able to abuse the very powerful computation power of a teacher
through those complicated queries. In this sense, we had better avoid using queries such
as equivalence, subset, and superset queries?. However, it is provable [BW90] that one
cannot achieve polynomial time learning with only membership queries for many repre-

sentation classes. For example, the following negative result is provable as a corollary of

[BW90].

Proposition 4.3. For every k > 1, k-BALL is not polynomial time learnable (in the

bounded learning sense) from (Mem;)-teachers.

Remark Notice that no assumption such as P # NP is necessary here. This is an

absolute negative result.

Again we can draw two conclusions from such negative results: (a) those negative
results justify using more complicated query types, and (b) they illustrate that the goal
considered in the bounded learning is still too hard for many representation classes. Here
we take the latter interpretation and discuss for a yet weaker learning notion.

One solution is to introduce the notion of “approximation”. Note that we have already
considered one type of approximation in the bounded learning. That is, the goal of the
bounded learning is to obtain a representation 7' that approzimates a target set X in the
sense that 7' only need to denote X up to a given length bound. On the other hand, the
set denoted by ' has to be ezactly the same as X within the length bound. Here we relax
this condition as follows: with high probability the set denoted by »’ need to be almost
the same as X within the length bound. In a word, the goal of our new learning notion
is to obtain a “probably approximately correct” representation. Then we may be able
to replace complicated. queries with simple queries such as membership queries. (Indeed,
Angluin [Ang87] has demonstrated this possibility for the problem of learning DFA.)

We prepare a framework for discussing “randomized computation” and “similarity
of sets”. For “randomized computation” we extend the notion of learning system so

that learners can be randomized Turing machines. Although it is possible to consider

2Although it is hard to determine which query is “reasonable”, we can consider that membership
queries are of “reasonable” query types. As a matter of fact, we often use membership queries in natural
sciences. For example, suppose that one physicist obtained some theory on the electrons, and he wanted
to justify it; then he would do some experiments in order to find witnesses that support/disprove his
theory. We can regard such experiments as “membership queries”. On the other hand, it would be

crazy if he asked ‘Is my theory right?’ to the electrons; we never expect that the electrons can answer

“equivalence query”.

18

“randomized teacher”, we still assume that teachers are deterministic in our framework.
For any event E concerning some randomized learning system, let Pr{ E } denote the
probability that the event occurs.

In order to measure the similarity of two concepts, we have to introduce some mea-
sure or distribution on X*. Thus, we extend the notion of representation class and de-
fine “distributed representation class”. A distributed representation class is a six-tuple
(R,®,p,p,T1,T;), where u, called a distribution functional (or simply, a distribution), is
a functional from N into I'j — [0,1], and the others are the same as ordinary representa-
tion classes. (Again we use ¥ for I'; and I';, and omit specifying them.) In the following,
for any m > 0, we use p,, to denote the function p(m); for any set A, we use pm(4) to
denote 3", c 4 pm(w).

Let D = (R,®,p,p) be any distributed representation class. Intuitively, for each
m 2 0, the function p,, (= p(m)) is regarded as a distribution function over %<™; that
is, for every w € ¥=™, u,.(w) is the probability that w appears as an instance of XS™.

Thus, g must agree with the following condition.

Condition for Distribution: Vm >0 [p.(2<")=1].

Now our new learning notion is defined as follows: For any randomized learning system
(S,T) and any distributed representation class D = (R, ®, s, p), we say that (S,T) learns
D if

(S.L) VreR,VYn>p(r), Vm>0, Vd,e> 0
[(S, T(r))({n,m,d, e)) =1
such that Pr{ pn{ ®(r')AS(r) } >1/d} < 1/e].

The third and the forth input parameters are called an approzimation error bound and
a computation error bound respectively. We refer to this type of learning as bounded
statistical learning.

The notion of “polynomial time learner” is defined almost in the same way as the
bounded learning. Let D = (R, ®,s,p) be any distributed representation class. For any

function ¢t from N* to N, a learner S for D is called t-time if
Vre R, Vn 2 p(r), Ym >0, Vd,e > 0 [times({n,m); T(r)) < t(n,m,d,€)].

A learner is called polynomzal time if it is Anmde.p(n+m+d+e)-time for some polynomial
p- Finally, the notion of “polynomial time learnability” is defined in the same way as in

the bounded learning.

19

Example 4.3. Consider the problem of learning 1- BALL under some simple distribution.

One of the simplest distributions is the uniform distribution p*™f that is defined as
follows: for every m > 0 and w € {0,1}<™, pif(w) = 1/(2™+1 — 1). Let 1- BALL-pvnf
denote the representation class (Ri-pan, ®1-ban, £*). We show that 1- BALL- ™ is poly-
nomial time learnable from (Mem;)-teachers. (Note that this is not a uniform distribution
on B0, 1] since B[0,1] g {0,1}*; indeed, for sufficiently large m, we have pif(B[0,1]) ~
L)

The idea of polynomial time learner S¢ for 1- BALL-u"™f is easy. Recall the bounded
learning algorithm Sp for 1-BALL; see Example 4.1. For learning a target interval X
(on input (n,m)), Sp uses only one superset query in order to obtain one point v in X.
Here Sc randomly generates point v’ in [0,1] (more precisely, a string of length < m in
B[0,1]) and checks whether v’ is in X by a membership query. If S¢ finds some v’ € X ,
then it can use v’ as v and continue the computation of Sg; on the other hand, if it fails
to find v’ € X after sufficiently many experiments, which means that pf(X) is small
with high probability, then it can conclude that X is empty. (Technically, the empty set
cannot be expressed by 1- BALL-p"™f; but, S¢ can output the representation of any small
interval, e.g., [0.,0.], as its answer.) Thereby, S¢ can learn 1-BALL-p"™f by using only

membership queries. The detailed construction of S is left to the interest reader.

This example suggests that for representation classes with “simple” distributions, one
can simulate complicated queries with simple queries such as membership queries. Indeed,
such an intuition is verified in many cases [DW90].

Between two polynomial time learnability notions defined in the bounded learning
and in the bounded statistical learning, we have the following relation, which is straight

forward from the definition.

Proposition 4.4. For any teacher type a and any representation class C = (R, ®,p), if
C is polynomial time learnable from (polynomially bounded) a-teachers in the bounded
learning sense, then for any distribution u, D = (R, ®, 4, p) is polynomial time learnable

from (polynomially bounded) a-teachers in the bounded statistical learning sense.

Notice that in our framework we can design learning algorithms depending on distri-
butions; which is different from the present PAC learning model where learning algorithms
should work for all the distributions. Of course, one can define a framework for “distri-
bution independent statistical learning”, but we think that the goal considered in such
learning may be too difficult for many representation classes. Clearly, any learning algo-

rithm that learns a representation class in the bounded learning sense can be regarded

20

as a distribution independent learning algorithm; for example, Sp at Example 4.1 works
under any distribution because Sp makes no approximation error. We conjecture that
this is only the way to design distribution independent learning algorithms unless we have
a good method to detect a distribution; however, the problem of detecting a distribution
from experiments is considered hard [AW90]. Thus, even if we introduce the distribution
independent statistical learning, we may not be able to make learning goals easier than

the ones in the bounded learning.

Acknowledgments

The preliminary version of this paper was presented at the workshop held by IIAS-SIS,
Fujitsu Limited. The author thanks the participants of that workshop for their comments
and suggestions. The preparation of this paper was done while the author was visiting
Departament de Llenguatges i Sistemes Informatics, Universitat Politécnica de Catalunya.
The author would like to appreciate the kind support from the people at the department,

and invaluable discussions with Prof. Balcizar, Prof. Diaz, and Prof. Gavalda.

References

[AW90] N. Abe and M. Warmuth, On the computational complexity of approximating
distributions by probabilistic automata, a manuscript. (Need reconfirm.)

[Ang80] D. Angluin, Finding patterns common to a set of strings, J. Comput. Syst.
Sci. 21 (1980), 46-62.

[..ng87) D. Angluin, Learning regular sets from queries and counterexamples, Inform.
and Comput. 75 (1987), 87-106.

[Ang88] D. Angluin, Queries and concept learning, Machine Learning 2 (1988), 319-
342,

[AS83] D. Angluin and C. Smith, Inductive inference: theory and methods, Comput-
ing Surveys 15 (1983), 237-269.

[BR8T] P. Berman and R. Roos, Learning one-counter languages in polynomial time,
in “Proc. 28th IEEE Sympos. Foundations of Computer Science”, IEEE (1987),
61-67.

[BW90] J. Balcazar and O. Watanabe, Some negative results on polynomial time query
learnability, in preparation.

(BDG88] J. Balcdzar, J. Diaz, and J. Gabarré, “Structural Complexity I”, EATCS
Monographs on Theoretical Computer Science, Springer- Verlag, Berlin (1988).

[BEHW87] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth, Classifying learn-

21

[DW90)
[GS88]
[GMRS5]

[Har79]

[HU79]

[Ish89)

[PV8S8]

[PW8S]

[Sak88]

[Tze89]

[Val84]

[War89]

[Wat90]

able geometric concepts with the Vapnik-Chervonenkis dimension, in “Proc.
18th ACM Sympos. on Theory of Computing”, ACM (1986), 273-282; the
final version will appear in J. Assoc. Comput. Mach.

J. Diaz and O. Watanabe, Simulation of complicated queries by membership
queries, manuscript.

W. Gasarch and C. Smith, Learning via queries, in “Proc. 29th IEEE Sympos.
Foundations of Computer Science”, IEEE (1988).

S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of inter-
active proof systems, SIAM J. Comput. 18 (1989), 186-208.

J. Hartmanis, On the succinctness of different representations of languages, in
“Proc. 6th International Colloquium on Automata, Languages and Program-
ming”, Lecture Notes in Computer Science 71, (1979), 282-288.

J. Hopcroft and J. Ullman, “Introduction to Automata Theory, Languages,
and Computation”, Addison-Wesley, Reading (1979).

H. Ishizaka, Learning simple deterministic languages, in “Proc. of 2nd Work-
shop on Computational Learning Theory”, Morgan Kaufmann (1989), 162-
174.

L. Pitt and L. Valiant, Computational limitations on learning from examples,
J. Assoc. Comput. Mach. 35 (1988), 965-984.

L. Pitt and M. Warmuth, Reductions among prediction problems: on the dif-
ficulty of prediction automata, in “Proc. 3rd Structure in Complexity Theory
Conference”, IEEE (1988); the final version will appear in J.C.S.S.

Y. Sakakibara, Learning context-free grammars from structural data in poly-
nomial time, in “Proc. 1st Workshop on Computational Learning Theory”,
Morgan Kaufmann (1988), 330-344.

W. Tzeng, The equivalence and learning of probabilistic automata, in “Proc.
30th IEEE Sympos. Foundation of Computer Science”, IEEE (1989), 268-273.
L. Valiant, A theory of the learnable, Commun. Assoc. Comput. Mach. 27
(1984), 1134-1142.

M. Warmuth, Towards representation independence in PAC learning, Lecture
Notes in AI 397, Springer-Verlag (1989), 78-103.

O. Watanabe, A formal study of learning via queries, in “Proc. 17th Inter-
national Colloquium on Automata, Languages and Programming”, Lecture

Notes in Computer Science 443, Springer-Verlag, Berlin (1990), 137-152.

22

