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1 INTRODUCTION 

Direct current arc furnaces see considerable use in modern industrial melting and smelting 
processes. Pyrometallurgical applications for this type of furnace are wide-ranging, and 

include commodities such as Ferrochrome, Ferronickel, Cobalt, Zinc, Magnesium, Titanium 
Dioxide, Platinum-group metals1, and others. 

Central to the operation of such furnaces is the direct current plasma arc, a sustained high 
temperature jet of ionised gas which is formed between the end of one or more graphite 

electrodes and the bath of molten process material below. Passage of electric current through 

the arc inputs energy and maintains the high temperatures necessary for ionisation via ohmic 

heating. This is balanced by various mechanisms of energy loss from the arc, including 

volumetric radiation and convection to the molten bath surface below. Much of this energy is 

delivered to a localised area directly beneath the arc, making it a very efficient means of 

heating the process material. 

Flow of plasma in the arc column is driven strongly by electromagnetic Lorentz forces 

resulting from the constriction of the conduction channel in the vicinity of the electrode. This 

constriction causes the arc to draw in gas from the surroundings and accelerate it away from 

the electrode surface, toward the molten bath below (the Maecker effect
2
). 

Much research has been conducted in the area of numerical modelling of arc phenomena, 

starting with Szekely and co-workers3 and becoming increasingly more sophisticated with the 

advent of better software, property data, and increased computing capability. However, the 
majority of arc modelling efforts concentrate on steady-state, axisymmetric systems. While 

valuable from an engineering standpoint these models are not able to describe any transient 
behaviour exhibited by the arc, or any evolution of the shape and structure of the arc which 

breaks the symmetry imposed by the model. Both of these aspects are important for a deeper 
understanding of direct current plasma arc behaviour. 
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2  MATHEMATICAL MODEL 

The direct current plasma arc is a coupled multiphysics system, requiring distributed 

parameter models of fluid flow, energy transfer, and electromagnetics. All these fields must 

be approximated by mathematical expressions and solved simultaneously in order to achieve 

an overall model of the arc. 

As the arc is a high-velocity gas jet, it is fundamentally a fluid flow problem. For 

simplicity and in order to focus on the dynamic aspects of the arc behaviour, incompressible 

flow with constant physical properties is assumed. In this case the Navier-Stokes and 

continuity equations governing fluid flow reduce to: 

( )
ρ

ν
Bj

vpvv

v ×
+∇=∇+∇⋅+

∂

∂ 2

t
 (1) 

0=⋅∇ v  (2) 

In these equations, v is the fluid velocity vector, p is the reduced pressure (P/ρ), ν is the 

dynamic viscosity, ρ is the density, j is the current density vector, and B is the magnetic field 
vector. The momentum source term is the Lorenz force, which arises due to the interaction of 

magnetic and electric fields in the plasma. This provides strong coupling between the velocity 
and electromagnetic fields in the model. 

In order to make (1) more amenable to numerical treatment, the gauge method formulation 

of E and Liu4 is used. By defining auxiliary vector field a and gauge variable θ such that: 
θ∇+= va  (3) 
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and substituting into (1) and (2) produces: 
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a⋅∇=∇ θ
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v is recovered from the additional fields by a simple calculation using (3). A key strength 

of the gauge method over other primitive variable formulations is that boundary conditions 

for both a and θ may be unambiguously specified by using the gauge freedom. For example, a 

non-slip wall condition (v = 0 at boundary) may be written as: 

ττττ
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=⋅=⋅=
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n
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Energy transfer in the direct current plasma arc model is treated using several simplifying 
assumptions. Firstly, the plasma fluid is considered to be in local thermodynamic equilibrium 

(LTE)
5
, as a result of which a single temperature can be used to characterise the energy 

content of the material. LTE requires that the plasma be optically thin, dominated by 

reversible collision reaction processes, and exhibit small local gradients of plasma properties. 
The thermal plasmas found in direct current arc furnaces generally meet these conditions, 

although deviations can occur near to cold surfaces. In addition to LTE the physical properties 
of the plasma are assumed to be constant, as for the flow equations. With this, the energy 

conservation equation becomes: 
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Here, T is the plasma temperature, α is its thermal diffusivity, CP is its heat capacity, σ is 

its electrical conductivity, and QR is the volumetric rate of radiative energy loss. Both σ and 
QR are strong functions of temperature and plasma composition, as shown for an air plasma5,6 

in Figures 1 and 2. Temperature is coupled to the velocity field via the convection term, and 
to the electromagnetic fields by the ohmic heating source term. 

 

 

Figure 1: σ of air as a function of temperature 

 

Figure 2: QR of air as a function of temperature 

 
The electromagnetic field components in the plasma arc model are modelled using 

Maxwell’s equations, simplified for the case of a neutral medium. Since the time scales 
involved in plasma arc motion are much longer than those relevant to the transient terms in 

Maxwell’s laws (in which field propagation occurs at the speed of light), the electrostatic and 
magnetostatic versions of the laws are used. The peak velocities in the arc jet are also 

assumed to be low enough to ignore the induced current due to fluid motion. With these 
approximations, we have from charge continuity: 

φσ∇−=j  (9) 

( ) 0=∇⋅∇ φσ  (10) 

In these relationships, φ is the electric potential field. Boundary conditions for the electric 

field are a combination of Dirichlet (specified potential, for eg. molten bath surface at ground 
= 0) and Neumann (specified current, for eg. electrically insulating surfaces, or fixed current 

densities at arc root) types.  
The magnetic field is calculated from the current density distribution, once it is known. 

Ampere and Gauss’s laws govern the magnetic field behaviour: 

jB 0µ=×∇  (11) 

0=⋅∇ B  (12) 

These may then be reformulated using the magnetic vector potential, A, such that: 
AB ×∇=  (13) 

Substituting into (11) and applying the Coulomb gauge for A then gives: 

jA
2

0µ−=∇  (14) 

This expression is more amenable to numerical treatment, as it decouples the vector 
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components of the magnetic field into three independent Poisson equations. Boundary 
conditions are imposed on (14) using the assumption that the boundary surfaces are 

magnetically insulating, only permitting lines of magnetic flux to pass into or out of the 
calculation region on parts of the boundary through which current is flowing: 

( )
0,0 =

∂

⋅∂
=⋅

n

nA

A ττττ  (15) 

It is interesting to note that as a result of the electromagnetic relationships, the Lorentz 

force term in (1) can be shown to be irrotational in two-dimensional cartesian coordinates. 

This can pose problems7 for solutions of the plasma arc model in 2D. Fortunately these can be 

avoided by using a simple modification in the numerical treatment of (14), considering the 

calculation region for the magnetic field as though it has a small finite thickness in the third 

dimension. This results in the expression for (14) changing to the following, for 2D cartesian 

problems only: 

j

A

A
2

0
2

2
µ−=−∇

δL
 (16) 

The size of the correction factor δL is specified in accordance with the dimensions of the 

arc column at its base, that is, where it attaches to the surface of the graphite electrode. This 

ensures that the magnitude and functional form of the magnetic field in the vicinity of the arc 

root, where the Lorentz force takes on its largest values, is accurate and physically realistic. 

The calculation region and boundaries for the direct current plasma arc model are shown in 
Figures 3 and 4. A rectangular region immediately surrounding the arc in the central area of 

the furnace is modelled, consisting of the gas space between the tip of the graphite electrode 
and the top surface of the molten bath.  

 

 

 

Figure 3: Solution region for arc models Figure 4: Region geometry (for 2D models) 

 

In Figure 4, the origin of a cartesian coordinate system is located at H. The molten bath 
anode is located at surface GH, and the surface of the graphite electrode is section BE. The 

cathode spot, which forms the root of the arc column, is at CD. The remaining boundaries are 

treated as solid walls, forming a closed system. 

The boundary conditions for the plasma arc model (in 2D) are shown in Table 1. The 

current density at the root of the arc on the surface of the graphite electrode, jk, is governed by 

thermionic emission from the hot electrode, and has been determined experimentally8 to be of 

the order of 3.5 x 10
7
 A/m

2
. Together with a specified total current, this determines the 

dimensions of the cathode spot at CD. 
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Table 1: Boundary conditions for plasma arc model 
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The boundaries in the model are specified as having constant temperatures TE, TW, and TA. 

These are the temperatures at the electrode, surrounding walls, and molten bath surface 
respectively. It is not physically unrealistic to have these surfaces at constant temperature, 

since in general the temperatures in the arc column are high enough to cause vapourisation of 
the materials they are made of; this process would be expected to hold the surfaces at the 

temperature of the phase change. 

3  NUMERICAL METHOD 

The numerical treatment of the direct current plasma arc model was approached with the 

aim of studying qualitative, time-dependent evolution of arc systems in mind. High spatial 

and temporal resolution as well as high performance were desirable, and led to the selection 
of finite difference methods together with explicit forward time-stepping techniques for the 

discretisation of the governing equations.  
Structured cartesian grids with constant grid spacing were used in both 2D and 3D in an 

attempt to impose as little symmetry on the problem as possible, and to improve numerical 

performance. All spatial derivative terms are discretised using second-order centered 

differences, and a staggered grid is employed for certain fields such as a/v and j.  

The time dependence of the governing equations is treated using a combination of 

methods. The flow equations are stepped forward in time using an explicit fourth order 

Runge-Kutta (RK4) algorithm. This imparts stability even at high Reynolds numbers
9
, and 

results in relatively low computational cost per time step. Assuming ∇h and ∆h are the discrete 

equivalents of the Nabla and Laplace operators respectively, this may be written as: 
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The major computational cost of this algorithm is four solutions of the Poisson equation, 

one for the θ variable at each fractional time step. Due to the regular, structured nature of the 

discretisation grid and the homogeneous boundary conditions for θ, fast spectral transform 
methods can be applied to achieve rapid direct Poisson solves. 

Adaptive time stepping is applied as the flow field evolves. Assuming the size of the grid 

spacing in the model to be δx, this is calculated according to the constraints9: 

max

2

,
4 |v|

x
t

x
t

δ
δ

ν

δ
δ <<  (18) 

Due to the very strong self-coupling that occurs in the energy conservation equation (8), it 

requires additional numerical treatment in order to perform in a stable manner. The 

convection/diffusion terms are separated from the source terms using first-order operator 

splitting; since the source terms contain no spatial derivatives, they may then be calculated in 

a semi-implicit way without generating significant computational overhead. The remaining 

terms are then treated using RK4 explicit time stepping, as for the momentum equations. 

Using an intermediate variable T
*
, the source term fractional time step becomes: 

( )

( )

P

R

P

ttt

C

TQ

CTt

TT

ρρσδ

*

*

*

−
⋅
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(19) may then be solved for T
*
 using the known relationships between temperature and the 

plasma conductivity, and volumetric radiation loss. This expression is not fully implicit, as the 

temperature can additionally affect the current density j via the conductivity, but the 

computational cost of recalculating the electromagnetic fields iteratively does not justify the 

small additional stability gains to be had. 

Once T
* is known, it is used as the starting point for the calculation of the 

convection/diffusion terms. This is illustrated in (20) using explicit forward-Euler time 

stepping, although in practice RK4 is used to retain the stability features described earlier: 

**
*

TT
t
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hh

tt
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−
+

α
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δ
v  (20) 

As a result of the use of RK4 for the convection/diffusion components of the energy 

balance equation, an additional time step size constraint is introduced: 

α

δ
δ

4

2
x

t <  (21) 

This is used together with (18) to calculate the adaptive time step size during execution of 

the algorithm. 

Solution of the pseudo-steady state electromagnetic field equations is required at each time 

step in the direct current plasma arc model. These equations have no time dependence, and 

must therefore be solved implicitly. The electric field equation (10) is discretised as: 

( ) 0=∇⋅∇ φσ hh  (22) 
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The electrical conductivity is calculated from the most recent temperature field. The  

values of σ are required on the staggered grid, and so where interpolation between the grids is 

necessary, linear or bilinear methods are used. (22) is a non-constant coefficient problem and 

cannot be efficiently tackled with fast spectral methods; it is instead solved using a standard 

geometric multigrid algorithm. As the φ field is recalculated at least once every time step, and 

the time steps in the model are generally very small, a good initial estimate of the field is 
always available (the values from the previous step). Iterative multigrid with a preset number 

of cycles and relaxation steps was therefore chosen over the full multigrid algorithm.  

Once the electric potential field is known, the current density field j may be calculated 

directly from it using the discrete version of (9). 

 The discretised versions of Poisson equations (14) and (16) governing the magnetic vector 

potential field A have constant coefficients and homogeneous boundary conditions, and are 

solved using rapid fast-spectral-method based solvers once the current density is known. The 

magnetic field is then calculated by taking the discrete curl of A. 

The computational cost of the electromagnetic field calculation is high, comparable to the 

entire time step calculation for the remaining variables. They are therefore only recalculated 

once per time step (as opposed to once per RK4 stage). Together with the operator splitting of 

the energy equation this has the effect of reducing the temporal accuracy of the overall 

algorithm to first-order, although numerical testing suggests that the stability remains largely 

unaffected. 
An overview of the algorithm used in the numerical solution of the direct current plasma 

arc model is shown in Figure 4. 
 

 

Figure 4: Direct current plasma arc model flowsheet 

 

Implementation of the algorithm was performed using ANSI C. Outer loops of 

computationally intensive parts of the algorithm (particularly the fast spectral Poisson solvers 

and multigrid solver) were parallelised using OpenMP threading, providing increased 

performance on SMP machines. The Poisson solvers make extensive use of fast sine and 

cosine transforms provided by FFTW
10

. Extensive memory usage analysis and optimisation 
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was conducted to limit the memory footprint of the algorithm. Data sampling methods were 
implemented in order to reduce the quantity of file I/O during operation of the algorithm, 

which would otherwise be a rate-limiting step. 
The implementation has been compiled and tested on a variety of computing platforms to 

date, including Intel (Pentium, Core2 and Xeon using gcc and icc compilers), IBM (P690 
using xlc_r compilers), and Sun (SPARC M9000 using suncc compilers). Various flavours of 

Linux as well as Solaris have been successfully used as the host operating systems. 

4  MODELLING RESULTS – 2D 

Some results from an example case for the modelling of the direct current plasma arc 

system in two dimensions are presented below. The plasma gas used is air, for which phyiscal 

property information is readily available. The parameters used for the model are shown in 
Table 2. 

 
Table 2: Parameters used for 2D arc model 

Region dimensions 0.2 m x 0.05 m 

ν 0.005040 m2/s 

ρ 0.02593 kg/m3 

α 0.01256 m2/s 

CP 9420 J/kg.K  

Electrode width 0.05 m 

Current 500 A 

TW, TA, TE 2000K, 3000K, 4100K 

Grid dimensions 1024 x 256 

Model time 10 ms  
 
Initial conditions of zero velocity and constant temperature of 10000K are applied 

throughout the calculation region. 
At early stages of the simulation, the arc model forms a strong jet of plasma material 

directed away from the arc attachment spot on the electrode surface. The jet is initally stable 
and symmetric, however, this behaviour is not robust. Oscillations near to the arc root begin 

from approximately 0.6 ms resulting in the formation of strong vortices, which travel down 
the length of the arc column and break up the structure. The oscillating vortex production 

causes the arc to take on a somewhat sinusoidal shape. 

 

  

Figure 5: Temperature profile at 0.17 ms Figure 6: Temperature profile at 0.50 ms 

  

Figure 7: Temperature profile at 0.60 ms Figure 8: Temperature profile at 0.70 ms 

 

The process of arc jet formation and breakdown is shown in Figures 5 to 8. The 
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temperature profile is shown at various times, with the temperature scale ranging from 2000K 
(white) to 15000K (black). 

Further into the simulation the arc jet becomes increasingly turbulent and chaotic in 
motion, forming a number of interesting structures as a result of the coupling between the 

flow field and the electromagnetic forces acting on it. One such phenomenon is the presence 
of persistent and highly-mobile arcs on the molten bath surface (which serves as anode in 

these models), shown in Figures 9 and 10. These are spontaneous emergent phenomena as the 
boundary conditions at this surface are entirely uniform, and have been confirmed 

experimentally using high speed photography
11

.  

 

  

Figure 9: Temperature profile at 7.80 ms,  

showing anode arcs and arc structure 

Figure 10: Temperature profile at 9.98 ms,  

showing anode arcs and arc structure 

 

5  MODELLING RESULTS – 3D 

The direct current plasma arc model is easily extended to three dimensions. This improves 

the spatial accuracy of the magnetic field and more accurately captures the qualitative 

geometry and behaviour of the arc, which is inherently a three-dimensional phenomenon. In 
the 3D models, the electrode surfaces and arc attachment spots are modelled as circular and 

may be located anywhere on the upper surface of the rectangular calculation region. 
The 3D model is particularly well suited to the study of multiple arc systems. Some results 

from an example of this, a small twin-cathode furnace design with two electrodes and two 
arcs both carrying current in the same direction down to the molten bath anode, are shown 

below. Table 3 shows the parameters used for this model (where not given, parameters are 
identical to those given in Table 2). 

 
Table 3: Parameters used for 3D arc model 

Region dimensions 0.2m x 0.1m x 0.05m 

Grid dimensions 384 x 192 x 96 

Arc separation 0.04 m  

Number of arcs 2 

Current, arc 1 250 A 

Current, arc 2 250 A  
 
As in the 2D case, the twin-arc system initially forms stable arc jets directed away from the 

arc attachment spots. The onset of transient motion and decay of the pseudo-stable state 

occurs at approximately 1.5 ms. The nature of the subsequent motion is however considerably 

different, with the lower arc current causing the arc columns to settle into regular oscillations 

driven by precession of the arc jet around the attachment points on the electrode surfaces. 

This results in a dynamic helical structure forming within each arc column11. The 

macroscopic behaviour of the system is also interesting to observe, as the arcs attract each 

other by virtue of the current they carry. This attractive force draws the arc jets toward the 

centerline of the region, causing significant deflection of the arc columns in the process. 
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The three-dimensional temperature field is sampled by taking the maximum value along 
the y axis, producing a projected 2D temperature field in the x-z plane. These are shown for 

the early stages of the motion in Figures 11 to 14. The temperature scale runs between 2000K 
(white) and 15000K (black). 

 

  

Figure 11: Projected temperature field at 0.5 ms Figure 12: Projected temperature field at 1.0 ms 

  

Figure 13: Projected temperature field at 1.5 ms Figure 14: Projected temperature field at 2.0 ms 

 
The full 3D fields for electric potential and temperature at the end of the simulation are 

shown in Figures 15 and 16. The scale ranges are 0 – 200 V and 2000 – 15000 K respectively. 
 

  

Figure 15: Electric potential field at 10 ms Figure 16: Temperature field at 10 ms 

 

5.1  Transition effects with current 

It is interesting to observe changes in the transient behaviour of the direct current plasma 

arc model as the various parameters are altered. One key parameter is the current carried by 
the arc(s), as this is an important operating variable for industrial direct-current arc furnaces. 

The effect at low current was examined by changing the “Current, arc 1” variable in Table 
3. Three different cases using values of 50 A, 100 A and 150 A were tested by completing 

simulation runs of the 3D model. The resulting projected temperature fields at the end of each 
simulation are shown in Figures 17 to 19, with scale range from 2000K (white) to 15000K 

(black). It can be seen that the low-current arcs, at left in each case, exhibit very different 
structure depending on the current. This is borne out in the temporal behaviour – Figure 20 

shows the evolution of the arc voltage, which is defined as the local maximum value of the 

electric potential field in the vicinity of the arc attachment spot on the electrode surface, for 

the left-hand arc in each of the low current cases. There is a marked change in the transient 

arc behaviour between 100 and 150 A; at lower values, the arc voltage appears to remain 

approximately at steady state with only slow variations in time, while at higher currents, the 
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voltage begins to oscillate at a constant frequency. This reflects a change in the transient 
structure of the arc column, from a steady jet to a helical structure formed by precession of the 

jet around the arc attachment spot. 
 

  

Figure 17: Projected temperature field, 

left arc at 50 A, right arc at 250 A 

Figure 18: Projected temperature field, 

left arc at 100 A, right arc at 250 A 

 

 

Figure 19: Projected temperature field, 

left arc at 150 A, right arc at 250 A 

 

 

In order to compare the nature of the transient behaviour of arcs in the model at higher 
currents, two additional cases of the twin-arc 3D model were tested. In both cases the “Arc 

separation” variable in Table 3 was set at 0.1 m, placing the arcs well apart to reduce their 

interaction. The first case was run with the arc currents at 250 A each, and the second was run 

with the currents at 500 A each. The second case also used a higher-resolution numerical grid, 

at 768 x 384 x 192 in size. A sample of the temporal behaviour of the arc voltage for the left-

hand arc in each case is shown in Figure 21. The increased current is seen to produce 

considerably more more irregular and chaotic behaviour. 

 

  

Figure 20: Evolution of arc voltage at low currents Figure 21: Evolution of arc voltage at higher currents 

 

Multiple transition effects are therefore possible with variation of the current parameter in 

the direct current plasma arc model. Low currents produce steady arc jets, moderate currents 
produce regular oscillations in the system, and finally higher currents can produce erratic, 

complex motion. Similar transition effects have been observed experimentally using high 
speed photography11, however much work remains to be done in this area. 
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6 CONCLUSIONS 

The development of a dynamic model of direct current plasma arc systems of relevance to 

metallurgical furnace design has been largely successful. A novel solver algorithm using finite 

difference methods, explicit time-stepping, and rapid solver techniques has been produced, 

and is capable of scaling to large problem sizes on modest computing resources. The solver 

retains reasonable spatial and temporal accuracy while also possessing good stability 

properties. 

Selected results from the model in both 2D and 3D show a variety of transient phenomena, 

including symmetry breaking in the early stages of arc formation, emergent behaviour such as 

spontaneous anode arc formation, and distinct transition effects with system parameters such 

as arc current. 
Further avenues of research should include extension of the model to variable physical 

properties, induced current terms in the electromagnetic field equations, and compressible 
flow. Investigation of two-temperature plasma fluid models is also advised. 
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