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Abstract 
 
 
 
 

Parrondo’s paradox emerged in the 1996 and since then researchers in all types of fields 
try to find revolutionary applications of it. The paradox is the following: there exist two losing 
games such that the combination of the two leads to a winning game. At first glance this paradox 
is quite surprising, but we can easily explain it by using simulations and mathematical 
arguments. Indeed, we will first enunciate the principles of Parrondo’s game and simulate them. 
We will use the software R, and actually see that specific combinations of the games are 
winning. Moreover, even a random combination of the two losing games leads to a winning 
game. Later we will introduce the major definitions and theorems in Markov chains in order to 
study our Parrondo’s game. In particular, we will represent our Parrondo’s game as a Markov 
chain and find its stationary distribution. In that way we will exhibit that our combination of 
two losing games is truly a winning combination. We will also study the diverse possible 
applications of the paradox in all types of fields such as ecology, biology, finance or reliability 
theory.  
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Introduction 
 
 

Since we start playing, we start asking how to win. Game theory is a quite recent 
discipline that emerged around the 19th century. It is defined as the study of mathematical 
models of strategic interaction among rational decision-makers. In other words, how can we 
find a winning strategy based on mathematical thinking. Game theory does not stop at 
gambling, there is a wide spectrum of applications in social science, biology or computer 
science. This is why it is an important field of mathematics and should not be left apart. In this 
paper we will focus on a specific paradox of game theory: the Parrondo’s paradox. This paradox 
states that there exists two losing games such as we can combine those games into a winning 
one. At first glance, this paradox seems counterintuitive and we can easily see how it made such 
noise in the game theory field. Everybody jumped on the opportunity and tried to find 
revolutionary applications of the paradox, and still is. But could Parrondo’s paradox really 
revolution the way we gamble or invest and so on? 

We will do a deep study of this paradox. First of all, we will see some examples of 
Parrondo’s paradox to have a good first understanding of it. Afterwards we will simulate one 
of those examples and try different combinations of the games. Later we will introduce Markov 
chains to help us with the study of this example. Finally, we will go over the many possible 
applications of the paradox.  
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What is Parrondo’s paradox: a few examples  
 
 
Parrondo’s paradox is stated as the following:  
 
Definition 1: Parrondo’s paradox: 
There exists two losing games such as specific combinations of these two games lead to a 
winning game. 
 
We are going to view few examples of those games. 
 
Example 1:  A simple coin game [1][2]  
In Game A, you simply lose one euro every time you play. In Game B, you count how much 
money you have left. If it is an even number, you win 3 euros. Otherwise you lose 5 euros. 
Suppose you begin with 100 euros in your pocket. If you start playing Game A exclusively, you 
will lose all your money in 100 rounds. Similarly, if you decide to play Game B exclusively, 
you will also lose all your money in 100 rounds. 
However, consider playing the games alternatively, starting with Game B, followed by A, then 
by B, and so on (BABABA...). Then we will win 2 euros every two games! 
Thus, even though each game is a losing proposition if played alone, the sequence in which the 
games are played can lead to a profit.  
 
 
Example 2: Saw-tooth [3][4]  
Imagine a rack almost vertical which is going down at constant speed. We will put a ball on it. 
The ball will be stabilized by the teeth of the rack and thus it will go down with it.  We will say 
that it is a failure if the ball reaches ground and success if it reaches the ceiling. Hence this rack 
is a losing game for the ball.  
Now suppose we have a second rack. This one is globally going down but alternate between 
small ascending and descending movements. This game is also losing as the ball will reach the 
ground.  
However, if we combine those two racks in such a way that the ball will go from one rack to 
the other at the right time, we could bring the ball to the ceiling. Hence making a winning game 
from two losing games.    
  
Example 3: Roulette [5] 
Let’s consider a game played on a roulette table. The wheel has slots for 0 and the numbers 1 
to 36. The zero is colored green, and half of the numbers from 1 to 36 is colored black, and the 
other half in red. All numbers are equally likely to be chosen. We say that when zero turns up 
the casino always wins.  
The first game is the following: You bet on red or black and win one dollar if that color turns 
up and lose one euro otherwise. You will win with probability 18/37<0.5. Hence, this first game 
is a losing game.  
Now the second game is a bit more complicated: If your capital is a multiple of 3 and one of 
the numbers 1,2 or 3 turns up, you win one euro, otherwise you lose one euro. You will win 
with probability 3/37. If your capital is not a multiple of 3 and if the outcome is between 1 to 
28, you win one dollar, otherwise you lose one euro. You will win with probability 28/37. This 
is a bit more complicated to see but this is also a losing game 
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We can combine those two losing games into a winning one, thus exhibiting Parrondo’s 
paradox.  
 
 
Example 4: Coin tossing [6] 
This example is similar to the previous one, but we consider coin tossing instead of a roulette 
table. It is also similar to example 1, but a bit more complex.  
We have two games, A and B. Game A consists of flipping a coin. We win 1€ if it lands on 
head and loose 1€ otherwise. But this is a biased coin and the probability of landing head is 0.5-
𝛼, where 𝛼 >0, hence the probability of losing is 0.5+	𝛼). We will consider really small values 
of alpha (𝛼 <0.1)  
Clearly this game is not fair. 
Now, let’s look at the second game: Game B is a bit more complex. There is two different coins, 
let’s call them coin 1 and 2. The first coin is really biased and lands head with probability 0.1-
𝛼 and tails with probability 0.9+𝛼. For the second coin, it lands head with probability 0.75-	𝛼 
and tails with probability 0.25+𝛼. Since we will consider small 𝛼 the second coin will be 
preferable. We will choose which coin to toss with a specific rule: if the current gain of the 
player is a multiple of M (for M an integer) we will play coin 1, otherwise we play coin 2. Note 
that we have the same principle as game A: if either coin lands head we win 1€ otherwise we 
lose 1€. 
This game is also a losing game. 
But now, a strange thing happens, if we actually combine those two games, we can get a 
winning game! Clearly, we can see that if we play game A when the accumulated gain is a 
multiple of 3 and game B otherwise, we will be winning (since we will often play coin 2). But 
if we combine randomly those two games, we also get a winning one. 
 
 
 
We will mostly work on this last example. First, we will simulate game A and game B. Then 
we will consider different combinations of those two games.  
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Simulation of Example 4 (coin tossing) 
 
First, we are going to check if game A and B are actually losing game. We are going to simulate 
those games using the software R (you can find more information on R at [7]). It was done on 
a 2.3 GHz Intel Core i5 dual core processor. Each chunks of the code has polynomial time and 
we have a total running time of 37.46 seconds. You can refer to appendix A to see the code 
implementation in detail. For the simulation we will chose 𝛼=0.005 and M=3. We decided to 
simulate 50,000 plays, as it is big enough to clearly see the results. Indeed, we will saw a clear 
trend with that much plays.  
 
Game A 
 
Remember game A consisted of tossing a coin. If the coin lands on head we win 1€, otherwise 
we lose 1€. The probability of landing head is 0.495 and the probability of landing tail is 
0.505. Here is the simulation of the profit for game A for 50,000 plays.  
 

 
Game B 
Remember game B consisted of the following: we have two coins 1 and 2. If the current profit 
is a multiple of 3, we toss coin 1 otherwise we toss coin 2. Now we win 1€ if the coin lands 
head, we lose 1€ otherwise. The probability for coin 1 to land head is 0.095. The probability 
for coin 2 to land head is 0.745. Here is the simulation of the profit for game B for 50,000 
plays.  
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We can clearly see that both game A and B are losing in the long run.  
Now, we are going to try different combinations of the games A and B to see if we can get a 
winning combination:  
 
Game ABABAB 
We try the first combination “ABABAB” repeatedly, i.e. we play game A, then game B, then 
game A and so on: 

 
The combination ABABAB is clearly a losing combination in the long run. 
Let's try other combinations: 
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Game AABAABAAB 
We play the combination “AABAAB” repeatedly.  

 
Now a surprising thing happens: We have a clear profit in the long run if we play the 
combination “AABAABAAB” repeatedly. Indeed, we can see that with that combination we 
will often play game B when the current gain is not a multiple of M, and thus we will use the 
(winning) coin 2.  
 
Game BBBABBBA 
 

 
The combination “BBBABBBA” repeatedly is a losing combination 
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Game ABBABB 

 
Clearly the combination “ABBABBABB” repeatedly is a winning combination. 
 
Now let's try to randomly chose a game at each turn (we chose game A or B with equal 
probability). We will simulate four random combinations: 
 
Game random combination 

 
This result is very surprising, by combining at random those games we get a profit! 
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Let's look at the more profitable combination, we will make choices in terms of the actual gain, 
this is the best possible combination, but it requires to choose a game at each step in terms of 
our current profit. If our profit is a multiple of M we will choose game A otherwise game B. 
 
Game knowing current gain 
Now we are going to choose which game to play in terms of our current profit. We will make 
the most profitable choice, i.e. at each round we will toss the best coin. Hence if our profit is a 
multiple of 3, we will choose to play game A since we will toss the coin with probability of 
winning of 0.495. If our profit is not a multiple of 3, we will choose to play game B, as we 
will toss the most profitable coin: coin 2 (probability of winning of 0.745). In that way, we 
will never toss the coin 1, which is the worst coin (probability of winning of 0.095). 

 
Results 
Now, we plot all the results together: 

 



 

 13 

And we plot all the results without the game “knowing the current gain” to see clearly the 
profits:  
 

 
 
During this simulation we considered the game where we could choose the game we are going 
to play in terms of our current gain. In that way, every time we had a profit that is a multiple of 
M we avoided the game B, since it will lead to the coin 1 which is the worst possible coin in 
the game. We considered this game as a reference, but we are not going to study it since we 
prefer games where the strategy is known beforehand and does not change at each step. 
Hence, if we take a look at the last graph, we can see the profit over 50,000 plays of the games 
A, B, a random alternation of the two games and specific combinations of the two. 
First of all, we see that indeed, game A and B are losing game on their own. We will compute 
later the expectation of those games.   
Then we see that not all combinations of game A and B are winning ones; in fact, the 
combinations “ABABAB” and “BBBABBBA” are losing combinations, and the combinations 
“AABAAB” and “ABBABB” are winning. We know that the perfect combination is the one 
we described above about choosing which game to play in terms of the current gain. Hence, the 
more the specific combinations are close to this choice, the greater the profit. This is why we 
get such a high profit for the combination “ABBABB”; it is really close to the one with choices 
according to profit. Indeed, we can see that we will often play coin 2 of game B.   
Now, an interesting thing is that if we choose at random between game A and B, we get a 
winning game! This result is the most intriguing one, we will work on the math behind it to 
understand how it can be.  
In conclusion, from this simulation we can clearly see that from the two losing game A and B 
we can get a winning combination and moreover a random combination of those two games is 
also winning.  
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Markov chains 
 
We have seen in detail one example of the Parrondo’s paradox and simulated it. From 

that simulation we clearly saw the illustration of the paradox and how two losing games can 
combine into a winning one. Hence, we saw that this paradox happens but now how does it 
work? 

We are going to take a look at the mathematics behind it to better understand this 
paradox, for that we will need the theory about Markov Chains. The following is based mostly 
on those references [8][9][10][11][12][13] 
 
Introduction to Markov Chains 
 
Definition 2: Markov Chain: 
 

Given a stochastic process, i.e. a collection of random variables 𝑋 = {𝑋!: 𝑡 ∈ 𝑇}, 
defined on a common probability space taking values in a common set S and indexed by a set 
T often either N or [0,+∞) (usually it is thought as time). Then, in order to have a Markov 
chain, this stochastic process must follow the Markov property: The conditional probability 
distribution of future states of the process (conditional on both past and present states) depends 
only upon the present state, not on the sequence of events that preceded it:[13] 
 
ℙ(𝑿𝒏#𝟏 = 𝒔𝒏#𝟏|𝑿𝒏 = 𝒔𝒏, 𝑿𝒏%𝟏 = 𝒔𝒏%𝟏, 𝑿𝒏%𝟐 = 𝒔𝒏%𝟐, … ) = ℙ(𝑿𝒏#𝟏 = 𝒔𝒏#𝟏|𝑿𝒏 = 𝒔𝒏) 

 
We define 𝑆 = {𝑠', 𝑠(, … , 𝑠)} the set of states. The process starts in one of those states and we 
move from one state to the other, we call such a move a step.  
 
 
Example 1: a Markov chain:  
 

Let’s take a look at a simple example; consider the behavior of a regular customer of a 
bookstore. Each day, this customer can do three different actions. Either he does not go into the 
bookstore (N), he goes to the bookstore but does not buy any books (G) or he goes into the store 
and buy at least one book (B). Hence, we obtain the following state space: 

𝑆 = {𝑁, 𝐺, 𝐵} 
 

We suppose that the first day the customer has a probability of 0.5 to visit the bookstore 
without buying, and a probability of 0.5 of buying at least one book.  
Imagine we have the following: 
• When the customer does not go into the bookstore a day, he has a chance of 25% of still not 
going the next day, 50% chance of visiting without buying any book and 25% chance of buying 
a book.  
 
• When the customer visits the bookstore without buying any book, he has a 50% chance of to 
visit the next day without buying and 50% of buying at least one book.  
 
• When the customer buys at least one book, he has 33% chance of not coming the next day and 
33% chance of coming but not buying anything and a 34% chance to buy again.  
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This is clearly a Markov chain as the action of the customer the next day only depends of the 
actions of today and not the day before.  
 
 
 
Now let’s introduce some more definitions:  
 
Definition 3: The initial probability distribution of the Markov chain is the probability 
distribution of the chain at time 𝑛 = 0: 𝑃(𝑋* = 𝑠) = 𝑞(𝑠)	∀	𝑠 ∈ 𝑆 [13] 
 
Definition 4: The probability to move from state 𝑠)#' to state 𝑠)	is  
ℙ(𝑋)#' = 𝑠)#'|𝑋) = 𝑠)) = 𝑝+!+!"# 		∀(𝑠)#', 𝑠)) ∈ 𝑆 × 𝑆 and is called the transition 
probability kernel.[13] 
 
 
Notation: Assume we have a finite number N of possible states in S: 𝑆 = {𝑠', 𝑠(, … , 𝑠-}. 
In order to simplify notations and computations, it is easier to represent our Markov chain with 
vectors and matrices; we will describe the initial probability distribution by a row vector q of 
size N and the transition probabilities can be described as a square matrix P of size 𝑁 × 𝑁: 

(𝒒). = 𝒒(𝑠.) = 𝑃(𝑋* = 𝑠.) 
(𝑷).,0 = 𝑝+$+% = ℙC𝑋)#' = 𝑠0D𝑋) = 𝑠.E			(𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡	𝑜𝑓	𝑛) 

Hence, we can express each probability distribution at any step as a row vector: 
(𝒒)). = 𝒒)(𝑠.) = ℙ(𝑋) = 𝑠.) 

 
Example 2: 
Coming back to our previous example we get: 
      N  G   B 
The initial probability distribution is: 𝑞 = (0, 0.5, 0.5) 
 
          𝑁							 𝐺						 𝐵 

The transition matrix is:  P=  
𝑁
𝐺
𝐵
M
0.25 0.5 0.25
0 0.5 0.5
0.33 0.33 0.34

Q 

 
Where the rows represent the action of the present day and the columns the ones of tomorrow. 
  
 
 
Computation with Markov chain 
 
We are interested in the probability that given the chain is in state i today, it will be in state j 
two days from now. We denote this probability by 𝑝.0

(().  
 
Example 3: In the previous example we see that if the customer didn’t go to the bookstore today 
than the event that he will buy a book two days from now is the disjoint union of the events: 
• A= {The customer does not go into the bookstore tomorrow and he buys a book in two days} 
• B= {The customer goes into the store tomorrow and buys a book the day after} 
• C= {The customer buys a book tomorrow and same in two days from now.} 
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 ℙ(𝐴) = ℙ("The	customer	does	not	go	into	the	bookstore	tomorrow"|"He	doesn't	go	to	the	store	today") ∗ 
															∗ ℙ("The	customer	buys	a	book	two	days	from	now"	|	"ℎ𝑒	𝑑𝑜𝑒𝑠𝑛&𝑡	𝑔𝑜	𝑖𝑛𝑡𝑜	𝑡ℎ𝑒	𝑠𝑡𝑜𝑟𝑒	𝑡𝑜𝑚𝑜𝑟𝑜𝑤") 

Thus: 
ℙ(𝐴) = 𝑝''𝑝'3 
ℙ(𝐵) = 𝑝'(𝑝(3 
ℙ(𝐶) = 𝑝'3𝑝33 

And 
𝑝'3
(() = ℙ(𝐴) + ℙ(𝐵) + ℙ(𝐶) = 𝑝''𝑝'3 + 𝑝'(𝑝(3 + 𝑝'3𝑝33 

 
Now, we realize that this equation can be expressed as the dot product between the first row 
and the third column of P. In general, if we suppose there is r states we have: 
 

𝑝.0
(() =T𝑝.4𝑝40

5

46'

 

 
 
Theorem 1 :[11] Let P be the transition matrix of a Markov chain. The ij-th entry of the matrix 
𝑷) gives the probability that the Markov chain, starting in state 𝑠., will be in state 𝑠0 after n 
steps; i.e. 𝑝.0

()) = (𝑷)).0. 
 
 
Proof of theorem 1: Remember the matric multiplication formula: (𝐴 ∗ 𝐵).0 = ∑ (𝐴).4 ∗5

46'
(𝐵)40. 
We are going to prove this theorem by induction: 
Initial step :  𝑝.0

(() = ∑ 𝑝.4𝑝405
46' = ∑ (𝑷).4(𝑷)40 = (𝑷 ∗ 𝑷).0 = (𝑷().05

46'  , by the previous 
example, which corresponds to the ij-th entry of the matric 𝑷( 
Heredity: Suppose the theorem is true for n, let’s show it for n+1: 
Remark that in order to get from state 𝑠.	to state 𝑠0 in 𝑛 + 1	steps is the same as going from 
state 𝑠. to intermediate state 𝑠4 in n steps and then going from state 𝑠4 to state 𝑠0 in 1 step (this 
corresponds to 𝑝.4

()) ∗ 𝑝40), and this for all k. Hence by the law of total probabilities: 

𝑝.0
()#') =T𝑝.4

()) ∗ 𝑝40

5

46'

 

																																																														= 	∑ (𝑷)).4(𝑷)405
46'  (by induction hypothesis) 
						= (𝑷) ∗ 𝑷).0 
			= (𝑷)#').0 

The heredity is verified and thus the theorem is true for any values of n. 
 
Theorem 2 :[11] Let P be the transition matrix of a Markov chain, and let q be the probability 
vector which represents the starting distribution. Then the probability that the chain is in state 
𝑠. after n steps is the i-th entry in the vector: 

𝒒𝒏 = 𝒒 ∗ 𝑷) 
i.e.: ℙ(𝑋) = 𝑠.) = (𝒒𝑷)). 
 
Proof of theorem 2: 
We will show it by induction too: 
Initialization: let’s show it for n=1: 
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ℙ(𝑋' = 𝑠.) = ∑ ℙ(𝑋* = 𝑠4)ℙ(𝑋' = 𝑠.|𝑋* = 𝑠4)5
46'   (by the law of total porbabilities) 

  
Note that ℙ(𝑋* = 𝑠4) = (𝒒)4 and ℙ(𝑋' = 𝑠.|𝑋* = 𝑠4) = (𝑷)4. by definition 
 
Hence, ℙ(𝑋' = 𝑠.) = ∑ (𝒒)4(𝑷)4. = (𝒒𝑷)45

46'  
So, the theorem is true for n=1. 
 
Heredity: Suppose the theorem is true for n and let’s show it for n+1: 

ℙ(𝑋)#' = 𝑠.) = Tℙ(𝑋) = 𝑠4)ℙ(𝑋)#' = 𝑠.|𝑋) = 𝑠4)
5

46'

 

Note again that: ℙ(𝑋) = 𝑠4) = (𝒒𝑷))4 by induction hypothesis. 
And ℙ(𝑋)#' = 𝑠.|𝑋) = 𝑠4) = (𝑷)4. by theorem 1 
 
Hence, 	

ℙ(𝑋)#' = 𝑠.) = T(𝒒𝑷))4(𝑷)4. = (𝒒𝑷) ∗ 𝑷). = (𝒒𝑷)#').

5

46'

 

 
So, the theorem is true for any n.  
 
 
Example 4: Coming back to our example, we can now compute the probability of each state for 
the second day (n=1) for our customer: 
 

𝒒𝟏 = 𝒒𝑷 = (0 0.5 0.5) X
0.25 0.5 0.25
0 0.5 0.5
0.33 0.33 0.34

Y = (0.165 0.415 0.420) 

 
 
We can also use a graph to represent our Markov chain: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N 

B G 
  0.5 

  0.33 

0.25 
 0.33   0

.5 

  0
 

  0.5 

 0.25 

 0.34 
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Definition 5:[11] A Markov chain is called irreducible or ergodic if it possible to go from 
every state to every state (not necessarily in one move).  
 
If we represent our Markov chain as a graph; the chain is irreducible if it the graph is strongly 
connected.  
 
Example 5: Our example about the bookstore is clearly an irreducible Markov chain, we can 
see it by looking at the graph: it is strongly connected, we can go from any node to any other 
node.  
 
Definition 6: [11] A Markov chain is call regular if some power of the transition matrix has 
only positive elements.  
 
In this paper the term “regular” will be used to refer to the preceding definition and never for 
an invertible matrix.  
 
Note: In other words, a Markov chain is regular is it is possible to go from any state to any state 
in exactly n steps. We see clearly that every regular chain is irreducible. But the other way 
around is not true, see the following example: 
 
Example 6: Let P be the transition matrix of a Markov chain:  

𝑃 = [0 1
1 0\ 

Clearly the chain is irreducible: 
 
 
 
 
 
 
But the chain is not regular: Suppose that n is odd. Then it is not possible to go from state 1 to 
state 1in n steps. If n is even, it is not possible either to go from step 1 to step 2 in n steps.  
 
Example 7: Is our bookstore example a regular chain? Yes!  
Indeed, we can see that it is possible to go from any state to any other state, in two steps. Another 
way to see it is to compute 𝑷𝟐 and see that all entries are positive: 
 

𝑷( = M
0.145 0.4575 0.3975
0.165 0.415 0.42
0.1947 0.4422 0.3631

Q 

 
 
Theorem 3: Fundamental limit theorem for Regular chain: [11]Let P be the transition matrix 
for a regular chain, then, as n goes to infinity, the powers 𝑷) approach a limiting matrix W with 
all rows the same vector w. The vector w is a strictly positive probability vector (i.e. the 
components are all positive and they sum to one) 
 
 
 
In order to prove the fundamental limit theorem, we will first prove the following lemma: 
 

1 2 

1 

1 
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Lemma 4: Let P be a transition matrix for dimensions 𝑟	 × 	𝑟, with no zero entries. Let d be the 
smallest entry of the matrix. Let y be a column vector with r components, let 𝑀* be the largest 
of those components and 𝑚* the smallest. Let 𝑀' and 𝑚' be the largest and smallest 
components of the vector Py. Then: 

𝑀' −𝑚' ≤ (1 − 2𝑑)(𝑀* −𝑚*) 
 
 
 
 
Proof of lemma 4: 
First, let’s understand what this lemma is saying; if an 𝑟 × 𝑟 transition matrics has no zero 
entries, and y is any column vector with r entries, then the vector Py has entries which are 
“closer together” than the entries are in y.  
First, note that since each row of P is a probability vector, Py replaces y by averages of its 
components (with different weights).  
The largest weighted average that could be obtained in the present case would occur if all but 
one of the entries of y have value 𝑀* and the one left entry has value 𝑚*, and this one small 
entry is weighted by the smallest possible weight, namely d. In this case, we will obtain the 
weighted average: 𝑑𝑚* + (1 − 𝑑)𝑀*. 
The smallest weighted average would be obtained if all the entries of y except one have values 
𝑚*, and the one left has value 𝑀*, and 𝑀* is weighted by d. We then obtain the average: 

𝑑𝑀* + (1 − 𝑑)𝑚* 
Thus, 
𝑀' ≤ 	𝑑𝑚* + (1 − 𝑑)𝑀* and 𝑚' ≤ 	𝑑𝑀* + (1 − 𝑑)𝑚*. 
𝑀' −𝑚' ≤ 	𝑑𝑚* + (1 − 𝑑)𝑀* − (	𝑑𝑀* + (1 − 𝑑)𝑚*) =	 (𝑀* −𝑚*)(1 − 2𝑑). 
 
 
Proof of theorem 3: the fundamental limit theorem for regular chain:  
We will first prove the theorem for the case where P has no zero entries. Let y be an arbitrary 
r-column vector, where r is the number of states of the chain. We assume that r > 1. Otherwise 
it is trivial. Once again, let 𝑀) and 𝑚)  be the maximum and minimum components of the 
vector 𝑷)𝒚. The vector 𝑷)𝒚  is obtained from the vector 𝑷)%'𝒚  by multiplying on the left by 
P. As seen the proof of the lemma each component of 𝑷)𝒚 is an average of the components of 
𝑷)%'𝒚. Thus 
𝑀* ≥ 𝑀' ≥	. ..	 and 𝑚* ≤ 𝑚' ≤. ..	 
Hence, each sequence is monotone and moreover bounded: 𝑚* ≤ 𝑚) ≤ 𝑀) ≤ 𝑀*. By the 
monotone theorem, each of these sequences will converge.  
Let M be the limit of 𝑀)	and m the limit of 𝑚). We know that 𝑚 ≤ 𝑀. Now, we want to show 
that 𝑀 −𝑚 = 0. This will be the case if 𝑀) −𝑚) tends to zero.  
Let d be the smallest element of P. Since all entries of P are strictly positive, we have 𝑑 > 0. 
By our lemma we have:  

𝑀) −𝑚) ≤ (1 − 2𝑑)(𝑀)%' −𝑚)%') 
⟺𝑀) −𝑚) ≤ (1 − 2𝑑)((𝑀)%( −𝑚)%() 
⟺𝑀) −𝑚) ≤ (1 − 2𝑑))(𝑀* −𝑚*) 

Since 𝑟 ≥ 2, we must have 𝑑	 ≤ 1/2, so 0 ≤ 1 − 2𝑑 < 1. 
Hence:  

0 ≤ 𝑀) −𝑚) ≤ (1 − 2𝑑))(𝑀* −𝑚*) 
0 ≤ 𝑙𝑖𝑚

)→8
𝑀) −𝑚) ≤ 𝑙𝑖𝑚

)→8
(1 − 2𝑑))(𝑀* −𝑚*) 
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By the squeeze theorem: 𝑙𝑖𝑚
)→8

𝑀) −𝑚) = 0. 
 
Since any components of 𝑷𝒏𝒚 lies between 𝑀) and 𝑚), each component must approach the 
same number 𝑙 = 𝑀 = 𝑚. This shows that 𝑙𝑖𝑚

)→8
𝑷)𝒚 = 𝑳. Where L is the column vector such 

that 𝑳𝒊 = 𝑙	∀𝑖 ∈ {1, . . . , 𝑟}.  
 
Now let y be the vector with j-th component equal to 1 and all other components equal to zero. 
Then 𝑷)𝒚	is the j-th column of 𝑷). We do this for each j, and we can see that the columns of 
𝑷𝒏 approach constant column vectors. That is, the rows of 𝑷) approach a common row vector 
w, i.e.  

𝑙𝑖𝑚
)→8

𝑷) = 𝑾 
 
We are left to show that all entries in W are strictly positive. Let y be the vector with j-th 
component equal to 1 and all other to zero. Then Py is the j-th column of P, and this column 
has all entries strictly positive (by hypotheses). The minimum component of the vector Py was 
defined to be 𝑚', hence 𝑚' > 0. Since 𝑚' ≤ 𝑚, we have 𝑚 > 0. Note finally that this value of 
𝑚 is just the j-th component of w, so all components of w are strictly positive.  
 
 
Theorem 5: [11] Let P be a regular transition matrix and 𝑾 = lim

)→8
𝑷). 

Let w be the common row of W, and let c be the column vector all of whose components are 1. 
Then: 

a. wP=w and any row vector v such that vP=v is a constant multiple of w. 
b. Pc=c and any column vector x such that Px=x is a multiple of c.  

 
 
Proof of theorem 5:  

𝑷) → 𝑾 
Thus, 𝑷)#' = 𝑷)𝑷 → 𝑾𝑷 
But 𝑷)#' → 𝑾, hence 𝑾𝑷 = 𝑾. 

𝒘𝑷 = 𝒘 
Now, let v be such that 𝒗𝑷 = 𝒗. Then 𝒗𝑷( = 𝒗𝑷 = 𝒗, and so on: 𝒗𝑷) = 𝒗. Taking the limit 
on both sides, we get: 𝒗𝑾 = 𝒗. 
Now let s be the sum of the components of v. Then 𝒗𝑾 = [∑𝑣.𝑤'	. . .			∑ 𝑣.𝑤)] =
∑𝑣. [𝑤'	. . .		𝑤)] = 𝑠𝒘. So, 𝒗 = 𝑠𝒘. 
For the second part, we proceed the same way and obtain that 𝒙 = 𝑾𝒙, by using that fact that 
all rows of W are the same and that 𝑐. = 1, we get that x is a multiple of c.  
 
Corollary 6: There is only one probability vector such that vP=v.  
 
 
Definition 7: [11] A row vector such that wP=w is called a fixed row vector for P. Similarly, 
a column vector x such that Px=x is called a fixed column vector for P.  
 
 
Theorem 7:[11] Let P be the transition matrix for a regular chain and v an arbitrary 
probability vector. Then lim

)→8
𝒗𝑷) = 𝒘, where w is the unique fixed probability vector for P. 
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Proof of theorem 7: By the theorem lim

)→8
𝑷) = 𝑾, thus lim

)→8
𝒗𝑷) = 𝒗𝑾. 

But, since v is a probability vector, its entries sum up to 1, and remember that all rows of W 
are equal to w. Hence, we get: 𝒗𝑾 = [∑𝑣.𝑤'	. . .			∑ 𝑣.𝑤)] = ∑𝑣.𝒘 = 𝒘. 
 
 
 
Equilibrium: 
 
Theorem 8: [11] For an ergodic Markov chain, there is a unique probability vector w such that 
wP = w and w is strictly positive. Any row vector such that vP = v is a multiple of w. Any 
column vector x such that Px = x is a constant vector. 
 
Proof of theorem 8: This theorem is the same as before but fore ergodic chain, not regular.  
Let P be the transition matrix of an ergodic chain.  
Let 𝑷′ = (1/2)𝑰 + (1/2)𝑷. This is a regular transition matrix with the same fixed vectors as 
P.  
First let’s show that the fixed vectors are the same: 
Suppose w is a fixed vector for P, then 𝒘𝑷 = 𝒘. Hence: 
 𝒘𝑷′ = (1/2)𝒘𝑰 + (1/2)𝒘𝑷	=	(1/2)𝒘 + (1/2)𝒘 = 𝒘. 
If 𝒘𝑷′ = 𝑷′ ⟹	(1/2)𝒘 + (1/2)𝒘𝑷 = 𝒘	 ⟹	(1/2)𝒘𝑷 = (1/2)𝒘	 ⟹ 𝒘𝑷 = 𝒘. 
We apply the same argument to the column vector. 
 
 

 
 
In this section we have introduced Markov chains. We first defined what it was and 

different properties of specific Markov chains. Moreover, we learned how to compute with 
Markov chains, i.e. how to find the next probability distribution. Finally, and most importantly, 
we learn how to find the equilibrium distribution of a regular Markov chain through the 
fundamental limit theorem for regular chains (theorem 3). In the next part, we will define our 
Parrondo’s games as finite regular Markov chains in order to apply this last theorem and clearly 
determine how we can make a winning game out of two losing games.  
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Mathematical study of the paradox 
 
 
Remember our example 4 from the first part: 
It consisted of two games A and B. In each game we had to toss a coin and head corresponded 
to a win, tail to a loss. 0 < 𝛼 < 0.1 
Game A: probability of landing heads=0.5-𝛼 tails=0.5+𝛼 
Game B: Coin 1: probability of getting head= 0.1-𝛼, tails=0.9+𝛼 
Coin 2: probability of getting heads=0.75-𝛼, tails=0.25+𝛼 
If the current gain is a multiple of M, we play coin 1.  
Game AB: Play game A, then B, then A, B, and so on.  
 
We have seen through the simulation that game A and B are losing but game AB is a winning 
one. Now we want to show this mathematically speaking. We will based our analysis mostly 
on the articles [14] [15] [16] and on the theory on Markov chains. 
 
 
Experience with six plays 
 
First, let’s run few games to see how it is behaving. We will play six rounds of game A only, 
then game B only and finally the combination of the two.   
Let 𝛼=0.005 and M=3.  
 
Game A 
In game A we have that 𝑃(𝑊𝑖𝑛) = 0.495 and 𝑃(𝐿𝑜𝑠𝑒) = 0.505. Let’s find the expectation of 
six rounds of game A. There are 7 possible combinations, resumed in the following table: 

- get six heads (then win 6$) there is one way to do this 
- get 5 heads and one tail (5-1=4$) there is C:;E ways to do this 
- get 4 heads and 2 tails (4-2=2$), C:<E ways 
- get 3 heads and 3 tails (0$), C:3E ways 
- get 2 heads and 4 tails (-2$), C:(E ways 
- get 1 head and 5 tails (-4$), C:'E ways 
- get 6 tails (-6$), 1 way to do this  

 
Number of 
heads 

Number of 
tails  

Gain Number of ways Probabilities 

6 0 6$             1 (0.495): = 0.0147 
5 1 4$ ~

6
5� = 6 (0.495);(0.505) = 0.015 

4 2 2$ ~
6
4� = 15 (0.495)<(0.505)( = 0.0153 

3 3 0$ ~
6
3� = 20 (0.495)3(0.505)3 = 0.0156 

2 4 -2$ ~
6
2� = 15 (0.495)((0.505)< = 0.0159 

1 5 -4$ ~
6
1� = 6 (0.495)(0.505); = 0.0163 

0 6 -6$             1  (0.505): = 0.0166 
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Hence, the expectation is: 
 6 ∙ 0.0147 + 4 ∙ 6	 ∙ 0.015 + 2 ∙ 15 ∙ 0.0153 + 0 − 2 ∙ 15 ∙ 0.0159 − 4 ∙ 6 ∙ 0.0163 − 6 ∙ 0.0166						 
 =	−0.0606 
Hence, game A is a losing game on its own.  
 
Game B 
A naïve argument for computing the expectation would be to say that coin 1 will be tossed 1/3 
of the time. This will give lead to a probability of winning of '

3
∙ 0.095 + (

3
∙ 0.745 = 0.5283; 

and make game B a winning game. But this is false. In fact, coin 1 will be tossed more than 1/3 
of the time. If the gain is a multiple of 3, coin 1 will be flipped and we will likely loose, then 
we will have a gain of one less than a multiple of 3 and coin 2 will be tossed. With the second 
coin, the player will be slightly more likely to win and then going back to a gain that is a 
multiple of 3, and he will have to toss again coin 1. Hence coin 1 should be used more than 1/3 
of the time.  
In general, if we consider the integer M>1, will we toss coin 1 more than 1/M of the time? If 
we suppose that coin 1 will be toss 1/M of the time or less game B will be a winning game for 
certain values of M (M>2): 

1
𝑀 0.095 +

𝑀 − 1
𝑀 0.745	 > 	0.5 

⟺	−0.65 + 0.745𝑀	 > 	0.5𝑀 
⟺𝑀 > 2.65 

But actually coin 1 will be toss more than 1/M of the time, thus making game B a losing game. 
Indeed, by applying the same argument, let G be the net gain at the end of a play, if 𝐺 ≡
0	(𝑚𝑜𝑑	𝑀) we will toss coin 1. As this coin is heavily biased, we will likely loose and obtain 
𝐺 ≡ 𝑀 − 1	(𝑚𝑜𝑑	𝑀). Then if we consider M>2, we will have to toss coin 2 and likely win. 
We will then again have a gain that is a multiple of M and toss coin 1. So, coin 1 will be toss 
more than 1/M of the time.  
 
 
 
Let’s analyze game B in a more rigorous way: 
 
Notation: 𝑊: means six wins, 𝑊3𝐿(𝑊' means that the player wins, wins, wins, loses, loses 
and wins in that order. 
 

- Probability of winning all 6 rounds: 
 P(𝑊!) = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.095 ∙ 0.745 ∙ 0.745 = 0.0028 

𝑷(𝑾𝒊𝒏	𝟔$) = 𝟎. 𝟎𝟎𝟐𝟖 
- Probability of winning 4$: 

𝑃(𝑊;𝐿') = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.095 ∙ 0.745 ∙ 0.255 = 0.0010 
        𝑃(𝑊<𝐿'𝑊') = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.095 ∙ 0.255 ∙ 0.095 = 0.0001 

𝑃(𝑊3𝐿'𝑊() = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.905 ∙ 0.745 ∙ 0.095 = 0.0034 
𝑃(𝑊(𝐿'𝑊3) = 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.745 ∙ 0.745 ∙ 0.095 = 0.0010 
𝑃(𝑊'𝐿'𝑊<) = 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.095 = 0.0001 
𝑃(𝐿'𝑊;) = 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.095 = 0.0034 

𝑷(𝑾𝒊𝒏	𝟒$) = 𝟎. 𝟎𝟎𝟗 
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- Probability of winning 2$: 
𝑃(𝑊<𝐿() = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.095 ∙ 0.255 ∙ 0.905 = 0.0012 

𝑃(𝑊3𝐿(𝑊') = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.905 ∙ 0.255 ∙ 0.745 = 0.0091 
𝑃(𝑊(𝐿(𝑊() = 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.255 ∙ 0.095 ∙ 0.745 = 0.0003 
𝑃(𝑊𝐿(𝑊3) = 0.095 ∙ 0.255 ∙ 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.745 = 0.0012 
𝑃(𝐿(𝑊<) = 0.905 ∙ 0.255 ∙ 0.745 ∙ 0.745 ∙ 0.095 ∙ 0.745 = 0.0091 
𝑃(𝐿'𝑊<𝐿') = 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.905 = 0.0322 

𝑃(𝐿'𝑊3𝐿'𝑊') = 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.745 = 0.0091 
𝑃(𝐿'𝑊(𝐿'𝑊() = 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.745 = 0.0012 
𝑃(𝐿'𝑊'𝐿'𝑊3) = 0.905 ∙ 0.745 ∙ 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.745 = 0.0322 
𝑃(𝑊'𝐿'𝑊3𝐿') = 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.905 = 0.0012 
𝑃(𝑊(𝐿'𝑊(𝐿') = 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.745 ∙ 0.745 ∙ 0.905 = 0.0091 
𝑃(𝑊3𝐿'𝑊'𝐿') = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.905 ∙ 0.745 ∙ 0.905 = 0.0322 

𝑃(𝑊'𝐿'𝑊'𝐿'𝑊() = 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.745 = 0.00004 
𝑃(𝑊'𝐿'𝑊(𝐿'𝑊') = 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.745 = 0.0003 
𝑃(𝑊(𝐿'𝑊'𝐿'𝑊') = 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.745 ∙ 0.255 ∙ 0.745 = 0.0026 

𝑷(𝑾𝒊𝒏	𝟐$) = 𝟎. 𝟏𝟒𝟎𝟒 
 
 
 

- Probability of winning 0$: 
1. 𝑃(𝑊3𝐿3) = 0.095 ∙ 0.745 ∙ 0.745 ∙ 0.905 ∙ 0.255 ∙ 0.255 = 0.0031 

2. 𝑃(𝑊(𝐿3𝑊') = 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.255 ∙ 0.905 ∙ 0.745 = 0.0031 
3. 𝑃(𝑊'𝐿3𝑊() = 0.095 ∙ 0.255 ∙ 0.905 ∙ 0.255 ∙ 0.745 ∙ 0.745 = 0.0031 
4. 𝑃(𝐿3𝑊3) = 0.905 ∙ 0.255 ∙ 0.255 ∙ 0.095 ∙ 0.745 ∙ 0.745 = 0.0031 

5. 𝑃(𝑊(𝐿'𝑊'𝐿() = 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.745 ∙ 0.255 ∙ 0.255 = 0.0009 
6. 𝑃(𝑊'𝐿'𝑊(𝐿() = 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.255 = 0.0001 
7. 𝑃(𝐿'𝑊3𝐿() = 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.255 = 0.0031 

8. 𝑃(𝑊(𝐿(𝑊'𝐿') = 0.095 ∙ 0.745 ∙ 0.255 ∙ 0.255 ∙ 0.095 ∙ 0.255 = 0.0001 
9. 𝑃(𝑊'𝐿(𝑊(𝐿') = 0.905 ∙ 0.255 ∙ 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.255 = 0.0004 
10. 𝑃(𝐿(𝑊3𝐿') = 0.905 ∙ 0.255 ∙ 0.745 ∙ 0.745 ∙ 0.095 ∙ 0.255 = 0.0031 

11. 𝑃(𝑊'𝐿'𝑊'𝐿'𝑊'𝐿') = 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.255 = 0.00001 
12. 𝑃(𝐿'𝑊(𝐿'𝑊'𝐿') = 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.255 = 0.0004 
13. 𝑃(𝐿'𝑊'𝐿'𝑊(𝐿') = 0.905 ∙ 0.745 ∙ 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.255 = 0.0110 
14. 𝑃(𝐿'𝑊'𝐿(𝑊() = 0.905 ∙ 0.745 ∙ 0.905 ∙ 0.255 ∙ 0.745 ∙ 0.745 = 0.0864 

15. 𝑃(𝑊'𝐿(𝑊'𝐿'𝑊') = 0.095 ∙ 0.255 ∙ 0.905 ∙ 0.745 ∙ 0.905 ∙ 0.745 = 0.0110 
16. 𝑃(𝐿(𝑊'𝐿'𝑊() = 0.905 ∙ 0.255 ∙ 0.745 ∙ 0.255 ∙ 0.745 ∙ 0.745 = 0.0243 
17. 𝑃(𝐿(𝑊(𝐿'𝑊') = 0.905 ∙ 0.255 ∙ 0.745 ∙ 0.745 ∙ 0.905 ∙ 0.745 = 0.0864 

18. 𝑃(𝐿'𝑊'𝐿'𝑊'𝐿'𝑊') = 0.905 ∙ 0.745 ∙ 0.905 ∙ 0.745 ∙ 0.905 ∙ 0.745 = 0.3065 
19. 𝑃(𝑊'𝐿'𝑊'𝐿(𝑊') = 0.095 ∙ 0.255 ∙ 0.095 ∙ 0.255 ∙ 0.905 ∙ 0.745 = 0.0004 
20. 𝑃(𝐿'𝑊(𝐿(𝑊') = 0.905 ∙ 0.745 ∙ 0.095 ∙ 0.255 ∙ 0.905 ∙ 0.745 = 0.0110 

𝑷(𝑾𝒊𝒏	𝟎$) = 𝟎. 𝟓𝟓𝟕𝟓 
 

- Probability of losing 2$ 
1 − (0.0028 + 0.009 + 0.1404 + 0.5575 + 0.0946 + 0.0035) = 0.1922 

𝑷(𝑳𝒐𝒔𝒆	𝟐$) = 𝟎. 𝟏𝟗𝟐𝟐 
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- Probability of losing 4$ 
𝑃(𝐿;𝑊') = 0.905 ∙ 0.255 ∙ 0.255 ∙ 0.905 ∙ 0.255 ∙ 0.745 = 0.0101 

        𝑃(𝐿<𝑊'𝐿') = 0.905 ∙ 0.255 ∙ 0.255 ∙ 0.905 ∙ 0.745 ∙ 0.905 = 0.0359 
𝑃(𝐿3𝑊'𝐿() = 0.905 ∙ 0.255 ∙ 0.255 ∙ 0.095 ∙ 0.255 ∙ 0.905 = 0.0013 
𝑃(𝐿(𝑊'𝐿3) = 0.905 ∙ 0.255 ∙ 0.745 ∙ 0.255 ∙ 0.255 ∙ 0.905 = 0.0101 
𝑃(𝐿'𝑊'𝐿<) = 0.905 ∙ 0.745 ∙ 0.905 ∙ 0.255 ∙ 0.255 ∙ 0.905 = 0.0359 
𝑃(𝑊'𝐿;) = 0.095 ∙ 0.255 ∙ 0.905 ∙ 0.255 ∙ 0.255 ∙ 0.905 = 0.0013 

𝑷(𝑳𝒐𝒔𝒆	𝟒$) = 𝟎. 𝟎𝟗𝟒𝟔 
 
 

- Probability of losing 6$ 
𝑃(𝐿:) = 0.905 ∙ 0.255 ∙ 0.255 ∙ 0.905 ∙ 0.255 ∙ 0.255 = 0.0035 

𝑷(𝑳𝒐𝒔𝒆	𝟔$) = 𝟎. 𝟎𝟎𝟑𝟓 
 
 
 

The expected value of 6 rounds of game B is: 
6	 ∙ 0.0028 + 	4 ∙ 0.009	 + 2 ∙ 0.1404 + 	0 − 2 ∙ 0.1922	 − 4 ∙ 0.0946	 − 6 ∙ 0.0035

= −𝟎. 𝟒𝟓𝟎𝟐 
Hence, Game B is a losing game at 6 plays.  
 
 
 
 
Game AB 
Now let’s consider game AB, which consists of alternating between game A and B.  
 

- Probability of winning 6$: 
𝑃(𝑊:) = 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.095 ∙ 0.495 ∙ 0.745 = 0.0064 

	𝑷(𝑾𝒊𝒏	𝟔$) = 𝟎. 𝟎𝟎𝟔𝟒 
 

- Probability of winning 4$: 
𝑃(𝑊;𝐿') = 	0.495 ∙ 0.745 ∙ 0.495 ∙ 0.095 ∙ 0.495 ∙ 0.255 = 0.0022 

        𝑃(𝑊<𝐿'𝑊') = 	0.495 ∙ 0.745 ∙ 0.495 ∙ 0.095 ∙ 0.505 ∙ 0.095 = 0.0008 
𝑃(𝑊3𝐿'𝑊() = 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.905 ∙ 0.495 ∙ 0.095 = 0.0078 
𝑃(𝑊(𝐿'𝑊3) = 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.095 = 0.0065 
𝑃(𝑊'𝐿'𝑊<) = 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.095 = 0.0022 
𝑃(𝐿'𝑊;) = 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.095 = 0.0065 

𝑷(𝑾𝒊𝒏	𝟒$) = 𝟎. 𝟎𝟐𝟔𝟎 
 

- Probability of winning 2$: 
𝑃(𝑊<𝐿() = 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.095 ∙ 0.505 ∙ 0.905 = 0.0079 

𝑃(𝑊3𝐿(𝑊') = 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.905 ∙ 0.505 ∙ 0.745 = 0.0622 
𝑃(𝑊(𝐿(𝑊() = 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.745 = 0.0175 
𝑃(𝑊'𝐿(𝑊3) = 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.745 = 0.0179 
𝑃(𝐿(𝑊<) = 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.745 = 0.0175 
𝑃(𝐿'𝑊<𝐿') = 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.905 = 0.0622 

𝑃(𝐿'𝑊3𝐿'𝑊') = 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.745 = 0.0522 
𝑃(𝐿'𝑊(𝐿'𝑊() = 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.745 = 0.0175 
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𝑃(𝐿'𝑊'𝐿'𝑊3) = 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.745 = 0.0522 
𝑃(𝑊'𝐿'𝑊3𝐿') = 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.905 = 0.0209 
𝑃(𝑊(𝐿'𝑊(𝐿') = 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.905 = 0.0622 
𝑃(𝑊3𝐿'𝑊'𝐿') = 0.495 ∙ 0.745 ∙ 0.495 ∙ 0.905 ∙ 0.495 ∙ 0.905 = 0.0740 

𝑃(𝑊'𝐿'𝑊'𝐿'𝑊() = 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.745 = 0.0059 
𝑃(𝑊'𝐿'𝑊(𝐿'𝑊') = 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.745 = 0.0175 
𝑃(𝑊(𝐿'𝑊'𝐿'𝑊') = 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.745 = 0.0522 

𝑷(𝑾𝒊𝒏	𝟐$) = 𝟎. 𝟓𝟐𝟐𝟑 
 

- Probability of losing 2$: 
𝑃(𝐿<𝑊() = 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.905 ∙ 0.495 ∙ 0.095 = 0.0291 
𝑃(𝐿3𝑊(𝐿') = 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.095 ∙ 0.495 ∙ 0.255 = 0.0008 
𝑃(𝐿(𝑊(𝐿() = 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.255 = 0.0061 
𝑃(𝐿'𝑊(𝐿3) = 0.505 ∙ 0.745 ∙ 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.255 = 0.0061 
𝑃(𝑊(𝐿<) = 0.495 ∙ 0.745 ∙ 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.255 = 0.0061 

𝑃(𝑊'𝐿<𝑊') = 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.095 = 0.0008 
𝑃(𝑊'𝐿3𝑊'𝐿') = 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.255 = 0.0021 
𝑃(𝑊'𝐿(𝑊'𝐿() = 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.255 = 0.0061 
𝑃(𝑊'𝐿'𝑊'𝐿3) = 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.255 = 0.0021 
𝑃(𝐿'𝑊'𝐿3𝑊') = 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.095 = 0.0023 
𝑃(𝐿(𝑊'𝐿(𝑊') = 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.095 = 0.0008 
𝑃(𝐿3𝑊'𝐿'𝑊') = 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.095 ∙ 0.505 ∙ 0.095 = 0.0003 
𝑃(𝐿'𝑊'𝐿'𝑊'𝐿() = 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.255 = 0.0182 
𝑃(𝐿'𝑊'𝐿(𝑊'𝐿') = 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.255 = 0.0061 
𝑃(𝐿(𝑊'𝐿'𝑊'𝐿') = 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.255 ∙ 0.495 ∙ 0.255 = 0.0021 

𝑷(𝑳𝒐𝒔𝒆	𝟐$) = 𝟎. 𝟎𝟖𝟗𝟏 
 

 
 

- Probability of losing 4$ 
 

𝑃(𝐿;𝑊') = 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.905 ∙ 0.505 ∙ 0.745 = 0.0221 
        𝑃(𝐿<𝑊'𝐿') = 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.905 ∙ 0.495 ∙ 0.905 = 0.0264 

𝑃(𝐿3𝑊'𝐿() = 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.095 ∙ 0.505 ∙ 0.905 = 0.0028 
𝑃(𝐿(𝑊'𝐿3) = 0.505 ∙ 0.255 ∙ 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.905 = 0.0074 
𝑃(𝐿'𝑊'𝐿<) = 0.505 ∙ 0.745 ∙ 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.905 = 0.0221 
𝑃(𝑊'𝐿;) = 0.495 ∙ 0.255 ∙ 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.905 = 0.0074 

𝑷(𝑳𝒐𝒔𝒆	𝟒$) = 𝟎. 𝟎𝟖𝟖𝟐 
 
 

- Probability of losing 6$ 
𝑃(𝐿:) = 0.505 ∙ 0.255 ∙ 0.505 ∙ 0.905 ∙ 0.505 ∙ 0.255 = 0.0076 

	𝑷(𝑳𝒐𝒔𝒆	𝟔$) = 𝟎. 𝟎𝟎𝟕𝟔 
 

 
Hence, the expectation of game AB is: 

6	 ∙ 0.0064 + 	4 ∙ 0.0260	 + 2 ∙ 0.5223 + 	0 − 2 ∙ 0.0891	 − 4 ∙ 0.0882	 − 6 ∙ 0.0076
= 𝟎. 𝟔𝟏𝟎𝟒 

So, by alternating between game A and B we get a winning game on six plays.  
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General argument (using Markov chain):  
 
If we look at game A, we always have the same probability; probability of 0.5-𝛼 of winning 
and 0.5+𝛼 of losing. Moreover, each play is independent of the other. Thus, game A is losing 
whenever 𝛼	is positive. Note that if 𝛼 is equal to zero we get a “fair” game.   
 
 
Game B 
Game B is a bit different; each play depends on the previous play. Indeed, we will toss a 
different coin depending on the accumulated gain at the end of the previous play. But we will 
not take into account the plays before the last one. Hence, we clearly have a Markov chain. 
Now we have to determine the states of our Markov chain. The states will establish which coin 
to toss; hence they must be related to the gain. We know that depending that if the gain is a 
multiple of M we will toss coin 1, otherwise coin 2. The first tentative would be to consider the 
states 𝑠* = 𝑡ℎ𝑒	𝑔𝑎𝑖𝑛	𝑖𝑠	𝑎	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒	𝑜𝑓	𝑀, 𝑠' = 𝑡ℎ𝑒	𝑔𝑎𝑖𝑛	𝑖𝑠	𝑛𝑜𝑡	𝑎	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒	𝑜𝑓	𝑀. But note 
that in that case we will not differentiate between a coin that is one more that a multiple of M 
or two more than a multiple of M. Indeed, for M=3, consider G the gain at the end of a play. If 
G is not a multiple of 3 and 𝐺 ≡ 1	(𝑚𝑜𝑑	3), we will play coin 2 and if we lose, we will have 
𝐺 ≡ 0	(𝑚𝑜𝑑	3) and we will play coin 1 in the next round. Whereas if G is still not a multiple 
of 3 but 𝐺 ≡ 2	(𝑚𝑜𝑑	3), we will play coin 2 and if we lose, we will still play coin 2. Hence in 
those two situations the gain was not a multiple of 3 but we still need to separate those situations 
as they leaded to different plays. Therefore we can define the states of our Markov chain as 
𝑆	 = {𝑠*, 𝑠', 	𝑠(}, where 𝑠* = 0, 	𝑠' = 1, 	𝑠( = 2, and represents the accumulated gain after the 
previous play modulo 3. Thus, the Markov chain is finite (as it consists in a finite number of 
states).  
We get the following probabilities: 
 𝑝** = 𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛	 = 0	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛	 = 0	(𝑚𝑜𝑑	3)) = 0 
𝑝*' = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3)	, 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 1(𝑚𝑜𝑑	3)E = 𝑃(𝑊𝑖𝑛	𝑤𝑖𝑡ℎ	𝑐𝑜𝑖𝑛	1) =
0.1 − α  
𝑝*( = 𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3) = 𝑃(𝐿𝑜𝑠𝑒	𝑤𝑖𝑡ℎ	𝑐𝑜𝑖𝑛	1) =
0.9 + α  
𝑝'* = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 1	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3)E = 𝑃(𝐿𝑜𝑠𝑒	𝑤𝑖𝑡ℎ	𝑐𝑜𝑖𝑛	2) =
0.25 + α  
𝑝'' = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 1(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 1(𝑚𝑜𝑑	3)E = 0  
𝑝'( = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 1	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡𝑔	𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3)E = 𝑃(𝑊𝑖𝑛	𝑤𝑖𝑡ℎ	𝑐𝑜𝑖𝑛	2) =
0.75 − α  
𝑝(* = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3)E = 𝑃(𝑊𝑖𝑛	𝑤𝑖𝑡ℎ	𝑐𝑜𝑖𝑛	2) =
0.75 − α  
𝑝(' = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 1	(𝑚𝑜𝑑	3)E = 𝑃(𝐿𝑜𝑠𝑒	𝑤𝑖𝑡ℎ	𝑐𝑜𝑖𝑛	2) =
0.25 + α  
𝑝(( = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3)E = 0  
 
We can write our transition matrix as follows: 
 

𝑷𝑩 = M
0 0.1 − 𝛼 0.9 + 𝛼

0.25 + 𝛼 0 0.75 − 𝛼
0.75 − 𝛼 0.25 + 𝛼 0

Q 
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Note, that we start with a gain of 0$, so we have to first toss coin 1. Hence, the initial probability 
distribution is: 𝑞 ′ = [1 0 0] 
 
We have seen (theorem 2) that we can find the probability to be in state i at the n play is: 
 𝑞>
()) = 𝑞𝑃>). 

 
Using α = 0.005, we get:  

𝑃> = M
0 0.095 0.905

0.255 0 0.745
0.745 0.255 0

Q 

 
We are going to find the stationary distribution. Note that P is regular. Indeed  
 

𝑃>( = M
0.69845 0.230775 0.070775
0.555025 0.2142 0.230775
0.065025 0.070775 0.8642

Q 

 
Hence, we can use theorems 3 and 5, and we are left with solving: 
 

𝑣𝑃> = 𝑣 
 

[𝑣' 𝑣( 𝑣3] M
0 0.095 0.905

0.255 0 0.745
0.745 0.255 0

Q = [𝑣' 𝑣( 𝑣3] 

 
Knowing that v is a multiple of w, where w is a probability vector, we impose the condition 
	𝑣' + 𝑣( + 𝑣3 = 1, in order to get the stationary distribution.  
 
We obtain the following system of equations: 
 

0.255𝑣( + 0.745𝑣3 = 𝑣' 
0.095𝑣' + 0.255𝑣3 = 𝑣( 
0.905𝑣' + 0.745𝑣( = 𝑣3 

𝑣' + 𝑣( + 𝑣3 = 1 
 
Which is equivalent to: 
 

𝑣' = 0.3836 
𝑣( = 0.1543 
𝑣3 = 0.4621 

 

Hence 𝑙𝑖𝑚
)→8

𝑃>) = 𝑊> = M
0.3836 0.1543 0.4621
0.3836 0.1543 0.4621
0.3836 0.1543 0.4621

Q 

 
The equilibrium vector is 𝑤> = [0.3836 0.1543 0.4621] 
Then, the probability of winning one play in the long term is (by the total law of 
probabilities): 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠')𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠') + 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠()𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠() +
𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠3)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠3) = 0.095 ∙ 0.3836 + 0.745 ∙ 0.1543 + 0.745 ∙ 0.4621 =
𝟎. 𝟒𝟗𝟓𝟕 
Hence game B is a losing game.  
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Game A 
In order to analyze game AB, we need to represent game A as a Markov chain too; 
In game A, at each play we toss a coin and the probability of the outcome does not depend on 
the previous states. We define the states as before 		𝑆 = {𝑠*, 𝑠', 𝑠(}, where 𝑠* = 0, 	𝑠' = 1, 	𝑠( =
2, and represents the accumulated gain after the previous play modulo 3 in order to have the 
same states as in the chain associated with game B. Hence game A is a finite Markov chain.  
We get the following probabilities: 
 𝑝** = 𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛	𝑖𝑠	𝑎	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒	𝑜𝑓	3	𝑎𝑛𝑑	𝑡ℎ𝑒	𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛	𝑤𝑖𝑙𝑙	𝑏𝑒	𝑡𝑜𝑜) = 0 
𝑝*' = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3)	, 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 1(𝑚𝑜𝑑	3)E = 		𝑃(𝑊𝑖𝑛	) = 0.5 − 𝛼  
𝑝*( = 𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3) = 𝑃(𝐿𝑜𝑠𝑒) = 0.5 + 𝛼  
𝑝'* = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 1	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3)E = 𝑃(𝐿𝑜𝑠𝑒) = 0.5 + 𝛼  
𝑝'' = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 1(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 1(𝑚𝑜𝑑	3)E = 0  
𝑝'( = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 1	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3)E = 𝑃(𝑊𝑖𝑛	) = 0.5 − 𝛼  
Since the only way to go from a gain of 1 modulo 3 to 2 modulo 3 is to win the game. We also 
apply this argument for the two following computations.  
𝑝(* = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 0	(𝑚𝑜𝑑	3)E = 𝑃(𝑊𝑖𝑛) = 0.5 − 𝛼  
𝑝(' = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 1	(𝑚𝑜𝑑	3)E = 𝑃(𝐿𝑜𝑠𝑒) = 0.5 + 𝛼  
𝑝(( = 𝑃C𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3), 𝑛𝑒𝑥𝑡	𝑔𝑎𝑖𝑛 = 2	(𝑚𝑜𝑑	3)E = 0  
 
We can write our transition matrix as follows: 
 

𝑷𝑨 = M
0 0.5 − 𝛼 0.5 + 𝛼

0.5 + 𝛼 0 0.5 − 𝛼
0.5 − 𝛼 0.5 + 𝛼 0

Q 

 
 
Note, that we start with a gain of 0$, so we have to first toss coin 1. Hence, the initial probability 
distribution is: 𝑞 ′ = [1 0 0] 
 
We have seen that we can find the probability to be in state i at the n play is: 
𝑞@
()) = 𝑞𝑃@). 

 
Using 𝛼 = 0.005, we get:  

𝑃@ = M
0 0.495 0.505

0.505 0 0.495
0.495 0.505 0

Q 

 
We are going to find the stationary distribution. Note that P is regular. Indeed  
 

𝑃@( = M
0.49995 0.255025 0.245025
0.245025 0.49995 0.255025
0.255025 0.245025 0.49995

Q 

 
Hence, we can use the theorems 3 and 5 and we are left with solving: 
 

𝑣𝑃@ = 𝑣 
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[𝑣' 𝑣( 𝑣3] M
0 0.495 0.505

0.505 0 0.495
0.495 0.505 0

Q = [𝑣' 𝑣( 𝑣3] 

 
𝑘𝑛𝑜𝑤𝑖𝑛𝑔	𝑡ℎ𝑎𝑡	𝑣' + 𝑣( + 𝑣3 = 1 

 
We obtain the following system of equations: 
 

0.505𝑣( + 0.495𝑣3 = 𝑣' 
0.495𝑣' + 0.505𝑣3 = 𝑣( 
0.505𝑣' + 0.495𝑣( = 𝑣3 

𝑣' + 𝑣( + 𝑣3 = 1 
 
Which is equivalent to: 
 

𝑣' = 1/3 
𝑣( = 1/3 
𝑣3 = 1/3 

 

Hence 𝑙𝑖𝑚
)→8

𝑃@) = 𝑊@ = M
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

Q 

 
The equilibrium vector is 𝑤@ = [1/3 1/3 1/3] 
Then, the probability of winning one play in the long term is (by the total law of 
probabilities): 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠')𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠') + 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠()𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠() +
𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠3)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠3) = 0.495 ∙ 1/3 + 0.495 ∙ 1/3 + 0.495 ∙ 1/3 = 𝟎. 𝟒𝟗𝟓 
Hence, we came as the same conclusion as before; game A is a losing game.  
 
Game AB 
Now, we can consider the game AB as a random combination of the game A and B. Since 
both games A and B are finite Markov chain, so will be game AB. We can represent the 
transition matrix Q of game AB as follows: 
 

𝑄 =
1
2𝑃@ +

1
2𝑃> =

1
2 M

0 0.5 − 𝛼 0.5 + 𝛼
0.5 + 𝛼 0 0.5 − 𝛼
0.5 − 𝛼 0.5 + 𝛼 0

Q +
1
2 M

0 0.1 − 𝛼 0.9 + 𝛼
0.25 + 𝛼 0 0.75 − 𝛼
0.75 − 𝛼 0.25 + 𝛼 0

Q

= M
0 0.3 − 𝛼 0.7 + 𝛼

0.375 + 𝛼 0 0.625 − 𝛼
0.625 − 𝛼 0.375 + 𝛼 0

Q = M
0 0.295 0.705

0.380 0 0.620
0.620 0.380 0

Q 

Using 𝛼 = 0.005. 
 
We are going to find the stationary distribution. Note that P is regular. Indeed  
 

𝑄( = M
0.5492 0.2679 0.1829
0.3844 0.3477 0.2679
0.1444 0.1829 0.6727

Q 

 
Hence, we can use the theorems 3 and 5 and we are left with solving: 
 

𝑣𝑄 = 𝑣 
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[𝑣' 𝑣( 𝑣3] M
0 0.295 0.705

0.380 0 0.620
0.620 0.380 0

Q = [𝑣' 𝑣( 𝑣3] 

 
𝑘𝑛𝑜𝑤𝑖𝑛𝑔	𝑡ℎ𝑎𝑡	𝑣' + 𝑣( + 𝑣3 = 1 

 
We obtain the following system of equations: 
 

0.380𝑣( + 0.620𝑣3 = 𝑣' 
0.295𝑣' + 0.380𝑣3 = 𝑣( 
0.705𝑣' + 0.620𝑣( = 𝑣3 

𝑣' + 𝑣( + 𝑣3 = 1 
 
Which is equivalent to: 
 

𝑣' = 0.3451 
𝑣( = 0.2541 
𝑣3 = 0.4008 

 

Hence 𝑙𝑖𝑚
)→8

𝑄) = 𝑊@> = M
0.3451 0.2541 0.4008
0.3451 0.2541 0.4008
0.3451 0.2541 0.4008

Q 

 
The equilibrium vector is 𝑤@> = [0.3451 0.2541 0.4008] 
Then, the probability of winning one play in the long term is (by the total law of 
probabilities): 
 "
#
[𝑃(𝑤𝑖𝑛	𝐴|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠")𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠") + 𝑃(𝑤𝑖𝑛	𝐴|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠#)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠#) +

𝑃(𝑤𝑖𝑛	𝐴|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠$)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠$)] +
"
#
[𝑃(𝑤𝑖𝑛	𝐵|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠")𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠") +

𝑃(𝑤𝑖𝑛	𝐵|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠#)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠#) + 𝑃(𝑤𝑖𝑛	𝐵|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠$)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠$)] 
 = "

#
[0.495 ∙ 0.3451 + 0.495 ∙ 0.2541 + 0.495 ∙ 0.4008] + "

#
[0.095 ∙ 0.3451 + 0.745 ∙ 0.2541 +

0.745 ∙ 0.4008] 
 = 𝟎. 𝟓𝟎𝟕𝟖 
Hence the random combination of game A and B is a winning game in the long term! 
 
 
Argument for a general 𝛼 
 
Now let’s see in general for which 𝛼 game A and B are losing games and game AB is a 
winning one.  
In order to do this analysis, we will still consider M=3 (with a bigger or undefined M 
computations get really complex).  
 
 
Game A 
First concerning game A. We can see that game A can consists of independent Bernoulli 
trials, with probability of success of 0.5-	𝛼. Clearly, game A will be losing whenever 𝛼 > 0. 
We can also prove that with Markov chains considering the transition matrix: 
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𝑃@(𝛼) = M
0 0.5 − 𝛼 0.5 + 𝛼

0.5 + 𝛼 0 0.5 − 𝛼
0.5 − 𝛼 0.5 + 𝛼 0

Q 

 
Note that 𝑃@(𝛼) is regular: 

𝑃@((𝛼) = �
2(0.5 − 𝛼)(0.5 + 𝛼) (0.5 + 𝛼)( (0.5 − 𝛼)(

(0.5 − 𝛼)( 2(0.5 − 𝛼)(0.5 + 𝛼) (0.5 + 𝛼)(

(0.5 + 𝛼)( (0.5 − 𝛼)( 2(0.5 − 𝛼)(0.5 + 𝛼)
� 

 
Since 𝛼 > 0.1 the entries of  𝑃@((𝛼) are strictly positive. 
 
 
We can apply theorems 3 and 5: 
 

𝑣𝑃@(𝛼) = 𝑣 
 

[𝑣' 𝑣( 𝑣3] M
0 0.5 − 𝛼 0.5 + 𝛼

0.5 + 𝛼 0 0.5 − 𝛼
0.5 − 𝛼 0.5 + 𝛼 0

Q = [𝑣' 𝑣( 𝑣3] 

 
𝑘𝑛𝑜𝑤𝑖𝑛𝑔	𝑡ℎ𝑎𝑡	𝑣' + 𝑣( + 𝑣3 = 1 

 
We obtain the following system of equations: 
 

(0.5 + 𝛼)𝑣( + (0.5 − 𝛼)𝑣3 = 𝑣' 
(0.5 − 𝛼)𝑣' + (0.5 + 𝛼)𝑣3 = 𝑣( 
(0.5 + 𝛼)𝑣' + (0.5 − 𝛼)𝑣( = 𝑣3 

𝑣' + 𝑣( + 𝑣3 = 1 
 
Which is equivalent, as before, to: 
 

𝑣' = 1/3 
𝑣( = 1/3 
𝑣3 = 1/3 

 
Then, the probability of winning one play in the long term is (by the total law of 
probabilities): 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠')𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠') + 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠()𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠() +
𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠3)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠3) = (0.5 − 𝛼) ∙ 1/3 + (0.5 − 𝛼) ∙ 1/3 + (0.5 − 𝛼) ∙
1/3 = 𝟎. 𝟓 − 𝛼 
Hence, game A is losing whenever this probability is strictly lower than 0.5 i.e. when 𝛼 > 0. 
 
 
Game B 
Secondly, we consider game B; for which 𝛼 is game B a losing game? 
Consider the following transition matrix: 
 

𝑷𝑩(𝛼) = M
0 0.1 − 𝛼 0.9 + 𝛼

0.25 + 𝛼 0 0.75 − 𝛼
0.75 − 𝛼 0.25 + 𝛼 0

Q 
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Note that 𝑃>(𝛼) is regular: 
𝑃!"(𝛼)

= D
(0.1 − 𝛼)(0.25 + 𝛼) + (0.75 − 𝛼)(0.9 + 𝛼) (0.9 + 𝛼)(0.25 + 𝛼) (0.1 − 𝛼)(0.75 − 𝛼)

(0.75 − 𝛼)" (0.1 − 𝛼)(0.25 + 𝛼) + (0.75 − 𝛼)(0.25 + 𝛼) (0.9 + 𝛼)(0.25 + 𝛼)
(0.25 + 𝛼)" (0.75 − 𝛼)(0.1 − 𝛼) (0.75 − 𝛼)(0.9 + 𝛼) + (0.75 − 𝛼)(0.25 + 𝛼)

N 

 
Since 𝛼 > 0.1 the entries of  𝑃>((𝛼) are strictly positive. 
 
We can apply the theorems 3 and 5. 
 

𝑣𝑃>(𝛼) = 𝑣 
 

[𝑣' 𝑣( 𝑣3] M
0 0.1 − 𝛼 0.9 + 𝛼

0.25 + 𝛼 0 0.75 − 𝛼
0.75 − 𝛼 0.25 + 𝛼 0

Q = [𝑣' 𝑣( 𝑣3] 

 
And 	𝑣' + 𝑣( + 𝑣3 = 1  
 
We obtain the following system of equations: 
 

(0.25 + 𝛼)𝑣( + (0.75 − 𝛼)𝑣3 = 𝑣' 
(0.1 − 𝛼)𝑣' + (0.25 + 𝛼)𝑣3 = 𝑣( 
(0.9 + 𝛼)𝑣' + (0.75 − 𝛼)𝑣( = 𝑣3 

𝑣' + 𝑣( + 𝑣3 = 1 
 
Which is equivalent to: 
 

𝑣' =
5(16𝛼( − 8𝛼 + 13)
240𝛼( − 16𝛼 + 169 

 

𝑣( =
2(40𝛼( + 6𝛼 + 13)
240𝛼( − 16𝛼 + 169 

 

𝑣3 =
2(40𝛼( + 6𝛼 + 39)
240𝛼( − 16𝛼 + 169 

 
Then, the probability of winning one play in the long term is (by the total law of 
probabilities): 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠')𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠') + 𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠()𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠() +
𝑃(𝑤𝑖𝑛|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠3)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠3) = (0.1 − 𝛼) ∙ 𝑣' + (0.75 − 𝛼) ∙ 𝑣( + (0.75 − 𝛼) ∙ 𝑣3 =
(0.1 − 𝛼) ∙ ;O':P

'%QP#'3R
(<*P'%':P#':S

+ (0.75 − 𝛼) ∙ (O<*P
'#:P#'3R

(<*P'%':P#':S
+ (0.75 − 𝛼) ∙ (O<*P

'#:P#3SR
(<*P'%':P#':S

 
 
Game B is a losing game whenever this probability is strictly lower than 0.5 i.e. when: 
 

⟺	
−240𝛼3 + 144𝛼( − 155𝛼 + 84.5

240𝛼( − 16𝛼 + 169 < 0.5 
 

⟺−240𝛼3 + 24𝛼( − 147𝛼 < 0 
 

⟺ 𝛼 > 0 
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Hence, game B is a losing game whenever 𝛼 > 0 (same that game A).  
 
 
Game AB 
Finally, for the game AB which 𝛼 makes it a winning game?  
We consider the following transition matrix: 
 

𝑄(𝛼) = M
0 0.3 − 𝛼 0.7 + 𝛼

0.375 + 𝛼 0 0.625 − 𝛼
0.625 − 𝛼 0.375 + 𝛼 0

Q 

 
Note that 𝑄(𝛼) is regular: 
𝑄(𝛼)

= *
(0.3 − 𝛼)(0.375 + 𝛼) + (0.7 + 𝛼)(0.625 − 𝛼) (0.7 + 𝛼)(0.375 + 𝛼) (0.3 − 𝛼)(0.625 − 𝛼)

(0.625 − 𝛼)! (0.375 + 𝛼)(0.3 − 𝛼) + (0.625 − 𝛼)(0.375 + 𝛼) (0.375 + 𝛼)(0.7 + 𝛼)
(0.375 + 𝛼)! (0.625 − 𝛼)(0.3 − 𝛼) (0.625 − 𝛼)(0.7 + 𝛼) + (0.375 + 𝛼)(0.625 − 𝛼)

4 

 
Since 𝛼 > 0.1 the entries of  𝑄(𝛼) are strictly positive. 
 
We can apply the theorems 3 and 5. 
 
 

𝑣𝑄(𝛼) = 𝑣 
 

[𝑣' 𝑣( 𝑣3] M
0 0.3 − 𝛼 0.7 + 𝛼

0.375 + 𝛼 0 0.625 − 𝛼
0.625 − 𝛼 0.375 + 𝛼 0

Q = [𝑣' 𝑣( 𝑣3] 

 
𝑘𝑛𝑜𝑤𝑖𝑛𝑔	𝑡ℎ𝑎𝑡	𝑣' + 𝑣( + 𝑣3 = 1 

 
We obtain the following system of equations: 
 

(0.375 + 𝛼)𝑣( + (0.620−𝛼)𝑣3 = 𝑣' 
(0.3 − 𝛼)𝑣' + (0.375 + 𝛼)𝑣3 = 𝑣( 
(0.7 + 𝛼)𝑣' + (0.625 − 𝛼)𝑣( = 𝑣3 

𝑣' + 𝑣( + 𝑣3 = 1 
 
Which is equivalent to: 
 

𝑣' =
320𝛼( − 80𝛼 + 245
960𝛼( − 32𝛼 + 709 

 

𝑣( =
320𝛼( + 24𝛼 + 180
960𝛼( − 32𝛼 + 709 

 

𝑣3 =
320𝛼( + 24𝛼 + 284
960𝛼( − 32𝛼 + 709 

 
Then, the probability of winning one play in the long term is (by the total law of 
probabilities): 
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 "
#
[𝑃(𝑤𝑖𝑛	𝐴|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠")𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠") + 𝑃(𝑤𝑖𝑛	𝐴|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠#)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠#) +

𝑃(𝑤𝑖𝑛	𝐴|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠$)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠$)] +
"
#
[𝑃(𝑤𝑖𝑛	𝐵|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠")𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠") +

𝑃(𝑤𝑖𝑛	𝐵|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠#)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠#) + 𝑃(𝑤𝑖𝑛	𝐵|𝑤𝑒	𝑎𝑟𝑒	𝑖𝑛	𝑠$)𝑃(𝑡𝑜	𝑏𝑒	𝑖𝑛	𝑠$)] 
 = "

#
[(0.5 − 𝛼) ∙ 𝑣1 + (0.5 − 𝛼) ∙ 𝑣2 + (0.5 − 𝛼) ∙ 𝑣3] +

"
#
[(0.1 − 𝛼) ∙ 𝑣1 + (0.75 − 𝛼) ∙ 𝑣2 +

(0.75 − 𝛼) ∙ 𝑣3] 
 = 5.67𝛼

#
+ "

#
[(0.1 − 𝛼) ∙ 𝑣1 + (0.75 − 𝛼) ∙ (𝑣2 + 𝑣3)] 

 = 5.67𝛼
#

+ "
#
Q(0.1 − 𝛼) ∙ 320𝛼

2−80𝛼+245
960𝛼2−32𝛼+709 + (0.75 − 𝛼) ∙ R

320𝛼2+24𝛼+180
960𝛼2−32𝛼+709+

320𝛼2+24𝛼+284
960𝛼2−32𝛼+709ST 

 
Game AB is a winning game whenever this probability is strictly greater than 0.5 i.e. when: 
 

⟺
−1920𝛼$ + 1056𝛼# − 1406𝛼 + 727

1920𝛼# − 64𝛼 + 1418 > 0.5 
 

⟺ 𝛼 < 0.013109 
 
 
Hence game AB is a winning game for 𝛼 < 0.013109. 
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Applications of the paradox 
 

We proved that we could actually combine two losing games into a winning one. So 
now, what do we do of it? Could we just rush into the closest casino and become rich? The 
answer is basically no. Indeed, the paradox cannot turn any losing games into winning ones, it 
follows a specific set of rules. In a Parrondo’s game the rules are capital dependent, the game 
we play depend on the current capital. Game A and B were linked through the gain, playing 
one game will modify this gain and will have an impact on the next playing game. In casinos, 
all the games are capital independent; playing one game will not affect another game. In order 
to apply the paradox in a casino we will need to find three games to represent our three coins. 
Easily we could find games to model the two losing coins (coin from game A and coin 1 from 
game B), but we will not find a game in a casino that is winning such as coin 2 from game B.  
 
 
Application 1: Physics [17] 

However, there are other possible applications of Parrondo’s paradox then 
straightforward gambling.  
The first one is actually the one that permitted to discover this paradox. Indeed, Professor 
Parrondo, who theorized the paradox is a physicist. He was working on flashing Brownian 
Ratchets. This is a rather complex device: It consist of a ratchet that is freely to move in one 
direction only. The ratchet is connected to an immersed wheel in a fluid of molecules at a certain 
temperature. The molecules will undergo Brownian motion and constitute a heat bath. The 
impulse from a molecular collision will turn the immersed wheel. Remember that the ratchet 
can only turn in one direction. Hence the net effect of all the collisions would seem to make the 
ratchet turned continuously in that direction.   
 
 

 
Figure 1 :Flashing Brownian Ratchets [3] 

 
 
We can see it more clearly in this representation of the potentials: (a) represents the potential 
on (game B), (b) the potential off (game A) and (c) the potential on (game B).  
If the potential is switched on (analogous to game B), the Brownian particles will fall into one 
of the “valleys”, as we see in the graph (a), we suppose they fall around 0. Then, if we turn off 
the potential, the particle will spread out. This is analogous to game A. Finally, if we switch on 
again the potential, the particles that have been spread out will fall again into the “valleys”. But 
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now, they will fall into different valleys. As we can see in the graph (c), some of them stay in 
the valley around 0, a small amount of them went into the valley around -L, and another part of 
the Brownian particle went into the +L valley. Hence, we have a net positive displacement of 
those particles.   
To make it simple; the flashing Brownian ratchet is a process that alternates between two states; 
a one-dimensional Brownian motion and a Brownian ratchet. This system will produce a 
directed motion. Those two states alone do not result in a directed motion but the combination 
of the two is. It is a rather complicated process, and Dr. Parrondo introduced Parrondo’s games 
to illustrate it in simpler way.  
 
 
 

Note that all the other areas of application (others than gambling) are areas of active 
research and the implication of Parrondo’s paradox is here suggested and left to prove.  
 
 
Application 2: Ecology [18] 

We consider a population that can express two kind of behavior: nomad or colonist. A 
nomad behavior corresponds to an independent lifestyle; thus, they are not affected by 
competition or cooperation. Hence, under poor environmental conditions they will go extinct. 
In the contrary, colonists live together in close proximity and thus are affected by competition 
and cooperation, but then they may drain all the resources of their environment and also go 
extinct. Hence, we can qualify those two behaviors as losing strategies in the “survival game”. 

The nomad behavior will be “equivalent” to our previous game A. Concerning the 
colonist behavior, we have the following: let A be the critical lower capacity and K the carrying 
capacity. If the actual size of the population is between A and K, the population will grow, and 
it will decrease otherwise. Moreover, the carrying capacity K changes depending on the 
populations size (this represents the fact that environmental resources are destroyed) hence 
making colonist behavior a losing strategy. Thus, the colonist behavior will be our game B. 
Indeed, the current gain is replaced by the current population size and, depending on its value, 
we alternate between a winning (if A<population size<K, the population increases) and losing 
game (otherwise the population decreases).  
To recap, game A represents the nomad behavior (a losing strategy), game B represents the 
colonist strategy if the population size is between A and K the population will increase, 
otherwise it decreases, M is represented by A and K, the current gain is represented by the 
population size.  

We suppose that the organism can know the amount of environmental resources to them 
and hence deduce the carrying capacity. In function of the values of this carrying capacity they 
will change strategies. We will call strategic alternation when the organism changes behavior 
from colonist to nomad if the carrying capacity is low and from nomad to colonist if the carrying 
capacity is high.  

Simulations have been run based on those two survival strategies, nomad and colonist, 
the following has been observed: In case of no-behavioral switching either the two populations 
go extinct or the nomad goes extinct whereas the colonial survives. In case of behavioral 
switching either both populations go extinct or they survive through periodic behavioral 
alternation or there is a long-term growth through strategic alternation. Most importantly, one 
aspect of those simulations illustrates the Parrondo’s paradox: there were situations where both 
populations will die if we did not permit behavior-changes but will survive trough periodic 
behavioral alternation.  
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 We exhibited Parrondo’s paradox in this ecological situation. This paradox could have 
also wider application on the field of ecology such as explaining why a destructive specie like 
the Homo Sapiens can thrive and grow even with limited environmental resources or help us 
better understand the evolution or extinction of species in general and maybe the emergence of 
life.  
 
 
 
Application 3: Finance [19][20][21] 
 Finance is one of the most active field of research related to Parrondo’s paradox as it 
could lead to the most profit; everyone wants to find out how we can combine two losing 
investment into a winning one.  
 For now, we did not find a direct application of the paradox. The reason for that is that 
Parrondo’s paradox is following specific rules for the determination of Game A and B. To find 
strategies in asset management that will also follow those rules is nearly impossible. But let’s 
suppose that we are actually able to find an investment bank willing to sell us a security where 
we could apply the paradox.  Let’s then assume that we will be able to build a portfolio which 
will increase its total value while the values of the stocks will decrease individually. In that case 
we will make money out of worthless stocks, they must be a loophole somewhere. Moreover, 
note that it is as hard to find stocks that will decrease as stocks that will increase.  
Hence, the Parrondo’s paradox have not yet find a utility in stock investment but the research 
is still active. One article [22] states that  “rebalanced portfolio diversification can turn 
individually, money-losing assets into a winning portfolio”. Indeed, it shows that by taking 
separate investments (that were more likely to be losing ones), if we rebalance them to make 
an equally weighted portfolio, we were more likely to make profits. Hence, exhibiting 
Parrondo’s paradox once more.  

Moreover, we have found a correlation between the paradox and “volatility pumping” 
[20] similar to the rebalanced portfolio diversification. Volatility pumping consists of the 
following: We have two stocks A and B. Stock A is stable but not so good in the long run and 
stock B increases but is volatile. The method is to sell both stocks each day. Let N be the total 
amount of the sale. Then, we buy N/2 of stock A and N/2 of stock B. We repeat this procedure 
each day. This method will produce a positive profit. However, this is a toy model and it is hard 
to apply it to the real stock market. Indeed, it is not possible to buy and sell everyday as they 
will be high transaction costs. 
Those preceding applications on finance are “toy models”; we are still waiting on a 
breakthrough concerning a direct application of Parrondo’s paradox in finance.  
 
 
 
Application 4: Reliability theory [23] 
 Reliability theory is defined as the probability that a device will perform its intended 
function under specific times and conditions. To exhibit Parrondo’s paradox we studied two 
systems in series, where the first system was less reliable than the second. Then, we modified 
the first system by randomly choosing its components, i.e. we chose each unit randomly in the 
same set of components as before. Hence the distributions of the new units were a mixture of 
the previous units’ distributions. Surprisingly, the new system was more reliable than the 
second one in specific conditions. Therefore, by randomly choosing units from the first, less 
reliable, system, we obtained a better system than the second one, thus exhibiting the paradox.  
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Application 5: Biology 
Parrondo’s paradox has also some possible application in biology. The first one 

concerns random phase variation [24]. Phase variation is a method for dealing with changing 
environment, it involves the variation of protein expression. Random phase variation is a phase 
variation that happen at random time. But phase variation is a losing strategy as it will often 
results in a maladaptive phenotype. However, it has been observed that random phase variation 
has better results in the survival of the organism in certain conditions, and it could even be 
necessary.  

We have also studied some applications in oncology [25]. Indeed, the growth of tumors 
can admit a chaotic behavior in certain regimes. It has been shown that chaotic tumor growth 
trajectories can be made nonchaotic by modifying some control parameters as drugs. Hence, 
we could combine chaotic behaviors into a nonchaotic one, thus reflecting the paradox.  

Another application in biology concerns the sensors [26]. The biological sensors of an 
organism permit him to analyze its environment and make decision upon it. We expect 
organisms with more accurate sensors to be more adaptive to their environment and be better 
at survival. But actually, under certain conditions, organisms with less accurate sensors tend to 
be the one surviving. This also exhibits Parrondo’s paradox: 
We can consider game A as doing nothing, we will say that this is a losing strategy as the 
environment is changing. Game B will consist of using the bad sensors to make a decision of 
whether or not to migrate. In Parrondo’s game B, we had two coins, one better than the other, 
those two coins will be represented by the stochastic switching of the environment: in certain 
condition in the environment less accurate sensors will make better decisions, on other 
conditions it will do the opposite. Note that game B in general is a losing strategy as it consists 
of using bad sensors to make decision. However, it has been seen that less accurate sensors tend 
to survive over more accurate ones and thus expressing Parrondo’s paradox.  
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Conclusion 
 
 
  

Through this paper we did a complete study of Parrondo’s paradox. We first introduced 
Parrondo’s game through different examples all related to gambling. Then, we decided to 
simulate the coin tossing Parrondo’s game. From that simulation we clearly saw that it was 
possible to combine two losing games into a winning one. Even more surprising, we saw that a 
random combination of the two losing games leaded to a winning game. After having illustrated 
the paradox, we did a full mathematical study of it. In order to do that, we first introduced some 
definitions and theorems related to Markov chains. Notably we proved the fundamental limit 
theorem for regular Markov chain. This theorem allowed us to represent our example as a 
regular Markov chain and compute its equilibrium distribution.  With all that knowledge, we 
were able to analyze our Parrondo’s game and prove that indeed those two losing games can be 
combined into a winning game. Finally, we saw that, even though in this thesis we mostly use 
the examples of gambling games, Parrondo’s paradox could also be applied in many other fields 
such as physics, ecology, finance, reliability theory or biology.  

Therefore, although Parrondo’s paradox is a “small” revolution in game theory it can 
actually be easily explained by using Markov chains. Hence the term “paradox” is not 
completely adequate. Indeed, the paradox is based on switching games that alter the overall 
system behavior. Consequently, we can combine two losing games into a winning one without 
breaking any mathematical laws. Parrondo’s games on their own are not the interesting part of 
this thesis but rather the logic of it and the many possible applications. The final message to 
take home is that two wrongs can actually make a right, and not only in gambling.  
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Appendix A  
Code implementation of the simulation (on R) 
 
Here is the code implementation in details of the Simulation part. This is a R markdown file.  
 
require(ggplot2) 

## Loading required package: ggplot2 

require(scales) 

## Loading required package: scales 

library(gridExtra) 
#install.packages("tictoc") 
library(tictoc) 

We play the following game: 

Game A: we toss a biased coin with probability of head of 0.5 − 𝛼. We win 1€ if it lands head 
and loose 1€ otherwise. 

Game B: If the current gain is a multiple of M we toss coin 1, otherwise we toss coin 2. Coin 1 
lands head with probability 0.1 − 𝛼. Coin 2 lands head with probability 0.75 − 𝛼. 

First we defined the game A and B: 

start_time<-Sys.time() 
set.seed(10) 
#Game A 
#let's say that we have prob of winning of 0.5-alpha 
GameA = function(eps,gain) { 
  x=runif(1) 
  if(x<(0.5-eps)){gain<-gain+1} 
  else {gain<-gain-1} 
  return(gain) 
} 
 
#Game B 
#if capital C(t) is a multiple of M plat coin 2 with p_2 of winning is 0.1
-alpha 
#else play coin 3 with p_3 of winning is 0.75-alpha 
GameB= function(eps,M,gain) { 
  if (gain%%M==0) { 
  x=runif(1) 
  if(x<(0.1-eps)){gain<-gain+1} 
  else {gain<-gain-1} 
  return(gain) 
  } 
  else { 
    x=runif(1) 
    if(x<(0.75-eps)){gain<-gain+1} 
    else {gain<-gain-1} 
    return(gain) 
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  } 
} 

We simulate 5000 plays of game A to check if it is indeed a winning game: We choose 𝛼 =
0.005 and 𝑀 = 3 

set.seed(18) 
gain0<-0 
noplays=50000 
eps<-0.005 
M<-3 
 
profitA<-vector(mode="double",length=noplays) 
 
profitA[1]<-GameA(eps,0) 
 
 
for (i in 2:noplays) { 
  profitA[i]<-GameA(eps,profitA[i-1]) 
} 
n<-c(1:50000) 
 
dataA=rbind(data.frame(Play=n, Game="A", Profit=profitA)) 
ggplot(dataA, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 

Now we simulate Game B: 
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set.seed(18) 
gain0<-0 
noplays=50000 
eps<-0.005 
M<-3 
 
profitB<-vector(mode="double",length=noplays) 
 
profitB[1]<-GameB(eps,3,0) 
 
 
for (i in 2:noplays) { 
  profitB[i]<-GameB(eps,3,profitB[i-1]) 
} 
n<-c(1:50000) 
 
 
dataB=rbind(data.frame(Play=n, Game="B", Profit=profitB)) 
ggplot(dataB, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 

We can clearly see that game A and B are losing games in the long run. 

Now we are going to test some combinations of the game A and B and see what do we get: 

1. First combination: ABABAB, i.e. we play game A, then game B, then game A and so on. 
set.seed(18) 
gain0<-0 



 

 46 

noplays=50000 
eps<-0.005 
M<-3 
 
 
profitAB2<-vector(mode="double",length=noplays) 
profitAB2[1]<-GameA(eps,0) 
 
for (i in 2:noplays) { 
  if (i%%2==0) { 
     profitAB2[i]<-GameB(eps,3,profitAB2[i-1]) 
  } 
   
  else { 
    profitAB2[i]<-GameA(eps,profitAB2[i-1]) 
  } 
 
} 
n<-c(1:50000) 
 
dataAB2=rbind(data.frame(Play=n, Game="ABABAB", Profit=profitAB2)) 
ggplot(dataAB2, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 The 
combination ABABAB is clearly a losing combination in the long run. Let’s try other 
combinations: 

2.AABAABAABAAB 
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set.seed(18) 
gain0<-0 
noplays=50000 
eps<-0.005 
M<-3 
 
profitAB3<-vector(mode="double",length=noplays) 
profitAB3[1]<-GameA(eps,0) 
 
for (i in 2:noplays) { 
  if (i%%3==0) { 
     profitAB3[i]<-GameB(eps,3,profitAB3[i-1]) 
  } 
   
  else { 
    profitAB3[i]<-GameA(eps,profitAB3[i-1]) 
  } 
 
} 
n<-c(1:50000) 
 
 
dataAB3=rbind(data.frame(Play=n, Game="AABAABAAB", Profit=profitAB3)) 
ggplot(dataAB3, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 Now 
a surprising thing happens: We have a clear profit in the long run if we play the combination 
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AABAABAAB. Indeed we can see that with that combination we will often play game B when 
the current gain is not a multiple of M, and thus we will use the (winning) coin 2. 

3.BBBABBBABBBA 

set.seed(18) 
gain0<-0 
noplays=50000 
eps<-0.005 
M<-3 
 
profitAB4<-vector(mode="double",length=noplays) 
profitAB4[1]<-GameB(eps,3,0) 
 
for (i in 2:noplays) { 
  if (i%%4==0) { 
     profitAB4[i]<-GameA(eps,profitAB4[i-1]) 
  } 
   
  else { 
    profitAB4[i]<-GameB(eps,3,profitAB4[i-1]) 
  } 
 
} 
n<-c(1:50000) 
 
 
dataAB4=rbind(data.frame(Play=n, Game="BBBABBBA", Profit=profitAB4)) 
ggplot(dataAB4, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 
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 The 
combination BBBABBBA is a losing combination 

4.ABBABBABB 

set.seed(18) 
gain0<-0 
noplays=50000 
eps<-0.005 
M<-3 
 
 
profitAB6<-vector(mode="double",length=noplays) 
profitAB6[1]<-GameA(eps,0) 
 
 
for (i in 2:noplays) { 
  if (i%%3==0) { 
     profitAB6[i]<-GameA(eps,profitAB6[i-1]) 
  } 
   
  else { 
    profitAB6[i]<-GameB(eps,3,profitAB6[i-1]) 
  } 
 
} 
 
n<-c(1:50000) 
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dataAB6=rbind(data.frame(Play=n, Game="ABBABBABB", Profit=profitAB6)) 
ggplot(dataAB6, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 
Clearly the combination ABBABBABB is a winning combination. 

Now let’s try to randomly chose a game at each turn (we chose game A or B with equal 
probability), we will simulate 4 random combinations: 5. Random 

set.seed(18) 
gain0<-0 
noplays=50000 
eps<-0.005 
M<-3 
n<-c(1:50000) 
 
profitABr1<-vector(mode="double",length=noplays) 
 
if (runif(1)<0.5) { 
  profitABr1[1]<-GameA(eps,0)  
} else { 
profitABr1[1]<-GameB(eps, 3, 0) 
} 
 
 
for (i in 2:noplays) { 
  if (runif(1)<0.5) { 
  profitABr1[i]<-GameA(eps,profitABr1[i-1])  
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  } else { 
  profitABr1[i]<-GameB(eps,3,profitABr1[i-1]) 
  } 
} 
 
set.seed(11) 
profitABr2<-vector(mode="double",length=noplays) 
 
if (runif(1)<0.5) { 
  profitABr2[1]<-GameA(eps,0)  
} else { 
profitABr2[1]<-GameB(eps, 3, 0) 
} 
 
 
for (i in 2:noplays) { 
  if (runif(1)<0.5) { 
  profitABr2[i]<-GameA(eps,profitABr2[i-1])  
  } else { 
  profitABr2[i]<-GameB(eps,3,profitABr2[i-1]) 
  } 
} 
 
set.seed(10) 
profitABr3<-vector(mode="double",length=noplays) 
 
if (runif(1)<0.5) { 
  profitABr3[1]<-GameA(eps,0)  
} else { 
profitABr3[1]<-GameB(eps, 3, 0) 
} 
 
 
for (i in 2:noplays) { 
  if (runif(1)<0.5) { 
  profitABr3[i]<-GameA(eps,profitABr3[i-1])  
  } else { 
  profitABr3[i]<-GameB(eps,3,profitABr3[i-1]) 
  } 
} 
 
set.seed(12) 
profitABr4<-vector(mode="double",length=noplays) 
 
if (runif(1)<0.5) { 
  profitABr4[1]<-GameA(eps,0)  
} else { 
profitABr4[1]<-GameB(eps, 3, 0) 
} 
 
 
for (i in 2:noplays) { 
  if (runif(1)<0.5) { 
  profitABr4[i]<-GameA(eps,profitABr4[i-1])  
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  } else { 
  profitABr4[i]<-GameB(eps,3,profitABr4[i-1]) 
  } 
} 
 
dataABr=rbind(data.frame(Play=n, Game="random 1",   Profit=profitABr1), 
              data.frame(Play=n, Game="random 2",   Profit=profitABr2), 
              data.frame(Play=n, Game="random 3", Profit=profitABr3), 
              data.frame(Play=n, Game="random 4", Profit=profitABr4) 
           ) 
ggplot(dataABr, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 This 
result is very suprising, by combinining at random those games we get a profit! 

Let’s look at the more profitable combination, we will make choices in terms of the actual 
gain, this is the best possible combination but it requires to choose a game at each step in 
terms of our current profit. If our profit is a multiple of M we will choose game A otherwise 
game B. 

set.seed(18) 
gain0<-0 
noplays=50000 
eps<-0.005 
M<-3 
 
 
profitAB5<-vector(mode="double",length=noplays) 
profitAB5[1]<-GameA(eps,0) 
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for (i in 2:noplays) { 
  if (profitAB5[i-1]%%3==0) { 
     profitAB5[i]<-GameA(eps,profitAB5[i-1]) 
  } 
   
  else { 
    profitAB5[i]<-GameB(eps,3,profitAB5[i-1]) 
  } 
 
} 
n<-c(1:50000) 
 
 
 
dataAB5=rbind(data.frame(Play=n, Game="knowing the current gain", Profit=p
rofitAB5)) 
ggplot(dataAB5, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 

Plot all the results together: First with the game where we can choose in terms of our 
current gain 

data=rbind(data.frame(Play=n, Game="A",   Profit=profitA), 
              data.frame(Play=n, Game="B",   Profit=profitB), 
              data.frame(Play=n, Game="AB random 1", Profit=profitABr1), 
              data.frame(Play=n, Game="ABABAB", Profit=profitAB2), 



 

 54 

              data.frame(Play=n, Game="AABAAB", Profit=profitAB3), 
              data.frame(Play=n, Game="BBBABBBA", Profit=profitAB4), 
              data.frame(Play=n, Game="knowning the previous profit", Prof
it=profitAB5), 
              data.frame(Play=n, Game="ABBABB", Profit=profitAB6) 
           ) 
ggplot(data, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 

 

print('Profit at the end of game B:') 

## [1] "Profit at the end of game B:" 

profitB[50000] 

## [1] -346 

print('Profit at the end of game A:') 

## [1] "Profit at the end of game A:" 

profitA[50000] 

## [1] -560 

print('Profit at the end of game ABABAB:') 

## [1] "Profit at the end of game ABABAB:" 

profitAB2[50000] 
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## [1] -328 

print('Profit at the end of game BBBABBBA:') 

## [1] "Profit at the end of game BBBABBBA:" 

profitAB4[50000] 

## [1] -174 

print('Profit at the end of game AABAABAAB:') 

## [1] "Profit at the end of game AABAABAAB:" 

profitAB3[50000] 

## [1] 398 

print('Profit at the end of game random 1 AB:') 

## [1] "Profit at the end of game random 1 AB:" 

profitABr1[50000] 

## [1] 614 

print('Profit at the end of game ABBABBABB:') 

## [1] "Profit at the end of game ABBABBABB:" 

profitAB6[50000] 

## [1] 2546 

print('Profit at the end of game knowing the previous profit:') 

## [1] "Profit at the end of game knowing the previous profit:" 

profitAB5[50000] 

## [1] 15620 

Plot the results together of the games where the strategy is choosen beforehand. 

data=rbind(data.frame(Play=n, Game="A",   Profit=profitA), 
              data.frame(Play=n, Game="B",   Profit=profitB), 
              data.frame(Play=n, Game="AB random 1", Profit=profitABr1), 
              data.frame(Play=n, Game="ABABAB", Profit=profitAB2), 
              data.frame(Play=n, Game="AABAAB", Profit=profitAB3), 
              data.frame(Play=n, Game="BBBABBBA", Profit=profitAB4), 
              data.frame(Play=n, Game="ABBABB", Profit=profitAB6) 
           ) 
ggplot(data, aes(Profit, x=Play, y=Profit, color = Game)) + geom_line() 
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end_time<-Sys.time() 
running_time<-end_time-start_time 
running_time 

## Time difference of 37.45806 secs 

 
 


