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M. Papadrakakis, E. Oñate and B. Schrefler (Eds)

NUMERICAL SIMULATIONS OF PARTICLES IN A SHEAR FLOW

NICOLAS VERDON∗, PATRICE LAURE∗, ALINE LEFEBVRE-LEPOT† AND
LAURENT LOBRY‡
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Abstract. In this paper, we present an immersed domain approach coupled with a viscous
contact model for studying the rheological behaviour of dense suspensions in a shear flow. We
here demonstrate the importance of contact modelling as well as the choice of the boundary
conditions on the macroscopic properties of the suspension.

1 INTRODUCTION

In the field of materials forming, as well as in many other industrial fields, determining the
rheological behaviour of dense suspensions remains of great importance. Lots of different com-
putational methods can be used to handle such fluid-structure interactions but in this work, we
propose to study the behaviour of solid particles in a shear flow with the immersed domain
method. First introduced in the late 90’s by Glowinski et al. [1], this kind of methods encoun-
ters an increasing success in fluide-structure of multiphase problems because it allows to treat
these problems with an Eulerian approach on the whole domain.
In order to be able to study accurately problems with a large amount of particles, we focused
first our analysis to the description of the contact for a few particles in a shear flow. To avoid
particle overlapping during displacement of particles, we implemented contact models such as
an inelastic collisions model and the viscous contact model introduced by Maury [2] and inten-
sively studied by Lefebvre [3] for granular applications.
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We then focused our analysis on the choice of the boundary conditions for describing dense sus-
pensions in a representative way. We present in details the way of extending the computational
domain and we insist on the description of sliding biperiodic conditions of Lee-Edwards [4].
In the last part of this article, we present some representative results that confirm the differ-
ent choices we have done in this study. First, the importance of the contact modelling will
be pointed out with a 3D example of 13 particles in a shear flow. Finally, some examples of
suspensions will also demonstrate the rheological modifications due to the choice of boundary
conditions.

2 NUMERICAL MODEL

In this part, we briefly describe the main features of the numerical model that has been used
for this study. The importance of the contact modelling is therefore explained at the end of the
section.

2.1 The immersed domain approach

The immersed domain method is achieved by splitting the computational domain Ω into two
subdomains Ωf and Ωs for respectively the fluid and solid parts (see Figure 1). In the case
of multiple particles, the solid domain is the union of domains corresponding to each particle,
namely Ωs =

⋃N
i Ωsi for N particles.

Ω

Ωf

solid particles

Figure 1: Schematic representation of computational domain

The interface Γs between the two phases is described by the zero isosurface of a distance
function:

α(x, t) =

{

> 0 if x ∈ Ωs

< 0 if x /∈ Ωs

(1)
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which allows to define a ”smooth” characteristic function:

I(x, t) =











= 1 if α(x) > e

=
α

e
if 0 < α(x) < e

= 0 if α < 0

(2)

where e the mixing thickness depends on the mesh size around the interface. In addition, the
viscosity η will be defined thanks to a mixing relation:

η = Iηs + (E− I)ηf (3)

where ηf is the fluid viscosity and ηs � rηf the solid viscosity (or penalisation factor) usually
taken much bigger than ηf (r ≈ 103).

2.2 Governing equations

Neglecting inertia and gravity, the fluid-solid problem can be written with the following set
of equations:































∇ . σ = 0
∇ . u = 0
σ = 2ηf ε̇(u)− pE
[[u]]Γs

= 0
[[σ.n]]Γs

= 0
u = uΓ on the external boundary Γ

(4)

where u is the fluid velocity, ε̇(v) the rate of strain tensor, σ the stress tensor, p the pressure,
ηf the fluid viscosity (the symbol [[f ]]Γs

means the jump of scalar f across the interface Γs).
Patankar et al. [5] have proposed to extend the above Stokes equation to the solid domain
thanks to a Lagrange multiplier by using the rigidity condition ε̇(v) = 0 on Ωs. In this way, the
motion in solid domain Ωs corresponds to a fluid motion with an additional stress field. This is
equivalent to take the stress tensor σ inside the solid domain of the form

σ = 2ηs ε̇(u)− p E+ ε̇(λ) (5)

2.3 Weak formulation of the FSI problem

The equation (5) allows us to write the foolowing weak formulation over the whole compu-
tational domain Ω, where Dirichlet boundary conditions are imposed:
Find

(

u, p, λ
)

such that ∀
(

v, q, µ
)

∈ H1(Ω)×L2
0(Ω)×H1(Ωs):



































0 =

∫

Ω

2η ε̇(u) : ε̇(v)dΩ −

∫

Ω

p∇.vdΩ+

∫

Ωs

ε̇(λ) : ε̇(v)dΩ

0 =

∫

Ω

q ∇.udΩ

0 =

∫

Ωs

ε̇(µ) : ε̇(v)dΩ

(6)
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This formulation corresponds to an augmented Lagrangian where λ is the Lagrange multiplier
and ηs the penalisation factor. This is solved by an Uzawa algorithm [6].

2.4 Contact modelling

The particles displacement is then achieved by using the velocity of the fluid, solution of (6),
and a lagrangian approach. Namely the displacement Xi of particle i at time tn+1 = tn +∆t is
computed with the second order Adams-Bashfort scheme:

Xi(t
n+1) = Xi(t

n) +
∆t

2

[

3u(Xi(t
n), tn)− u(Xi(t

n−1), tn−1)
]

(7)

It has been observed that overlapping can occur during this step, mathematically the distance
Dij between two particles i and j can become negative. In order to avoid this non-physical be-
haviour, we used the viscous contact model that has been introduced by Maury [2] and Lefebvre
[3]. This model can be seen as a predictor–corrector model based on the action of the lubrica-
tion force. Indeed, the velocity field u∗ obtained by solving Equation (6) does not take into
account contacts. Hence, this predicted velocity will be corrected in a way that it satisfies the
non-overlapping condition, namely by solving:

1

2
|un − u∗|2 = min

v∈K(Xn,γn

ij
)

1

2
|v − u∗|2 (8)

where K is the space of admissible velocity defined by

K(Xn, γn
ij) =







v

∣

∣

∣

∣

∣

∣

Dn
ij +∆t(vj − vi) · e

n
ij ≥ 0 if γn

ij = 0

Dn
ij +∆t(vj − vi) · e

n
ij ≤ 0 if γn

ij < 0







(9)

The contact between particles is then described by a new variable γij which can be seen as a
microscopic distance between particles i and j:

γn
ij

{

< 0 if there is contact between particles i and j

= 0 else
(10)

Let us define the functional J as follows:

J(v) =
1

2
|v − u∗|2 =

1

2
Mv · v −Mu∗ · v (11)

where M = diag(. . . , mi, · · · , mj, · · · ) is the mass matrix. Then the Lagrangian of J(u) for
two particles i and j has the following form:

L(v, λ±
ij) = J(v)− λ+

ij (Dij +∆t(vj − vi) · eij)

− λ−
ij (−Dij −∆t(vj − vi) · eij) (12)
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where λ+
ij and λ−

ij are the Lagrange multipliers associated to the contact constraints. Finally, by

solving
∂L

∂vi

= 0 and
∂L

∂vj

= 0, we obtain the two following relations:







miu
n
i = miu

∗
i − (λ+

ij − λ−
ij)∆t eij

mju
n
j = mju

∗
j + (λ+

ij − λ−
ij)∆t eij

(13)

under the conditions :

λ±
ij(Dij +∆t(un

j − un
i ) · eij) = 0 with λ+

ij ≥ 0 and λ−
ij ≤ 0 (14)

which is also solved with an Uzawa procedure.
Then the correction step of the viscous contact model involves the Fundamental Principal of
the Dynamics where the lubrication forces are taken into account. The evolution of the contact
parameter γij can be obtain after some basic calculus, see [7] for more details:

dγij
dt

= −
1

a2
λij with λij = λ+

ij − λ−
ij. (15)

Note that the inelastic collisions model can be obtained from these expressions by imposing
γij = 0, that is to say λij > 0.

3 DESCRIPTION OF THE BOUNDARY CONDITIONS

When increasing the concentration of solid particles in a suspension, we notice that the
choice of the boundary conditions becomes of great importance. Indeed, the number of con-
tacts between particles is also increased and hence the boundary conditions (BC) can affect the
rheology of the suspension. In this section, we present the different choices that can be made
by focusing particularly on the Lee-Edwards’ biperiodic conditions.

3.1 Representative elementary volume

In the numerical study of suspension, it is important to work on a suitable representative
elementary volume (REV). Ideally, one would like to be able to know the behaviour of sus-
pensions in an infinite domain, practically by working on a very large computational domain
Ωt with boundaries extremely far from the domain of interest ΩREV , as depicted in figure 2.
Unfortunately, this kind of approach is nowadays very computationaly expensive, especially for
3D simulations, that is why we have to deal with the boudary conditions in order to have a rep-
resentative domain. For low concentrated suspension, it is common to work on a small domain
but if the concentration increases, it is no more representative. Indeed, in ΩREV the influence
of the particles from the domain Ωt ∩ ΩREV are taken into account whereas in a small domain
of size ΩREV , the particles inside the domains do not see particles from outside.
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Ωt

ΩREV

Figure 2: Ideal computational domain and Representative Elementary Volume

3.2 Extension of the computational domain

In this article, we focused our work on a shear flow in a cavity, as represented in figure 3.
The velocities on the upper and lower boundaries are hence imposed in order to get the desired







Figure 3: Configuration of the shear flow

shear rate whereas the vertical velocities in the lateral walls are equal to zero. As explained
in the previous section, we mainly use small computational domains Ω0 like 4(a) for dilute
suspensions. In this case, we impose periodic conditions on the horizontal directions. That
means that each particle that goes outside the domain through vertical walls re-enters in the
domain from the other side. However, because of the zero vertical velocity imposed in these
walls, the velocities can be badly estimated. Indeed, even if the motion of particles is periodic,
the computed velocity is not periodic, that is why we proposed to extend the computational
domain in the x–direction as depicted in figure 4(b). Thanks to this extension, the particles near
a boundary see those from the opposite side.
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 



Figure 4: Extension of the computational domain : (a) original domain CL (0, 0), (b) domain extended in the
x–direction CL (1, 0), (c) domain with sliding biperiodic boundary conditions CL (1/2, 1/2)

In practice, we can extend the computational domain as much as we want and kx and ky are
the two parameters which characterise the extension of the computational domain in respec-
tively x and y– direction. For example, in the configuration 4(b), kx = 1 and ky = 0. The
domain is extended in x–direction of length H in both sides of the original domain so that the
new domain is then three times larger than the original domain Ω0. The way of duplicating
particles follows these rules:

if xα +H ∈ [H,H + kxα
H ], then x+

α = xα +H, where xα = x or y (16)
if xα −H ∈ [H − kxα

H, 0], then x−
α = xα −H, where xα = x or y (17)

and figure 5 schematically represents the duplication of two particles for two different exten-
sions of the domain: the first 5(a) for an extension with kx = 1/2 and the second 5(b) with
kx = 1 (ky = 0 for both of them). With this modification of the boundary conditions, we

 



(a) CL (1/2, 0)

 

 

(b) CL (1, 0)

Figure 5: Schematic description of particles’ duplication

decrease the influence of the vertical walls on the computation of the velocity. We can pre-
cise that only particles inside the original domain are moved. The new particles are introduced
just for improving the computation of the velocity field and their positions are determined only
through geometric considerations. In order to limit the influence of the horizontal walls, we also
carry out biperiodic boundary conditions such as presented in figure 4(c). The methodology is
described more precisely in the next section.
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3.3 Sliding biperiodic boundary conditions

Here we describe the changes induced by the Lee-Edwards’ biperiodic boundary conditions
[4, 8]. The new configuration is presented in figure 6 where we introduced the following nota-

i

i

j

j

i
+

i
+

j
−

j
+

Figure 6: Two particles in a shear flow with biperiodic boundary conditions

tions : i and j design two physical particles, i± and j± are the x−periodic images, as described
in last section, i and j design the images by the biperiodic boundary conditions, and at last i±

and j
± are the x−periodic images of particles i and j. In order to keep the shear condition

on the upper and lower boundaries of the domain of interest, it is necessary to consider sliding
boundary conditions as depicted in figure 6. The displacement velocity of the sliding bound-
ary conditions is computed from the definition of the shear rate γ̇ = 2U

H
; the upper and lower

additional domains have hence to move with the velocity:

U = ±
γ̇H

2
· ex (18)

so that the positions of the duplicated particles are given by:

xn+1
α = xn

α ±
γ̇

2
H∆t · ex α = i, j (19)

3.4 Computation of the distances between particles

Let us now consider the positions and the velocities of the two particles known at times tn
and tn−1. Using the Adams-Bashforth scheme, we are able to compute the positions of physical
particles at time tn+1 as follows:

xn+1
α = xn

α +
∆t

2
(3un

α − un−1
α ) α = i, j (20)

and the positions of the corresponding images are computed with the velocity of physical parti-
cles:

x±
α
n+1

= x±
α
n
+

∆t

2
(3un

α − un−1
α ) for the images in x− direction, α = i, j (21)

xn+1
α = xn

α +
∆t

2
(3un

α − un−1
α ) for the biperiodic images α = i, j (22)

8



1196

Nicolas Verdon, Patrice Laure, Aline Lefebvre-Lepot and Laurent Lobry

In the gluey contact model, the condition that must be fulfilled in order to avoid the overlapping
is the following:

d = min(dij, dij, dij±) ≥ 0 (23)

So we have to compute the distances between the particles. Using (19), (21) and (22), we obtain
the following relationships:

dij = ‖xixj‖
n +

∆t

2
((3un

j − un−1
j )− (3un

i − un−1
i )) · eij (24)

dij = ‖xixj‖
n +

∆t

2
((3un

j − un−1
j )− (3un

i − un−1
i )± γ̇ H · ex) · eij (25)

dij± = ‖xixj
±‖n +

∆t

2
((3un

j − un−1
j )− (3un

i − un−1
i )) · eij (26)

In the numerical procedure, the distances between physical particles and all images are com-
puted in order to take the minimum value for the contact model.

4 NUMERICAL RHEOLOGY

As explained in the introduction, determining rheological properties of dense suspensions
remains important for many applications. For this purpose, we present here the way of calcu-
lating the macroscopic variables from our computations. Let first note 〈X〉Ω the mean value of
X at time t over Ω. We have:

〈X〉Ω =
1

Ω

∫

Ω

X(x) dΩ (27)

By taking the mean value of the stress tensor σ using (27), one gets:

〈σ〉Ω = 〈σf〉Ω + 〈σs〉Ω with

{

〈σs〉Ω = 2ηs〈ε̇(u)〉Ωs
− 〈p〉Ωs

Id + 〈λ〉Ωs

〈σf〉Ω = 2ηf〈ε̇(u)〉Ωf
− 〈p〉Ωf

Id
(28)

where 〈σs〉Ω and 〈σf〉Ω are respectively the solid and fluid stress tensors. Theoretically, the
xy–component of the mean stress tensor in the suspension is given by:

〈σxy〉Ω = 2ηeff〈ε̇(u)xy〉Ωf
(29)

which allows us to write the effective viscosity as follows:

ηeff =
〈σxy〉Ω
〈γ̇〉Ω

(30)

5 RESULTS

In previous papers [7, 9] we analysed the reversibility of Stokes equations with two particles
and we studied academic configurations such as three 2D particles in a shear flow. In the
following, we will focus on more complicated configurations.
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5.1 Influence of computational parameters

In order to obtain relevant results for analysing the rheology of dense suspensions, it is
necessary to check the importance of some computational parameters. Namely, we present here
the influence of both the penalisation and the number of Uzawaiterations for the convergence
of the 2D Stokes flow, and the influence of the mesh size. The example that has been used for
this purpose is the 2D suspension of concentrationc ≈ 0.24.

10 20 30 40 50 60 70 80 90 100
Penalisation

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

�

ef
f

NUzawa=5

NUzawa=8

NUzawa=10

(a) Influence of the penalisation andNUzawa for the dif-
ferent BC: black(0, 0), red(1/2, 0) and blue(1/2, 1/2)

10-3 10-2

hmin

1.60

1.65

1.70

1.75

1.80

�

ef
f

(b) Influence of the mesh size

Figure 7: Influence of the computational parameters on the effectiveviscosityηeff

The results of the different tests are summed up in figure 7. Onfigure 7(a) one clearly
observes that only 5 Uzawa iterations are not sufficient for obtaining the correct effective vis-
cosity, whereas 8 and 10 Uzawa iterations lead to almost the same viscosity, when taking the
penalisation enough small. The same observations can be made for the three different boundary
conditions. We also tested the influence of the mesh size on the effective viscosity by fixing all
meshing parameters, and then gradually decreasing the value of the minimum authorized size
of element, calledhmin. The lowerhmin is, the finer the mesh is, which is supposed to enhance
the quality of the results. The results of this test are reported on figure 7(b), where we notice
that it exists an asymptotic value of the viscosity when refining the mesh. In the following, and
for CPU time reasons, we will chose a penalisation of 10, 8 Uzawa iterations andhmin = 10−3.

5.2 Influence of the contact model

The example presented here is the motion of 13 particles of radiusa = 0.05 in a 3D shear
flow. Initially, the particles are located very close from each other (compacity close to0.74)
in order to have the more contacts possible. Figure 8 shows the evolution of the particles
trajectories in the(x, y) plane aftert = 12.5s. This figure emphasizes the differences induced by
choice of the contact model: whereas the particles remain stuck during the whole computation
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(a) Viscous contact
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(b) Inelastic collisions

Figure 8: Influence of the contact modelling for the 13-particles case: trajectories of the particles

with the viscous contact model, after a few time steps the cluster of particles disappears with
the inelastic collisions model and the particles move away.This is due to the physical nature
of the contact models. For the inelastic collisions, the valueλ of the Lagrange multiplier can
be only positive which means that it acts like a repulsive force between particles. Otherwise, in
the viscous model,λ can be either negative or positive, which indicates it acts like a lubrication
force: an attractive force is exerced on the particles when they go away from each other.

5.3 Influence of the boundary conditions
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(a) Temporal evolution ofηeff
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(b) Particles position after 4.25s

Figure 9: Influence of the boundary conditions for the 2D suspension of concentrationc ≈ 0.24

In this section we study the rheological behaviour of a 2D suspension of concentration
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c ≈ 0.24 with computations for the three different boundary conditions. Figure 9(a) presents
the time evolution of the effective viscosity whereas figure9(b) shows the position of the par-
ticles att = 4.25s. These results point out that boundary conditions can significally affect the
trajectories of the particles and hence the rheology of the suspension. Indeed, the biperiodic
conditions limit the influence of the upper and lower walls, so that after 4.25s the effective
viscosity is lower (ηeff ≈ 1.64) than for the two other boundary conditions for which it is al-
most the same value,ηeff ≈ 1.66. At last, the computed values are far from empirical ones
(∼ 2.1− 2.5), which emphasizes the importance of 3D effects that are neglected in this study.

6 CONCLUSIONS

Throughout this article, we pointed out the importance of contact modelling as well as the
choice of well-suited boundary conditions. The 13-particles example shows a real big difference
in the motion of the particles between the two inplemented contact models whereas the 2D
suspension example insists on the importance of the boundary conditions. The identification of
the rheological parameters indicates that biperiodic boundary conditions limit wall effects that
could be an advantage for future computations of dense suspensions. Nevertheless, we repeat
here that these are just preliminary results, and in the future 3D computations are mandatory for
understanding the behaviour of suspensions.
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