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Abstract

In this note, we study a linear system of partial differential equations mod-

elling a one-dimensional two-temperatures thermo-porous-elastic problem with

microtemperatures. A new system of conditions is proposed to guarantee the

existence, uniqueness and exponential decay of solutions. Our arguments are

based on the theory of semigroups of linear operators.

Keywords: Two-temperatures heat conduction, thermo-porous-elasticity,

microtemperatures, existence, exponential decay, semigroups.

1. Introduction

It is accepted that the thermoelasticity with voids can be seen as the easiest

extension of the classical theory of thermoelasticity [6, 7, 20]. It incorporates

the existence of voids at the microstructure of the elastic material. This theory

has deserved a big interest in the recent years [8, 9, 13, 15, 16, 18, 19, 21].5

In fact, over the last years a big deal has been developed to understand the

different mechanisms working at the microstructure level. Apart of the voids, we

want to highlight the possibility of the microtemperatures at the microstructure

level [1, 2, 10, 11, 12, 17, 22, 26, 27]. In this short note, we want to focus
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our attention to porous-thermo-elastic materials with microtemperatures. It is10

relevant to note the huge quantity of contributions for this kind of materials in

the literature. This is because they have been shown as a type of materials with

a wide applicability.

The thermoelasticity with two temperatures is a theory proposed by Gurtin

and several colleagues [3, 4, 5, 28], where the heat conduction is described by15

means of two temperatures: the thermodynamic temperature and the inductive

temperature. It has also received a big attention in the recent years [23, 24, 25];

however, it has not been combined previously with the microtemperatures. We

here propose a one-dimensional linear theory by using both points of view (two

temperatures and the microtemperatures) which are incorporated at the same20

time. In this sense, the present paper has three main objectives: the first

one corresponds to propose the two-temperatures thermo-porous-elasticity with

microtemperatures in the one-dimensional case. The second one is to give a

suitable family of conditions on the constitutive parameters to guarantee the

existence and uniqueness of solutions in a suitable Hilbert space. The third one25

is to give an exponential time decay result for the solutions to this problem.

2. Basic equations

In this section, we propose the basic equations for the one-dimensional two-

temperatures thermo-porous-elasticity with microtemperatures for isotropic and

homogeneous materials. The length of the body is assumed to be π. According30

to this theory, the evolution equations are the following:

ρü = tx + ρf, Jφ̈ = hx + g + ρl,

ρT0η̇ = qx + ρs, ρε̇ = Px + q −Q+ ρG,
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and the constitutive equations:

t = µux + µ0φ− β0θ, h = a0φx − µ2T,

g = −µ0ux − ξφ+ β1θ, ρη = β0ux + β1φ+ aθ,

ρε = −µ2φx − bT, q = kϑx + k1S,

P = −k4Sx, Q = (k − k3)ϑx + (k1 − k2)S.

In this system, ρ is the mass density, u is the displacement, t is the stress, h is

the equilibrated stress, g is the equilibrated body force, η is the entropy, q is

the heat flux, J is the equilibrated inertia, T0 is the reference temperature at35

the equilibrium state (assumed uniform and equal to one to simplify the calcu-

lations), ε is the first moment of the energy, Q is the microheat flux average, P

is the first heat flux moment, φ is the volume fraction, θ is the thermodynamic

temperature, T is the thermodynamic microtemperature, ϑ is the inductive tem-

perature, S is the inductive microtemperature and f, l, s and G are the supply40

terms. Moreover, µ, µ0, β0, β1, a0, µ2, ξ, k and ki are the constitutive parameters

defining the couplings among the different components of the material. In this

paper, we assume that the constitutive coefficients satisfy the conditions:

µ > 0, µξ > µ2
0, a0 > 0, k > 0, k4 > 0, ρ > 0, (1)

J > 0, a > 0, b > 0, (2)

4αk(k4 + αk2) > α2k21, 4αkk2k4 − αk4(k1 + k3)2 − α2k2k
2
3 > 0. (3)

It is worth noting that condition (3) is more restrictive than the usual one in

classical thermoelasticity with microtemperatures. It is needed to guarantee45

that the dissipation is positive. In fact, for the classical theory we usually

assume that 4kk2 − (k1 + k3)2 is positive meanwhile in the present theory we

need to impose condition (3).

It is relevant recalling that the temperatures and the microtemperatures

satisfy the relations:

θ = ϑ− αϑxx, T = S − αSxx, (4)
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where α is a positive constant. If we substitute the constitutive equations into

the evolution equations, we obtain the following linear system:50

ρü = µuxx + µ0φx − β0θx + ρf,

Jφ̈ = a0φxx − µ0ux − µ2Tx + β1θ − ξφ+ ρl,

aθ̇ = −β0u̇x − β1φ̇+ kϑxx + k1Sx + ρs,

bṪ = −µ2φ̇x + k4Sxx − k2S − k3ϑx − ρG.

To study a well posed problem, we should define initial and boundary conditions.

Hence, as initial conditions we impose that, for a.e. x ∈ (0, π),

u(x, 0) = u0(x), u̇(x, 0) = v0(x), φ(x, 0) = φ0(x), φ̇(x, 0) = ϕ0(x),

θ(x, 0) = θ0(x), T (x, 0) = T 0(x),

where u0, v0, φ0, ϕ0, θ0 and T 0 are given functions.

Since we assume homogeneous Dirichlet boundary conditions, it follows, for

a.e. t ∈ [0,∞) and x = 0, π,

u(x, t) = φ(x, t) = ϑ(x, t) = S(x, t) = 0.

It is worth noting that under the assumption of these boundary conditions we

have∫ π

0

θ2dx =

∫ π

0

(ϑ2+2αϑ2x+α2ϑ2xx)dx,

∫ π

0

T 2dx =

∫ π

0

(S2+2αS2
x+α2S2

xx)dx,

and therefore,∫ π

0

θ2dx ≈
∫ π

0

(ϑ2x + ϑ2xx)dx,

∫ π

0

T 2dx ≈
∫ π

0

(S2
x + S2

xx)dx.

3. Existence and uniqueness

In this section, we transform our problem into an abstract problem for a

suitable Hilbert space and we prove the well posedness of the problem.

To this end, we recall that I − αδxx : ϑ→ θ = ϑ− αϑxx is an isomorphism55

from W 2,2∩W 1,2
0 to L2 (where W 2,2,W 1,2

0 and L2 are the usual Sobolev spaces).
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We denote by Υ(θ) = ϑ its inverse. Obviously, the L2-norm of θ is equivalent

to the W 2,2-norm of ϑ. We also note that we can do the same comments for

the functions T and S. That is, we have S − αδxx(S) = T and Υ(T ) = S, and

also that the L2-norm of T is equivalent to the W 2,2-norm of S.60

We will work in the Hilbert space:

H = W 1
0 × L2 ×W 1

0 × L2 × L2 × L2.

An element in this space will be denoted by (u, v, φ, ϕ, θ, T ).

Defining the following matrix operator:

A =



0 I 0 0 0 0

µ
ρ δxx 0 µ0

ρ δx 0 −β0

ρ δx 0

0 0 0 I 0 0

−µ0

J δx 0 a0δxx−ξ
J 0 β1

J −µ2

J δx

0 −β0

a δx 0 −β1

a δxx(kaΥ) δx(k1a Υ)

0 0 0 −µ2

b δx −δx(k3b Υ) δxx(k4b Υ)− k2
b Υ


,

we can write our problem as

dU

dt
= AU + F , U(0) = U0, (5)

where F = (0, f, 0, l, s,−G) and U0 = (u0, v0, φ0, ϕ0, θ0, T 0).

In this section, we are going to prove that operator A generates a contractive

semigroup. We first note that the domain of the operator, denoted by D(A), is

given by the elements in the Hilbert space H such that

v, ϕ ∈W 1
0 , µuxx − β0θx ∈ L2, a0φxx − µ2Tx ∈ L2.

Given U = (u, v, φ, ϕ, θ, T ) and U∗ = (u∗, v∗, φ∗, ϕ∗, θ∗, T ∗), we consider the

inner product defined as

〈U,U∗〉 =
1

2

∫ π

0

(ρvv̄∗+Jϕϕ̄∗+µuxū
∗
x+µ0(uxφ̄

∗+ū∗xφ)+ξφφ̄∗+a0φxφ̄
∗
x+cθθ̄∗+bT T̄ ∗)dx.

Here, and from now on, the bar denotes the conjugated complex. It is clear that

this inner product is equivalent to the usual one in the Hilbert space H.
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Theorem 1. Let the conditions (1)-(3) hold. Then, operator A generates a65

contractive semigroup.

Proof. It is straightforward to see that the domain of the operator is dense in

our Hilbert space. We can easily show that

Re〈AU,U〉 = −1

2

∫ π

0

(k|ϑx|2 + (k1 + k3)ReϑxS̄ + k2|S|2 + k4|Sx|2)dx

−α
2

∫ π

0

(k|ϑxx|2 + k1Reϑ̄xxSx + k2|Sx|2 + k3ReϑxS̄xx + k4|Sxx|2)dx ≤ 0.

Last inequality is a consequence of assumptions (1)-(3).

Now, we prove that zero belongs to the resolvent of the operator. Given70

(f1, f2, f3, f4, f5, f6) ∈ H, we must show that the system

v = f1,

ϕ = f3,

µuxx + µ0φx − β0θx = ρf2,

a0φxx − µ0ux − µ2Tx + β1θ − ξφ = Jf4,

−β0vx − β1ϕ+ kϑxx + k1Sx = af5,

−µ2ϕx + k4Sxx − k2S − k3ϑx = bf6,

has a solution in the domain of operator A. The solution for v and ϕ is obtained.

If we substitute it in the last two equations, we obtain that

kϑxx + k1Sx = af5 + β1f3 + β0f1,x = F3,

k4Sxx − k2S − k3ϑx = bf6 + µ2f3,x = F4.

To prove the existence of solutions to this system, we note that (F3, F4) ∈

L2 × L2. Moreover, if we define the bilinear form:

B((θ1, T1), (θ2, T2))

= −〈(k(Υ(θ1))xx + k1(Υ(T1))x, k4(Υ(T1))xx − k2Υ(T1)− k3(Υ(θ1))x) , (θ2, T2)〉L2×L2 ,

we can see that it is bounded and coercive. Therefore, in view of the Lax-

Milgram lemma, we can prove the existence of θ, T ∈ L2 satisfying the system.
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Thus, we can study now the another system:

µuxx + µ0φx = ρf2 + β0θx = F1,

a0φxx − µ0ux − ξφ = Jf4 + µ2Tx − β1θ = F2.

To prove the existence of solutions to this second system, we note that (F1, F2) ∈

W−1,2 ×W−1,2. The bilinear form

B∗((u1, φ1), (u2, φ2)) = −〈(µu1,xx+µ0φ1,x, a0φ1,xx−µ0u1,x−ξφ1), (u2, φ2)〉L2×L2

is bounded and coercive in W 1,2 ×W 1,2. Again, the use of the Lax-Milgram

lemma allows us to obtain the solution.75

Therefore, in view of the Lumer-Phillips corollary to the Hille-Yosida theo-

rem we find that our operator generates a contractive semigroup.

Now, we can obtain the following existence and uniqueness result.

Theorem 2. If we assume that conditions (1)-(3) hold, then, for every U0 ∈ D,

there exists a unique solution to problem (5).80

We note that, since the operator generates a contractive semigroup, the

problem is well posed in the sense of Hadamard.

4. Exponential stability

Now, we show the exponential decay of the solutions to our problem when

the supply terms vanish and some conditions hold. To this end, we need to85

assume that β0 6= 0 and µ2 6= 0. In order to prove the exponential decay, we

recall the characterization stated in the book of Liu and Zheng [14].

Theorem 3. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a

Hilbert space. Then S(t) is exponentially stable if and only the imaginary axis

is contained in the resolvent of A and

lim
|λ|→∞

‖(iλI − A)−1‖L(H) <∞. (6)
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Then, we prove the following result which states the exponential decay of

the energy system.

Theorem 4. Let the conditions (1)-(3) still hold. If we also assume that β0 6= 0

and µ2 6= 0, then operator A generates a semigroup exponentially stable. That

is, there exist two positive constants M,ω such that

||U(t)|| ≤M exp(−ωt)||U(0)||

for every U(0) ∈ D(A).90

Proof. We here follow the arguments given in the book of Liu and Zheng

([14], page 25). Let us assume that the intersection of the imaginary axis and

the spectrum is non-empty. Therefore, there exist a sequence of real numbers λn

with λn → $, |λn| < |$| and a sequence of vectors Un = (un, vn, φn, ϕn, θn, Tn)

in D(A), and with unit norm, such that

‖(iλnI − A)Un‖ → 0.

It follows that

iλnun − vn → 0 in W 1, (7)

iρλnvn − (µun,xx + µ0φn,x − β0θn,x)→ 0 in L2, (8)

iλnφn − ϕn → 0 in W 1, (9)

iρJλnϕn − (a0φn,xx − µ0un,x − µ2Tn,x + β1θn − ξφn)→ 0 in L2, (10)

iaλnθn + β0vn,x + β1ϕn − kΥ(θn)xx − k1Υ(Tn)x → 0 in L2, (11)

ibλnTn + µ2ϕn,x + k3Υ(θn)x − (k4Υ(Tn)xx − k2Υ(Tn))→ 0 in L2, (12)

In view of the dissipation and the assumptions on the coefficients we see that

ϑx, ϑxx, S, Sx and Sxx tend to zero in L2 and, therefore, θ and T also tend to

zero in L2.

If we divide convergence (12) by λn and we multiply it by φn,x, we find

ib〈Tn, φn,x〉+ iµ2||φn,x|| − k4〈λ−1n Υ(Tn)xx, φn,x〉 − k2〈λ−1n Υ(Tn), φn,x〉 → 0.

8



As Tn,Υ(Tn)xx and Υ(Tn) tend to zero, φn,x is bounded and µ2 is assumed

different from zero we obtain that φn,x → 0 in L2. If we multiply convergence

(10) by φn we see

−J ||ϕn||2 + a0||φn||2 − µ2〈Tn, φn,x〉 − β1〈θn, φn〉+ ξ||φn||2 → 0.

As φn,x → 0 in L2 it follows that ϕn also tends to zero in L2. In a similar way,

if we divide convergence (11) by λn and we multiply it by un,x we obtain that

ia〈θn, un,x〉+iβ0||un,x|vert2−k〈λ−1n Υ(θn)xx, un,x〉−k1〈λ−1n Υ(Tn)xx, un,x〉 → 0.

As θn,Υ(θn)xx and Υ(Tn) tend to zero, un,x is bounded and β0 is different from95

zero we also see that un,x → 0 in L2. After the multiplication of convergence

(8) by un and following a similar way to the one used to prove the convergence

of ϕn we get that vn → 0 in L2. It contradicts the assumption that the elements

of the sequence have unit norm, so we conclude that iR ⊂ ρ(A).

Now, we want to prove that condition (6) also holds. To this end we can100

assume that this condition does not hold. Therefore, there exist a sequence

of real numbers λn such that |λn| → ∞ and a sequence of unit norm vectors

Un = (un, vn, φn, ϕn, θn, Tn) in the domain of the operator satisfying (7)- (12).

In this situation we can repeat the analysis proposed to show that the imaginaty

axis is contained at the resolvent because the key point is to note that the105

sequence λn does not tend to zero. Thus, we arrive to a contradiction and

condition (6) also holds.

Acknowledgments

The authors thank to the anonymous referee his (her) criticism that allow

us to improve the manuscript110

The work of J.R. Fernández has been partially supported by Ministerio

de Ciencia, Innovación y Universidades under the research project PGC2018-

096696-B-I00 (FEDER, UE).

The work of R. Quintanilla has been supported by Ministerio de Economı́a y

Competitividad under the research project “Análisis Matemático de Problemas115
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[11] D. Ieşan, Thermoelasticity of bodies with microstructure and microtem-

peratures, Internat J. Solids Structures 44 (2007) 8648–8653.
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