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Abstract In this paper we deal with the numerical analysis of the Lord-
Shulman thermoelastic problem with porosity and microtemperatures. The
thermomechanical problem leads to a coupled system composed of linear hy-
perbolic partial differential equations written in terms of transformations of the
displacement field and the volume fraction, the temperature and the microtem-
peratures. An existence and uniqueness result is stated. Then, a fully discrete
approximation is introduced using the finite element method and the implicit
Euler scheme. A discrete stability property is shown, and an a priori error
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analysis is provided, from which the linear convergence is derived under suit-
able regularity conditions. Finally, some numerical simulations are presented
to demonstrate the accuracy of the approximation, the comparison with the
classical Fourier theory and the behavior of the solution in two-dimensional
examples.

Keywords Thermoelasticity - microtemperatures - Lord-Shulman - finite
elements - discrete stability - a priori estimates

1 Introduction

Causality principle fails when we consider the heat equation based on the
Fourier law and the usual heat conduction:

Cé = (i,

where 6 is the temperature, ¢ is the thermal capacity and ¢; is the heat flux
vector. Indeed, this fact is well known because this theory allows the existence
of thermal waves propagating instantaneously. To overcome this drawback,
several scientists have proposed alternative constitutive laws to the classical
Fourier law. The most known is the one introduced by Cattaneo and Maxwell
[1] which propose a relaxation parameter to consider the constitutive law

7'q.i + qi = K/o,i;

where 7 > 0 is the relaxation parameter usually assumed small and « is the
thermal conductivity. It is also well known that this theory has been extended
to consider thermoelastic effects and it is known as Lord-Shulman thermoe-
lasticity [2].

Firsts theories of materials with microstructure date back to the begin of
the past century. They received a big impulse from people like Eringen, Mau-
gin or Tegan [3,4] (among others) in the second part of that century and the
beginning of the current one. The basic idea is that we can see the microstruc-
ture as a level where several deformations and temperature can be produced.
The applicability of these materials makes that they are currently in fashion
and many researchers consider these effects in their studies. One possible effect
for the microstructure is the so-called microtemperatures [5-8]. In fact, many
studies have been developed to understand the qualitative behavior of this
kind of materials [9-23]. However, almost whenever microtemperatures effects
we find again a parabolic system and therefore these effects also propagate
with unbounded speed and we have another model where the causality prin-
ciple is violated. In this contribution, we propose to save this drawback in the
same way that Maxwell and Cattaneo did in the case of the heat conduction.
That is, we will consider another relaxation parameter.

Another effect related to the microstructure is the porosity. Elastic materi-
als with voids were proposed by Cowin and Nunziato [24-26]. This theory try
to model solids with small distributed porous. Rocks, soils, woods, ceramics or
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biological materials as bones are examples where this theory can be applied.
We can recall several contributions concerning this theory [27-40,20,41-43].
In this paper, we want to study thermo-porous-elastic materials with mi-
crotemperatures where the heat conduction is determined by the Cattaneo-
Maxwell proposition, and where the microtemperatures satisfy a similar propo-
sition. Therefore, it should be suitable to recall the evolution equations. They
are:
pi; = tij; + pfi,
J¢ = hii+ g+ pl,
pTOTI =i + PS,
péi = Gijj + ¢ — Qi — pGi.
In this system, p means the mass density, u; is the displacement vector, t;; is
the stress tensor, J is the equilibrated inertia, 7 is the entropy. ¢; is the first
heat flux moment, Ty is the reference temperature, h; is the equilibrated stress
vector, g is the equilibrated body force, @); is the microheat flux average, g;;
is the first heat flux moment tensor, and f;,[, s, G; are supply terms.
For the constitutive equations, we consider

tij = Aeppdij + 2pe; + po@di; — Bobdij,
hi = ao¢s — p2T5,

g = —poei — &P+ P10,

pn = Poei; + f1¢ + ab,

pe; = —p2¢,; — b1,

where e;; = %(u” +u; ;) is the strain tensor and ¢;; is the Kronecker symbol.
For the thermal and microthermal effects, we propose the following equa-
tions:
TG + qi = K0; + k115,
T2Gij + Gij = —kaTy i — k5T — ke Tl
T2Qi + Qi = (k — K3)0,; + (k1 — K2)T5.

Here, 7y and 7» are the relaxation parameters which are assumed small, but
positive, and x;, © = 1,...,6 are constitutive parameters. We point out that,
in general, we can assume that 71 and 7 are different. However, as this con-
tribution is pioneering in this sense, we want to study the easier case which
corresponds to assume that 7 = 75 = 7. After introduction of the constitutive
equations into the evolutions equations, and assuming that Ty = 1 to simplify
the calculations,’ we obtain the system proposed in the second section.

It is worth noting that this system was studied in a qualitative way in a
recent paper [44]. It was obtained existence and stability results. Therefore,
we also recall the kind of assumption they are imposed in this case. They are:

p>0, J>0, a>0, b>0, pu>0, 3A+2u>0, ap>0,
(BA+2u)¢ > 3ud, k>0, 3ka+ks+ke >0, r5+re>0, (1)
ke — ks >0, (k1 + K3)? < 4kk3.

I This assumption is not relevant in the analysis proposed here. It only allows to simplify
the calculations
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Hence, in this work we continue the research started in [44]. We introduce
a fully discrete approximation by using the finite element method and the
implicit Euler scheme, we prove a discrete stability property, we obtain a
priori error estimates, from which the linear convergence of the approximation
is derived under suitable regularity conditions, and we perform some numerical
simulations in one and two dimensions.

2 The model and its variational formulation

In this section, we present the mathematical model, we derive its variational
formulation and we state an existence and uniqueness result (see [44]).

Let us consider an elastic solid determined by a bounded domain §2 C RY,
d =1, 2, 3, with boundary I = 92 so smooth to apply the divergence theorem
in the two- or three-dimensional case. Moreover, let [0, T%], Ty > 0, be the time
interval of interest.

Let u = (u;)%,, ¢, 0 and T = (T;)%_, be the displacement, the volume
fraction, the temperature and the thermal displacement, respectively.

According to [44], for isotropic and homogeneous materials the system of
equations becomes, in 2 x (0,7¢) and for i =1,...,d,

piii = pij; + (A + pujji + pod, — Bobli + pfi,

Jé = ao j; — paTyi — powi; — &+ P16 + pl,

Taf + af = —7Boiii i — Botvii — TP — Brob + KO jj + k1 Thi + ps,

TOT, 4+ 0T) = —Tpad i — padi + ke Tijj + (ka + k5)T i — kaTi — Ksbli + pGi,

where f = (f;)L,, s, [, and G = (G;)?%_, are supply forces, p is the density of
the material, A and p denote the classical Lame’s coefficients, J is the product
of the mass density by the equilibrated inertia, a¢ is the porosity diffusion
parameter, x represents the thermal diffusion parameter, a is the heat capacity
and po, Bo, e, &, B1, K1, b, K¢, K4, K5, K2 and K3 are constitutive parameters.
7 > 0 is the relaxation parameter introduced by the Lord-Shulman theory.
Moreover, we used the notation f =f+7 f .
Therefore, the previous system takes the form:

pli; = priti 5 + (N + )it i + pods — Bo(T0; +0,:) + pfi,
Jb = aodjj — pa(rTi; + Ti) — Holisi — £ + Bi(76 + 6) + pl,
Taf + af = — ot — P1o + K055 + k1 Ty + ps,
Tsz + sz = _/L2Qg,i + IiGTiJ‘j + (Ii4 + H5)Tj1ji — kol — 113071- + péi.
It is clear that from the solutions to this system we obtain the solutions to

the primitive system. Therefore, in order to simplify the notation, we drop the
hat.
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To study a well posed problem we should impose initial and boundary

conditions. That is, we assume that, for i = 1,...,d,
ui(x,0) = upi(x), wi(x,0) =v(x), ¢(x,0)=¢o(x) forae xe 2,
b(x,0) = eo(x), 6O(x,0)=0(x), O(x,0)==¢(x) forae xc 2,

U

(x
w?
Ti(x,0) = Tos(x), Ti(z,0) = Mo;(x) for ae. x € 12,
i(x,t) = p(x,t) = 0(x,t) = Ti(x,t) =0 for ae. & € 02, t € [0,Ty],

where wg, vo, ¢g, €, 0o, &0, Ty and M are given initial conditions.

We note that we have assumed homogeneous Dirichlet boundary conditions
for the sake of simplicity. The analysis provided in the next section could be
extended to a more general case in a straightforward way.

In order to obtain the variational formulation of the above thermomechan-
ical problem, let Y = L2(02), H = [L?(£2)]? and Q = [L?(£2)]?**?, and denote
by (-,-)vy, (-,-) & and (-, )¢ the respective scalar products in these spaces, with
corresponding norms || - ||y, || - ||z and || - ||o. Moreover, let us define the
variational spaces E and V as follows,

E={:€eHY(2);2z=0 on I},
V={we[H ()] w=0 on I},

with respective scalar products (-,-)g and (-, )y, and norms || - | g and || - ||v.

By using Green’s formula and taking into account the above boundary con-
ditions, we write the variational formulation of the thermomechanical problem
in terms of variables v = u and e = é, the temperature speed & = 6 and the
microtemperatures M = T.

Problem VP. Find the function v : [0,Tf] — V, the function e : [0,Tf] —
E, the temperature speed & : [0,Tf] — E and the microtemperatures M :
[0,T¢] =V such that v(0) = vo, e(0) = eg, £(0) = & and M(0) = My, and,
for a.e. t € (0,Tf) andw, p €V, r, z € E,

p(0(t), w)r + p(Vu(t), Vw)g + (A + p)(diva(t), divw)y

—10(Vo(t), w)m + Bo(V(E(t) +0(t)), w)m = p(f(t), w)m, (2)
(Jé(t),r)y +ao(Vo(t),Vr) g + &(o(t),r)y = —po(rdiv M (t) + divT'(¢),r)y

—po(diva(t), r)y + Bu(TE() + 0(t),r)y + p(I(t), )y, (3)
(Tag(t) + a&(t), z)y + £(VO(t), V2)u = —fo(divo(t), z)y — fi(e(t), 2)y

+r1(divT(t), 2)y + p(s(t), 2)y, (4)
(TOM (t) + bM (1), %) g + k6(VT (L), Vp)g + (ke + k5)(div T(t), divep)y

)
+ro(T(t), Y)u = —k3(VO(), %) — p2(Ve(t), ) + p(G(t),¥)m, (5)

where functions w, ¢, 8 and T are then recovered from the relations:

é s)ds +uo, ¢(t) = /Ot et(S) ds + o, ©

s)ds + T, e(t)z/ £(s) ds + 0.
0
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In [44] we proved the following existence and uniqueness result.

Theorem 1 Assume that the coefficients satisfy the properties (1), the regu-
larity on the supply forces, fori=1,...,d,

fis 5.1, Gy € CH[0,T¢[; Y) n C([0, Tyl; H' (92)), (7)
and the following reqularity on the initial conditions:
o, vo, To, Mo € [H*(Q)]%, €0, do, 00, & € H(12). (8)
Then, there exists a unique solution to Problem VP with the regularity:
v, M € C([0,Ty]; V) N CH([0, Tyl H), €& e € C((0,Ty: B) N CH([0,TfLY).

In fact, we shown that in the general case the solutions to Problem VP are
generated by a quasi-contractive semigroup even in the non-isotropic and non-
homogeneous case. In the particular case that we assume the Onsager Pos-
tulate (which implies in our case that k1 = ks), the energy of the system
dissipates and the semigroup is contractive. In this situation, we have guar-
anteed the stability of solutions when the supply terms vanish and the decay
of the solutions can be expected in the generic case. Therefore, it is natural
to ask ourselves by the rate of decay of the solutions. In the reference [44] we
analyzed this aspect for the one-dimensional case and we proved (by means
of the semigroup arguments) that the solutions decay in an exponential way.
That is, the energy of the system can be controlled by an exponential func-
tion. Certainly, the analysis of the energy decay should be different in the case
that the dimension is greater than one, but in view of the well-known results
for the classical thermoelasticity one cannot expect the exponential decay for
dimensions two or three.

In fact, for the multidimensional case the picture is much more complicated.
As far as we know, in this case only the classical thermoelasticity and type III
thermoelasticity have been studied [45,46]. In general, we cannot expect that
the thermal dissipation would be a strong enough mechanism to stabilize in
an exponential way the thermoelastic solutions. What it is known until this
moment in this case is:

For suitable domains there exist undamped isothermal solutions.
Generically we can expect asymptotic stability.

For most domains the exponential decay cannot expected.

Exponential stability can be obtained whenever the domain satisfies a con-
dition that may described in terms of Geometric Optics (see [45,46]).

5. For most two-dimensional domains the energy of smooth solutions decays
polynomially.

Ll

One thinks that, in our case, some of these facts also hold. For instance,
it is clear that points 1,2 and 3 would hold; however, this study has not been
developed yet even in the case of the Lord Shulman thermoelasticity (without
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porous neither microtemperatures effects). The difficulty to study this problem
increases if we take into account that the heat equation is of hyperbolic type.
We really believe that the multi-dimensional problem is a task which requires
a big and large work that we cannot develop here.

3 Fully discrete approximations: an a priori error analysis

In this section, we will analyze a finite element algorithm for the approximation
of Problem VP. Therefore, we consider the finite element spaces V" C Vand
E" C E given by

Vh={wh e [C(2)¢; w‘hTr € [P(Tr)¢ YTreT" wh=0onT}, (9)

EM={r"cC(); r‘hﬂ e P(Tr) VTreT", +"=0on I}, (10)

where (2 is assumed to be a polyhedral domain, 7" denotes a triangulation
of 2, and Py(Tr) represents the space of polynomials of global degree less
or equal to 1 in element T'r. Here, h > 0 denotes the spatial discretization
parameter.

In order to discretize the time derivatives, we use a uniform partition of the
time interval [0, 7] denoted by 0 = tg < t1 < ... < tx = T, with time step
k = T/N. Moreover, for a continuous function f(t) we denote f,, = f(¢,) and,
for the sequence {z,}2_,, we denote by 8z, = (2, — z,_1)/k its corresponding
divided differences.

Using the classical backward Euler scheme, the fully discrete approximation
of Problem VP is the following.

Problem VP"*. Find the discrete function v"* = {vhF}N_ - VI the

discrete function e"® = {eP*IN_ - E" the discrete temperature speed £"F =

hEAN - EM and the discrete microtemperatures M"™ = {MI* N cvh
{gn n=0 P n Jn=0
such that vPF = vl ehk = el ¢hk = ¢ and Mgk = Mg, and, for all
n=1,...,N and w", " € V" ¢ e Eh,

P60 wh) g 4 p(Vul® V') g + (A + p)(divul®, divw”)y
—po(VoR, w') i + Bo(V(rER" + 00%), w") i = p(f,, w")m, (11)
(Jel® rM)y + ag (Vo™ Ve g + E(o1F r)y = —po(rdiv MY + div TF o)y
—po(divul™ ™)y 4 By (7€M 4 0% M)y + p(l, M)y, (12)
(TadeM® 4+ agh® 2"y 4+ k(VORF V2" g = —Bo(divel®, 2"y — Br(eh®, 2y
—|—/£1(diVTZk,zh)y + p(sn, 2"y, (13)
(b M"* 4 oM™ ") g + kg (VT V") o + (k4 + k) (div T, divy")y
+ro(TPF " g = —k3(VORF ") i — pa(Vel* ") i + p(G "), (14)
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where discrete functions w*, @M% 1% and T"* are then recovered from the

relations:

n n
hk _ hk h hk _ hk h
U, —kg vt +ug, @, —kg e;" + ¢,

jil jzln (15)
T =kY M1, 00 =k & +6p,
j=1 j=1

and the discrete initial conditions ul, vl, of, el ob &b, Tg and Mg are
defined as follows,

ul = Pthug, vl =Plhoy,  of = P?h¢g, el =P e, 16
O =Py, &b =P, T =P"T, Mj=P"M,. (16)
In the previous definitions, operators P" and P*" are the projection operators
over the finite element spaces V" and E", respectively (see, for instance, [{9]).

We point out that it is straightforward to obtain the existence and unique-
ness of solution to Problem VP using classical results on linear variational
equations and conditions (1).

In order to provide the numerical analysis of the above discrete problem,
we will prove the following stability result.

Lemma 1 Under the assumptions of Theorem 1 and the following additional
conditions on the constitulive coefficients:

A >0, AN+pé>pd, ka+rs >0, 4drrg > (k1 + K3)?, (17)

it follows that the sequences {ul® v"* @hk ehk ghk chk T th}, generated
by Problem V P"* satisfy the stability estimate:

IVl + [[divug®|ly Zrkll’vﬁ’“llH + I]IIkVaﬁZ’“IIH + ||¢];’i:lly + Heﬁ’;ll\cy + 107" |1
HIEHy + 1T + VT, o + [div Ty + [ M | < C,

where C' is a positive constant assumed to be independent of the discretization
parameters h and k.

Remark 1 We note that additional conditions (17) are introduced to simplify
the calculations in the following proof. It could be adapted to use conditions

1.

Proof Here, we assume that 7 = 1 for the sake of simplicity. We note that we
can extend this result to the general case doing some simple modifications.

First, we estimate the terms on the discrete function v"*. Taking w” = v
as a test function in discrete variational equation (11) it follows that

hk

n

P01, W) i+ pu(TulE, Tol) g + (A4 o) (div ul®, div ol)y

n 9

—po(Vert, vit) i + Bo(V(&a" +00%), 03" i = p(f 0, 03"
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So, using the estimates

@ﬁhﬁ%H_%{WMm—w:|@}
(Vup®, Vopt)g > {||Vuhk|\Q — [Vurtlig}
(divay®, dlvvhk)Y = i {lldivag® (3 — |divay® 13 + [[div (up® —ug )3}
—po(VlF o) i = puo(¢hF, divwliF)y,
we have
23— o+ L I ult — vut 18k
# g W = vt [+ e w1

+ro(opF, divol®)y + Bo(V(ERF + 00F), vlF) g < CH”Z’“HH-

Secondly, we obtain the estimates on the discrete function e/*. Thus, using

r = el* as a test function in discrete variational equation (12) it follows that
(Joelk, elF)y + ag(Vght, Vehk) +§( Rk ehk)y = —po(div MIF + div TEF, elk)y
_ﬂo(dlvuzkv €n )Y+ﬂ ( ezk5 =29 )Y +p( n, € nk)Yv

and therefore, keeping in mind that

(5e¥, ekt > oo {IeHI3 — et 13}

<v¢#:vd*> n = g IVl T~ IVfalf )

(onF,ent)y > {H¢hk||y IR l3 + llon* — ohE 115}

2k

we find that

J
_k{Heth%/_He ||Y}+ {||V¢hk||H IVl 1||H}

= {||¢hk||y [ 1||Y + || prF — @I (13} + po(divul®, elF)y
< CHthHY — pa(div M + div ¥ el )Y + BLEN + 0% etk )y

Now, we proceed with the estimates on the discrete temperature speed .
Thus, using 2" = £* as a test function in discrete variational equation (13) it
follows that

(ad&M™ + agl® ﬁhy+d YOIk VERR) g = —Bo(divol*, &hF)y — By ek, ¢hh)y
+r1 (div TR by 4 p(sn,éﬁ )y,

and taking into account that

1
(6EM%, M)y > ﬁ LIRS = llER 115},
1
(VORE,VEF ) 1 2 o {IVORFI% = IV0R% 15 + IV (02F — 60F )15}
—Bo(div ol hF)y = Bo(vhk, VErR) g,
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we get

% {IERRI15 — =115} + — %L]Z {|\V9hk|\H - HV9 1HH + ([ V(ORF — 00E D)%}
< ClE* Ny + Bo(vr Y — Bu(elF ¢l )Y+Hl(d1VTh ")y

Finally, we obtain the estimates on the discrete microtemperatures Tzk. Thus,
using ¥" = M"* as a test function in discrete variational equation (14) it leads

(bSMF - bM™ M™) g + k6 (VT , Y M"™) o + (k4 + w5)(div TH*, div M%)y
+’€2(T2k7 Mzk) = _53(vezk7 Mzk)H - N2(vezkv Mzk)H + p(Gnv Mzk)H

So, using the estimates

(M M) > o MR — k)

(VT VMG > o (19T — VT )3 )

(d wTh’“,dith’“)y = o {1 TFI3 — lldiv TR 13 + lldiv (Th* = ThE I3 }
(@8 M) > o (T~ T

—ug(vegk,Mﬁk) = po(el*, div M%)y,

we have

K6
o LIMIM 3 — M 3 ) 22 Lotz — Tt 3 )+ 22 e — T % )

45 i TN — iy T B+ div (25 — T8 )3 )
< CHMh%”H — k3(VOIE, M) g+ po (el div MF)y

Combining all these estimates we obtain

ok {thk”H Joph 13 + {”VUMCHQ — | Vult ”Q}

A+ p
Ry {I1divul¥||3 — Hleuhk1||y + Hle( ME—ult )3}
'Hlo((bhk divv*)y +Mo(d1VUn er)y + o % {||§hk||y IEm% 115}

gg{”ehﬂy len” ||Y}+ {Hv¢thH HV lHH}

%{W’fnyww 1||Y+||¢’”f MY+ 5 {ITAM I — IR 0% )
Zbk{nvohan Ivo: 1|\H+|\v<9hk e i)

= (IR = M 13+ 2 {9 Tis G — VTt 13 )
I€4+I<L5

= {div T T+ e (T ik I} )
< O 1+ [0lF + €513 + leh 13 + ldiv TEM I3 + V0L %

HIORFIZ + 1M ).
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Using conditions (17) we easily find that

pio(opF, divol* )Y+Mo(d1VUn erh)y = @{( mh divalF)y — (60F ) divalt )y

+(opk — 1 div (up? —ut® )y},
)\+/L Bk \(2 hk Mo,  hk . hk hk
=L div (u)! n—1)||Y+%||¢n _¢n—1||Y+?(¢ — ¢k div (ult —ulk

so multiplying the above estimates by k, summing up to n we obtain

A+ T + (0 I + 2ot a1
o[ VO + €L 3 + mal THE + all 2 + x| V6L
BN+ ol VT + G+ i) iy T

hk hk
< kY (0813 + I I3 + b 13 + ldiv TIHI3 + 60 1% + | M7 )
j=1
h
+C+ C(I10h I3 + Iub1? + e I3 + I081% + IT5I% + b1

h h
05115 + IME I3 + T )-
Now, using conditions (17), we can choose ¢ > 0 such that

o/ (A +p) < ¢ <&/ o,

which implies that

O+ 1) iy w2+ €] ¢E ]2+ 2p0(div wh, )
Z(Aw ‘g)mwu 12+ (€ = 00) [l61% 2.

Finally, using the Poincaré inequality in the term involving the gradient
of the temperature and a discrete version of Gronwall’s inequality (see, for
instance, [47,48]), we conclude the desired stability property.

Now, we obtain some a priori error estimates on v, —v'*, e, —elk ¢, —¢hk
and M,, — M"* that we state in the following.

Theorem 2 Under the assumptions of Lemma 1, if we denote by (v,e,&, M)

the solution to Problem V P and by (v'* ehk ¢hk th) the solution to Prob-

lem V P then we have the following a pmom error estimates, for all {'wh ;V 0>
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{97} C V" and {1}, {21}, C BN,
hk hk
e {00 — o3+ 19 ot — ) + i (i — )15+ e — R
Hidn = I3 + 1V (@ — opF) I3 + Idiv (Tw = TROIT + [1€n — E5I15-
+|\Mn—MZ’“|\§,+|\V(Tn—TZ’“)|\2Q+|\9n—0,’1’“|\§3+||Tn—TZ’“||§{}

< kY (o5 — 60,3 + o — whlly + lli; — o3 + llés — de;l13
j=1
Hlleg — 8% + 5 — 6511 % + llen — 25 + |M; — M ||
& = 013 + 1T — 6T 113 + 1€ — 22 11% + 1165 — 605115 + 1M, — ¢?H%/)
N—-1

(s = ! = (01 — W) + lles = 78 = (ega — )1
7j=1

.C
k

h h
g = 28 = G — 2 )1+ 1M — 9 = (Mg = 9y )Il)
h
+C max (llow = whlly + llew = riIF + 6w — 2013 + 1M — 1)
+C (Jlvo — b3 + llwo — Iy + lleo — ef I + 160 — 05 1%
h h
+ligo = 5% + 160 — €61 + 1Mo — M3 + 1To — TE 1), (18)

where C' > 0 is a positive constant which is be independent of the discretization
parameters h and k, but depending on the continuous solution, §¢; = (& —
§-1)/k; 605 = (¢5 — dj-1)/k, de; = (ej — e;_1)/k, dv; = (v; —v;—1)/Fk,
ouj = (u; —uj1)/k, 0M; = (M; —M;1)/k, 6T; = (T; —T;-1)/k and
60; = (0; —0;-1)/k.

Proof As we did in the proof of Lemma 1, we also assume that the relaxation
parameter 7 = 1.

First, we obtain some estimates for function v. Then, we subtract varia-
tional equation (2) at time t = ¢,, for a test function w = w" € V* C V and
discrete variational equation (11) to obtain, for all w" € V",

p(v, — dvl* w )H+u(V( Z’“) Vw)g — po(V(pn — ¢2F), wh) g
<A+u)<dl (wp — )l ),dlvw My + Bo(V(&, — &M + 0, — 01F), wh)y = 0,

and therefore,

Pl — 0t 0 — )11+ (¥ — ). V0, — 01
+(A+ u)(dlv (un —ul®) div (v,, — vIF))y
_,LLO( (¢n (bﬁk) vn - ’UZ’C)H + BO(V(@L Zk + 6, — 9%%% - ’UZ’C)H
= p(0, — 0vpF, v, —w )H + 1(V(un — upk), Vv, —w"))q
+(A+ u)(dlv (wy, — ul*) div (v, — w"))y
—110(V (¢ — ), 00 — w") g + Bo(V(En — EFF + 0, — O1F), vy — w") .
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Keeping in mind that

1
n O = o) > (00— 00n, o0 —0p) i+ o [llon = vl = o — Rk 3]

(¢
(V(wn = up®), Vi(vn —vi"))g = (V(un —up®), V( — 0un))q
k

o (19—l — [V ot — ) 3]
(div ( ulzk), div (v, — vhk))y (div (w,, — u™*), div (%, — 0u,))y
o [ldiv (un = ug®) [} = [ldiv (wn 1 = unt))|5]
)

,Un — wh)H = _60(671 - Zk,le ('Un - wh))Y7

where we recall that v"* = §ul* = (uh® — wl'* )/k, applying several times
the following inequality:

1
ab§6a2+4—b2, a,be € R, € >0, (19)
€

we have, for all w" € V',

o [low = 01 = oy = 02513 + Bo(V (6 — 1), 00 = v1)a
7]
o7 1V (= )G = 19 (s = ) 2]
A . .
+ 55 (v (= )3 = [div (ur = ) 3]

< C(Il’vn — 0 I+ o0 — vallfy + 11V (wn — wg®) G + [1div (un —up®)|3

n

IV (&0 = SN + 1V (0 — 1513 + e — L5 (20)

+|vn — wh”%/ + [t — 5un||%/ + (0vn — sk Up — wh)H

Now, we derive the error estimates on function e. Subtracting variational
equation (3) at time t = t,, for a test function r = 7" € E* C E and discrete
variational equation (12), we obtain, for all r* € E",

(J(én —8ep™), M)y + ao(V(pn — 1F), V') g + 5(% )y
+ o (div (M, Mh’“) +div (T, — T, rh)y
+po(div (u, — uhk) r )Y = B1(&n — ng +0n — 92'“77”}1)1/ =0,

and so,

(J(én — dep’), en = ent)y +ao(Vign — 1),V (en — e )
+E(dn — O en — efF)y + pa(div (M, — Mn ) +div (T — Tﬁk)a en —ent)y
+pto(div (w, — uﬁ’“), en —enF)y = B1(6n — ENF + 0 — O1F, e, — elF)y
= (J(én — de hk) en — 1)y + ao(V(n — 1F), Vien — ")) u
+E(dn — 3F en — 1)y + pa(div (M, — MZk) + div (T, — Tﬁk), en —1")y
+pto(div (ur, uZ’“), en — ")y — B1(&n — EWF + 0, — 0% e — 1)y
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Taking into account that

. . 1
(én — 0el* e, —elF)y > (61 — den, en — eiF)y + — [|len — e

n 115 = llen—1 — x4 113

(Vb = 00"), V(on — en )i = (V(on = 83"), V(on — 060))u
57 1960 = 6% = IV (@n1 = 15D + IV (6 = 64 = (9n-1 — #1E)) I,
(6 = 0" 6n = )y = (60 = 91", 6n — d6n)y
57 |90 = 1513 = llgn—s =SB4 I3 + llon — 6 = (601 = GBS DI,
(div (T, — T, en — M)y = —(T — TH Y (en — ) m,
where the definition €% = §¢* = (¢phk — ¢h* ) /k was used, applying again
Young’s inequality (19) we find that, for all 7" € E",

J ¢
= {len — el — llen-1 — b1 13} + 5= {160 — 6513 — 16n-1 — 95,15 }

a
+ 52 { IV (6n = 82 1% = 1V (0n-1 — 65113 |
+,u2(dlv (Mn - MZk)v €n — ehk)y

< C(llén = denll} + I19(Sn — 60m) 3 + lbn — 6ull3 + llew — 7113
Hlldiv (wn — w3 + 160 — 013 + 160 — 517 + lldiv (T — T30
+len — enF Iy + 1M, — MZkH%I + (bep — dept, e, — Th)Y)- (21)

Thirdly, we estimate the numerical error &, —&£"* related to the temperature
speed. Subtracting variational equation (4) at time ¢t = ¢,, for a test function

z = z" € E" C E and discrete variational equation (13), we obtain, for all
h h
2" e B",

(al(én = 0E1%) + a(€n — ERF), 2"y + Bo(div (v, — v}F), M)y
+1(V (0, — O7%), VY g + Bilen — el M)y — ki (div (T, — T*), 2")y =0,

n

and therefore,

(a(&n — 0ER%) + a(n — 1), 6n — EXF)y + Bo(div (v, — v1F), & — E1F)y
+6(V(0n, — 00F), V(& — M) i + Bale, — el* &, — €17y
—k1 (div (T, — TM%) &, — hb)y
= (a(gn - 6€Zk) + a(gn - §Zk)7 gn - Zh)Y + ﬁO(le ('Un - ,vZk:), gn - Zh)Y
+"$(v(9n - 92'“% V(fn - Zh))H + f (en - 67’1]“7 n — Zh)Y
—k1(div (T, — T &, — 21y

Now, using the following estimates

. . 1
(6n — OEM% 6 — EMM)y > (6n = 06n, 60 — M%)y + = 1160 — €251 — 116n1 — €254 113 ]
(V(6, — 92'“)7 V(en - Zk))H > (V(0, — 97’1’“), V(@n —665))H
1
57 |96 = 623 = 1V(Ons = 03513

Bo(div (v, — vhk), &, — MRy = —Bo(vs, — V1K,V (€, — M) m,
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where the definition "% = §0"F = (9hk — gh* ) /k was used, applying again
Young’s inequality (19) we find that, for all 2" € E*,
a
o7 Uén = &5 1% = ll6n1 = QLIS } = Bo(on — 02", V(&n = &)
K
5 { IV = 023 = 1V 0ns = 025 )% }
< C(Hén = 0&all¥ + 1V (6n = 88) |17 + 1160 — 6613 + 16 — 2" I
Hlldiv (wn — w3 + 160 = OF 13 + 10 — 517 + lldiv (T — TN
Hllen — ehH 3+ 1M — MEM3 + (56, — 661%, & — )y ). (22)
Finally, we deal with the estimation of the error on the microtemperatures.
Then, we subtract variational equation (4) at time ¢ = t,, for a test function

W =" € V" C V and discrete variational equation (14) to obtain, for all
P e vh,

(b(M,, — SM"™ + M,, — M"*), ")y + k6 (V(T,, — T"*), Vp™)
+ (kg 4 £5)(div (T, — T, div ")y + ko (T — T ") g
+3(V (0 — 02F), ") i + p12(V (e — k), ") 5 = 0.

Thus, we have, for all 1/Jh evh,

(b(M,, — SM"™ + M, — M") M, — M)y + ke(V(T, — T'*),V(M,, — M"))q
+ (kg + r5)(div (T —T’”f) ( — M"))y —I—ng(T —Th* M, — M)y
+113(V(9 —Qhk) M, )H+,LL2( (en—e ) M, Mn )

= (b(M,, —M}F + M, M W), M, w Vi + k6(V(T = TF), V(M — "))

+(’€4 + I€5)(le (Tﬂ - Tzk)vdlv (Mn '¢ ))Y + ’i2(Tn - TZ 7Mn - '¢h)H
+53(V (0 — O1F), M, — 4" )i + p12(V(en — €hi?), M, — ")

and keeping in mind that
(M, — §M"™ M, — M)y > (M, —6M,,M, — M)y
o (10 - pH YA ]
(V(Tn = T3*), V(Mn = M3F))g > (V(T, = ThF), V(M = 6Mn))g
b (19T — TR — V(@ - T
(div (T, — Thk), div (M, — M"))y > (div (T,, — T™), div (T,, — 0T,))y

1 . .
57 [y (T = T = lldiv (Tas = THE DI

(Tn—Thk M, — M"™)y > (T, —T" T, —6T,)u
o= [T = T3 = Ty = T ]

uz(V(en Z’“) M, — ")y = —pa(en — ¥, div (M, — "))y,
112(V(en — €%), M, — M) i = —pio (e, — €l div (M, — M)y,
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where we recall that M""" = 6T"* = (T"* —T"* )/ applying several times
Young’s inequality (19) we have, for all " € V7,

b .
o [V = MM = My = MIE | = paen — b, div (M, = M)y

K6
+ 52 [IV(T0 = T B = |V (Tt = THE) )]
Ii4+li5
2k
K2 T Thk |12 T Tk |12
22 [T = ThH I = ITnes = ThE

+ [laiv (T = T3 — div (s = THE )3 ]

< C(I1Mn — M| + 1MLy = Ml + IV (T = TR + 1T — THF
Hdiv (T = TE) + |1 T — 0w} + (6Mo — SMEF, Moy — ")
1Mo = M1+ V(00 — 05 + llen — b1} ). (23)

Combining estimates (20)-(23) it leads

P K

L (o = 01 = lon-s = 02 3] + 52 {1900 = 025113 = [V (0ns = 022 1 |
7

4= (19 G = ) = [Vt =l ) 2]

A p . .
+5E v (= wl) [ = div (=l )]}

J §
o {llen = elF I3 = llen—t = kS 13} + 52 {16 — 6EH I3 = llén—s — @45, 113 |
ag
+ 5 {1V (60 = 1)1 = IV (6ns — G151 }
a b
o {60 = €513 = 601 — €25, 13 ) + o [IM0 = MEFIE — | Moy — MIE ]

K6
+ 22 IV (@0 = TE9) G = 1V (Tt = THE DI

K4 + K5
2k

K2
52 (1T = ToH I = Ty = T0E

+ [laiv (T = T3 = div (T2 = THE ) 3]

< C(Il’vn = opF Il + o0 = Svallfy + IV (wn — un)IG + l1div (wn — un)I5-

+|vn — 'wh”%/ + [t — 5“%”%/ + (0vp, — &’Zka Un — 'wh)H + ||§n - 6571”%/
HIV(dn = ONE + 1V On = 0293 + 110 = EFIF + [|div (T = TR)[5
+llen — enlls + én — 06nllE + llen — 11 + 100 — O1F 13

Fllen — el I3 + (1M — MEF|3 + (5en — 6eF, e — ")y

Hllen — "% + (86 — 062F, &0 — 2"y + | My — M|

+||Tn - Tzk”%{ + HTn - 6TnH%/ + (6Mn - 5Mﬁk,Mn - Qph)H

1o = 86al% + €0 — 21 + V(T — TEZ + | Mo — 0" 7).
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Multiplying the previous estimates by k& and summing up to n we find that

lon = vR*E + 1V (wn = ug?) G + 1div (un — )3 + llen — en®|f3

+dn — O2FI3 + IV (dn — SE)IH + IV (0n — 029) |7 + 1160 — EX%(I3
My — M|} + IV (Tn — TEN)G + |div (T — TS + 1T — TR 1%

<CkY (ij — 0 H + (o5 — 6vsl1H + IV (uy — ulM)G + [|div (uy — uwf®)[3
j=1

+llv; — w3 + iy — Su;|l3 + (dv; — 6vh* v — w))u

HIV (65 = NF + 1V(0; — 03513 + 1165 — €715 + [|div (T — T3]3

+lle; — beslly + lds — 605 l1% + llej — vl 1% + 116 — 62%|13

+lle; — el¥I3 + (| M, — MI*|5; + (5e; — 6el* e; —rl)y

Fllen — 1% + (05 — 060, & — 2y + || M — 6M; |13 + 11E5 — 64113

Ty — T + 1T — 0T5|% + (0M; — M™% M; — )y

&5 = 23 1% + 1165 — 60,[1% + IV (T — T3)13 + |1 M - %b?ll%/)

+C(||vo — gl H + o — g3 + [leo — eg I3 + V(6o — 051

h h h h
+ldo — &6 1% + €0 — & 115 + 1Mo — M ||F + [|To — To“%/)-
Now, taking into account that

n
kZ(&vj - 61);-““,%» - w?)H = Z(vj - v?k —(vj1 — v?ﬁl),vj —w

b

j=1 Jj=1
= (vp — vﬁk,vn - wZ)H + (”8 — 0,1 — Wy )H
n—1
h
+Z('U] V; U —w,; — (v]-i-l w]+1))H7
j=1
n n
3 (0es 0~y = D (e — el
j=1 j=1
Af(en,_'ezkaen TZ)Y'4'(68 — €0, €1 _'T?)Y
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n

kZ(éég—t% ), & Z -k g -y

1

= (€0 — M £, — M)y (5§ €06 — 2y

+ Z( P& — 2l — (&1 — 2y
=1
kY OT; =0T}, T, = ) = Y (T, =T, T; = )u
=1 =1

= (Tp =TT, — ")y + (TH = To, Ty — ") u
n—1

+ > (T =TT — ) = (Ty =4 )
j=1

using a discrete version of Gronwall’s inequality (see, for instance, [47,48])
and applying Poincaré inequality to the term involving the gradient of the
temperature, it follows the a priori error estimates (18).

Estimates (18) can be used to obtain the convergence order of the algo-
rithm. As a particular case, under suitable regularity conditions we find that
the approximations given by Problem V P"* are linearly convergent as we state
in the following.

Corollary 1 Let the assumptions of Theorem 2 still hold. If we assume that
the solution to Problem V P has the additional reqularity:

uw, T € H?(0,T;V)N H3(0,T; H) N C*([0, T¥; [H2(Q)] ), (24)
0,0 € H*(0,T; E)YN H3(0,T;Y) N C ([0, T¢]; H*(£2)),

and we use the finite element spaces V" and E" defined in (9) and (10),
respectively, and the discrete initial conditions ug, vg, (bg, eg, 98, 5{}, Tg and
M g given in (16), the linear convergence of the algorithm is deduced; i.e. there

exists a positive constant C > 0, independent of the discretization parameters
h and k, such that

s {llon =02+ o = wl v+ llew = by + |60 = 01 |2

0 = 02F 5 + 16n — EFIly + | M — M3F || + (1T — Tﬁkl\v} < C(h+Fk).

Its proof is obtained using well-known results on the approximation by
finite elements, the properties of the projection operators P'* and P?" (see
[49]) and proceeding as in [48]. We omit it for the sake of readability.

4 Numerical results

In this final section, we show the numerical algorithm used to solve Problem
VP"* and we present some examples obtained in one and two dimensions.
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Let the finite element spaces Vh and E" defined in (9) and (10), respec-
tively. Given u/ e vh, ork | €M € BMand TV | MM |

n17n1 17n17n17 n—1»
V" functions vl ek ¢hk and th are obtained from equations (11), (12),

nan’n

13) and (14) as follows:

p(vI* w) g + B2 pu(Vol* V") g + B2 (A + p) (div ol*, divw™)y
—uokQ(VeZ’“, w") g + Bok(V(TEM* + kM) wh)
= p(vl* | wh) g — kp(Vult th)Q — k(A + p)(divul® | divw")y
ok (Vo w") i — Bok(VO3E 1, w") i + pk(f,, w") i,
(JeM 1)y 4+ aok®(Vel™ Vi) g 4 €k (el* rh)y — pok?(div ol vy
—pok(rdiv M* + kdiv M ¥ Th)y —~ 51k(T§hk + keMk M)y
(Jeﬁ’“ 1=7°h)Y - aok(v¢n Y% ) fk( n— 1=7° )Y - N2/€(leTnlC T )Y
—pok(div ™ M)y BiEOM M)y + pk(l, M)y,
(T + akeh® M)y + kE2(VEF V2 g + Bok(divol* 2y + k(e 2"y
—r1k?(div M™F 2y
= (tagl* | My — kk(VOIE | V") g 4 ki k(div TR 2y 4 pk(sn, 2"y,
(TOM™ - b M"* ™) g + kek2(VMEF V™) g + (ka + ks)k? (div M div ")y
+(ka + ks)E (div MF divep" )y — ksk®(VEF ") i + pak(Vel 4" ) g
Frok? (M%)
= (7DM™F | ") g — ek (VT | V™) g — (ks + k) k(div T | divep™)y
—kok(T3" ") i — kak(VORE | ") i + ph(Gr ")

where discrete functions u*, ¢* 9"k and Thk are updated from the relations:

ulh = kolFpult o hF = kelFpglt TOF = EMFTRS 008 = kIR 00F

This numerical scheme was implemented on a 3.2 Ghz PC using MATLAB.
We note that a typical 1D run (h = k& = 0.01) took about 0.133 seconds of
CPU time, meanwhile a typical 2D run took about 3.25 seconds of CPU time.

4.1 Numerical convergence in a one-dimensional problem

As a simpler one-dimensional case, we will consider the following problem.
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Problem P¢*. Find u : [0,1] x [0,1] = R, ¢ : [0,1] x [0,1] = R, @ :
[0,1] x [0,1] = R and T : [0,1] x [0,1] = R such that

it = BUsy + 200 — (20, +6,) + f in (0,1) x (0,1),
b= e —202T% +T) — 2uy — 20+ (20 +0) +1 in (0,1) x (0,1),
26+0=—tg—d+ 0y +2Ts+s in (0,1)x (0,1),
W+ T =~y +5Tpe — 5T — 0, + G in (0,1) x (0,1),
u(0,t) = ¢(0,¢) =0(0,t) =T(0,t) =0 for te€(0,1),

(1,t) = ¢(1,8) = 0(1,¢) = T(1,t) =0 for te(0,1),
u(z,0) = 0(x,0)
0(z,0) = (z,0) =

u

¢(z,0) = ¢(2,0) =x(x — 1) forae xe€(0,1),
T

(2,0) =T(x,0) =x(x—1) forae x€(0,1),
where the supply forces are given by, for all (x,t) € (0,1) x (0,1),

flx,t) =et (x(x —1) — 11 + 22),
l(z,t) =€t (102 —7),

s(x,t) = et (da(x —1) — 1 —21),
G(z,t) =e' (8z(z — 1) — 12+ 4x).

We point out that this problem is obtained from the thermomechanical prob-
lem described in Section 2 with the following data:

Q:(Ovl)a szla p:17 ,u:27 A:L U0:27 ﬂ():l; ﬂlzla
pe=1 bv=1 J=1, ay=1, ¢£€=2, 7=2, a=1, k=1, k1 =2,
52:57 53:17 KJ4:27 55:17 KJ6:27

and the initial conditions, for all = € (0, 1),

ug(w) = vo(z) = do(x) = eo(z) = bo(x) = &o(z) = To(x) = Mo() = z(x — 1).

The exact solution to Problem P* can be easily calculated and it has the
form, for (z,t) € (0,1) x (0, 1),

u(x,t) = ¢(x,t) = 0(x,t) = T(x,t) = e'ax(x — 1).
The numerical errors, given by

max {an =P ly A+ llun = uiFl g ) + llen — eXFlly + llon — 015 (0

0<n<N
100 = 025 11 (2) + 160 — EXF Iy + 1My — M|y + | T, — T,?kllfn(n)}

and obtained for different discretization parameters h and k, are depicted in
Table 1. Moreover, the evolution of the error depending on the parameter h+k
is plotted in Fig. 1. We notice that the convergence of the algorithm is clearly
observed, and the linear convergence, stated in Corollary 1, is achieved.
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hlk— 0.01 0.005 0.0002 0.001 0.0005 0.0002 0.0001

1/23 1.069339 | 1.068706 | 1.068433 | 1.068360 | 1.068327 | 1.068309 | 1.068303

1/2% 0.535232 | 0.534374 | 0.534082 | 0.534023 | 0.534000 | 0.533989 | 0.533986

1/25 0.269031 | 0.267533 | 0.267080 | 0.267006 | 0.266983 | 0.266974 | 0.266972

1/26 0.137288 | 0.134490 | 0.133656 | 0.133530 | 0.133496 | 0.133486 | 0.133484

1/27 0.073645 | 0.068647 | 0.067063 | 0.066824 | 0.066763 | 0.066745 | 0.066742

1/28 0.044652 | 0.036849 | 0.033991 | 0.033530 | 0.033411 | 0.033377 | 0.033372

1/29 0.032521 | 0.022370 | 0.017847 | 0.016995 | 0.016764 | 0.016698 | 0.016688

1/210 0.027688 | 0.016315 | 0.010325 | 0.008924 | 0.008497 | 0.008367 | 0.008348

1/2M1 0.025742 | 0.013904 | 0.007094 | 0.005164 | 0.004461 | 0.004220 | 0.004183

1/212 0.024963 | 0.012934 | 0.005797 | 0.003548 | 0.002580 | 0.002179 | 0.002108

1/213 0.024681 | 0.012546 | 0.005278 | 0.002899 | 0.001771 | 0.001207 | 0.001085

Table 1 Example 1: Numerical errors (x10) for some h and k.
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Fig. 1 Example 1: Asymptotic constant error.

If we assume now that there are not supply forces and we use the following
data:

Tf:207 Q:(Oal)a p=1, M:27 )\:17 /1'0:17 ﬁozla 61:17
pwe=1 J=1, ay=1, =2, 7=2, a=1, k=5 Kk =1,
I€2:5, bzl, Iigzl, Ii4:4, I€5:1, Ii6:2,

and the initial conditions:
ug =v9 = ¢o =eg =Tp = My, 0Op(z) =& (x) =x(x—1) forallxze (0,1),
taking the discretization parameters h = k = 1072 the evolution in time of
the discrete energy E"*. defined as
B = LIRS + el 3 + 12655 + 64415 + 12M7% + T3 + 10] ) 13
+2(un”, (615)a)y + 1(15)2 1 + 2000% 13 + 10[1(637) I3
101 (T2*)a 13 + 5ITE 3,

is plotted in Fig. 2. As can be seen, it converges to zero and an exponential
decay seems to be achieved.
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Fig. 2 Example 1: Evolution of the discrete energy in natural and semi-log scales.

4.2 Second example: comparison with the classical Fourier law

In this example, we compare the solution obtained with our Lord-Shulman
model with the classical Fourier law, which corresponds to the case 7 = 0. We
also assume that no supply forces act, so f=s=1=G = 0.

We have used the following data:

Tf_207 Q_(Ovl)a p:17 ,UJ:27 )\:17 ,u():lv 50:17 ﬂlzlv
H2 1; J = ) a’0:15 5225 a =1, K’:l; 51:27 ’{2:55
b= 5 I<63=1, I€4=27 H5:1, K6—2

and the initial conditions:
Uy = Vo :(bO:eO:TO:Mo, 90(17) :I(.I—l) for all z € (0,1)

Moreover, we note that, since the Fourier theory does not impose any
condition on the thermal acceleration (because it has a lower time derivative
order), the initial condition &; is obtained from the constitutive equation afy =
6(90)7xx.

Thus, taking the discretization parameters h = k = 1072 in Fig. 3 we
plot variables v and v at final time T = 1 for the values of the relaxation
parameter 7 = 0,0.5, 1. Moreover, in Fig. 4 variables ¢ and e are shown at final
time for these relaxation parameters, and in Fig. 5 we plot the temperature 0
and the microthermal displacement T'. As we can observe, there are important
differences between the solutions. Particularly, it is interesting to note that
the temperature and microtemperatures seem to vanish at final time for the
Fourier law.

If we consider point z = 0.25 the evolution in time of the temperature 6
and the thermal displacement T' at this point are plotted in Fig. 6 for the
above values of the relaxation parameter. Again, we can observe that the
solution to the Fourier law presents a great difference with the solution to the
Lord-Shulman model.
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Fig. 3 Example 1D-3: Variables u (left) and v (right) at final time for relaxation parameters
T=0,0.51.

Palx,1)

Fig. 4 Example 1D-3: Variables ¢ (left) and e (right) at final time for relaxation parameters
T =0,0.5,1.

0,0¢1)
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Fig. 5 Example 1D-3: Temperature 6 (left) and microthermal displacement 7' (right) at
final time for relaxation parameters 7 = 0,0.5, 1.
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Fig. 6 Example 1D-3: Evolution in time of the temperature 6 (left) and the thermal dis-
placement T' (right) at point z = 0.25 for relaxation parameters 7 = 0,0.5, 1.

4.3 A two-dimensional problem: application of a surface force

In this two-dimensional simulation, we consider the square domain [0, 1] x [0, 1],
which is assumed to be clamped on the left vertical boundary {0} x [0, 1]. No
supply forces act supposed to act in the body, and a mechanical surface force
S is applied on the boundary I'r = (0,1) x {1} with the following expression:

fr(z,1,t) = (0,0.52%) forall =z € (0,1),t¢€(0,1).

Although this mechanical condition was not considered in the previous section,
the modifications are really straightforward.
The following data have been employed in this simulation:

Q:(O7l)x(071)7 Tf:17 p:17 /14227 A:]w /1'0:17 60:17
ﬁlzla /1'2:17 b:17 J:17 ap =1, 5227 T=1 a=1K=35,
k1i=1 ko=05, kKs=1 Kys=4, ks=1, Ke=2,

and the initial conditions:
uy =vo=To=My=0, ¢y=ce9=10=E =0.

In this case, we recover the actual displacement and volume fraction, taking
into account the following ordinary differential equations([44]):

G=u+tT, §=0+T70,

where w and q~5 are the solutions to Problem V P.

Taking the time discretization parameter k£ = 0.01, in Fig. 7 we plot the
norm of both the displacement (left) and thermal displacement (right) at final
time over the deformed mesh. As expected, the body bends because of the
applied force. Moreover, the displacement increase along the X-axis and we
observe that the thermal displacement increase in the interior area as a result
of the homogeneous Dirichlet boundary condition.
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Fig. 7 Example 2D: Norms of the displacement (left) and thermal displacement (right) at
final time.

Moreover, in Fig. 8 we plot the temperature (left) and volume fraction
(right) at final time over the deformed mesh. They are produced due to the
deformation of the body. We can observe that they both concentrate in the in-
terior of the domain although the volume fraction seems to have an oscillating
behavior.
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Fig. 8 Example 2D: Temperature and volume fraction at final time.
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