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Preface

Quantum technology is one of the most promising and challenging fields in contempo-
rary science. Quantum computing, quantum cryptography, and more generally quantum
information technologies claim that they, in the short term, will change our paradigm of
classical computing and communications. In this regard, several news items filled head-
lines in the media while preparing this book: the first universal quantum computer was
made available in the cloud by IBM; a Chinese quantum communication satellite pro-
vided secure quantum cryptography between continents; and Google announced that its
quantum computer can solve a problem that classical computers cannot. Given these few
examples, it is therefore not surprising to find these topics more and more frequently in-
cluded in the current syllabuses of many technological undergraduate and postgraduate
programs. However, unlike in other consolidated fields, it is essential to develop a body
of syllabuses that adapt to the needs and characteristics of the studies carried out within
the framework of the Universitat Politècnica de Catalunya (UPC).

This book draws on the experience of the authors during nearly ten years of work in this
field. The course ‘Quantum Information Technologies’ began in 2012 as a mandatory
course in the Bachelor Degree of Telecommunications Engineering at the Castelldefels
School of Telecommunications and Aerospace Engineering (EETAC). Oriented toward
telecom engineering students with a generic background in physics (not including quan-
tum physics), the course aimed to introduce the basic concepts of quantum computing,
the fundamentals of some quantum computer models and the means by which quantum
key distribution protocols work. A few years later, in 2014, the Bachelor’s Degree in
Engineering Physics offered an elective course titled ‘Quantum Optical Technologies’,
which also introduced quantum computing as part of the syllabus. On the other hand,
engineering physics students happen to have the advantage of a solid education in quan-
tummechanics, which allows treating some quantum computation topics in greater depth.
This is the case for quantum measurement and quantum algorithms, among others.

Regardless of the students’ background, this field represents a challenging subject for
educators and scientists. As once stated by Richard Feynman, winner of the 1965 Nobel
Prize in Physics: If you think you understand quantum mechanics, you don’t understand
quantum mechanics. Quantum mechanics is a counterintuitive theory. Concepts such as

9
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duality, superposition, entanglement, teleportation and many others seem to be closer to
magic or science fiction than to everyday human experience. Yet, herein lies also the
unlimited power of human thought, which mathematics and physics help us to go beyond
our immediate experience of the world.

This book is oriented toward undergraduate students pursuing Bachelor’s Degrees in En-
gineering. In particular, it is used as teaching material in the courses ‘Quantum Informa-
tion Technologies’ within the Bachelor’s Degree of Telecommunications Engineering at
EETAC and in ‘Quantum Optical Technologies’ in the Bachelor’s Degree in Engineer-
ing Physics. It is also recommended in the elective course ‘Quantum Computing and
Cryptography’, which pertains to the Bachelor’s Degree in Informatics Engineering at
the Barcelona School of Informatics. Throughout this book, we have strived to maintain
a balance between the rigorousmathematics needed for approaching quantum physics and
the most qualitative and applied descriptions of phenomena. This book focuses mainly on
resolving exercises, although basic compilations of theory are included at the beginning
of each chapter. These summaries of theory are not intended to be exhaustive, let alone
to serve as substitutes for formal theoretical explanations. They are proposed only as re-
minders of the basic concepts, formulas and definitions with which the student should be
familiar.

The main body of the book consists of a comprehensive list of exercises with increas-
ing degrees of dificulty (the hardest ones are marked with an asterisk). The solutions to
most of them are provided at the end of the book. We can never emphasize enough how
important it is for the students to try solving the diferent exercises and problems before
checking the provided solutions. Additional exercises and examples are also included in
each chapter. Some of these are to be solved with the aim of providing illustrative exam-
ples of how students are expected to reason and what they are expected to achieve. Each
chapter introduces specific concepts with a focus on a few short true or false questions.
Here, finding the right answer is as important to the student as correctly arguing and jus-
tifying the reason for it. Finally, throughout the book are included a few boxes with brief
informative descriptions of some currently hot topics in quantum technologies. These
boxes are intended for opening doors that will motivate students to continue delving into
the field of quantum technologies, which has only just begun to be explored.

The authors.

Barcelona, 24th January 2020
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Fundamentals of
Quantum Physics

1.1. Key Equations and Physical Constants

– A black body emits radiation, whose spectrum depends on the temperature of the body.
In particular, the wavelength at which the spectrum has a maximum is described by
Wien’s law:

λpeak = b/T,

where b = 2.898× 10−3m K.

– Visible light is only a small portion of the whole electromagnetic spectrum, as shown
in Fig. 1.1.

– A photon of frequency ν has energy E = hν, where h is Planck’s constant.

– The frequency ν and wavelength λ of light are linked by the relationship λν = c,
where c is the speed of light.

– To a particle with momentum p, we may associate a quantumwave with wavelength λ
through the de Broglie equation: λ = h/p. Quantum effects become important when
λ becomes larger than the mean distance between particles.

– In an experiment on the photoelectric effect, the maximum kinetic energy of emitted
photons is given by

Ekin,max = hν −W0,

where ν is the frequency of incoming photons,W0 = hν0 is the work function of the
material, and ν0 is the corresponding threshold frequency.

– The Schrödinger equation for the wave function ψ(r, t) describing a quantum particle
with massm in an external potential V (r, t) reads:

iℏ
∂ψ(r, t)
∂t

=

[
−ℏ2∇2

2m
+ V (r, t)

]
ψ(r, t),

13
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Fig. 1.1
Electromagnetic

spectrum.

where ℏ = h/(2π) is the reduced Planck constant.

– If the external potential is independent of time, it is easy to check that the wave func-
tion may be factorized as ψ(r, t) = e−iEt/ℏψ(r), where ψ(r) is the solution of the
time-independent Schrödinger equation

Eψ(r) =
[
−ℏ2∇2

2m
+ V (r)

]
ψ(r),

where E is the energy.

– The Heisenberg uncertainty principle imposes a lower bound on errors when measur-
ing conjugate variables in the same physical state. For example, if one tries to measure
the position x and the momentum p of a given state, the product of the uncertainties
in the two measures will satisfy

∆x∆p ≥ ℏ/2.

– The energy levels of Bohr’s model of an atom are given by En = − 13.6
n2 eV, with

integer n ≥ 1. The energy of an electron at the most bound level (the “ground state”)
is therefore E1 = −13.6 eV.

– When an electron in a quantum state i jumps to a less bound state f , the extra energy
is carried away by a photon with energy

∆E = hν = Ei − Ef .

14



Constants

Quantity Symbol Value Units
Planck’s constant h 6.626× 10−34 J s
reduced Planck’s constant ℏ = h/(2π) 1.054× 10−34 J s
electron’s mass me 9.109× 10−31 Kg
electron’s charge e 1.602× 10−19 C
speed of light c 2.998× 108 m/s
(a useful combination) h · c 1.24× 10−6 eV m
Boltzmann constant kB 1.381× 10−23 J/K
Bohr radius a0 5.292× 10−11 m

1.2. Solved Problems

1. Briefly explain why in our macroscopic world we usually do not see quantum effects.
Provide a numerical example.

Solution
The wavelength involved in quantum effects is too short when compared withmacro-
scopic scales. As an illustrative example, consider a soccer ball: typically mass and
speed are typically 0.4 kg and 80 km/h, respectively. By means of the de Broglie
equation, we can derive the wavelength associated to the ball:

λ =
h

p
=

6.626× 10−34 kgm2/s

0.4 kg × 80 km/h×
m/s

3.6 km/h

= 7.5× 10−35m.

This is an extremely short length, even shorter than the radius of an electron, which is
re ≈ 10−15m. The smallness of Planck’s constant h makes quantum effects hardly
detectable in our macroscopic world.

2. For a study of the photoelectric effect on a metal called Niobium (Nb), whose work
function isW0 = 4.3 eV:

a) What is the maximum kinetic energy of the electrons emitted when Nb is illu-
minated by photons with wavelength λ = 200 nm?

b) What is the Nb threshold frequency?
c) What happens when blue light (λ ≈ 480 nm) hits Nb?

Solution

a) For incident photons with λ = 200 nm, we have

Ekin,max = hc/λ−W0 = 1.9 eV.

15
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b) The Nb threshold frequency isW0/h = 1.04 · 1015 Hz.
c) When blue light hits Niobium, the maximum kinetic energy would be negative,

and thus no photoelectrons are emitted.

3. By illuminating an unknownmaterial with ultra-violet (UV) light of wavelength 250 nm,
we find that the corresponding stopping potential is 0.94 eV. A table of material prop-
erties tells us that the work functions of tin, titanium, and tungsten are, respectively,
4.38 eV, 4.06 eV, and 4.49 eV.

a) Which material are we investigating?
b) What happens if the samematerial is illuminatedwith green light? (λ = 550 nm)

Solution

a) The energy of incident photons:

hν =
hc

λ
=

1.24 · 10−6 eV ·m
250 · 10−9m

= 4.96 eV

Work function:

hν0 = EK,max − hν = (4.96− 0.94) eV = 4.02 eV

Given the result of the measurement, it is very likely that we are dealing with
titanium.

b) The maximum kinetic energy of photoelectrons emitted using green light,

EK,max =
hc

λ
− hν0 =

(
1.24 · 10−6

550 · 10−9
− 4.02

)
eV = −1.765 eV,

would be negative, meaning that light at this frequency hitting titanium will not
produce the photoelectric effect.

4. Consider the 1D infinite square well defined by V (|x| < 1) = 0 and V (|x| > 1) =
+∞. The wave function for a particle in the second excited state for this potential is
ψ2(x) = cos(3πx/2) for |x| < 1, and zero otherwise.

a) Draw the corresponding probability density.
b) What is the probability of finding the particle in the region −1/3 < x < 1/3?

And in the region 1/3 < x < 1?

Solution

a) The corresponding density is shown in Fig. 1.2.
b) The probability of finding the particle in each of the two regions is 1/3.

5. A particle of massm and frequency ω has the following wave function:

ψ(x) = C x e−mωx2/(2ℏ),

where ℏ ≡ h/(2π), and C is a constant.

16



-1.0 -0.5 0.5 1.0 x

0.2

0.4

0.6

0.8

1.0
n(x) Fig. 1.2

Probability density for
the second excited
state of the square
well of width∆ = 2.

a) How should the constant C be determined?
b) What is the probability of finding the particle in x = 0?
c) Is it possible to find the particle in the region where x < 0? Justify the answer.

Solution

-3 -2 -1 1 2 3
x

0.1

0.2

0.3

0.4

|ψ(x) 2 Fig. 1.3
Probability density for
the wave function of
the first excited state
of the harmonic
oscillator. The shaded
area is the region
x < 0.

a) The constant C should be determined by normalizing the wave function:∫ ∞

−∞
dx|ψ(x)|2 = 1.

b) The probability of finding a particle in a certain region is proportional to the
squared modulus of the wave function. In particular, P (x = 0) = |ψ(x =
0)|2 = 0.

c) The probability of finding the particle in the negative half-plane is

P (−∞ < x < 0) =

∫ 0

−∞
dx|ψ(x)|2.

The integral yields a non-zero result. So it is possible to find the particle there.
In particular, the integrand is symmetric around x = 0, and thus the probability
of finding the particle in the region x < 0 is 1/2, as shown in Fig. 1.3.

17
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1.3. Short Questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. Incident photons with wavelength λ0 produce photoelectrons with kinetic energyEK .
If the incident photons now have half of thewavelength, λ1 = λ0/2, the kinetic energy
of the electrons will double, 2EK .

2. The position of a particle with velocity v = 10m/s and mass m = 10−28 kg is
measured with a precision of ∆x = 10−9m. The wavelength of the particle is
λ = 10−12m.

3. The work function for silver is 4.74 eV. The maximum wavelength of light that pro-
duces the photoelectric effect on this material is 262 nm.

4. The functionΨ = Axe−iωt, whereA and ω are constants and x is defined for−∞ <
x <∞, cannot be a solution of the Schrödinger equation.

5. The one-dimensional function Ψ(x) = ax + b where a and b are positive constants
and x ∈ (−∞,+∞) is a valid wave function.

6. With the aid of an electron microscope, we want to observe details on the order of
∼ 10−10m. The electrons in the beam therefore must have a velocity∼ 7.3 ·106m/s.

7. In the Bohr model of the hydrogen atom, the wavelength of a photon emitted during
the jump of an electron from level n = 3 to n = 1 is shorter than the one emitted by
an electron jumping from n = 2 to n = 1.

1.4. Exercises

1.4.1. General Properties

1. Charcoal burns at temperatures of around 850K. Compute thewavelength of the peak
in the black body spectrum using Wien’s law. To which region of the electromagnetic
spectrum does this wavelength belong?

2. Which of the following experiments is suitable for revealing the particle-like behavior
of electromagnetic waves?

a) Young’s double-slit experiment

b) Diffraction through a small hole

c) Photoelectric effect

Argue why this experiment can only be explained by light being a particle.

3. Why are quantum effects difficult to see in our everyday lives?

4. Standard lasers used in telecommunications networks have wavelengths of around
2µm. How many photons per second are transmitted by a laser with 5.5mW of
power?18
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1.4.2. Photoelectric Effect

5. The work function of aluminum (Al) is 4.2 eV. If we use light with a wavelength of
1000Å on an Al surface:

a) What is the kinetic energy of the fastest photoelectron emitted?
b) What is the stopping potential?
c) What is the threshold frequency for aluminum?
d) If the light intensity is 4.0W/m2, what is the average number of photons per

unit time and unit surface that hit the surface?

6. In a photoelectric experiment with monochromatic light and a platinum photocathode,
the stopping potential is found to be 6.05V for λ = 1000Å and 1.92V for λ =
1500Å. From these data, compute:

a) A value for the Planck’s constant and its relative error.
b) The work function and the threshold wavelength for platinum.

7. The stopping potential for photoelectrons emitted from a surface illuminated by light
of wavelength λ = 4910Å is 0.71V. When we change the wavelength of the light,
the new stopping potential is found to be 1.43V. What is this new wavelength?

8. An Argon laser has a power of 50mW and emits photons of 810 nm wavelength. The
laser beam illuminates a metal whose work function is 1.02 eV. Determine:

a) The number of electrons emitted by the photoelectric effect in 1µs.
b) State if the following sentence is TRUE or FALSE and JUSTIFY your answer:

If we reduce the work function to half of its value, the number of emitted electrons
doubles.

1.4.3. Wave-Particle Duality

9. We are going to conduct a double-slit experiment with two types of sources: a) clas-
sical bullets and b) classical electromagnetic waves (see Fig.1.4).

Fig. 1.4
Double-slit experiment
with bullets and
waves.

19
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a) Assuming that the source (a) fires bullets at a very slow rate and that either
nothing arrives at the detector or one and only one bullet arrives, what is the
probability of a bullet’s arrival as a function of x? Do not calculate anything,
just describe the result qualitatively.

b) With source (b), what we detect is the interference of two spherical wavesEi(r, t) =
A sin(k|r− ri| − ωt), where k = 2π

λ is the wave number, ω is the angular fre-
quency, and ri is the center of the slit.
i. Write the wave equation of the resulting wave at the detector.
ii. Where do we obtain the maxima and minima of the interference pattern?

c) If we do the experiment with a source of electrons, what output would we expect
by thinking classically? And by thinking quantum mechanically?

Hint: sinA+ sinB = 2 sin

(
A+B

2

)
cos

(
A−B

2

)
.

10. Compute the momentum and total energy of an electron and a photon with the same
wavelength of λ = 4.0 Å. Compare their kinetic energies.

11. The finest detail that can be observed with a microscope is approximately equal to the
wavelength of the probe used. If we want to “see” an atom with a diameter of 1 Å,
we need to resolve details of about 0.1 Å.

a) If we use an electronic microscope, what is the minimum energy required for
the electrons?

b) If we use amicroscopewith photons, what is the required energy for the photons?
In which region of the electromagnetic spectrum are these photons found?

c) Which of the two microscopes is more useful for observing atoms?

1.4.4. Heisenberg's Uncertainty Principle

12. Is it important to knowwhere the position of a particle is beforemaking ameasurement
of its position?

13. In a given experiment, we measure a photon wavelength with a relative error of
∆λ/λ = 10−6. Which is the minimal uncertainty∆x that we may obtain for:

a) Gamma rays (λ = 5.00× 10−4 Å)
b) X-rays (λ = 5.00 Å)
c) Visible light (λ = 5000 Å)

20



Chapter 1. Fundamentals of Quantum Physics

1.4.5. Schrödinger's Wave Equation

14. Solve the time-independent Schrödinger equation for a particle in an infinite square
well potential of width L, i.e.:

V (x) =

{
0 if 0 ≤ x ≤ L,
∞ if x < 0 or x > L.

15. Consider a one-dimensional box of length 2 cm as an infinite square well potential. A
particle with a mass of 2µg is moving inside it with a velocity of 10mm/s.

a) Calculate the approximate value of the quantum number n for the occupied state
of the particle.

b) Determine∆x and∆p assuming that the uncertainties are: ∆x/L = 0.05% and
∆p/px = 0.1%.

c) What is the value of (4x4px/ℏ)?

16. The wave functions for a particle of mass m in a one-dimensional box of length L
centered in the origin are given by:

ψ(x) =

√
2

L
cos

nπx

L
when n = 1, 3, 5, 7, ...

and

ψ(x) =

√
2

L
sin

nπx

L
when n = 2, 4, 6, 8, ...

Calculate 〈x〉 and 〈x2〉 for the fundamental state (n = 1).

(Hint:
∫
x cos2(ax)dx =

x2

4
+
x sin(2ax)

4a
+

cos(2ax)
8a2

and
∫
x sin(2ax)dx =

sin(2ax)
4a2

− x cos(2ax)
2a

.)

17. Consider the wave function

Ψ(x, t) = Ce−κ|x|e−iωt,

where C, κ, and ω are positive real constants.

a) Normalize Ψ.
b) Determine the expectation values of x and x2.
c) Find the standard deviation of x. What is the probability that the particle would

be found outside this range?

18. Let us consider a particle of massm and energyE < 0 < V0 exposed to the following
potential:

V (x) =

{
0, if x < 0,

V0, if x > 0,
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where V0 is a positive constant. Define the wave function:

ψ(x) =

{
e+k1x, if x ≤ 0

e−k2x, if x ≥ 0,

where k1 and k2 are constants defined as k1 =

√
−2mE
ℏ

and k2 =

√
2m(V0 − E)

ℏ
.

Answer the following questions:

a) Does this wave function verify the time-independent Schrödinger equation? Check
it in the two regions of the potential.

b) Is this wave function normalized? If not, find the normalization constant.

19. Solve the time-independent Schrödinger equation for a particle in a finite square well
potential, i.e.:

V (x) =

{
−V0, if −a ≤ x ≤ a,
0, for |x|> a,

where V0 is a positive constant.

1.4.6. Bohr's Atom and Quantum Numbers

20. Consider the Bohr model for the hydrogen atom:

a) Find the photon’s energy and wavelength corresponding to the limit (shortest
wavelength) of the Pfund series (n = 5) for hydrogen.

b) Calculate the three larger wavelengths of the Lyman series (n = 1).

21. The energy levels for the hydrogen atom within the Bohr model are given by the ex-
pression En = −13.6 eV /n2, where n = 1, 2, 3 . . . is the principal quantum number.
Determine:

a) The wavelength of a photon emitted when an electron jumps from n = 4 to
n = 2.

b) The largest wavelength of photons emitted when the final state of the electron
is characterized by n = 2.

22. Consider the infinite square potential and 5 particles. Evaluate the total energy of
the system if the particles are: a) identical bosons, b) identical fermions, c) spin-1/2
fermions.

23. Consider a quantum system with a principal quantum number n = 3 and an orbital
quantum number l = 2. Determine: a) the possible values of the magnetic quantum
numberm, and b) all possible quantum states.
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Quantum Computing:
Gates and Circuits

2.1. Definitions

– A quantum system is described by a state vector |ψ〉. Given a collection of vectors
{|i〉} which form a complete and orthonormal basis of the space, every state may be
written as a linear superposition |ψ〉 =

∑
i ci|i〉, where {ci} are complex coefficients.

– The probability P (i) of finding the quantum system in state |i〉 is given by P (i) =
|ci|2. If the state vector is correctly normalized, then

∑
i P (i) = 1.

– For example, a qubit can be defined as the superposition of two states {|0〉, |1〉} ={(
1
0

)
,

(
0
1

)}
, named “computational basis”, as |q〉 = c0|0〉 + c1|1〉, and the nor-

malization condition is simply |c0|2 + |c1|2 = 1.

– A qubit can also be represented as a point on the Bloch sphere given two angles (θ, ϕ)
such as:

|q〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉

– A 1-qubit quantum gate is represented by a 2 × 2 matrix. In turn, every such ma-
trix may be expressed as a linear combination of 4 basis matrices: the identity I =(

1 0
0 1

)
, and the three Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 -1

)
.

– For example, the Hadamard matrix H = 1√
2

(
1 1
1 -1

)
= 1√

2
(X + Z). Its eigen-

states give the Hadamard basis

{|+〉, |−〉} =
{

1√
2

(
1
1

)
,
1√
2

(
1
−1

)}
.

25



Quantum Computing. Problems and exercises

Fig. 2.1
Qubit representation 

within the Bloch 
sphere.

– The Hadamard quantum gate acts as a change basis matrix between the computational
basis, {|0〉, |1〉}, and the Hadamard basis, {|+〉, |−〉} :

H|0〉 = |+〉, H|1〉 = |−〉andH|+〉 = |0〉, H|−〉 = |1〉.

– The four Bell states (also named as EPR1 pairs) are defined as:

|β00〉 =
|00〉+ |11〉√

2
|β01〉 =

|01〉+ |10〉√
2

|β10〉 =
|00〉 − |11〉√

2
|β11〉 =

|01〉 − |10〉√
2

– The GHZ2 state of an n-qubit state is defined as

|GHZ〉 = |00 . . .〉+ |11 . . .〉√
2

.

For example, when n = 4, one has |GHZ〉 =
|0000〉+ |1111〉

√
2

.

2.2. Solved problems

1. Consider the two-qubit state

|q〉 = c (|00〉+ 2|01〉+ 3i|11〉) .

Determine:

a) the constant c.
1Einstein-Podolsky-Rosen.
2Greenberger-Horne-Zeilinger.

26



Chapter 2. Quantum Computing: Gates and Circuits

Then, compute what is the probability of finding:

b) the first qubit in state |0〉?
c) the second qubit in state |1〉, provided that the first qubit was found in state |0〉?
d) both first and second qubits in state |1〉? Does the result depend on which qubit

is first measured?

Solution

a) Normalization of the vector implies that |c| = 1/
√
14.

b) P (1st qubit in |0〉) = 5/14. The post-measurement state is |q0〉 = (|00〉 +
2|01〉)/

√
5.

c) P (2nd qubit in |1〉 | 1st qubit in |0〉) = 4/5.
d) If we measure the 1st qubit first, the probability is 9/14. If we measure first the

2nd qubit, the joint probability is (13/14) × (9/13) = 9/14. In this case, the
result therefore does not depend on which qubit we measure first.

2. Consider a quantum gate U that transforms the qubit |+〉 into |0〉 and the qubit |−〉
into −|1〉.

a) Write down the matrix associated to this quantum gate. Justify your answer.
b) Determine the resulting qubits if we first apply the quantum gate U and then the

quantum gateH to the computational basis.
c) To which matrix is equivalent the previous operation?

Solution

a) One has to find the matrix U =

(
a b
c d

)
such that U |+〉 = |0〉, and U |−〉 =

−|1〉. These conditions lead to a system of four linear-equations,
a+ b =

√
2

c+ d = 0
a− b = 0

c− d = −
√
2

whose solution is: a = b = d = −c = 1/
√
2. As such,

U =
1√
2

(
1 1
−1 1

)
.

b) The matrix associated to first applying U and then H is

H · U =
1√
2

(
1 1
1 −1

)
· 1√

2

(
1 1
−1 1

)
=

(
0 1
1 0

)
Its action on the vectors of the computational basis is therefore:

(H · U)|0〉 = |1〉,

and
(H · U)|1〉 = |0〉.
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c) We clearly see that the effect on the computational basis of U and H is exactly
the same as the Pauli matrixX . We can also see that the matrix form ofH ·U =(
0 1
1 0

)
is exactly the X matrix.

3. Write the matrix U of the previous exercise in the Hadamard basis {|+〉, |−〉}.

Solution
To build the matrix associated to U in the Hadamard basis {|+〉, |−〉}, U{|+⟩,|−⟩},

one computes U{|+⟩,|−⟩}|+〉 =
(
a
b

)
and U{|+⟩,|−⟩}|−〉 =

(
c
d

)
, and the matrix will

be U{|+⟩,|−⟩} =

(
a c
b d

)
, where all the qubits must be expressed in the Hadamard

basis. That is, |+〉 =
(
1
0

)
and |−〉 =

(
0
0

)
, hence |0〉 = 1√

2
(|+〉+ |−〉) = 1√

2

(
1
1

)
and |1〉 = 1√

2
(|+〉 − |−〉) = 1√

2

(
1
−1

)
. The action of the quantum gate U is then

U{|+⟩,|−⟩}|+〉 = |0〉 = 1√
2

(
1
1

)
and U{|+⟩,|−⟩}|−〉 = −|1〉 = −1√

2

(
1
−1

)
. Finally,

we obtain the matrix expressed in the Hadamard basis: U{|+⟩,|−⟩} = 1√
2

(
1 −1
1 1

)
.

4. Consider the quantum Toffoli gate as shown in the figure below.

|a〉 • |a′〉

|b〉 • |b′〉

|c〉 ⊕ |c′〉

a) Write down the matrix and the truth table of the Toffoli gate.
b) Specify which inputs and outputs should be used in order to implement the NAND

gate.

Solution

a) The truth-table of the CC-NOT (Toffoli) gate and the corresponding matrix are:

a b c a’ b’ c’
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
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b) The truth table of the gate z = NAND(x, y) is:

x y z
0 0 1
0 1 1
1 0 1
1 1 0

By looking at the truth table of the Toffoli gate we can obtain the NAND by fixing
c = 1, and taking x = a, y = b and z = c′. That is: c′ = NAND(a, b, c = 1).

5. Consider the quantum circuit of the figure below.

|a〉 ⊕ Z

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|x〉 H •
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

a) Determine the matrix associate to it.

b) If the input state is |a〉 ⊗ |x〉 = 1
2 |00〉 −

1
2 |01〉 −

1√
2
|10〉, determine the pre-

measurement state.

Solution

a) Firstly, we evaluate the output for each of the elements of the computational
basis. That is:

|00〉 7→ 1√
2
(|00〉+ |01〉) 7→ 1√

2
(|00〉+ |11〉) 7→ 1√

2
(|00〉 − |11〉)

|01〉 7→ 1√
2
(|00〉 − |01〉) 7→ 1√

2
(|00〉 − |11〉) 7→ 1√

2
(|00〉+ |11〉)

|10〉 7→ 1√
2
(|10〉+ |11〉) 7→ 1√

2
(|10〉+ |01〉) 7→ 1√

2
(−|10〉+ |01〉)

|11〉 7→ 1√
2
(|10〉 − |11〉) 7→ 1√

2
(|10〉 − |01〉) 7→ 1√

2
(−|10〉 − |01〉).

Then, we build the column matrix for each of the outputs obtained:

1√
2
(|00〉 − |11〉) = 1√

2


1
0
0
−1

 ;
1√
2
(|00〉+ |11〉) = 1√

2


1
0
0
1

 ;

1√
2
(−|10〉+ |01〉) = 1√

2


0
1
−1
0

 ;
1√
2
(−|10〉 − |01〉) = 1√

2


0
−1
−1
0

 .

29



Quantum Computing. Problems and exercises

Finally, the matrix of the circuit, C, is easily built:

C =
1√
2


1 1 0 0
0 0 1 −1
0 0 −1 −1
−1 1 0 0

 .

b) The pre-measurament state |Ψ〉 is obtained as |Ψ〉 = C(|a〉 ⊗ |x〉). Using matrix
notation, we have

|Ψ〉 = C(|a〉⊗|x〉) = 1√
2


1 1 0 0
0 0 1 −1
0 0 −1 −1
−1 1 0 0

·


1/2
−1/2
−1/
√
2

0

 =


0
−1/2
+1/2

−1/
√
2

 .

Consequently, the pre-measurement state is |Ψ〉 = − 1
2 |01〉+

1
2 |10〉 −

1√
2
|11〉.

2.3. Short questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. The qubits |q1〉 = 1√
2
(|0〉 + i|1〉) and |q2〉 = 1√

2
(i|0〉 − |1〉) represent the same

physical state.

2. The qubit defined in the Bloch sphere by the angles θ = ϕ = π
2 is |q〉 = |−〉 =

1√
2
(|0〉 − |1〉).

3. The angles in the Bloch sphere corresponding to the qubit |q〉 = 1√
2
(|0〉 + i|1〉) are

θ = π/2 and ϕ = π.

4. Consider the following two-qubit: |q〉 = 1√
2
(| + +〉 + | − −〉). The probability to

obtain a 0 in the first qubit as a first measurement is 0.

5. We have a 2-qubit |Ψ〉 where the probability to obtain a 0 in the first qubit as first
measure is 1/2, and the probability to obtain a 0 in the second qubit also as a first
measure is 3/8. The 2-qubit is: |Ψ〉 = 1

2 |00〉+
1
2 |01〉+

1
2
√
2
|10〉+

√
3

2
√
2
|11〉.

6. The 3-qubit GHZ state is defined as: |GHZ〉 = 1√
2
(|000〉 + |111〉). After crossing

the controlled-swap gate (Fredkin’s gate), this state remains unchanged.

7. The EPR-Bell state |β01〉 = 1√
2
(|01〉 + |10〉) can also be written as |β01〉 = 1√

2
(| +

−〉+ | −+〉).
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2.4. Exercises

2.4.1. 1-qubit operations

1. For each of the following qubits, if a measurement is made, what is the probability
that we find the qubit in state |0〉? And in the state |1〉?

a) |ψ〉 =
√

2

3
|0〉+

√
1

3
|1〉

b) |ϕ〉 = 1

2
|0〉+ i

√
3

2
|1〉

c) |χ〉 = i√
3
|0〉 − 1− i√

3
|1〉

2. Find the set of all values of θ for which the following qubits are equivalent:

a) |1〉 and 1√
2

(
|+〉+ eiθ|−〉

)
.

b) 1√
2

(
|0〉+ eiθ|1〉

)
and 1√

2

(
|1〉+ e−iθ|0〉

)
c) 1

2 |0〉 −
√
3
2 |1〉 and e

iθ
(

1
2 |0〉 −

√
3
2 |1〉

)
3. Let |A〉, |B〉 be a basis for representing qubits, the NOT operation is defined as

|A〉 → |B〉, |B〉 → |A〉.

Find the matrix representation of UNOT for the following basis:

a) the computational basis

|A〉 =
(
1
0

)
, |B〉 =

(
0
1

)
.

b) the Hadamard basis

|A〉 = 1√
2

(
1
1

)
, |B〉 = 1√

2

(
1
−1

)
4. Find the eigenvalues and eigenvectors of the gate with the following matrix represen-

tation:

M =

(
1 0
0 eiπ/4

)
5. Write thematrixS (π/2 phase gate) as a function of the Pauli matrices and the identity.

The S matrix is defined as:

S =

(
1 0
0 i

)

31



Quantum Computing. Problems and exercises

6. Show the action of the following 2 × 2 quantum gates on a qubit expressed in the
computational basis |q〉 = α|0〉+ β|1〉. X , Y , Z are the Pauli matrices and H is the
Hadamard matrix.

a) U = Y XY

b) U = HZ

7. Prove the following three indentities

HXH = Z, HY H = −Y, HZH = −X.

2.4.2. Rotation matrices and the Bloch sphere

8. Locate on the Bloch sphere the following qubits: |0〉, |1〉, |+〉 ≡ 1√
2
(|0〉 + |1〉),

|−〉 ≡ 1√
2
(|0〉 − |1〉), |R〉 ≡ 1√

2
(|0〉+ i|1〉) and |L〉 ≡ 1√

2
(|0〉 − i|1〉).

9. Describe the effect in the Bloch sphere of the Pauli matrices acting on a general qubit
expressed in the computational basis.

10. Find the points on the Bloch sphere which correspond to the eigenvectors of the three
Pauli matrices.

11. Demonstrate that two orthonormal qubits are represented by antipodal points within
the Bloch sphere.

12. If x is a real number and A a matrix that verifies that A2 = I, show that:

exp(iAx) = cos(x)I+ i sin(x)A

13. Demonstrate that, except for a global phase, T = Rz(π/4). The gate T , also called
π/8 gate, is defined as:

T =

(
1 0
0 exp(iπ/4)

)
14. Write the Hadamard gateH as a product of Rx and Rz rotations and eiθ for some θ.

15. Demonstrate that (n̂ · σ⃗)2 = I and use this equivalence to check the following equa-
tion:

Rn̂(θ) ≡ exp(−iθn̂ · σ⃗/2) = cos
(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ)

where σ⃗ denotes the three component vector (X,Y, Z) of Pauli matrices and n̂ =
(nx, ny, nz) is a real unit vector in three dimensions.

16. Show that±1 are the eigenvalues of n̂ · σ⃗, and that the projectors onto the correspond-
ing eigenvectors are given by P± ≡ (I ± n̂ · σ⃗)/2.

17. Which is the probability of obtaining+1 as the result of a measurement of n̂ · σ⃗, given
that the state prior to measurement is |0〉. What is the state of the system after the
measurement if +1 is obtained?
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18. Demonstrate that an arbitrary single qubit unitary operator can be written in the form

U = exp(iα)Rn̂(θ)

for some real numbers α and θ, and a real three-dimensional unit vector n̂. Also find
values for α, θ and n̂ giving the Hadamard gateH and the phase gate S.

2.4.3. N-qubit operations

19. Consider the following 2-qubit states:

|α〉 = 3|00〉 − 2|01〉+ |10〉 − 5|11〉

a) Normalize the state

b) Write it in terms of the two 2-qubits |q0〉 (a 2-qubit with the first bit 0) and |q1〉
(a 2-qubit with the first bit 1)

c) If we attempt to measure only the first bit, with which probability the state will
collapse into |q0〉? And into |q1〉?

d) If the state collapses into |q0〉, with which probability we will obtain a 0 in the
second bit after a second measurement?

20. A quantum state is described by the following 2-qubit:

|Ψ〉 = 0.5|0 0〉+ 0.3eiπ|0 1〉+ b|1 0〉 − 0.1e−iπ/2|1 1〉

Determine

a) The value b that normalize |Ψ〉.
b) The probability to obtain a 0 value in the second qubit as a first measurement.

c) If the first qubit results to be a 0, evaluate the post-measurement probability that
the second qubit is also a 0.

d) Are the probabilities of questions b) and c) equal? Reason the answer.

e Write the post-measurement state |Ψ′〉 of question c).

21. For which combinations of input qubits |a〉 |x〉, the CNOT gate can generate any of
the four Bell States?

22. For the matrix represented by:

B =
1√
2

(
i 1
1 i

)
Demonstrate that two applications of it on the same state, namely B(B|ψ〉) has the
same effect that the NOT gate, giving the same probabilities of finding |0〉 and |1〉.

23. Consider the following quantum gate.
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|q
1〉

⊕

|q
2〉

• •

|q
3〉

⊕

a) Write down the matrix associated to this gate.
b) Using matrix notation, determine the output qubit if the input qubit is:

|Ψ〉 = 1√
3
|000〉+ 1√

2
|010〉+ 1√

6
|110〉.

24. Recall that the Fredkin gate performs the following transformation:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


a) Give a quantum circuit which uses three Toffoli gates to construct the Fredkin

gate (Hint: the control qubits of the Toffoli gates can be different for each Toffoli
gate).

b) Show that the first and last Toffoli gates can be replaced by CNOT gates

2.4.4. Quantum circuits

25. In the figure below, the first gate corresponds to the CNOT gate whereas the second
is a reversed CNOT gate.

|a〉 • ⊕ •

|b〉 ⊕ • ⊕

a) Find the matrix representation of the reversed CNOT gate in the computational
basis {|0〉|0〉,|0〉|1〉, |1〉|0〉, |1〉|1〉}.

b) Compute the matrix of the total circuit.

26. Find the matrix associated to the following quantum circuits
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a)

b)

|a〉 • Z • X

|b〉 ⊕ • ⊕ Z

c)

|a〉 • H ×

|x〉 X ×

27. Build a 4-qubit circuit that from the input |0000〉 produces the 4-qubit GHZ state, that
is 1√

2
(|0000〉+ |1111〉).

28. Consider the following quantum circuit

|a〉 ⊕ • •

|x〉 • H ⊕

Determine:

a) The matrix of the circuit.
b) If |a〉 = |+〉 and |x〉 = |−〉, build the two-qubit |q〉 = |a〉 ⊗ |x〉 and, using

matrix notation, determine the pre-measurement state.

29. Assuming separately |a〉 = |0〉 and |a〉 = |1〉 compute the action of the following
quantum circuit and find the matrix representation in the computational basis.

30. Consider the following two qubits transformations:

|00〉 → 1√
2
(|01〉 − |10〉)

|11〉 → 1√
2
(|00〉+ |11〉)

a) Using one-qubit gates and CNOT gates, draw the quantum circuit needed to
perform the previous transformation simultaneously.
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b) What will be the result if we apply the same circuit to the two states |01〉 and
|10〉?

31. We have the qubit |q1〉 =
√
3
2 |0〉+ i 12 |1〉 and the qubit |q2〉 =

1√
2
(|0〉 − |1〉).

a) Build the two-qubit |q〉 = |q1〉 ⊗ |q2〉 and normalize it (if necessary).

Consider now that the two-qubit |q〉 crosses a quantum circuit, as shown in the figure
below,

|q1〉

A

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

m

|q2〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

m
′

where the matrix A that represents the circuit is given by

A =


0 0 0 1
0 0 −i 0
1 0 0 0
0 −i 0 0

 .

Determine

b) The pre-measurement state.

c) The probability to obtainm′ = 1 if we know thatm = 0.

32. Compute the action of the following quantum circuit:

33. Show that if V = (1− i)I + iX

2
, then the three-qubit Toffoli gate can be replaced by

the following circuit containing only two-qubit gates:

|q0〉 • • •

|q1〉 • ⊕ • ⊕

|q2〉 V V
† V

34. Prove that the quantum circuit:
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|q0〉 • • • T •

|q1〉 • • T ⊕ T
† ⊕

|q2〉 H ⊕ T
† ⊕ T ⊕ T

† ⊕ T H

which includes Hadamard gates (H) and π/4−phase gate T =

(
1 0
0 exp(iπ/4)

)
is

an equivalent realization of a CCNOT or Toffoli gate.

35. Using Toffoli gates a binary adder can be constructed accepting two bits X and Y ,
and at the output, there is a carry bit as well as (X + Y mod 2). Show the circuit of
this binary adder.

36. * The Walsh-Hadamard transform of n−qubits, WHT , is defined as WHT |x〉 =
H⊗n|x〉. Demonstrate:

a) That

H⊗n|0〉⊗n =
1√
2n

2n−1∑
x=0

|x〉

b) In the general case we have

H⊗n|x〉 = 1√
2n

∑
z

(−1)xz|z〉

where xz = x1z1 + x2z2 + . . .+ xnzn is the bitwise inner product modulo 2.

37. * Design a quantum circuit that constructs the Hardy state3 1√
12
(3|00〉+ |01〉+ |10〉+

|11〉 starting from the two-qubit state |00〉.

3For a general technique to construct arbitrary quantum states we refer the reader to the papers
arxiv.org/abs/quant-ph/0104030 and arxiv.org/abs/quant-ph/0406176

37



Quantum Computing. Problems and exercises

The IBM Quantum Experience

The IBM Quantum Experience is an online platform that allows, for the first
time in history, the general public to execute quantum codes on real quantum
computers. Since 2018 IBM makes available through the cloud three quantum
processors: two 5-qubit processors, called Essex and Yorktown, and a 16-qubit
processor, named Melbourne. IBM prototype processors rely on transmon su-
perconducting qubits at cryogenic temperatures as low as 15 mK.

In order to use these quantum computers, IBMdeveloped two interfaces: the Cir-
cuit Composer and the Quantum Information Software Kit or Qiskit. The Circuit
Composer is an intuitive and simple drag and play quantum circuit builder. On
the other hand, Qiskit is a more suitable tool which permits, among other fea-
tures, high performance simulation of a quantum circuit, even introducing noise
as it can appear in a real device. Both interfaces permit to run quantum circuits
and algorithms through the cloud and compare theoretical results with experi-
mental results based in real quantum computers.

Exercises:
a) Sign up for an account on the IBM Quantum Experience website

(https://quantum-computing.ibm.com/). Beware that IBM uses the
reverse notation for qubits, that is, the qubit |001〉 is expressed by IBM as
|100〉.

b) Get familiar with Qiskit Aqua. This platform uses Python to create quan-
tum programs based on QASM (Open Quantum Assembly Language), a
quantum programming language to specify instructions into a quantum
computer.

c) Run with Qiskit some of the quantum circuits proposed in this Chapter.
Compare the results obtained fromQiskit simulations with those youwould
obtain on a real quantum computer. Do the results match?

d) Build a CNOT -gate between the 1st and 3rd qubit using the Essex and
the Yorktown processors (see Figure 2.2). Given that their architecture
is different you will have to implement different quantum circuits. After
executing both circuits, does the result depend on the architecture? Does
the number of gates influence the results?

Fig. 2.2
Topological

configuration of the
5-qubit IBM

processors Essex and 
Yorktown.

10 2

3

4

0

1

2 3

4

Essex Yorktown
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Quantum Computing:
Applications

3.1. Definitions

– Quantum circuit for superdense coding:

U

– Standard quantum teleportation circuit with |q0〉 (the teleported qubit) and |q1〉 and
|q2〉 (ancilla qubits).

3.2. Solved Problems
1. Consider a standard quantum teleportation circuit between Alice and Bob. They think

that they share the entangled Bell state |β00〉, but an error has occurred in the produc-
tion of the entangled state and they actually share the state |q1q2〉 = 1

2 (|00〉+ |11〉)+
1√
2
|01〉.

Determine:

a) The probability of Alice measuring (m,m′).
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b) If Alice wants to teleport the qubit |q0〉 = |+〉 and she measures (m,m′) =
(0, 1), what is the probability that the qubit was correctly teleported to Bob?

Solution

a) We are considering a general qubit, |q0〉 = α|0〉+ β|1〉; so the initial state is:

|q0〉 ⊗ |q12〉 = (α|0〉+ β|1〉)⊗ (
1

2
(|00〉+ |11〉) + 1√

2
|01〉) =

=
1

2
[α|000〉+ α|011〉+ β|100〉+ β|111〉] + 1√

2
[α|001〉+ β|101〉].

Then we cross the CNOT and the Hadamard gates to obtain the following pre-
measurement state:

7→1

2
[α|000〉+ α|011〉+ β|110〉+ β|101〉] + 1√

2
[α|001〉+ β|111〉] 7→

1

2
√
2
[α|000〉+ α|100〉+ α|011〉+ α|111〉+ β|010〉 − β|110〉+

+ β|001〉 − β|101〉] + 1

2
[α|001〉+ α|101〉+ β|011〉 − β|111〉].

Finally, we arrange the first two qubits that Alice can measure for the different
values (m,m′):

=|00〉1
2

[
1√
2
α|0〉+

(
1√
2
β + α

)
|1〉
]
+

|01〉1
2

[
1√
2
β|0〉+

(
1√
2
α+ β

)
|1〉
]
+

|10〉1
2

[
1√
2
α|0〉 −

(
1√
2
β − α

)
|1〉
]
+

|11〉1
2

[
−1√
2
β|0〉+

(
1√
2
α− β

)
|1〉
]

Then, the probabilities of measuring (m,m′) will be

P (0, 0) =

(
1

2
√
2
α

)2

+
1

2

(
1√
2
β + α

)2

=
1

8
+

αβ

2
√
2
+

1

4
α2,

given that |q0〉 is normalized (i.e., α2 + β2 = 1). The first two terms in the
brackets will give the same results; so we easily obtain the remaining probabil-
ities:

m m′ P (m,m′)

0 0
1

8
+

αβ

2
√
2
+

1

4
α2

0 1
1

8
+

αβ

2
√
2
+

1

4
β2

1 0
1

8
−

αβ

2
√
2
+

1

4
α2

1 1
1

8
−

αβ

2
√
2
+

1

4
β2

42



Chapter 3. Quantum Computing: Applications

We can easily check that
∑

m,m′ P (m,m′) = 1.
b) If Alice measures (m,m′) = (0, 1), Bob’s qubit collapses into:

|q2〉 =
1

2

[
1√
2
β|0〉+

(
1√
2
α+ β

)
|1〉
]
.

After applying ZmXm′
= Z0X1, we will obtain:

|q2〉 =
1

2

[(
1√
2
α+ β

)
|0〉+ 1√

2
β|1〉

]
.

Given that the teleported qubit is |q0〉 = |+〉 ⇒ α = β = 1√
2

|q2〉 =
1

4

(
1 +
√
2
)
|0〉+ 1

2
|1〉 ≈ 0.604|0〉+ 0.5|1〉;

and after renormalizing, the final qubit that Bob has is:

|q2〉 = 0.924|0〉+ 0.382|1〉.

The probability that the qubit |q0〉 was correctly teleported is obtained by pro-
jecting |q2〉 onto the |+〉 state

P = |〈+|q2〉|2 =

(
0.924√

2
+

0.382√
2

)2

= 0.853.

3.3. Short Questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. No quantum circuit exists that can make copies of the qubits |+〉 or |−〉.

2. No quantum circuit exists that can make copies of the computational basis {|0〉, |1〉}
and also of the Hadamard basis {|+〉, |−〉}.

3. In a communication through a superdense coding, Alice and Bob are sharing the EPR-
Bell state |β01〉 = 1√

2
(|01〉+ |10〉). If Alice wants to send the classical bits 10 to Bob,

she should apply the matrix U = ZX .

4. In a superdense coding experiment, Alice sends 3 classical bits to Bob using only 1
qubit.

5. In a typical teleportation process of a qubit |q〉 = α|0〉 + β|1〉, the probability that
Alice measures (m,m′) = (0, 0) depends on the values of α and β.

6. Alice and Bob are sharing the Bell state |β10〉 within a teleportation circuit. Al-
ice wants to teleport the qubit |+〉 and, after measuring, the outcome she obtains is
(m,m′) = (0, 0), which is sent to Bob. Bob needs to apply a Z gate to its qubit for
correct teleportation.
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3.4. Exercises

3.4.1. No-cloning Theorem and Quantum Parallelism

1. The CNOT gate performs the following operation in which a and b could be 0 or 1

|a〉 ⊗ |b〉 → |a〉 ⊗ |a⊕ b〉,

where⊕ is the XOR operation. Demonstrate that the CNOT gate can be used to clone
a bit.

2. Suppose we have a 2-qubit system in which the first qubit is in the state |ψ〉, which
we know to be either |+〉 or |−〉, and the second qubit is |0〉. We wish to make a copy
of the first qubit, i.e., we want to end up in the state |ψ〉|ψ〉. Design a quantum circuit
with three Hadamard gates and one CNOT capable of making this copy.

3. * Consider a unitary transformation Uf that implements mod 4 calculations. Let
a = (a1, a0) and b = (b1, b0) represent two numbers ∈ Z4, such that a = 2a1 + a0
and b = 2b1+ b0. By using as many standard gates as you need, build a small 6-qubit
circuit that implements:

a) The addition transformation |a, b, 0〉 7→ |a, b, a+ b mod 4〉.
b) The multiplication transformation |a, b, 0〉 7→ |a, b, ab mod 4〉.
c) Is it possible to generalize the previous operations to n-bits numbers a, b ∈ Z2n?

3.4.2. EPR-Bell State Generators and Measurement

4. Compute the action of the following circuit when applied to the computational basis
{|00〉, |01〉, |10〉, |11〉}. Do you know any other circuit capable of producing the same
result?

5. Consider the four possible Bell states |βxy〉.

a) Calculate the following four probabilities: (i) of finding 0 in the first qubit; (ii)
of finding 1 in the first qubit; (iii) of finding 0 in the second qubit; and (iv) of
finding 1 in the second qubit.

b) If wemake ameasurementEim of the Bell states, which is the final state after the
measurement? Write down the 16 possible results (remember that Eim stands
for the measurement in the ith position of the qubitm).

6. The following circuit includes 2-qubit state measurements. If the measurements are
made on the basis {|00〉, |01〉, |10〉, |11〉}, which one is the classical bitm,m′ output
if the input to this gate circuit are any of the four Bell states |βm,m′〉? This procedure
is called a Bell measurement.
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7. Consider the EPR-Bell state measurement of the previous question. When the input
state |β00〉 is introduced in the circuit, this obtains the two classical bits m = 0 and
m′ = 0, as expected. But, eventually, a noisy quantum state is introduced into the
system |Ψ〉 =

√
3

2
√
2
(|00〉+ |11〉) + 1

2 |10〉. Evaluate:

a) If the input state is |Ψ〉, which classical bits are obtained) At what probability?

b) What is the probability that we make a wrong measurement? (In other words,
that we obtain something different than (m,m′) = (0, 0)?)

c) If the probabilities of obtainingm andm′, P (m,m′), are P (0, 0) = P (0, 1) =
1
4 , P (1, 0) = 0 and P (1, 1) = 1

2 , what is the input state?

3.4.3. Superdense Coding

8. Let us assume that Alice and Bob share the entangled Bell state |β00〉. Alice wants
to send two classical bits to Bob using only one qubit (superdense coding). In order
to send the four possible pairs of classical bits (00, 01, 10 and 11), she switches the
U gate into I, Z, X and ZX; applies it to |β00〉; and sends her part of the qubit to
Bob, who performs a Bell measurement on the resulting entangled qubit. Show which
classical bits Bob measured after each change of gate performed by Alice.

9. Consider the standard quantum circuit used for superdense coding. Alice and Bob
share the EPR-Bell state |β10〉 = 1√

2
(|00〉 − |11〉).

a) Which Pauli matrices should Alice use for gate U in order to transform |β10〉
into any of the EPR-Bell states?

b) What are the pre-measurement states?

c) Write out the classical bitsm andm′ as a function of the matrix U .

10. From the figure below, consider the quantum circuit designed for superdense coding
communication. If the circuit is initialized with the qubit |11〉, determine:

a) Which of the matricesA,B, C andD Alice (the sender) should use if she wants
to send to Bob (the receiver) the bits (b1, b2) = (0, 0). Justify your answer.

b) Imagine now that there is an error in the system. Specifically, the circuit is not
initialized by the qubit |11〉 but is instead initialized by a different qubit |ab〉.
Knowing this, the receiver now obtains (b1, b2) = (0, 1). Determine which
qubit will be |ab〉.
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11. Consider the quantum superdense coding that is implemented in the figure below.
Charlie (C) initializes the system with the 2-qubit |10〉. Then, after crossing the cor-
responding quantum gates, the first qubit (photon) is sent to the satellite (Alice) and
the other one is transmitted along an optical fiber to Bob (B).

C

A

BM

x x

HH|1>

|0>

m

m'

a) Determine the matrix or matrices that Alice should apply if she wants to send to
Bob the bits (m,m′) = (0, 1).

b) Aman-in-the-middle (M ) interferes with the photon sent by Alice. M measures
the photon (collapsing the qubit) and resends it to Bob. Determine the values
that Bob can now obtain, as well as their probabilities.

c) Considering the previous question’s results, would Bob be able to guess thatM
exists?

3.4.4. Teleportation

12. Alice and Bob share a state a|+−〉+ b| −+〉, where the first qubit is Alice’s and the
second qubit is Bob’s.
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a) Write the shared state so that Alice’s qubit is expressed in the {|0〉, |1〉} basis
and Bob’s qubit is expressed in the {|+〉, |−〉} basis.

b) Alice measures her qubit in the standard basis {|0〉, |1〉} and sends the measure-
ment outcome to Bob. Using onlyX , Z andH gates (or combinations of them),
what does Bob have to do to transform his qubit into the a|0〉+ b|1〉?

13. Alice and Bob share a state a|++〉+ b| −−〉, where the first qubit is Alice’s and the
second qubit is Bob’s. Alice measures her qubit in the standard basis and sends the
measurement outcome to Bob. What does Bob have to do to transform his qubit into
a|0〉+ b|1〉?

14. Show tha, when appropriately choosing |q1〉 and |q2〉 to create the different Bell states,
quantum teleportation of qubit |q0〉 is possible within the standard teleportation quan-
tum circuit.

15. Beginning with the right-hand expression and going backwards, show that:

|ψ〉|β00〉 =
1

2
|β00〉|ψ〉+

1

2
|β01〉(X|ψ〉) +

1

2
|β10〉(Z|ψ〉) +

1

2
|β11〉(XZ|ψ〉),

where |ψ〉 = α|0〉+ β|1〉.

16. Consider a standard quantum teleportation circuit between Alice and Bob. The input
state is |Ψ〉 = |q〉 ⊗ |β00〉 and the pre-measurement state is:

|0 0〉
α|0〉+ β|1〉

2
+ |0 1〉

α|1〉+ β|0〉
2

+ |1 0〉
α|0〉 − β|1〉

2
+ |1 1〉

α|1〉 − β|0〉
2

.

Alice wants to teleport two type of qubits: |q1〉 = |0〉 and |q2〉 = |+〉. But the first
measurement is wrong and always readsm = 0.

a) Is it possible that the final qubit teleported to Bob will be something different
than |q1〉 or |q2〉? If yes, determine the different possibilities.

b) Determine the probabilities that |q1〉 and |q2〉 are teleported correctly.

17. Consider a standard quantum teleportation circuit between Alice and Bob, as in the
figure below. Alice wants to send a qubit |q〉 = α|0〉+ β|1〉 to Bob while sharing the
entangled state |β01〉 = 1√

2
(|01〉+ |10〉), also as in the figure below.
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a) Determine which matrices should be used by Bob as a function of the possible
values (m, m′).

b) Imagine that the entangled state |β01〉 has suffered a decoherence process and
has collapsed into the state |11〉. Determine the probability that the qubit |q〉 is
now correctly teleported.

18. Alice owns the qubits |q0〉 = α0|0〉 + α1|1〉 and |q1〉. Similarly, Eve has the qubits
|q4〉 and |q5〉 = γ0|0〉+ γ1|1〉. Finally, Bob controls the qubits |q2〉 and |q3〉. In some
intermediate part of the circuit in the figure, Alice and Bob share the entangled Bell
state |q1q2〉 = |β00〉 while Eve and Bob share the entangled Bell state |q3q4〉 = |β00〉.

|q0〉 • H

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|q1〉 = |0〉 H • ⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|q2〉 = |0〉 ⊕ Z X •

|q3〉 = |0〉 ⊕ Z X ⊕

|q4〉 = |0〉 H • ⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|q5〉 • H

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

a) What is the final 2-qubit state owned by Bob? In other words, what is the final
state of the 2-qubit |q2q3〉?

b) What is the operation that this circuit performs?
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The Canary Island 143 km Teleportation Experiment

In 2012, an international research team led by the Austrian Academy of Sci-
ences and the University of Vienna successfully teleported quantum information
through polarized photons1over a distance of 143 km2. The experiment showed
that, with current technology and under real conditions, long-distance teleporta-
tion is feasible.

The experiment began with the creation of two photons entangled as3 |Ψ−〉 =
1√
2
(|H〉|V 〉 − |V 〉|H〉). Alice kept one photon in La Palma while the other one

was sent 143 km to Bob in Tenerife. At the same time, the input photon (the one
to be teleported) was prepared and sent to Alice. Alice made a joint measure-
ment in the Bell basis of that photon and of one photon that she had entangled
with Bob. The result of that measurement was sent to Bob, who applied the cor-
responding correction matrices and determined that his photon was in the same
state as the input state. Thus, the photon had been teleported.

Note that Alice used two channels: a quantum channel to send the entangled
photon to Bob and a classical one to feed her measurement information for-
ward. Photons from both channels were sent through free space, thus subject
to atmospheric attenuation -— which introduces notable losses. However, this
attenuation is less sensitive than if, for instance, a fiber optic link were to be
used. Despite the source of error introduced by the attenuation and other fac-
tors, the probability that a qubit had been successfully teleported was estimated
to be around 71%, well above the statistical limit of 50% should Alice and Bob
not share an entangled state. In summary, the Canary Island teleportation exper-
iment represented a milestone for future quantum satellite communications and
nearly achieving a quantum internet platform.

Exercises
a) Identify which of the experiment’s different elements have the theoretical

teleportation quantum circuit.
b) Which matrices should be used by Bob as a function of Alice’s measure-

ment?
c) In the experiment, four photon polarization states were randomly

teleported. These states are equivalent to the following qubits:
|0〉, |1〉, 1√

2
(|0〉+|1〉) and 1√

2
(|0〉−i|1〉). Consider now that Alice and Bob

do not share an entangled state but instead share the state |01〉. Show that
in this case the probability of any of the four initial qubits being correctly
teleported is only 0.5.

1Chapter 6 will introduce photon polarization.
2Ma, X., Herbst, T., Scheidl, T. et al. Quantum teleportation over 143 kilometres using active feed-forward.

Nature 489, 269–273 (2012). https://doi.org/10.1038/nature11472
3The state |Ψ−⟩ is equivalent to the Bell state |β11⟩.
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3.4.5. Distributed Quantum Computing

19. Consider that qubits |q0〉 and |q1〉 are controlled by Alice; qubits |q2〉 and |q3〉 are
controlled by Bob; and qubits |q1〉 and |q2〉 are entangled through the Bell state |β00〉.
Show that the following circuit is equivalent to a distributed CNOT gate, i.e., a CNOT
gate which uses Alice’s qubit |a〉 as the control and Bob’s qubit |x〉 as the target. This
is the quantum teleportation of a CNOT gate.
(Hint: Bob measures his qubit in the Hadamard {|+〉, |−〉} basis).

|q0〉 = |a〉 • Z
m

′

|q1〉 ⊕
L L✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|q2〉 •
L L✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

|q3〉 = |x〉 ⊕ X
m
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Quantum
Measurements

4.1. Definitions

– Given a quantum state |ψ〉 with n possible outcomes, the probability that we measure
the outcomem (m = 1, . . . , n) is

p(m) = 〈ψ|M†
mMm|ψ〉,

withMm being a measurement operator.

– The completeness condition
∑

m p(m) =
∑
〈ψ|M†

mMm|ψ〉 = 1 implies that the set
of operators shall be complete, i.e.,

∑n
m=1M

†
mMm = I.

– Afterm is measured, the post-measurement state is |ψ′〉 =Mm|ψ〉/
√
p(m).

– Different kinds of quantum measurement operators fulfil the previous general defi-
nition: quantum measurement in the orthonormal basis, projective (Von Neumann)
measurements and POVM1 measurements.

– Quantum measurement in an orthonormal basis:

• The measurement operatorMm is defined asMm = |xm〉〈xm|, with |xm〉 being
one element of an orthonormal basis.

• In this case,Mm is a projective operator, i.e.,M†
mMm =Mm.

• Given an n-qubit |ψ〉 = |ψ1, . . . , ψn〉, the basis state measurement operator of
the i-th qubit andm value,Eim, is defined asEim|ψ〉 = |ψ1, . . . , ψi−1,m, ψi+1, . . . , ψn〉.

– Projective (Von-Neumann) measurements

• An observable in quantum mechanics is represented by a Hermitian2 operator
A. The latter may always be decomposed as A =

∑
λmPm, where Pm is the

projector |λm〉〈λm| on the eigenspace of A with eigenvalue λm.
1The acronym POVM stands for “Positive-Operator-Valued Measure”.
2An operator A is said to be Hermitian if A† = A, where A† is the conjugate-transpose (or Hermitian

conjugate) of A.
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• The average value or mean of an observable on a state is

〈A〉 ≡ 〈λ〉 =
∑

λm p(λm) =
∑

λm〈ψ|Pm|ψ〉 = 〈ψ|
∑

λmPm|ψ〉 = 〈ψ|A|ψ〉.

• The mean-square is defined as

〈A2〉 ≡ 〈λ2〉 =
∑

λ2m p(λm) = 〈ψ|A2|ψ〉.

• While the variance of the observable is

〈∆A2〉 ≡ 〈λ2〉 − 〈λ〉2 = 〈A2〉 − 〈A〉2.

– POVM measurements

• A set of operators {Em} define a POVM if: a) each operator Em is positive3;
and b) the completeness relation

∑
mEm = 1 is fulfilled.

– The density matrix describing a quantum system that may be in one of a number of
states |ψi〉 with probability pi is

ρ =
∑
i

pi|ψi〉〈ψi|.

A correctly-defined density matrix has unit trace (i.e.,
∑

i pi = 1) and it is Hermitian.

– The purity of a quantum system is defined by

P = tr(ρ2).

If P = 1, the system is said to be pure; while if P < 1, the system is said to bemixed.

– The similiarity of the quantum system ρ to a reference pure state |ψ〉 is quantified by
the fidelity F = 〈ψ|ρ|ψ〉.

4.2. Solved Problems

1. Consider the following quantum measurement operatorM1:

M1 =
1

3


1 −i 0 1
i 1 0 i
0 0 0 0
1 −i 0 1

 .

a) Demonstrate that it is a projective operator.
b) Calculate the probability that outcome 1 is measured on the quantum state |Ψ〉 =

1
2 |00〉+

1
2 |01〉 −

1√
2
|11〉.

3Em is a positive operator if ⟨Ψ|Em|Ψ⟩ ≥ 0 for any normalized state |Ψ⟩.
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Solution

a) The matrix productM†
1M1 equalsM1 itself, which means that the operatorM1

is projective. For this specific case, it turns out thatM†
1 =M1 (i.e., thatM is a

Hermitian matrix).
b) Given 〈Ψ| = |Ψ〉† = 1

2 〈00|+
1
2 〈01| −

1√
2
〈11|, the desired probability is

P (|Ψ〉) = 〈Ψ|M†
1M1|Ψ〉 = 〈Ψ|M1|Ψ〉 =

2−
√
2

6
.

2. A qubit |q〉 is measured in the Hadamard basis {|+〉, |−〉}. Determine:

a) The projective measurement operators associated with states |+〉 and |−〉. Write
each of those in both bra-ket and matrix notation. (Use the computational basis
to express both the bra-ket and matrix notation of the operators).

b) The probability of it being measured as a |+〉, assuming that |q〉 = 1
2 |0〉−

√
3
2 |1〉.

Solution

a) The two projectors in bra-ket notation read as follows:

P+ = |+〉〈+| = 1√
2
(|0〉+ |1〉) 1√

2
(〈0|+ 〈1|) =

=
1

2
(|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |11〉〈11|)

and
P− = |−〉〈−| = 1√

2
(|0〉 − |1〉) 1√

2
(〈0| − 〈1|) =

=
1

2
(|00〉〈00| − |01〉〈01| − |10〉〈10|+ |11〉〈11|).

While, in matrix notation, the operators read as P+ = 1
2

(
1 1
1 1

)
and P− =

1
2

(
1 −1
−1 1

)
.

b) The requested probability is P (+|q) = 〈q|P+|q〉. We can use both bra-ket or
matrix notation for calculating it. Usingmatrix notation in the computational ba-

sis, for instance, we haveP (+|q) = 〈q|P+|q〉 =
(

1
2 −

√
3
2

)
1
2

(
1 1
1 1

)( 1
2

−
√
3
2

)
=

2−
√
3

4 = 0.0669.

3. A system is in the state

|Ψ〉 =
√
3

2
|0〉 − 1

2
|1〉.

Ameasurement ofX is made. Evaluate the probabilities p1 and p2 of finding the state
|Ψ〉 in each of the eigenstates of X .
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Solution The eigenvalues ofX are obtained from det |X−λI| = 0⇒ λ2+1 = 0⇒

λ1,2 = ±1. The corresponding normalized eigenvectors are uλ1
= 1√

2

(
1
1

)
= |+〉

and uλ2
= 1√

2

(
1
−1

)
= |−〉. The associated probabilities are then:

p1 = |〈+|Ψ〉|2 =
1

8
(
√
3− 1)2 = 0.067

p2 = |〈−|Ψ〉|2 =
1

8
(
√
3 + 1)2 = 0.933

4.3. Short Questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. Given the following measurement operator:

M+ =
1

2

(
1 −i
i 1

)

and the quantum state |Ψ〉 =
|0〉+ i|1〉
√
2

, the probability of measuring + is 1.

2. The projective measurement operatorMR corresponding to the quantum state |R〉 =
1√
2
(|0〉+ i|1〉) is given by the matrix:

MR =
1

2

(
1 i
i −1

)
.

3. The density matrix corresponding to a 50:50 mixture of states |0〉 and |+〉 is:

ρ =
1

4

(
3 1
1 1

)
4. Consider a mixture of d states. The lowest values that the purity P can achieve is
P = 1/d.

5. The fidelity F1 between the pure states |0〉 and |+〉 is exactly the same as the fidelity
F2 between |0〉 and |−〉.

4.4. Exercises

1. Demonstrate that the measurement commutes with controls, that is, show that the
following two quantum circuits are equivalent:
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|q0〉 •
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

•

=

|q1〉 U U

2. Write the projective measurement operator of the Bell-state |β00〉. Then find the prob-
ability of measuring |ψ〉 = 1

2 [|00〉+ |01〉+ |10〉+ |11〉] with the previous operator.

3. In the 143-km teleportation experiment between the Canary Islands, Alice performs a
measurement in the Bell-state basis, that is, she projects her two qubits onto the four
Bell states. Consider that the qubit to be teleported is |q1〉 = 1√

2
(|0〉 + |1〉) and that

Alice and Bob share the state |β11〉 = 1√
2
(|01〉 − |10〉). Determine the probability of

the first two qubits collapsing into the Bell-states |β11〉 or |β01〉.

4. We have the following two-qubit: |q〉 = 1√
3
[|00〉+ |01〉+ |10〉]. If we want to mea-

sure a classical bit 0 in the first position, we use the operator E10. Find E10|q〉 and
the corresponding probability.

5. Consider a quantum gate U with eigenstate |ϕ〉, such that U |ψ〉 = eiθ|ψ〉.

|q0〉 = |0〉 H • H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉 = |ψ〉 U

a) Demonstrate that the above quantum circuit can be used to estimate the phase θ.
b) By applying the previous circuit, will it be possible to distinguish between the

states |ψ〉 and −|ψ〉? Justify your answer.

6. A system can be in one of two states: |ψ〉 or |ϕ〉. The states fulfill the following
condition: 〈ψ|ϕ〉 = cos θ, i.e., they are not orthogonal. Describe a POVM that can
distinguish between the two states.

7. Consider the following collection of measurement operators:

E1 = u|1〉〈1|,

E2 = u|−〉〈−|,

E3 = I− E1 − E2,

where u =
√
2/(1 +

√
2). If we denote by p(1) and p(2) the probabilities associated

with the operators E1 and E2, respectively, determine:

a) That the set of operators {E1, E2, E3} form a POVM.
b) The probabilities p(1) and p(2) when the input state is |0〉
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c) The probabilities p(1) and p(2) when the input state is |+〉 ≡ |0⟩+|1⟩√
2

d) If we know that the input state is either |0〉 or |+〉, can the two previous mea-
surement operators allow us to distinguish between these two input states? Give
reasons for the answer.

8. Consider the state |ψ〉 = 1√
2
(|01〉 − |10〉).

a) If P0 is the projection operator associated with the state |0〉, describe the action
of the operator P0 ⊗ I on the state |ψ〉.

b) If P1 is the projection operator associated with the state |1〉, describe the action
of the operator I⊗ P1 on the state |ψ〉.

9. Given a measurement operatorM , the probability of measuring a quantum state |Ψ〉
is p(Ψ) = 〈Ψ|M†M |Ψ〉. Consider the following measurement operator:

M =
1

2

(
1 i
−i 1

)
a) Write theM operator as a product of bra-kets and check thatM is a projective

operator (i.e.,M†M =M ).
b) Using bra-ket notation, calculate the probabilities of measurement when the in-

put state is |1〉 and when it is |−〉.
c) Using this measurement operator, can we distinguish if the initial state is |1〉 or
|−〉? Justify your answer.

10. A system is in the state

|ψ〉 = 1

2
|u1〉 −

√
2

2
|u2〉+

1

2
|u3〉,

where the states |u1〉, |u2〉, |u3〉 are eigenstates of the energy operator E with eigen-
values equal to h̄ω, 2h̄ω, 3h̄ω, respectively.

a) Write the projection operators corresponding to each possible measurement
b) Using the measurement operators, determine the probability of finding the sys-

tem in each of the states |u1〉, |u2〉, |u3〉.
c) What is the average energy of the system?

11. Find the diagonal representation of the Pauli matrix Y . What are its eigenstates?

12. Ameasurement with respect to a matrix means making measurements with the projec-
tion operators constructed from the eigenstates of the matrix. Now, consider a qubit
in the state |ψ〉 =

√
3
2 |0〉 −

1
2 |1〉, and measure it with respect to Y .

a) Determine the probability that the measurement result is +1, knowing that +1
is the eigenvalue associated with the first eigenstate.

b) Determine the probability that the measurement result is −1, knowing that −1
is the eigenvalue associated with the second eigenstate.
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13. Determine if the following density operators are mixed or pure states:

a) ρ = 1
2 [|0〉〈0|+ i|0〉〈1| − i|1〉〈0|+ |1〉〈1|]

b) ρ = 1
2 |0〉〈0|+

1
6 |0〉〈1|+

1
6 |1〉〈0|+

1
2 |1〉〈1|]

14. A system is in the state |ψ〉 = 1√
3
|u1〉 + i

√
2
3 |u2〉, where {|u1〉, |u2〉} constitute an

orthonormal basis.

a) Write down the density operator.
b) Show that this operator has unit trace.

15. Given the following quantum state:

|Ψ〉 = 1√
3
(|00 > −i|01 > −|11〉)

a) Write the matrix of the density operator ρ = |Ψ〉〈Ψ|.
b) Determine its eigenvalues
c) Is it a mixed or a pure state?

16. A source of photons emits a one-photon wave packet each second, but alternates be-
tween horizontal, vertical and diagonal polarizations. Assuming that these polariza-
tions correspond to the qubits |0〉, |1〉 and |+〉, respectively:

a) Write the density matrix of this mixed state
b) Any mixed state can be represented by an ensemble of only two orthogonal

pure states. What are these states for the density matrix obtained in a)? (Hint:
diagonalize the matrix).

17. Consider the pure state |ψ〉 = a|0〉+ beiϕ|1〉 with a2 + b2 = 1. In a quantum tomog-
raphy reconstruction of the state |ψ〉, we need to measure it in a different basis. We
perform the measurement first in the basis {|0〉, |1〉} and then in the basis {|R〉, |L〉},
where |R〉 = 1√

2
(|0〉+i|1〉) and |L〉 = 1√

2
(|0〉−i|1〉). Knowing that the probabilities

of measuring the state |0〉 is 0.25, the state |1〉 is 0.75 and the state |R〉 is 0.806, obtain
the density matrix of the initial state |ψ〉.

18. In a quantum entanglement experiment, we want to create the state |β00〉. The quan-
tum tomography reconstruction of the state gives us:

ρreal =


0.501 0 0 0.387
0.01 0.02 0 0.1
0 0.01 0.01 0.2

0.488 0.01 0.02 0.412


In order to check if the created state is the theoretical one, compute the fidelity. We
will consider that the theoretical and real states are the same if the fidelity is greater
than 66.7%.
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19. In the 143-km teleportation experiment carried out in the Canary Islands, four different
quantum qubits were teleported. These qubits were |H〉, |V 〉, |P 〉 = 1√

2
(|H〉+ |V 〉)

and |L〉 = 1√
2
(|H〉 − i|V 〉). Determine:

a) The ideal density matrices for each of the four teleported qubits.

Fig. 4.2
State tomography 
results for the four 

quantum states used 
in the teleportation 
experiment of the 
Canary Islands.

[Figure obtained from 
Ma, X., Herbst, T., 
Scheidl, T. et al. 

Quantum 
teleportation across 
143 kilometres using 

active
feed-forward. Nature 
489, 269–273 (2012).]

b) From the state tomography results shown in Figure ??, estimate the measured
density matrix for each of these teleported states.

c) Determine the fidelity F for each teleported state. What is the resulting average
fidelity?
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– A detailed description of the Deutsch, Deutsch-Josza, Grover and Shor algorithms
can be found in Chapters 19 & 20 of Desurvire, E. (2009), Classical and Quantum In-
formation Theory: An Introduction for the Telecom Scientist, Cambridge: Cambridge
University Press.1

– The quantum Fourier transform, QFT , is defined as a unitary operator acting on the
state |n〉 of the N -orthonormal basis {|k〉}k=0,...,N−1 = {|0〉, |1〉, . . . , |N − 1〉}, as
in

QFT |n〉 = 1√
N

N−1∑
k=0

eik
2πn
N |k〉.

– If |Ψ〉 is a qubit of dimension N , |Ψ〉 =
N−1∑
n=0

xn|n〉, then, the QFT of the qubit |Ψ〉

is

|Ψ̂〉 = QFT |Ψ〉 = 1√
N

N−1∑
n=0

N−1∑
k=0

xne
ik 2πn

N |k〉.

– The inverse of QFT is noted as QFT−1 and defined as:

|Ψ〉 = QFT ˆ|Ψ〉 = 1√
N

N−1∑
k=0

N−1∑
n=0

yke
−in 2πk

N |n〉

– TheQFT can also be implemented as amatrixMN×N , whose coefficients areMnk =
Mkn = exp(i2nπk/N)/

√
N ≡ ωnk/

√
N and ω ≡ e 2πi

N .

1https://doi.org/10.1017/CBO9780511803758
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– The matrixM takes the form of the Vandermonde matrix:

M =
1√
N



1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

1 ω3 ω6 . . . ω3(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)



5.1. Solved Problems

1. Determine the quantum Fourier transform of the GHZ state:

|Ψ〉 = 1√
2
(|000〉+ |111〉)

Solution

The GHZ state corresponds to a 3-qubit system, i.e., N = 23 = 8. Using decimal
notation: |Ψ〉 = 1√

2
(|0〉+ |7〉). We evaluate the QFT of each term separately:

QFT |0〉 = 1√
8

7∑
k=0

e0|k〉 = 1√
8
(|0〉+ . . .+ |7〉)

QFT |7〉 = 1√
8

7∑
k=0

eik
7
4π|k〉 = 1√

8
(|0〉+ ei

7
4π|1〉+ ei

14
4 π|2〉+

+ ei
21
4 π|3〉+ ei

28
4 π|4〉+ ei

35
4 π|5〉+ ei

42
4 π|6〉+ ei

49
4 π|7〉)

We evaluate the phase of each term:

ei
7
4π = ei

3
4π =

1√
2
(1− i) ei

14
4 π = ei

3
2π = −i

ei
21
4 π = ei

5
4π =

−1√
2
(1 + i) ei

28
4 π = eiπ = −1

ei
15
4 π = ei

3
4π =

1√
2
(i− 1) ei

42
4 π = ei

π
2 = 1

ei
49
4 π = ei

π
4 =

1√
2
(1 + i)
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Finally, the QFT is the sum of both terms:

QFT |Ψ〉 = 1√
2
(QFT |0〉+ QFT |7〉) =

=
1

2
|0〉+ 1

4
√
2
(
√
2 + 1− i)|1〉+ 1

4
|(1− i)〉|2〉+

+
1

4
√
2
(
√
2− 1− i)|3〉+ 1

4
√
2
(
√
2 + i− 1)|5〉+

+
1

2
|6〉+ 1

4
√
2
(
√
2 + 1 + i)|7〉

2. Consider an observable Ω, which defines an orthonormal basis of: N eigenstates |x〉
that are labeled |0〉, |1〉,...,|N − 1〉; and of eigenvalues labeled λ0, λ1,...,λN−1. Con-
sider two eigenvalues of interest, λω1

and λω2
, with the associated states |ω1〉 and

|ω2〉, respectively. Determine:

a) The oracle operator Uω and the second operator Us, which constitute
a Grover iteration: G = UsUω . Demonstrate that Uω and Us are
unitary transformations.

b) Find the probability of obtaining one of the two eigenstates of interest
after one Grover iteration.

Solution

a) If |ω1〉 and |ω2〉 are the eigenstates of interest, we can build the oracle operator
as:

Uω = I− 2|ω1〉〈ω1| − 2|ω2〉〈ω2|.

The second operator remains the same:

Us = 2|s〉〈s| − I,

where |s〉 is the superposition state |s〉 = 1√
N

∑N
i=0 |ωi〉.

It is straightforward to check that both operators are unitary:

UωU
†
ω = (I− 2|ω1〉〈ω1| − 2|ω2〉〈ω2|)(I− 2|ω1〉〈ω1| − 2|ω2〉〈ω2|) =
= . . . = I

and

UsU
†
s = (2|s〉〈s| − I)(2|s〉〈s| − I) = . . . = I

b) One Grover iteration is defined as UG = UsUω . When it is applied to the super-
position state, we have

Ug|s〉 = UsUω|s〉 = Us

(
|s〉 − 2√

N
|ω1〉 −

2√
N
|ω2〉

)
=

=

(
1− 8√

N

)
|s〉+ 2√

N
|ω1〉+

2√
N
|ω2〉

,
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and the probabilities of obtaining the eigenstates of interest are

P (ω1) = |〈ω1|UG|s〉|2 =

[(
1− 8

N

)
1√
N

+
2√
N

]2
=

= . . . =
1

N

(
9− 24

N
+

64

N2

)
≈ 9

N

.

Analogously, P (ω2) ≈ 9/N and the probability of finding either of the two
states is just P (ω1 or ω2) ≈ 18/N.

3. Consider x ∈ {0, 2n − 1} and f(x) : {0, 2n − 1} 7→ {0, 2n − 1}.

a) How can we implement the function f(x) within a quantum circuit? Demon-
strate that it is implemented with a unitary transformation.

b) Imagine that we have f(x) = 2xmod 5 and n = 3, and we want to create a state
that is a superposition of the x values, such that f(x) = 4. Draw a scheme of
the quantum circuit and explain how you will perform this.

Solution

a) We first create a two-register system, |x , y 〉. The first register is also called
the query register, and the second one is the result register. Both registers are
n-dimensional. The function f(x) is implemented with the XOR operation on
the second register:

Uf |x , y 〉 7→ |x , y ⊕ f(x) 〉.

By simply initializing the second register to zero, |y〉 = |0〉⊗n, we obtain the
values of f(x) for the different values of the query:

Uf |x , 0 〉 7→ |x , f(x) 〉.

It is easy to check that Uf is a unitary transformation, given that

UfU
†
f |x , y 〉 = U2

f |x , y 〉 = Uf |x , y ⊕ f(x) 〉 =

= |x , y ⊕ f(x)⊕ f(x) 〉 = |x , y〉 ⇒ UfU
†
f = I

.

b) For this particular case, we have:

x 0 1 2 3 4 5 6 7
2x 1 2 4 8 16 32 64 128
f(x) 1 2 4 3 1 2 4 3

So, the first register will be a superposition of all possible values of x: |s〉 =
1√
8

∑7
x=0 |x〉. After applying Uf , we will have in the second register a super-

position of all possible values of f(x). If we measure the second register, we
have a probability of 1

4 that it collapses into f(x) = 4 (see previous table), and
then the first register will collapse into the desired state |ψ〉 = 1√

2
(|2〉+ |6〉)|4̂〉.

We can increase the probability that the system will collapse into f(x) = 4 by
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applying a Grover iteration to the second register, thus defining our value of in-
terest as 4, i.e., |ω〉 = |4〉.

The corresponding quantum circuit is shown below:

|0ñÄn

|0ñÄn
U f  (x)

G

|YñH n

5.2. Short Questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. The Grover algorithm can be applied to find more than one qubit in a database.

2. We know that, after one Grover iteration, the probability of encountering the target
qubit increases to 9

N if the numberN of objects in the database is large enough. Then,
forN = 106, we need ≈ N/9 ≈ 1.1 · 105 Grover iterations to get a probability close
to 1 for our target qubit.

3. The QFT of an entangled 2-qubit state is still an entangled state.

4. The quantum circuit that implements the QFT for three qubits requires two swap gates.

5.3. Exercises

5.3.1. Deutsch-Jozsa Algorithm

1. Consider a function with two inputs, such that f(x) = 1. Explicitly show that the
Deutsch-Josza algorithm works in this case by generating the vector |y〉 = |00〉 as the
final output.

2. Suppose that f(00) = f(01) = 0 and f(10) = f(11) = 1. Apply the Deutsch-Josza
algorithm and show that at least one of the first two qubits ends up as a 1.

3. a) Find the eigenvalues and eigenvectors of the following matrix, where x can be
0 or 1:

A(x) = (1− x)I2 + xUNOT .

b) Show that the unitary transform

Uf = |0f(0)〉〈00|+ |0f(0)〉〈01|+ |1f(1)〉〈10|+ |1f(1)〉〈11|,

where f : {0, 1} → {0, 1} is a boolean function and x denotes the boolean
negation of x, can be written as

Uf = |0〉〈0| ⊗A(f(0)) + |1〉〈1| ⊗A(f(1)).
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c) Calculate

Uf (I2 ⊗
1√
2
(|0〉 − |1〉)).

Analyze the cases f(0) = f(1) and f(0) 6= f(1).

4. When, in the Deutsch algorithm, we consider Uf as a single-qubit operator, Ûf(x),
|0⟩−|1⟩√

2
is an eigenstate of Ûf(x), whose associated eigenvalue gives us the answer to

the Deutsch problem. Now, let us suppose that we are unable to prepare this eigenstate
directly. Show that if we instead input |0〉 to the target qubit and otherwise run the
same algorithm, we get an algorithm that gives the correct answer with probability 3

4
(note that this also works if we input |1〉 to the second qubit). In addition, show that
with probability 1

2 we know for certain that the algorithm has produced the correct
answer.
(Hint: write |0〉 in the basis of eigenvectors of Ûf(x))

5.3.2. Grover Algorithm

5. Consider the quantum circuit in the figure below. This quantum circuit can implement
the oracle operator of Grover’s algorithm for a certain target qubit, |ω〉.

|q 

|q! H H

●

Å

a) Determine the matrix associated with it.
b) Find the target qubit |ω〉 and demonstrate that, for this particular qubit, the quan-

tum circuit acts as an oracle operator.
c) Find a simplified version of the previous quantum circuit (i.e., an equivalent

quantum circuit with a smaller number of gates).
d) Finally, demonstrate that the following quantum circuit acts as the Grover dif-

fusion operator Us = |s〉〈s| − I , where |s〉 is the superposition state |s〉 =
1
2

∑3
x=0 |x〉.

H X • X H

H X H Å H X H

6. Consider the following 3-qubit quantum circuit that is acting as an oracle operator for
a certain |ω〉 qubit.

| j0 X • X

| j1 •

| j2 H Å H
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a) Determine |ω〉.
b) By using as many quantum gates as needed, find a quantum circuit that acts as

3-qubit Grover diffusion operator.

7. For Grover’s search algorithm, assume that we have M target states out of N total
states, so the black box O takes

O|x〉 = −|x〉 if x is a target state, and
O|x〉 = |x〉 otherwise.

Suppose we find a target state with probability 1 after one iteration of the algorithm.
What can you say about the ratioM/N?

8. Perform two iterations of Grover’s algorithm on a system with N = 4 and solution
indexed by x = 0. The state youwill need to start with is |ψ〉 = 1

2 (|0〉+|1〉+|2〉+|3〉).
Comment on the result.

9. Consider a system of N = 23 = 8 states. The states are equiprobable and we are
searching for two of them, x1 and x2.

a) Find the probability of obtaining x1 or x2 after one Grover iteration.
b) Find the number of iterations that maximize the probability of obtaining x1 or

x2. Also write out the quantum state after this number of iterations.

5.3.3. Quantum Fourier Transform and Shor Algorithm

10. Show that the QFT transformation is unitary. It is defined by

|yn〉 =
1√
N

N−1∑
k=0

eik
2πn
N |xk〉,

and |xk〉k=0...N−1 is an orthonormal basis.

11. Demonstrate that, for N = 2, the QFT reduces to the Hadamard transformation.

12. Calculate the quantum Fourier transform of the qubit

|ψ〉 = 1√
14

(|0〉+ 2i|1〉+ 3|2〉) .

13. Calculate the QFT of the |β01〉 EPR-Bell state. Is it still an entangled state?

14. We want to obtain the period of the function f(x) = x mod 2 by using the 3-qubit
quantum circuit in the figure below. Determine the possible values of the register y
knowing that u has collapsed into the value 1.

= |0 / QFT y

u = 1

U f  (x)

H

|q!

|q"

= |0 /
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15. For the following combinations of a,N , apply Shor’s algorithm to find the factors of
N . If the algorithm fails, clearly identify at which stage the failure occurs. Assume
that each register has 15 qubits.

a) N = 15, a = 7

b) N = 91, a = 4

c) N = 21, a = 5

16. Consider the function f(x) = 3xmod 5 and a system of 3 qubits.

a) How can we implement this function within a quantum circuit? Demonstrate
that the function is implemented with a unitary transformation.

b) Now, we want the system to collapse into those values for which f(x) = 4.
How can we achieve this? Describe the process.

17. We want to evaluate the period of the function f(x) = 2xmod 5 by means of a quan-
tum circuit. Consider the initial state as two 3-qubit registers, |Ψ1〉 = |0〉⊗n|0〉⊗n of
size n = 3.

a) Draw a scheme of the quantum circuit that we need in order to find the period
of the previous function.

b) We obtain a value of 4 when we measure the second register. Write down the
quantum state of the first register after this measurement.

c) Finally, determine the pre-measurement state of the first register.
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6.1. Definitions

– Jones vector. When a beam of polarized light propagates along the direction ẑ, the
associated electric field oscillates in the plane xy. Its polarization may be character-

ized by the Jones vector eiΦ
(
E0xe

iϕx

E0ye
iϕy

)
, where Φ = ωt − kz is the global phase of

the wave, and ϕx and ϕy are the phases in the x̂ and ŷ direction, respectively.

– If ϕx = ϕy , we have linear polarization while, if ϕx−ϕy = ±π/2, we have circular
polarization.

– The polarization of a photon (or, equivalently, the possible states of a qubit) may be
described in terms of the two linearly-polarized states:

{|H〉, |V 〉} =
{(

1
0

)
,

(
0
1

)}
.

Alternatively, one may use the basis of circular states:

{|R〉, |L〉} =
{

1√
2

(
1
i

)
,
1√
2

(
1
−i

)}
,

or the Hadamard basis1:

{|+〉, |−〉} =
{

1√
2

(
1
1

)
,
1√
2

(
1
−1

)}
.

– Optical elements can be represented by a 2×2matrix. For instance, a linear polarizer
with transmission angle θ with respect to the horizontal axis is represented by

P =

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
.

1These states are also called diagonal and antidiagonal, {|D⟩, |A⟩}, or plus and minus {|P ⟩, |M⟩}, respec-
tively.
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Fig. 6.1
Effect of an HWP (red) 
and a QWP (blue) on 
the Bloch sphere for a 
physical angle θ of the 
FA with respect to the 
horizontal direction. In 

the example 
represented:

θ = 22.5◦ for the 
HWP and θ = 45◦ for 

the QWP.

– Malus’s law. When a beam of polarized light passes through a polarizer, the inten-
sity after the polarizer will be I = I0 cos2 θ, where I0 is the intensity of the beam
before hitting the polarizer, and θ is the angle between the polarization direction of
the incoming light and the transmission angle of the polarizer.

– A phase retarder or wave-plate is a slab of birefringent material with two charac-
teristic refractive indices, which induces different phase delays ϵf and ϵs in the FA
(fast-axis) and SA (slow-axis), respectively. By introducing δ = ϵs − ϵf , the corre-
sponding matrix (choosing the FA as horizontal) is

Mδ =

(
e−iδ/2 0

0 eiδ/2

)
.

– Two cases are especially important: (a) if |δ| = π/2, we call it a quarter-wave plate
(QWP); and (b) if |δ| = π, we call it a half-wave plate (HWP).

– If the fast axis of the wave plate is twisted by an angle θ with respect to the horizontal,
the Jones matrix for the wave plate is

Mδ(θ) = R(θ)MδR(−θ),

where R(θ) =
(
cos θ − sin θ
sin θ cos θ

)
is a rotation matrix. The general expression for the

Jones matrix of a wave-plate is therefore

Mδ(θ) =

(
cos(δ/2)− i sin(δ/2) cos(2θ) −i sin(δ/2) sin(2θ)

−i sin(δ/2) sin(2θ) cos(δ/2) + i sin(δ/2) cos(2θ)

)
.

– In an ion trap2 with j ions, a qubit |q〉 is defined as |q〉 = |q1q2...qj〉|n〉, where the
ket |n〉 represents the phononic state (or vibrational mode) of the j ions. Its possible
values are n = 0, 1, 2, 3....
2A gentle introduction to ion-trap quantum computers can be found in: Michael H. Holzscheiter, Ion-Trap

Quantum Computation, Los Alamos Science No. 27, 2002; https://permalink.lanl.gov/object/tr?what=info:
lanl-repo/lareport/LA-UR-02-3932
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Pulse Length Initial State Final State

2π |0〉 −|0〉

|1〉 −|1〉

π |0〉 |1〉

|1〉 |0〉

π/2 |0〉 1√
2
(|0〉+ |1〉)

|1〉 1√
2
(|0〉+ |1〉)

– Each ion in an ion trap can be in the ground state, |0〉, or the excited state, |1〉.

– To change the state of each ion, Rabi oscillations are applied to induce coupling by
rotation: R(θ, ϕ), where θ = Ωτ is the pulse area, Ω the Rabi frequency, τ the pulse
length and ϕ the phase of the laser field.

– Different Rabi oscillation pulses are then used according to the table below.

– To change the phononic state, a particular frequency of the laser should be used:

Frequency State Change

carrier ωc |0〉|n〉 ←→ |1〉|n〉

red ωc − ωz |0〉|n〉 ←→ |1〉|n− 1〉

blue ωc + ωz |0〉|n〉 ←→ |1〉|n+ 1〉

wc

wz

Fig. 6.2
Ion trap carrier ωc

and sideband
ωc ±ωz frequencies.
In the general case:
ωc << ωz .
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6.2. Solved problems

1. Demonstrate that, if the incoming light is unpolarized and with intensity I0, the out-
going intensity after the polarizer will be I0/2.
Solution
We need only to average Malus’ law over all angles θ:

I = I0
1

2π

∫ 2π

0

dθ cos2 θ = I0/2

2. A beam of unpolarized light with intensity I0 goes through a series of polarizers Pi,
whose axes are aligned, respectively, along the directions θ1 = π/3, θ2 = 2π/3,
θ3 = 3π/3, and θ4 = 4π/3.

a) Determine the final intensity I4 when all polarizers (1-2-3-4) are present.
b) Determine the final intensity I2 when only polarizers 1 and 4 are present.

Solution

a) The intensity of unpolarized light that goes through one polarizer drops by a
factor of 1/2. Subsequently, it will drop by another factor of cos(π/3)2 = 1/4

per polarizer. As such, I4 =
1

4
· 1
4
· 1
4
· 1
2
· I0 =

I0
128

.

b) The axes of polarizers 1 and 4 are parallel, such that light which has gone through

P1 will not be attenuated by P4. As such, I2 =
I0

2
.

3. Find the matrix corresponding to an HWP with a physical angle of θ = 45◦. What
is the effect when acting upon the linearly polarized photons {|H〉, |V 〉}? To which
quantum gate is this action equivalent?
Solution
An HWP has a retarded phase angle δ = π, and knowing that θ = 45◦, we simply
substitute these values in the general wave-plate matrix:

HWP(45◦) =Mδ=π(θ = 45◦) =

(
0 1
1 0

)
When an HWP has an FA that forms an angle of θ = 45◦ with respect to the hori-
zontal, then, aside from an irrelevant overall phase, it acts as an X gate in the linear
polarization basis {|H〉, |V 〉}:

|H〉 HWP 45◦−−−−−→ |V 〉 HWP 45◦−−−−−→ |H〉.

4. Find the matrix corresponding to a QWP with a physical angle of θ = 45◦. What
is the effect when it acts upon the linearly polarized photons {|H〉, |V 〉}? To which
quantum gate is this action equivalent?
Solution
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The same as in the previous example, but now with δ = π/2 and θ = 45◦:

QWP(45◦) =Mδ=π/2(θ = 45◦) =
1√
2

(
1 i
i 1

)
.

A QWP with the same angle θ = 45◦ instead acts as a Hadamard gate, aside again
from irrelevant overall phases, switching between linear and circular polarizations:

|H〉 QWP 45◦−−−−−→ |R〉 QWP 45◦−−−−−→ |V 〉 QWP 45◦−−−−−→ |L〉 QWP 45◦−−−−−→ |H〉.

5. Consider the following quantum circuit. The polarization of qubits |q1〉 and |q2〉 is
entangled as |ϕ〉 = 1√

2
(|HH〉 + |V V 〉), and the measurements are made in the

computational basis.

|q0 • M 3

|q1 H Å M 2

|q2 M 1

a) Resolve the quantum circuit for a general qubit |q0〉 = α|0〉+ β|1〉.
b) Use as many optical elements as necessary to draw a setup that implements the

previous quantum circuit. You can consider both spatial and polarization modes.
c) Associate each of the measurement devices with each of the detectors in the

setup.
Hint: M1 measures the third qubit |q2〉. Possible values ofM1 are 0
or 1 if |q2〉 is |0〉 or |1〉, respectively. If M1 = 0, determine which
detectors, DX , light up in this case. Conduct the same analysis for
M1 = 1 and all the other measurement devices.

d) Determine the probabilities associated with each detector.
Hint: Use the results obtained in point a).

Solution

a) The shared entangled state |ϕ〉 = 1√
2
(|HH〉+ |V V 〉) is equivalent to the Bell

state |β00〉. Thus, for a general qubit |q0〉 = α|0〉+β|1〉, the initial state is |ψ0〉 =
|q0〉 ⊗ |β00〉 = 1√

2
(α|000〉 + α|011〉 + β|100〉 + β|111〉). After crossing the

different gates of the quantum circuit, the pre-measurement state is |ψpre−m〉 =
1√
2
(α|000〉+α|001〉+α|010〉−α|011〉+β|100〉−β|101〉+β|110〉+β|111〉).

b) The setup is shown in the diagram below. A BBO type I crystal provides the
required entanglement. The polarization state of these two photons corresponds
to the qubits |q1〉 and |q2〉. A QWP oriented 45◦ in the |q1〉 path acts as a
Hadamard gate. The qubit |q0〉 is implemented through the spatial mode by
a Mach-Zehnder interferometer. The phase retarder ϕ provides the amplitudes
α and β of |q0〉, while a 45◦ HWP applied in path |1〉 to the polarization acts as
a CNOT-gate.
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BBO type I

Laser

BS BS

PBS

PBS

PBS

D2

D1

D4

D3

D6

D5

|q2>

|q1>

|0>

|0>
|1>

|1>

c) Qubit |q2〉 is measured byM1, which corresponds to a polarization beam-splitter
(PBS) and the detectors D1 and D2. The possible values of M1 (0 or 1) are
related to the polarization states of the second photon. Thus, horizontally polar-
ized photons will reachD1 and correspond toM1 = 0, while vertically polarized
photons will be detected inD2, therefore implyingM1 = 1. Now, |q1〉, which is
associated with the first photon, is split into two branches, depending on the path
mode of |q0〉. Taking that into account, horizontally polarized photons can be
measured in detectors D3 or D5, corresponding toM2 = 0, while vertical ones
will be detected in D4 or D6, implyingM2 = 1. Finally, |q0〉 is implemented
through a spatial model. In this case, path |0〉 is detected byD3 orD4, implying
M3 = 0, while path |1〉 is measured by D5 or D6.

d) In the following table we summarize which qubit state is measured by each de-
tector and their probabilities, which were deduced from the pre-measurement
state obtained in question a).

heightDetector Qubit State Probability
D1 |xy0〉 1/2
D2 |xy1〉 1/2
D3 |00x〉 α2/2
D4 |01x〉 α2/2
D5 |10x〉 β2/2
D6 |11x〉 β2/2

6. We have a 2-qubit system in an ion trap in the initial state |00〉|2〉. Describe the state
of the system if we apply to the first qubit a π/2 pulse from a laser tuned to the red
sideband, followed by a π pulse from the same laser to the second qubit. Finally, we
apply to the first qubit a 2π pulse, also tuned to the red sideband.

Solution
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We begin with the state in |00〉|2〉. If we apply to the first qubit a π/2 pulse in the red
sideband, we will get a superposition of the initial state and the final state. The final
state has the first qubit excited and the vibrational mode will be decreased by one, as
we are in the red sideband. Thus, after applying the pulse, the system will be in the
state:

1√
2
(|00〉|2〉+ |10〉|1〉).

Now, if we apply to the second qubit a π pulse in the red sideband, the second qubit
will get excited and the vibrational mode will decrease by one. As it is a π pulse, we
do not obtain any extra superposition:

1√
2
(|01〉|1〉+ |11〉|0〉).

Finally, the action of the 2π pulse is to change the sign of the first qubit, but because
the laser is tuned to the red sideband, we cannot lower the vibrational state of the
second part of the above superposition and instead change only the sign of the first
one. Thus, the solution is:

1√
2
(−|01〉|0〉+ |11〉|0〉).

6.3. Short Questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. We have two quantum computers. Model A has a decoherence time of τQ = 10−2 s
and an operational time of τOP = 10−3 s, while model B has a decoherence time of
τQ = 10−5 s and an operational time of τOP = 10−9 s. Model B represents a better
quantum computer.

2. A beam of vertically polarized photons with an intensity I0 goes through two polar-
izing filters. The first is vertically aligned and the second is at 45◦ with respect to the
first one. The transmitted intensity is It = I0/

√
2.

3. A beam of vertically polarized photons goes through a polarizing filter inclined at
60◦ with respect to the horizontal. Denote by |0〉 and |1〉 the horizontal and vertical
polarizations, respectively. The resulting qubit is |q〉 =

√
3
2 |0〉+

1
2 |1〉.

4. Entanglement may be created only between pairs of identical photons.

5. An HWP with a physical angle α = 22.5◦ turns horizontally polarized photons into
diagonally polarized ones, and vertically polarized photons into anti-diagonally po-
larized ones.

6. Regardless of the angle α, if we twice apply an HWP to an arbitrary polarized initial
state, we obtain the same initial state.
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7. A π-pulse tuned to a carrier frequency always changes the qubit state, but a π-pulse
tuned to sideband frequencies might not.

8. A red-detuned pulse, regardless of the pulse length, always reduces the phonon state
from |n〉 to |n− 1〉.

9. Aπ-pulse detuned to blue is applied to the initial state |00〉|0〉, resulting in 1√
2
(|00〉|0〉+ |10〉|1〉).

6.4. Exercises

6.4.1. Optical elements

1. Non-polarized light with an intensity of 5W/m2 incides on two polarizing films, with
the transmission axis forming an angle of 30° between them. What is the intensity of
the light transmitted by the second film?

2. A beam of polarized light in the horizontal direction arrives at a polarizing film. Only
25% of the intensity of the incident light is transmitted through the film. What is the
angle between the transmission axis of the film and the horizontal axis?

3. If two polarizing films have their transmission axes crossed, there is no transmitted
light. If a third film is inserted between the two such that its transmission axis forms an
angle θ with the first film, calculate the intensity of the transmitted light as a function
of θ. Demonstrate that the transmitted intensity is maximum when θ = 45°.

4. A 5mW laser beam with vertical polarization impinges on two polarizing films. The
first one is oriented with its transmission axis in the vertical direction. The transmis-
sion axis of the second polarizer forms an angle of 27° with respect to the axis of the
first film. What is the power of the transmitted beam after the second film?

5. Consider a beam of unpolarized light. The beam crosses two polarizing filters as
shown in the figure below. The first one forms an angle α with respect to the hori-
zontal plane, while the second one forms an angle β with respect to the first polarizer.
Determine α and β so that the final intensity is reduced to one eighth of the incident
intensity.
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6. Demonstrate that the superposition of two E-fields with opposite circular polariza-
tions (i.e., E+ ± E−) yields linearly polarized E-fields.

7. Polarized photons are described by the twoE-field components,E = eıϕ
(
E1

E2

)
eıωt,

where ω = 2πν is the oscillation frequency and ϕ the phase. Knowing that a quarter-
wave plate (QWP) is oriented at 45◦ with respect to the incident polarization, this
introduces a phase delay of∆ϕ = π/2 and the output E-field becomes

E = eıϕ
1√
2

(
E1 + E2

eı∆ϕ(E1 − E2)

)
eıωt

Demonstrate that after traversing the QWP:

a) An incident horizontally (vertically) polarized photon becomes a right- (left-)
circularly polarized photon.

b) If horizontal and vertical photons represent the quantum states |0〉 and |1〉, re-
spectively, find the matrix that represents the QWP. Which matrix is it?

8. Consider the following unbalanced Mach-Zehnder interferometer.

The beam splitter is represented by the matrixBS = 1√
2

(
1 i
i 1

)
, while the differ-

ent lengths of the arms introduce a phase shift given by Sϕ =

(
1 0
0 eiϕ

)
. Evaluate

the probabilities for the detectorsD1 and D2.

9. Consider the following unbalanced Mach-Zehnder interferometer.

The beam splitter is represented by the matrix BS = 1√
2

(
1 i
i 1

)
, while the dif-

ferent length of the arms introduce a phase shift, eiϕ, given by the retarder located at
arm ”|0〉”.

a) Write the matrix that represents the retarder.
b) Evaluate the probabilities for the detectorsD1 and D2.
c) Determine the values of ϕ for creating the qubits |0〉 and |+〉.
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6.4.2. Optical Setups

10. Consider a beam of photons in the polarized rotational states |+〉 and |−〉. Using two
SPD and optical elements (for example: QWP, HWP, PBS, BBO, etc.,) design a setup
for measuring these photons. What will we obtain if some photons are erroneously in
the horizontally linearly polarized state |H〉?

11. Draw the optical setup needed for implementing a two-qubit controlled-Hadamard
gate.

12. Given the qubit |a〉 = α|0〉+ β|1〉 design the following quantum circuit using QWP,
HWP and PBS. The final measurement is made in the {|0〉, |1〉} basis.

13. Consider the following quantum circuit:

•

X

|q1

|b00

a) Using optical elements, build the setup for the previous quantum circuit.

b) Determine the probabilities for each detector and the coincidences that are pos-
sible if |q1〉 = |+〉.
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Ground-to-Satellite Quantum Teleportation

The teleportation of arbitrary unknown quantum states is a key goal for develop-
ing a global-scale quantum internet. In an early experiment3performed in 2012
between two ground-stations separated by 143-km in the Canary Islands, it was
demonstrated that current quantum optical technology is capable of achieving
teleportation. In a more recent experiment performed in 2017 by a group of re-
searchers from the University of Science and Technology of China and by the
Chinese Academy of Science, it was demonstrated that it is also possible to tele-
port the information of single qubits between a ground-station and a low-Earth-
orbit (LEO) satellite.

The ground-station was located in Ngari (Tibet), while the LEO satellite named
Micius (as part of the Quantum Experiments at Space Scale) was launched
by China to carry out different quantum experiments. Micius is in a sun-
synchronous LEO at an altitude of 500 km, which established a distance of
between 500–1400 km to the ground-station during the experiment. A variety
of difficult technical challenges had to be faced, such as the use of: a com-
pact ultrabright source of entangled photons; a narrow beam divergence laser;
high-bandwidth; and high-accuracy data acquisition; and pointing and tracking
systems. All of these had to be overcome before successfully achieving uplink
communication with the satellite.

In the teleportation experiment, six different initial photon states were
used: |H〉, |V 〉, |+〉 = 1√

2
(|H〉+ |V 〉) , |−〉 = 1√

2
(|H〉 − |V 〉) , |R〉 =

1√
2
(|H〉+ i|V 〉) and |L〉 = 1√

2
(|H〉 − i|V 〉). The experiment was success-

ful, even though the attenuation of the communications channel was estimated
to have been between 41-52 dB, mainly due to atmospheric turbulence close to
the ground. An average fidelity of F = 0.80± 0.01 was achieved, thus demon-
strating that quantum teleportation via satellite communication is feasible.

Exercises
a) The experiment used an ultraviolet 390 nm wavelength Ti:sapphire laser

and sent a pulse width of 160 fs at a repetition rate of 80 MHz through two
bismuth borate (BiBO) crystals to generate entangled photons. A photon
count rate of 5.7×105 s−1 was estimated to have left the transmitter. Give
an estimate of the count rate reaching the satellite.

b) Draw a basic optical setup for creating the six different initial polarized
states used in the experiment. Compare your setup with the one applied in
the experiment, which can be found in Figure 1 from Ren et al. (2017).

1Ren, J., Xu, P., Yong, H. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).
https://doi.org/10.1038/nature23675
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6.4.3. Ion Trap Quantum Computing

14. Explain how to obtain the Bell state β00 of two qubits in an ion trap system if the
initial state is |00〉|0〉.

15. An ion trap with two qubits is initially in the state |00〉|0〉. We have a laser tuned to
the blue sideband and use it to apply a π pulse on the first qubit and, later, a π/2 pulse
on the second qubit. What is the final state of the system?

16. An ion trap with two qubits is initially in the state 1√
2
(|00〉|0〉+ |00〉|1〉). With a laser

tuned to the carrier sideband, we apply a π/2 pulse on the first qubit and, later, we
change the tuning to the blue sideband and apply a π pulse on the second qubit. What
is the final state of the system?

17. An ion trap with two qubits is initially in the state 1√
2
(|00〉|1〉+ |01〉|0〉). We have a

laser tuned to the carrier sideband and use it to apply a π pulse on the first qubit and,
later, we change the tuning to the red sideband and apply a π/2 pulse on the second
qubit. What is the final state of the system?

18. In an ion-trap quantum computer, we have m qubits and a common vibrational state
n, represented by:

|Ψ〉 = |q1q2 . . . qm〉|n〉.

a) Explain the sideband cooling process needed to obtain the fiducial state |00 . . . 0〉|0〉.

b) Imagine that we have the 2-qubit case |00〉|0〉. Define a sequence of pulses and
frequencies to obtain the qubit state

|Ψ〉 = 1

2
(|00〉+ |01〉+ |10〉+ |11〉) |0〉.

19. Consider a system of two qubits based on two trapped ions and a common vibrational
state. The system is initially in the zero state |Ψ〉 = |0 0〉|0〉. Define the series of
pulses and frequencies that are needed to implement the following quantum circuit on
the state |Ψ〉.

H Z

X

20. * The Cirac-Zoller controlled-not gate4 is the implementation of the controlled-not
gate using trapped ions and, together with the Pauli matrices, it is a key ingredient
for building any universal set of gates. The Cirac-Zoller controlled-not gate is imple-
mented in three steps:

4Cirac, J. I.; Zoller, P. (1995-05-15). Quantum Computations with Cold Trapped Ions. Physical Review
Letters. 74: 4091–4094.
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a) A controlled phase-flip gate Cj(Z) is built with the help of an auxiliary qubit
state |2〉. Consider the following: the frequency between the ground state |0〉
and the first excited state |1〉 is the carrier frequency ωc; the frequency between
states |1〉 and |2〉 are the auxiliary frequency ωaux; and the frequency between
phonon states isωz . Demonstrate that a 2π-pulse tuned toωaux−ωz is equivalent
to a controlled Z-gate between the qubit and the phonon states.

b) A swap gate, SWAPj , is built with a laser tuned to the red frequency and ap-
plying a π-pulse and then a 2π-pulse with a laser tuned to the blue frequency.
Demonstrate that, after preparing the phonon state in |0〉, the effect of theSWAPj

gate is |0〉|1〉 7→ −|1〉|0〉 and |1〉|0〉 7→ |0〉|1〉. Also show that the inverse swap
gate, SWAP j , acts as |0〉|1〉 7→ |1〉|0〉 and |1〉|0〉 7→ −|0〉|1〉.

c) Finally, demonstrate that the Cirac-Zoller CNOT gate acts as a CNOT gate be-
tween control qubit j and target k, defined by

CNOTjk = Hk · SWAP k · Cj(Z) · SWAP k ·Hk,

when it is implemented through the following quantum circuit:

|q1 • •

|n
SW AP

Z
SW AP

≡

|q2 H H Å
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Quantum
Communication

7.1. Quantum Protocol Definitions

– A quantum key distribution (QKD) session1 consists of the following steps:

a) Authentication of the two parties (Alice and Bob).

b) Selection of a quantum protocol.

c) Construction of the raw key.
d) Construction of the sifted key, which after a process of checking and error cor-

rection will lead to the reconciled key2.
e) Building the final secret key through a process of private amplification.

– The following notation is used:

polarization

basis 0 1

Z-basis linear 0 |H〉 ≡ |0〉 |V〉 ≡ |1〉

X-basis circular 1 |R〉 ≡ 1√
2
(|0〉+ i|1〉) |L〉 ≡ 1√

2
(|0〉 − i|1〉)

Strictly speaking, the eigenstates of the X matrix are {|+〉 ≡ 1√
2
(|0〉 + |1〉), |−〉 ≡

1√
2
(|0〉 − |1〉)}, while those of the Y matrix are { 1√

2
(|0〉 + i|1〉), 1√

2
(|0〉 − i|1〉)}.

These eigenstates can be associated with the diagonal {|D〉 ≡ 1√
2
(|H〉+ |V 〉), |A〉 ≡

1We recommend to the reader the report by Jane E. Nordholt, Richard J. Hughes, A New Face for Cryp-
tography, Los Alamos Science No. 27, 2002; https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/
LA-UR-02-3587

2In what follows, unless explicitly stated otherwise, we will assume no errors in the sifting process. Conse-
quently, the sifted key will stand directly as the reconciled key.
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1√
2
(|H〉 − |V 〉)} and circular {|R〉, |L〉} polarizations, respectively. For the quan-

tum protocols explained here, it is irrelevant which of the two polarizations (diagonal
or circular) is applied. We will generically call them X-basis and adopt the circular
polarization as a reference.

– BB84 protocol3: an asymmetric protocol that uses four states of two orthogonal bases.
The basic steps are as follows:

a) Alice generates a random sequenceA = {a1, . . . , aN} ofN classical bits, which
defines the basis to be used.

b) Alice generates a second random sequence A′ = {a′1, . . . , a′N}, which defines
the polarization of each photon.

c) Alice transmits to Bob through a quantum channel the encoded photons.
d) Bob generates a random sequenceB = {b1, . . . , bN} for choosing the measure-

ment basis.
e) Bob measures the photons sent by Alice and obtains the sequence
B′ = {b′1, . . . , b′N}.

f) Alice and Bob communicate to each other their choice of bases (i.e., their se-
quences A and B) through a classical channel.

g) In absence of errors in the sifting process, the reconciled key is composed of
the bits in sequence A′ (or equivalently B′) which have been measured with
coinciding bases (i.e., of the bits {a′k} (= {b′k}) such that {ak = bk}. All other
bits are discarded.

– B92 protocol4: an asymmetric protocol that uses two non-orthogonal states. The basic
steps are as follows:

a) Alice generates a random sequence A = {a1, . . . , aN} of N classical bits.
b) For each ak, Alice generates a photon with linear polarization |0〉 if ak = 0, and

with circular polarization |+〉 if ak = 1.
c) Alice transmits the encoded photons to Bob through a quantum channel.
d) Bob generates a random sequenceB = {b1, . . . , bN} for choosing the measure-

ment basis.
e) Bob measures the photons sent by Alice and obtains the sequence
B′ = {b′1, . . . , b′N}.

f) Bob communicates to Alice via a classical channel those bits whose measure-
ment outcome was 1. Note that if b′k = 1, then the basis used by Bob in the
measurement process is different from the basis which Alice used to generate
the photon.

g) Alice’s reconciled key is composed of those bits of A, {ak}, for which Bob
announced b′k = 1. On the other hand, Bob’s reconciled key is built from the
subset of bits of the bitwise complement of B, {b̄k} ≡ 1 − {bk}, for which
b′k = 1.

3Bennet, C.H, Brassard, G. Quantum Cryptography: Public key distribution and coin tossing. Proceedings
of IEEE Int. Conf. on Computers, Systems and Signal Processing, pp.175-179 (1984).

4Bennet, C.H. Quantum cryptography using any two non orthogonal states, Phys. Rev. Lett. 68, pp. 3121-
3124 (1992).
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– E91 or EPR protocol5: a symmetric protocol where the two parties share an entangled
state. The basic steps are:

a) Alice and Bob share N copies of a two-photon entangled Bell state. For exam-
ple: |β00〉.

b) Alice and Bob produce two random sequences, A = {a1, . . . , aN} and B =
{b1, . . . , bN}, respectively, which determine the basis in which each party mea-
sures each photon.

c) Alice and Bob collect their measurements in the sequences A′ and B′, respec-
tively.

d) Alice and Bob communicate to each other through a classical channel their
choices of polarization basis (i.e., the sequences A and B).

e) The reconciled key is composed of those bits fromA′ andB′ that fulfill ak = bk.

7.2. Solved Problems

1. The following table contains an example of the B92 protocol. The second and third
rows correspond to Alice’s actions, the remaining ones to Bob’s. Entries that result
from random choices are colored in red.

Bit number: 1 2 3 4 5 6 7 8
Alice’s sequence ak: 0 0 1 0 1 0 0 1

Photon’s polarization: |0〉 |0〉 |+〉 |0〉 |+〉 |0〉 |0〉 |+〉
Bob’s sequence bk: 1 0 1 0 0 1 1 0

Bob’s basis: X Z X Z Z X X Z

Possible values for b′k: 0/1 0 0 0 0/1 0/1 0/1 0/1

Bob’s measurement b′k: 0 0 0 0 1 1 0 1

Perform the following:

a) Write down the conversation through a classical channel betweenAlice and Bob.
b) Determine the sifted, the reconciled and the raw keys.
c) Let us assume that Alice and Bob have initially agreed to apply the following

private amplification sequence: bi+j = bj ⊕ bj+1, where j = 1, 2, . . . and i is
the number of bits of the reconciled key. Determine a 1-byte secret key.

Solution

a) The conversation between Alice and Bob will be something like this:
Alice: Hi Bob.
Bob: Hi Alice.
Bob: I obtained 1 in the following bits: 5th, 6th and 8th.
Alice: OK Bob. Thanks. Bye.
Bob: Bye.

5Ekert, A. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, pp. 661-663 (1991)
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b) Alice builds her sifted key with the 5th, 6th and 8th bits from the A sequence.
That isKsif = {a5, a6, a8} = {1, 0, 1}. Bob, on the other hand, forms his sifted
key from the negated bits of his B sequence. That is Ksif = {b̄5, b̄6, b̄8} =
{0̄, 1̄, 0̄} = {1, 0, 1}. In absence of transmission and measurement errors, the
reconciled key is equal to the sifted key. Obviously, both parties obtain the same
3-bit reconciled key, i.e., Krec = (101). The raw key in the B92 protocol case
corresponds to the complete Alice A sequence, that is,Kraw = (00101001).

c) By applying the private amplification sequence, we obtain the remaining bits up
to a 1-byte sequence:

b4 = b1 ⊕ b2 = 1⊕ 0 = 1
b5 = b2 ⊕ b3 = 0⊕ 1 = 1
b6 = b3 ⊕ b4 = 1⊕ 1 = 0
b7 = b4 ⊕ b5 = 1⊕ 1 = 0
b8 = b5 ⊕ b6 = 1⊕ 0 = 1

Finally, the resulting secret key isKsec = (10111001).

7.3. Short Questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. For a certain length of the raw key, the reconciled key derived from the BB84 protocol
is, on average, larger than the reconciled key obtained from the B92 protocol.

2. In the BB84 protocol, if Alice and Bob use different bases for, respectively, encoding
and measuring the photons, then their results are always different.

3. In the B92 protocol, it is possible to use any two non-orthogonal states for encoding
the key. In other words, provided that Bob is aware of the pair of photons that Alice
is going to use, she can use the pair {|H〉, |R〉} or any other pair of non-orthogonal
polarized photons, like {|V 〉, |L〉} or {|H〉, |D〉} or {|D〉, |R〉}.

4. In a QKD session, Alice and Bob use the E91 protocol and share the Bell state |β00〉.
Alice is the first to measure a certain photon, and she obtains 1 in the Z-basis. Bob
also uses the Z-basis and, consequently, also obtains 1. If Bob had been the first to
measure, both parties would have achieved the same result, that is, 1.

7.4. Exercises

7.4.1. RSA Cryptography

1. Use the Diffie-Hellman algorithm with p = 3 and q = 19 to encrypt the message
m = 42.

2. Given n, find prime numbers p and q such that n = p× q:
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a) n = 15 6

b) n = 4088459 7

c) n = 15226050279225333605356183781326374297180681149613806886579
08494580122963258952897654000350692006139 8

d) n = 12462036678171878406583504460810659043482037465167880575481
8788883289666801188210855036039570272508747509864768438458621054
8655379702539305718912176843182863628469484053016144164304680668
75699415246993185704183030512549594371372159029236099 9

e) n = 25195908475657893494027183240048398571429282126204032027777
1378360436620207075955562640185258807844069182906412495150821892
9855914917618450280848912007284499268739280728777673597141834727
0261896375014971824691165077613379859095700097330459748808428401
7974291006424586918171951187461215151726546322822168699875491824
2243363725908514186546204357679842338718477444792073993423658482
3824281198163815010674810451660377306056201619676256133844143603
8339044149526344321901146575444541784240209246165157233507787077
4981712577246796292638635637328991215483143816789988504044536402
352738195137863656439121201039712282212072035710

7.4.2. BB84 Protocol

3. Consider the quantum key distribution protocol BB84. Alice creates the following
8-bit string:

|+〉|1〉|+〉|−〉|0〉|−〉|+〉|−〉.

Use a coin to randomly determine what basis Bob uses to measure each bit position
and describe the resulting bit string that Alice and Bob keep.

4. An experimental quantum key distribution session is performed between the EE-
TAC at Castelldefels and the ETSETB at Campus Nord. The BB84 protocol is used.
EETAC generates two 1-byte pseudo-random sequences, A = (a1, a2, . . . , a8) and
A′ = (a′1, a

′
2, . . . , a

′
8), for the basis and the rotation state of the photons, respectively.

a) If A = (01101001) and A′ = (11001010), determine the quantum state |Ψ〉 =
|q1〉 ⊗ . . .⊗ |q8〉 that EETAC sends to ETSETB.

b) ETSETB generates a new sequence B = (10101100) in order to choose its
measurement basis. Write down a possible result that ETSETB can obtain.

6The first number to be factorized by the Shor algorithm. This was demonstrated in 2001 using an NMR
(Nuclear Magnetic Resonance) quantum computer with 7 qubits.

7It is claimed that the largest candidate number factorized to date was achieved in 2018 using the IBM
5-qubit quantum computer.

8This is RSA-100, the first number on the RSA Factoring Challenge list, which was factorized in 1991. It
can be factorized in 72 minutes on a 3.5 GHz Intel Core2 using the sieve algorithm.

9This is RSA-240, the last RSA number to be factorized to date. This occurred in November 2019, and the
estimated CPU time for finding the factors is around 900 core-years on a 2.1 Ghz Intel Xeon Gold 6130 CPU.

10This is RSA-2048, the largest RSA number: 617 decimal digits (2,048 bits). If you are the first person to
find the two factors, contact RSA Laboratories and you will be awarded $200,000.
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c) EETAC and ETSETB make a phone call. Write down explicitly what informa-
tion should be transmitted between them.

d) Determine the reconcilied key.

e) Using privacy amplification, obtain a 1-byte secret key.

f) Prior to EETAC sending the 1-byte qubit to ETSETB, a spy has used a sophis-
ticated method to access sequence A. Is this information enough to obtain the
secret key? Give reasons for the answer.

5. A Quantum Key Distribution session based on the BB84 protocol is established be-
tween Alice and Bob.

a) Considering that the laser produces an unpolarized beam, make a drawing of the
optical elements needed for the setups used by Alice and by Bob.

Knowing that Alice sent the sequence of polarized photons RRLHVHLR and that Bob
used the bases XZXZZXXZ to measure them, determine the following (while justifying
all your answers):

b) The raw (initial) key.

c) The explicit conversation through a classical channel between Alice and Bob.

d) The reconciled key.

e) A 1-byte secret key.

6. Consider a BB84 quantum key distribution protocol between Alice and Bob. The
meanings of the indices are the usual ones: 0 for Z, 1 for X , 0 for H , 1 for V , 0 for
R and 1 for L.

a) Fill in the gaps of the following table:

Bit number 1 2 3 4 5 6 7 8
Alice’s base sequence 0 . . . 1 . . . . . . 0 . . . 1
Alice’s polarization sequence . . . . . . 0 0 . . . . . . . . . 0
Photon polarization V V . . . H L . . . V . . .

Bob’s base sequence . . . 0 1 1 1 0 . . . . . .

Bob’s result 1 . . . . . . 0 . . . 0 0 1

b) Explicitly write the conversation that should take place between Alice and Bob:
–Alice: Hi Bob.
–Bob: Hi Alice.
–Alice: . . .
. . .

c) Find the raw, reconciled and secret keys.

d) Consider the existence of a certain BER (Bit error rate) during the transmission
of the photons. Once Alice and Bob have obtained the secret key, is there any
way to check that the two keys coincide? If yes, explain the process that Alice
and Bob should follow.
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Photon Number Splitting Attack and the SARG04 Protocol

From a theoretical point of view, the BB84 protocol has been proven to be secure.
However, its technical implementation leaves some doors open to attacks. ne
example would be when using the more common attenuated laser pulses rather
than single-photon sources. In a case like this, an intruder, Eve, can keep one
of the photons of the pulse in a quantum memory, then send to Bob the rest of
the pulse and measure that photon later, when the basis is revealed. This attack
is called photon number splitting (PNS) attack and will provide to Eve the same
information that Bob has.

A robust generalization of the BB84 protocol called SARG0411 has been intro-
duced to avoid this vulnerability. In the SARG04 protocol, Alice does not reveal
the basis of each photon to Bob as she does in the BB84. Instead, Alice informs
Bob of one of the following four groups: S++ = {|0〉|+〉}, S+− = {|0〉|−〉},
S−+ = {|1〉|+〉} or S−− = {|1〉|−〉}. Alice selects one group which contains
the photon she sent to Bob. For example, Alice generates the photon |0〉 of the
Z-basis and tells Bob S++ (she could also use S+−). If Bob uses the X-basis
and obtains a |−〉, he can deduce that Alice’s photon has been created in the
Z-basis and, consequently, is a |0〉. Bob will tell Alice to keep the bit that cor-
responds to this basis. This way, Eve has neither a deterministic way to deduce
which basis Alice used nor any idea of which bit she should keep. In general,
Bob accepts or discards (D) a bit, according to the following table:

heightAlice group \ Bob qubit |0〉 |1〉 |+〉 |−〉
S++ D 1 D 0
S+− D 1 0 D
S−+ 1 D D 0
S−− 1 D 0 D

Exercise: Alice generates the following 1-byte sequence:
{|+〉, |+〉, |−〉, |1〉, |1〉, |0〉, |+〉, |1〉}. She sends this sequence through a quan-
tum channel, then uses a classical channel to communicate to Bob the sequence
of groups: {S−+, S++, S−−, S−+, S−−, S+−, S++, S−+}. Bob uses a random
sequence to measure this and obtains {|0〉, |+〉, |1〉, |+〉, |+〉, |−〉, |0〉, |+〉}.
a) What is the reconciled key that Alice and Bob deduce?
b) Assuming that Eve has photons that are identical to Bob’s, what informa-

tion can she retrieve?
c) Calculate, on average and in noiseless conditions, the percentage of bits

accepted and discarded with the SAGR04 protocol.
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7.4.3. B92 protocol

7. Consider the quantum key distribution protocol B92. Alice creates the following 8-bit
string:

|0〉|0〉|+〉|0〉|+〉|+〉|0〉|+〉

Use a coin to randomly determine what basis Bob uses to measure each bit position
and describe the bit string that Alice and Bob keep as a result.

8. A quantum key distribution session is performed between A (a ground station) and
B (a LEO satellite). The protocol B92 is used. A generates an 8-bit sequence A =
(a1, . . . , a8), such that if ak = 0 then |Ψ〉 = |0〉, and if ak = 1 then |Ψ〉 = |+〉.
B also generates a 1-byte sequence A′ = (a′1, . . . , a

′
8), and chooses the Z-basis or

X-basis depending on whether a′k = 0 or 1.

a) Knowing that A = (00101110) and A′ = (01100101), describe the steps re-
quired to construct the sifted key between the ground station and the satellite.

b) Assuming that the reconciled key is the same as the sifted key, describe how we
can obtain a 1-byte secret key by a private amplification process.

9. In 2016 China launched the Quantum Experiments at Space Scale (QUESS) satellite.
Among other experiments, QUESS is going to establish a Quantum Key Distribution
session based on the B92 protocol between Beijing (Alice) and Vienna (Bob).

a) Fill in the gaps of the following table:

b1 b2 b3 b4 b5 b6 b7 b8

Beijing base . . . 1 1 0 . . . . . . 1 1
Vienna base 1 . . . . . . 1 0 0 1 . . .

Possible results 0/1 0/1 0 . . . . . . 0 . . . . . .

One result 1 1 . . . 0 1 . . . . . . 1

b) Determine the polarization of the photons that are used in this experiment.
c) Write down explicitly the conversation between Beijing and Vienna.
d) Determine the reconciled and the secret key.

7.4.4. E91 Protocol

10. Consider the EPR protocol (also called E91) with a sharedBell state: |ψ〉 = 1√
28
(|00〉+

|11〉)⊗8. Alice creates the following sequence ak:

00010001

If ak = 0 (ak = 1) themeasurement is made in theZ (X) basis. Describe the resulting
byte.

11Scarani, V., Acín, A., Ribordy, G. and Gisin, N. Quantum Cryptography Protocols Robust against Photon
Number Splitting Attacks for Weak Laser Pulse Implementations, Phys. Rev. Lett. 92, 057901 (2004)
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11. An experimental E91 quantum key distribution session is performed between EETAC
and ICFO, sharing the following 1-byte entangled-qubit:

|Ψ〉 = |β00〉1 ⊗ |β00〉2 ⊗ · · · |β00〉8 =
1√
28

(|0 0〉+ |1 1〉)⊗8.

a) Demonstrate that

|β00〉 =
|0 0〉+ |1 1〉√

2
=
|+ +〉+ | − −〉√

2
.

b) EETACgenerates a 1-byte random sequenceA = (a1, a2, . . . , a8) = (01101010)
and ICFO generates A′ = (a′1, a

′
2, . . . , a

′
8) = (00101011). They use the Z (X)

basis when a 0 (1) is obtained. EETAC measures the entangled photons accord-
ing to the sequence A. Write down a possible result that ICFO can obtain.

c) EETAC and ICFO make a phone call. Write down explicitly what information
should be transmitted between them.

d) Determine the reconciled key.

e) Using private amplification, obtain a 1-byte secret key.

12. A quantum satellite C establishes a QKD session between A (the EETAC School in
Castelldefels) andB (theMIT School of Engineering inMassachusetts). The protocol
used is the E91 based on the Bell |β00〉 state. The standard notations are used: ai =
0/1 for Z/X-basis.

a) Draw the basic optical setup needed in A, B and C.

b) C uses a Titanium-sapphire laser of 404 nm wavelength and 700mW power.
The parametric down-conversion efficiency is ν = 10−12. For a pulse of 3µs,
determine how many photons reach A or B.

c) The EETAC School performs a 1-byte series of measurements following the se-
quence A = (01110101) and obtaining the results A′ = (11101110). Some
seconds later, the MIT School performs an analog series of measurements fol-
lowing the sequence B = (10111001). Write down one possible result that can
be obtained by MIT.
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d) Write down explicitly the conversation between EETAC and MIT:
EETAC: Hello MIT.
MIT: Hello EETAC.
EETAC: …
MIT: …

e) Determine the raw key, the reconciled key, and the secret key.
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Appendix A.
Brief Summary of

Linear Algebra

Definitions

– An operatorA is said to beHermitian ifA† = A, whereA† is the conjugate transpose
(or Hermitian conjugate) of A.

– Given a generic hermitian matrixM of size n× n, its eigenvalues are given by the n
solutions of the equation det(M − λI) = 0, and the n eigenvectors are the solutions
ofM |λi〉 = λi|λi〉.

– The tensor product of two vectors |ψa〉 =
(

a1
a2

)
and |ψb〉 =

(
b1
b2

)
is the 4-

vector given by |ψa〉 ⊗ |ψb〉 =


a1b1
a1b2
a2b1
a2b2

 .

– Similarly, the tensor product of the two matrices A =

(
a11 a12
a21 a22

)
and B =(

b11 b12
b21 b22

)
is the 4× 4 matrix given by

A⊗B =

 a11

(
b11 b12
b21 b22

)
a12

(
b11 b12
b21 b22

)
a21

(
b11 b12
b21 b22

)
a22

(
b11 b12
b21 b22

)
 =


a11b11 … … a12b12
… … … …
… … … …

a21b21 … … a22b22

 .
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Short Questions

Indicate if the following sentences are TRUE or FALSE, and JUSTIFY your answers:

1. The state of three qubits is fully described by a vector with 4 complex entries.

2. The tensor product of a 4× 4 matrix multiplied by a 2× 2 matrix is a 8× 8 matrix.

3. If A is Hermitian and B is the inverse matrix of A, then B is also Hermitian.

4. The tensor product of two matrices (for instance, Pauli X and Z matrices) is not
commutative, that is: X ⊗ Z 6= Z ⊗X .

Exercises

Probability

1. Consider the first 25 digits in the decimal expansion of e (2, 7, 1, 8, 2, 8, ...).

a) What are the probabilities of obtaining each of the 10 digits if you select one
number at random from this set?

b) What is the most probable digit, the median digit and the average value?
c) Find the standard deviation for this distribution.

2. Within a one-dimensional box of length L is a classical particle that can move freely
between 0 and L. It has a probability distribution function P (x) = 1/L. Using this
expression, demonstrate that 〈x〉 = L/2 and 〈x2〉 = L2/3.

3. Consider a probability distribution that follows the Gaussian distribution g(x) =

Ce−κ(x−c)2 , where C, c and κ are constants.

a) Determine C.
b) Find 〈x〉, 〈x2〉, and σ.
c) Draw the graph of g(x).

Matrices and Vectors

4. Given the two matrices

A =

−3 −1 2i
5 −2 1
i 2i 4

 , B =

−2i i 0
30 3 1
−i 2i 0

 ,

compute a) A+B; b) AB; c) the commutator [A,B] = AB −BA; d) the transpose
Ã; e) the complex conjugate A∗; f) the adjoint A† = Ã∗; g) the trace Tr(B); h) the
determinant det(B); and i) the inverse B−1. Check that BB−1 = I.
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A. Brief Summary of Linear Algebra 

5. Using the square matrices in Problem 4 and the column matrices

a =

2
i
i

 , b =

 1
(1 + i)
−1

 ,

find a) Aa; b) a†b; c) ãBb; and d) ab†.

6. Two vectors are given by

|a〉 =

−10
4i

 , |b〉 =

 2
−2i
5

 .

Find: a) 〈a|; 〈b|; b) 〈a|b〉; 〈b|a〉; c) |c〉 = |a〉+ 2|b〉; 〈c|a〉; and d) compute the norms
of |a〉, |b〉 and |c〉.

7. Three states are defined by

|ψ0〉 = |0〉, |ψ1〉 = −
1

2
|0〉 −

√
3

2
|1〉, |ψ2〉 = −

1

2
|0〉+

√
3

2
|1〉.

Find
|〈ψ0|ψ1〉|2, |〈ψ1|ψ2〉|2, |〈ψ2|ψ0〉|2.

8. Consider the orthonormal basis {|0〉, |1〉} and the following matrix A:

A = |0〉〈0|+ |1〉〈1|.

Find the matrix representation of A in the following cases:

a) |0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
b) |0〉 = 1√

2

(
1
1

)
, |1〉 = 1√

2

(
1
−1

)
c) |0〉 =

(
cos θ
sin θ

)
, |1〉 =

(
sin θ
− cos θ

)
9. Calculate the tensor product of

|a〉 = 2√
3

(
−1
1
2

)
and |b〉 = 1√

3

(
1√
2

)
.

10. If |ψ〉 = |a〉 ⊗ |b〉 and A|a〉 = a|a〉, B|b〉 = b|b〉. Compute A⊗B|ψ〉.

11. Find the tensor product of the Pauli matricesX and Z.

12. Find (X ⊗ Z)|ψ〉, where

|ψ〉 = |0〉|0〉 − |1〉|1〉√
2
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Appendix B.
Solutions to Selected

Short Questions

1. Fundamentals of Quantum Physics

1 False.

3 True.

4 True: for a certain t, Ψ does not verify limx→±∞ Ψ→ 0.

5 False: Ψ does not verify limx→±∞ Ψ→ 0.

6 True: from de Broglie equation, we obtain v = h/(m · λ) ≈ 7.3 · 106m/s.

7 True.

2. Quantum Computing: Gates and Circuits

1 True: we can write |q2〉 also as |q2〉 = i√
2
(|0〉 + i|1〉), and given than global

phases are unobservable, that is the same state as |q1〉.

2 False: θ = ϕ = π
2 correspond to |q〉 = 1√

2
(|0〉+ i|1〉).

3 False: θ = π/2 and ϕ = π correspond to |q〉 = 1√
2
(|0〉 − |1〉).
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4 False: |q〉 can be also written as |q〉 = 1√
2
(|00〉 + |11〉). The probability to

measure 0 in the first qubit as a first measure is then 1/2.

6 False.

7 False.

3. Quantum Computing: Applications

1 False: the circuit (H ⊗ I) · CNOT · (H ⊗ I) can copy the qubits |+〉 and |−〉.

2 True: a given quantum circuit can only make copies of two orthogonal states.

3 True.

4 False.

5 False: all four outcomes are equally probable; so the probability of each mea-
surement is always 1/4.

6 True.

4. Quantum Measurements

2 False:

MR = |R >< R| = 1

2

(
1 −i
i +1

)
.

3 True: indeed ρ = 0.5|0〉〈0|+ 0.5|+〉〈+| = 1
4

(
3 1
1 1

)
.

4 True: in the case of a mixture of equally probable states, the purity is P = 1/d.

5 True: in both cases, we have F1 = |〈0|+〉|2 = F2 = |〈0|−〉|2 = 1
2 .
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B. Solution to Selected Short Questions

5. Quantum Algorithms

1 True.

2 False: the probability does not linearly increase as 9
N . The optimum number of

Grover iterations is, instead, proportional to
√
N . In our case, it would be

√
106 = 1000.

3 False: consider, for instance, the QFT of the Bell |β00〉 state. The resulting state
is a non-entangled state.

4 False: the number of required swap gates is the integer of k/2, where k is the
number of qubits. For a 3-qubit QFT circuit, only 1 swap gate is needed.

6. Quantum Processors

3 False.

4 False: every object, in principle, may be entangled with every other.

5 True.

6 True: indeed, multiplying matricesHWP (α)×HWP (α) = I .

7 True.

8 False: considering the initial state |1〉|n〉, and after tuning a π-pulse to red, the
final state is |0〉|n+ 1〉.

9 True.

7. Quantum Communication

1 True: on average, the reconciled key is 50%of the raw key for the BB84 protocol
and only 25% for the B92 protocol.

2 False: even if the bases are different, the results can agree.

3 True: the only condition is that the two states generated byAlice are non-orthogonal.
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4 False: the result would have been the same for both parties, but it could have
been 0 or 1.

Appendix A

1 False: the state |q1〉 ⊗ |q2〉 ⊗ |q3〉 of three qubits is described by a vector with
8 complex entries αi (i = 1, . . . , 8). Not all of those are independent, however. For
example, the state has to be normalized so that

∑
i |αi|2 = 1.

2 True.

3 True: AB = I⇒ (BA)† = I⇒ B†A = I⇒ B† = A−1 = B.

4 True.
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Appendix C.
Solutions to

Selected Problems

1. Fundamentals of Quantum Physics

1 λ = 34000Å - Infrared region

2 The photoelectric effect.

4 n=5.6× 1016 photons/s.

5 a) Kmax = 8.2 eV b) V0 = 8.2V c) νt = 1000THz d) n = 2 ×
1018 photons/(s ·m2).

6 a) h = 6.621× 10−34 kg ·m2/s b) ϕNa = 6.34 eV and λt = 195 nm.

7 λ = 3820Å.

9 c) In the case of electrons, we observe the characteristic interference pattern of
waves, but produced by single particles (see Figure 7.1).

10 p = 1.65× 10−24 kg m/s, E = 3.1 keV, andKγ = 330Ke− .

13 a)∆x ≥ 39.8 Å b) ∆x ≥ 0.0398mm c) ∆x ≥ 0.0398m

14 Outside the box V (x) = +∞, such that ψ(x) = 0.
Inside the box ∂2xψ(x) = −(2mE/ℏ2)ψ(x) = −k2ψ(x), such that ψ(x) = A sin(kx) +
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Fig. 7.1
Solution to the
problem of the double
slit experiment with
electrons.

B cos(kx).
Imposing continuity at the edges of the box, one findsB = 0 and k = πn/L, with integer
n, such that the energy is E = ℏ2k2/(2m) = ℏ2π2n2/(2mL2).
Normalization

∫∞
−∞ |ψ(x)|

2dx = 1 gives A =
√
2/L.

The complete solution inside the box is therefore ψn(x) =
√
2/L sin(πnx/L).

15 a) n = 6.64× 1020, b)∆x = 10µm,∆px = 2× 10−14 kg ·m/s, c) ∆x∆px

ℏ =
1.9× 1015.

16 〈x〉 = 0, 〈x2〉 = 1
2 (

1
6 −

1
π2 )L

2.

17 a) C =
√
κ b) 〈x〉 = 0, 〈x2〉 = 1

2κ2 c) σ = 1√
2κ
, P (x /∈ [−σ,+σ]) =

e−
√
2.

20 a) Emin = 0.54 eV, λmin = 2279 nm b) λ2 = 121 nm, λ3 = 103 nm,
λ4 = 97 nm.

22 Remembering that the energies allowed inside a square well of width L are
En = ℏ2π2n2/(2mL2) with integer n ≥ 1, we have a) E = 5E1, b) E = 55E1, and c)
E = 19E1.
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2. Quantum Computing: Gates and Circuits

1 a) P (|0〉) = 2
3 , P (|1〉) = 1

3 , b) P (|0〉) = 1
4 , P (|1〉) = 3

4 , c) P (|0〉) = 1
3 ,

P (|1〉) = 2
3

2 a) θ = π+2kπ, k ∈ N. b) θ = 0+2kπ, k ∈ N c) eiθ is a global phase therefore
any value of θ make the two qubits indistinguishable.

3 a) Unot =

(
0 1
1 0

)
, b) Unot =

(
1 0
0 −1

)

4 λ1 = 1, |λ1〉 =
(
1
0

)
, λ2 = eiπ/4, |λ1〉 =

(
0
1

)

5 S = 1
2 [(1 + i)I+ (1− i)Z]

6 a) |q′〉 = −β|0〉 − α|1〉 b) |q′〉 = α|+〉 − β|−〉

9 The identity does nothing while the X , Y and Z produce rotations of π rad
around the x, y and z axis, respectively.

12 Taking into account thatA is nilpotent,A2 = I, thenA2 = A4 = A6 = . . . = I
and A = A3 = A5 = . . . = A, and applying a Tailor expansion, we have:

exp(iAx) =
∞∑

n=0

(iAx)n

n!
=

=1 +
iAx

1!
− A2x2

2!
− iA3x3

3!
+ . . . =

=1− x2

2!
+
x4

6!
− x6

6!
. . .+ i(x− x3

3!
+
x5

5!
+ . . .)A =

= cosxI+ i(sinx)A.

14 H = Rx(−π/2)Rz(−π/2)Rx(−π/2).

17 The probability is P (+1) = nz+1
2 and the post-measurament state is |Ψ′〉 =

1
2

√
2

1+nz
[(nz + 1)|0〉+ (nx + iny)|1〉].

18 For the Hadamard gate we have α = π, γ = π/2 and n̂ = 1√
2
(1, 0, 1), while

for the phase gate S we get α = π/2, γ = π/4 and n̂ = (0, 0, 1).
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19 a) |αN 〉 = 1√
39
(3|00〉 − 2|01〉+ |10〉 − 5|11〉), b) |αN 〉 = 1√

3
|q0〉+

√
2
3 |q1〉,

c) P (|q0〉) = 1
3 , P (|q1〉) =

2
3 , d) P (|00〉) =

9
13

20 a) b = 13
20 = 0.806, b)P2,0 = 9

10 = 0.9, c) P (|00〉) = 25
34 = 0.735, e)

|Ψ′〉 = 1
2

√
50
17 |00〉+

3
10

√
50
17e

iπ|01〉

21 |+〉|0〉, |−〉|0〉,|+〉|1〉, |−〉|1〉

25 a) CNOTrev =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 b) Atotal = SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



26 a)M = 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 −1 0 1



29 M =


0 0 0 1
0 0 i 0
1 0 0 0
0 −i 0 0



32 M =


−i 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 −1
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3. Quantum Computing: Applications

4 |β00〉 = 1√
2
(|00〉 + |11〉), |β01〉 = 1√

2
(|01〉 + |10〉), |β10〉 = 1√

2
(|00〉 − |11〉),

|β11〉 = 1√
2
(|01〉 − |10〉)

6 a) 0, 0; b) 0, 1; c) 1, 0; d) 1, 1

8 If U = I, then m = m′ = 0. If U = Z, then m = 1,m′ = 0. If U = X , then
m = 0,m′ = 1. If U = ZX , thenm = m′ = 1.

9 a) To obtain |β00〉, U = Z; to obtain |β01〉, U = ZX; to obtain |β10〉, U = I; to
obtain |β11〉, U = X . b) and c):

U pre-measurement state (m,m′)
Z |00〉 0, 0
ZX |01〉 0, 1
I |10〉 1, 0
X |11〉 1, 1

10 a) A = H; B = X; C = Z; D = H . b) |ab〉 = −|10〉.

12 a) |Ψin〉 = 1√
2

{
|0〉(a|−〉 + b|+〉) + |1〉(a|−〉 − b|+〉)

}
. b) If m = 0, then

U = XH; ifm = 1, then U = ZXH .

13 If Alice measures 0, Bob appliesH . If Alice measures 1, Bob applies ZH .

16 a) From the table

m m′ Bob initial qubit BA Bob final qubit
0 0 α|1〉+ β|0〉 X α|0〉+ β|1〉
0 1 α|0〉+ β|1〉 I α|0〉+ β|1〉
1 0 α|1〉 − β|0〉 XZ α|0〉+ β|1〉
1 1 α|0〉 − β|1〉 Z α|0〉+ β|1〉

we deduce that the Z matrix is acting when m = 1, and that X is acting when m′ = 0.
Consequently, we derive A = Zm and B = Xm̄′

.
b) In this case, we have

m m′ P(m,m′) Bob initial qubit BA Bob final qubit
0 0 β2

2 |1〉 X |0〉
0 1 α2

2 |1〉 I |1〉
1 0 β2

2 |1〉 XZ |0〉
1 1 α2

2 |1〉 Z |1〉
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The probability that the qubit |q〉 will be correctly teleported is P = 2α2β2.

4. Quantum Measurements

2 The projective measurement operator is

Mβ00 = |β00〉〈β00| =
1

2
[|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|] .

Given that a projectivemeasurement operator is Hermitian, the probability isP = 〈ψ|Mβ00
|ψ〉 =

1
2 .

3 The probability of collapsing into any of the four Bell-states is 25%.

4 E10|q〉 = 1√
3
[|00〉+ |01〉] and the probability is P = 〈q|E10|q〉 = 2

3 .

5 a) The probability of measuring 0 in the first qubit is P (0) = cos2( θ2 ), while the
probability of obtaining 1 is P (1) = sin2( θ2 ). Given that the probabilities depend on θ
and if we perform the experiment several times, it is possible to deduce the phase θ.
b) In that case, we have θ = 0 and θ = π, respectively. For the first case, we obtain
Pθ=0(0) = cos2( θ2 ) = 1 andPθ=0(1) = 0; while for the second case we havePθ=π(0) =
0 and Pθ=π(1) = 1. Consequently, it will be possible to distinguish between both states.

7 b) p(1) = 0, p(2) = 1
(1+

√
2)2

; c) p(1) = 1
(1+

√
2)2

, p(2) = 0; d) No.

8 a) P0 ⊗ I|ψ〉 = |01〉, b) I⊗ P1|ψ〉 = |01〉.

9 a)M = 1
2 (|0〉〈0|+ i|0〉〈1| − i|1〉〈0|+ |1〉〈1|); b) p(1) = 1

2 , p(−) =
1
2 ; c) No.

10 a) Ph̄ω = |u1〉〈u1|, P2h̄ω = |u2〉〈u2|, P3h̄ω = |u3〉〈u3|; b) P (|u1〉) = 1
4 ,

P (|u2〉) = 1
2 , P (|u3〉) =

1
4 ; c) < E >= 2h̄ω.

13 a) pure state, b) mixed state.

14 ρ = 1
3 |u1〉〈u1| − i

√
2
3 |u1〉〈u2|+ i

√
2
3 |u2〉〈u1|+

2
3 |u2〉〈u2|

15 a) ρ = 1
3 (|00〉〈00|+ i|00〉〈01| − |00〉〈11| − i|01〉〈00|+ |01〉〈01|+ i|01〉〈11| −

|11〉〈00| − i|11〉〈01|+ |11〉〈11|); b) λ1 = λ2 = λ3 = 0, λ4 = 1; c) Pure state.
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16 a) ρ = 1
2 |0〉〈0|+

1
6 |0〉〈1|+

1
6 |1〉〈0|+

1
2 |1〉〈1| or ρ = 1

6

(
3 1
1 3

)
; b)|λ1〉 = |−〉,

|λ2〉 = |+〉

17 ρ =

(
1
4

√
3
4 e

−iπ/4
√
3
4 e

iπ/4 3
4

)

18 F = 0.894

19 c) FH = 0.890(42), FV = 0.865(46), FP = 0.845(27) and FL = 0.852(37),
yielding an average fidelity of the teleportation process of F̂ = 0.863(38).

5. Quantum Algorithms

2 The pre-measurement state is |ψ〉 = |10〉|−〉, so one of the first two qubits ends
up as a 1.

3 a) Eigenvaluesλ1 = +1 andλ2 = (−1)x with eigenvectors |λ1〉 = 1√
2
(|0〉+|1〉)

and |λ2〉 = 1√
2
(|0〉 − |1〉), respectively. c) If f(0) = f(1), the pre-measurement state is

ψ = |0〉|f(0)〉; while if f(0) 6= f(1), then |ψ〉 = 1
2 (|0〉|f(0)〉+ |1〉|f(0)〉+ |0〉|f(1)〉 −

|1〉|f(1)〉) .

6 a) |ω〉 = |011〉

12 QFT |ψ〉 = 1√
14

[(2 + i)|0〉 − 2|1〉+ (2− i)|2〉]

14 The final state of the first register is |ψ〉 = 1√
2
[|0〉 − |4〉], with the possible

values of y being 0 and 4.

15 a) It works correctly with r = 4; N = 5 · 3. b) It works correctly with r = 6;
N = 13 · 7. c) It fails, because r = 4⇒ ar/2 mod N 6= −1 mod N.

6. Quantum Processors

1 It = 1.88W/m2.

2 θ = 60◦
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3 It =
1
8I0 sin

2(2θ)

4 P = 3.97mW

5 For any value of α, β = 60◦.

8 PD1 = 1
2 (1− cosϕ) and PD2 = 1

2 (1 + cosϕ).

9 a) The matrix of the retarder is
(
eiϕ 0
0 1

)
.

b) PD1
= 1

2 (1− cosϕ) and PD2
= 1

2 (1 + cosϕ). c) ϕ = π for |0〉 and ϕ = π/2 for |+〉

14 First, it is necessary to apply to the first qubit a π/2 pulse from a laser tuned to
the blue sideband. Then, we should apply a π pulse to the second qubit from a laser tuned
to the red sideband.

15 |Ψ〉 = 1√
2
(|10〉|1〉+ |11〉|2〉)

16 |Ψ〉 = 1
2 (|01〉|1〉+ |11〉|1〉+ |01〉|2〉+ |11〉|2〉)

7. Quantum Communication

2 a) p = 3, q = 5. b) p = 2017, q = 2027. c) p = 6122421090493547576937037
317561418841225758554253106999, q = 584641821440615467883655318297916238
419861050560106233. d) p and q unknown.

5 b)Kraw = (00101010). d)Krec = (01011).

8 a)Ksifted = (0110).

9 a)

b1 b2 b3 b4 b5 b6 b7 b8
Beijing base 0 1 1 0 1 0 1 1
Vienna base 1 0 1 1 0 0 1 0

Possible results 0/1 0/1 0 0/1 0/1 0 0 0/1
One result 1 1 0 0 1 0 0 1

b) HRRHRHRR. d)Krec = (0111).

11 b) ICFO possible results: (0, 0/1, 0, 1, 1, 0, 0, 0/1). d)Krec = (001100).
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Appendix A

3 a) C =
√

κ
π b) 〈x〉 = c, 〈x2〉 = c2 + 1

2κ , σ = 1√
2κ

4 a) −3− 2i −1 + i 2i
35 1 2
0 4i 4


b)  −28 + 6i −7− 3i −1

−60− 11i −6 + 7i −2
2 + 56i −1 + 14i 2i


c) −28− 5i −7− 3i −5− i

15− 12i 30 + 5i −9− 60i
2 + 43i −1 + 17i −2


d) −3 5 i

−1 −2 2i
2i 1 4


e) −3 −1 −2i

5 −2 1
−i −2i 4


f) −3 5 −i

−1 −2 −2i
−2i 1 4


g)

3− 2i

h)
−3

i)

1

3

 2i 0 −i
i 0 −2i
−63i 3 36i



9 |a〉 ⊗ |b〉 = 2
3


−1
−
√
2

1
2√
2
2
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10 A⊗B|ψ〉 = ab|ψ〉

11 X ⊗ Z =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



12 (X ⊗ Z)|ψ〉 = 1√
2
(|10〉+ |01〉).
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