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Abstract. In this work, a component mode synthesis technique is proposed to improve
the computational efficiency of Finite Element problems including 3D modelling of poroe-
lastic materials. The modal reduction relies on real-valued modes, solution of a standard
eigenvalue problem, based on a classical solid and fluid displacements formulation of the
porous media. Efficiency in terms of degrees of freedom, convergence, sparsity and com-
putation time is presented.

1 INTRODUCTION

Modelling poroelastic materials for interior noise reduction, extensively used in the
transport industry, can lead to rather expensive Finite Element (FE) models. Therefore,
efforts have been made in the last decade to propose efficient solution strategies for the
Biot-Allard theory [1]. Use of a mixed displacement-pressure formulation for the solid
and fluid phases respectively [2] downsized the number of degrees of freedom (dofs) per
node from 6, when using a standard solid and fluid phases displacement formulation, to 4
dofs. Hierarchical elements also proved to reduced the number of dofs needed to model
the porous media [3]. The use of equivalent acoustic impedances [4, 5], while implying low
computational cost, is limited by strong assumptions, or subject to a preliminary iden-
tification step thus hampering computational efficiency. Alternatively, modal reduction
techniques have been proposed and applied to poroelastic FE formulations, in an attempt
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to keep a fine and complex 3D modelling of the problem in the scope of low frequency
applications [6–8].

In this work, a component mode synthesis is applied to the dissipative part of a 3D
poro-acoustic FE problem. The standard solid and fluid displacements formulation is
used to model poroelastic media. A direct computation scheme at each frequency incre-
ment is used to solve the frequency-dependent problem, and frequency response of the
mean quadratic pressure in the acoustic domain is computed as an indicator of the sound
level. Real-valued modes based on the bi-phase poroelastic media are used to define a
transformation applied once at the initial increment, and suitable for the frequency range
of interest. After a presentation of the formulation as well as the modal method used,
the proposed reduction is tested on a rigid cavity treated with a porous layer on one wall.
While showing substantial computation time speed-up, due to both the reduced number
of dofs and the good sparsity of the reduced system, the relatively low convergence rate
suggests further possible improvements.

2 FE FORMULATION FOR THE PORO-ACOUSTIC PROBLEM

A poro-acoustic problem is considered, which description and notations are presented
on Fig. 1. The acoustic fluid and the porous media occupy the domains ΩF and ΩP

respectively. The compressible fluid is described using pressure fluctuation (p) as primary
variable (Subsection 2.1.1), while fluid and solid phases homogenized displacements (us,uf)
are retained as primary variables for the porous media (Subsection 2.1.2). The domains
boundaries are separated into contours of:

• imposed Dirichlet boundary conditions denoted ∂1ΩF and ∂1ΩP,

• prescribed Neumann boundary conditions denoted ∂2ΩF and ∂2ΩP,

• coupling interface between acoustic fluid and porous media (ΓFP).

The FE formulation is presented for a permanent harmonic response at angular fre-
quency ω.

∂2ΩF

∂1ΩP

rigid wall
source

fluid acoustic cavity
[ΩF ; p]

nF = n ΓFP

[ΩP ; (us,uf)]
porous media

nP = −n

Figure 1: Description ans notations of the poro-acoustic interaction problem
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2.1 Dynamic equations and constitutive laws

2.1.1 Compressible fluid (p)

The internal fluid within cavities is assumed compressible and inviscid, satisfying the
Helmholtz equation derived from the motion, continuity, and constitutive equations:

∆p+
ω2

c20
p = 0 in ΩF (1)

where c0 is the constant speed of sound in the fluid, and p the pressure fluctuation scalar
field. The limit case ω = 0 is not given by Equation (1). Though not considered in this
work, the solution is given by the static solution of the coupled fluid-structure problem [9].

2.1.2 Porous media Biot theory (us,uf)

Notation Description

ρs Solid frame density
(λ; µ) Lamé parameters for the solid frame
ρf Ambient fluid density
η Ambient fluid viscosity
P0 Ambient fluid standard pressure
γ Heat capacity ratio for the ambient fluid
Pr Prandtl number for the ambient fluid
φ Porosity
α∞ Tortuosity
σ Static flow resistivity
Λ Viscous characteristic length
Λ′ Thermal characteristic length

Table 1: List of material parameters

At angular frequency ω, the poroelastic media satisfies the following elastodynamic
linearized equations, derived in the Biot-Allard theory [1], taking into account inertia and
viscous coupling effects between solid and fluid phases:

divσs − iω˜b(ω)(us − uf) + ω2 [(ρs + ρa)us − ρauf] = 0 in ΩP (2a)

divσf − iω˜b(ω)(uf − us) + ω2 [−ρaus + (φρf + ρa)uf] = 0 in ΩP (2b)

where us and uf are respectively the solid phase and fluid phase averaged displacements

in the sense of Biot theory. ˜b(ω) (henceforth denoted ˜b, where ˜ refers to a complex-valued
quantity) and ρa are respectively the complex frequency-dependent viscous drag and the
inertia coupling parameter, based on the standard notations of material parameters in-
troduced in Table 1 [1], and given by:

˜b = σφ2

[

1 +
4iωα2

∞ηρf
σ2Λ2φ2

]

1
2

(3)

3
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ρa = φρf (α∞ − 1) (4)

σs and σf are the averaged stress tensors for the solid and fluid phases respectively. They
satisfy the Lagrangian stress-strain relations developed by Biot:

σs =

(

λ+
(1− φ)2

φ
˜Kf(ω)

)

tr [ε(us)] I+ 2µ ε(us) + (1− φ) ˜Kf(ω) tr [ε(uf)] I (5a)

σf = (1− φ) ˜Kf(ω) tr [ε(us)] I+ φ ˜Kf(ω) tr [ε(uf)] I (5b)

where ε(us) and ε(uf) are the strain tensors associated to the averaged displacements
vector fields us and uf, defined by:

ε(v) =
1

2

(

gradv + gradTv
)

(6)

Beside the standard material parameters presented in Table 1, the effective bulk modulus

of the fluid phase ˜Kf(ω) (henceforth denoted ˜Kf) is also introduced. For reasons to be
presented in Subsection 3.2, its expression [1] is separated into its zero-frequency limit
and complex frequency-dependent behaviour:

˜Kf =
γP0

γ − (γ − 1)

[

1 + 8η
iωPrΛ′2ρf

(

1 + iωPrΛ′2ρf
16η

)
1
2

]−1 = P0 +
(

˜Kf − P0

)

(7)

which, when introduced in Equations (5), leads to the following expressions of the stress-
strain relations using Voigt notation:

σs = D(1)
s ε(us) + ˜D(2)

s (ω) ε(us) +D
(1)
sf ε(uf) + ˜D

(2)
sf (ω) ε(uf) (8a)

σf = D
(1)
sf ε(us) + ˜D

(2)
sf (ω) ε(us) +D

(1)
f ε(uf) + ˜D

(2)
f (ω) ε(uf) (8b)

with:

D
(1)
s =

(

λ+
(1− φ)2

φ
P0

)

D+ µ diag
(

2 2 2 1 1 1
)

D
(1)
sf = (1− φ)P0D

D
(1)
f = φP0D

˜D
(2)
s (ω) =

(

˜Kf − P0

)

D(2)
s =

(1− φ)2

φ

(

˜Kf − P0

)

D

˜D
(2)
sf (ω) =

(

˜Kf − P0

)

D
(2)
sf = (1− φ)

(

˜Kf − P0

)

D

˜D
(2)
f (ω) =

(

˜Kf − P0

)

D
(2)
f = φ

(

˜Kf − P0

)

D

whereD =

















1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















In this contribution, the Lamé parameters for the solid frame are considered real and
frequency-independent, so that no structural damping is taken into account in the porous
media behaviour. However, the method presented is also valid and straightforward to
establish when structural damping is taken into account.
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2.2 Fluid-structure interaction problem

In this subsection, boundary and coupling conditions are recalled for the poro-acoustic
coupled problem presented in Fig. 1, in order to establish the discretized FE problem.

2.2.1 Poro-acoustic coupling and boundary conditions

At external boundary of the acoustic fluid domain, rigid cavity conditions are classically
imposed by setting a free pressure field (∂1ΩF = {∅}). A harmonic excitation is prescribed
via an acoustic source:

grad p · n = ω2ρF uFb on ∂2ΩF (9)

where uFb is set to zero out of the acoustic source included in ∂2ΩF.
Coupling at interface ΓFP is given by normal stress and normal displacement continuity

conditions between acoustic fluid and both fluid and solid phases of porous media:

σs n+ (1− φ) p n = 0 on ΓFP (10a)

σf n+ φ p n = 0 on ΓFP (10b)

uF · n− (1− φ)us · n− φuf · n = 0 on ΓFP (11)

where φ is the porosity of the porous material, i.e. the volume fraction of fluid.
No external force is applied to the outer boundary of the porous media beside at

interface ΓFP. Therefore, ∂2ΩP = {∅} in the considered problem. Finally, at external
boundary ∂1ΩP, two types of boundary conditions can be prescribed, the porous material
being considered either as sliding or bounded to a rigid wall (Table 2).

Bounded layer Sliding layer
us = 0 us · nP = 0

uf · nP = 0 uf · nP = 0

Table 2: Boundary conditions for porous layer on ∂1ΩP

2.2.2 Finite element discretized problem

The test-function method is used to derive the variational formulation of the coupled
problem. For this purpose, the spaces of sufficiently smooth functions Cp, Cus and Cuf

are introduced, associated to the field variables p, us and uf respectively. Let δp, δus,
δuf be the frequency-independent test functions, associated to p, us, uf respectively, and
belonging to their respective admissible spaces Cp, C

∗
us

= {δus ∈ Cus |δus = 0 on ∂1ΩP},
and C∗

uf
= {δuf ∈ Cuf

|δuf = 0 on ∂1ΩP}.
Equations (1), (9), and (11) lead to:

∫

ΩF

gradp .gradδp dV − ω2

c20

∫

ΩF

p δp dV − ω2ρF(1− φ)

∫

ΓFP

us.n δp dΣ

−ω2ρFφ

∫

ΓFP

uf.n δp dΣ = ω2ρF

∫

∂2ΩF

uFb δp dΣ

(12)

5
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Equations (2a), (8a),and (10a) lead to:
∫

ΩP

tr
[

D(1)
s ε(us) ε(δus)

]

dV +

∫

ΩP

tr
[

D
(1)
sf ε(uf) ε(δus)

]

dV

+
(

˜Kf − P0

)

[
∫

ΩP

tr
[

D(2)
s ε(us) ε(δus)

]

dV +

∫

ΩP

tr
[

D
(2)
sf ε(uf) ε(δus)

]

dV

]

+ iω˜b

[
∫

ΩP

us.δus dV −
∫

ΩP

uf.δus dV

]

− ω2

[
∫

ΩP

(ρs + ρa)us.δus dV −
∫

ΩP

ρauf.δus dV

]

− (1− φ)

∫

ΓFP

pn.δus dΣ = 0

(13)

Equations (2b), (8b),and (10b) lead to:
∫

ΩP

tr
[

D
(1)
f ε(uf) ε(δuf)

]

dV +

∫

ΩP

tr
[

D
(1)
sf ε(us) ε(δuf)

]

dV

+
(

˜Kf − P0

)

[
∫

ΩP

tr
[

D
(2)
f ε(uf) ε(δuf)

]

dV +

∫

ΩP

tr
[

D
(2)
sf ε(us) ε(δuf)

]

dV

]

+ iω˜b

[
∫

ΩP

uf.δuf dV −
∫

ΩP

us.δuf dV

]

− ω2

[
∫

ΩP

(φρf + ρa)uf.δuf dV −
∫

ΩP

ρaus.δuf dV

]

− φ

∫

ΓFP

pn.δuf dΣ = 0

(14)

After discretization of the various terms in Eqs. (12)-(14) by the FE method and divid-
ing Eq. (12) by ρF, the following matrix equation for the coupled problem is obtained:













KF 0 0

−(1− φ)AT
Fs K

(1)
ss K

(1)
sf

−φAT
Ff K

(1)T
sf K

(1)
ff






+
(

˜Kf − P0

)







0 0 0

0 K
(2)
ss K

(2)
sf

0 K
(2)T
sf K

(2)
ff







+iω˜b





0 0 0
0 Css Csf

0 CT
sf Cff



− ω2





MF (1− φ)AFs φAFf

0 Mss Msf

0 MT
sf Mff













P
Us

Uf



 =





ω2UFb

0
0





(15)

This non-symmetric formulation can be symmetrized for a resolution in the frequency
domain by dividing the acoustic equation by ω2 (ω �= 0). The interest of rewriting the

porous media formulation into four matrices (K
(1)
ii , K

(2)
ii , Cii, and Mii) is already partly

visible. In fact, it involves constant real-valued matrices which can be assembled once,
while only the complex and frequency-dependent factors ˜Kf and ˜b are recomputed at
each frequency increment. In addition to that, the amount of memory used is the same as
using two complex-valued and frequency-dependent matrices, as the sparsity is unchanged.
More importantly, the main interest underlined in this work is the possibility to use such
a formulation in the context of modal reduction techniques.

6
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3 MODAL REDUCTION OF THE POROUS MEDIA

3.1 Presentation of the proposed solution strategy

The proposed reduction method is applied to the dissipative porous media of a poro-
acoustic coupled problem, which is the costly part of the model. For the sake of concise-
ness, the case of a rigid acoustic cavity with a single porous layer on one wall is considered.
Notations used are presented in Fig. 2.

Porous dofs
Acoustic interface dofs I
Acoustic internal dofs Ī

Figure 2: Problem description for modal reduction of porous media

The acoustic degrees of freedom (dofs) are separated into internal ones (subscript Ī),
and those at interface with the porous media (subscript I). These notations allow easy
extension of the method to problems with multiple interfaces [10]. The coupled porous

media matrices are now considered, involving four matrices K
(1)
P , K

(2)
P , CP, and MP

corresponding to the set of unknowns UP such that, for each matrix indexed by P, i.e.

BP ∈ {K(1)
P ,K

(2)
P ,CP,MP} :

BP =

[

Bss Bsf

Bsf Bff

]

and UP =

[

Us

Uf

]

(16)

Similarly, the coupling between the interface acoustic dofs (subscript I) and the porous
dofs (subscript P) is denoted:

AIP =
[

(1− φ)AIs φAIf

]

(17)

Consequently, for modal reduction purposes, matrix set of equations (15) can be written:






KĪ Ī − ω2MĪ Ī KĪI − ω2MĪI 0
KIĪ − ω2MIĪ KII − ω2MII −ω2AIP

0 −AIP
T K

(1)
P +

(

˜Kf − P0

)

K
(2)
P + iω˜bCP − ω2MP











PĪ

PI

UP



 =





ω2UĪb

0
0



 (18)

and can be symmetrized by dividing the acoustic equations (lines 1 and 2) by ω2 (ω �= 0).

3.2 Modal reduction

From the proposed expression of the porous media FE problem, real-valued normal
modes can be computed associated to the conservative poroelastic eigenvalue problem:

(

K
(1)
P − ω2MP

)

φ = 0 (19)

7
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PĪ

PI

UP



 =





ω2UĪb
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It is supposed that the Dirichlet boundary conditions imposed to the porous media

result in a nonsingular K
(1)
P matrix, therefore removing zero-frequency modes. A modal

reduction basis ΦPm is built, selecting m low frequency modes. They are normalized with
respect to the porous mass matrix MP so that:

ΦPm
T MPΦPm = Im (20a)

ΦPm
T K

(1)
P ΦPm = Ωm (20b)

where Im is a unit matrix of dimension m, and Ωm a diagonal matrix of same size, with
the m lowest eigenvalues of (19) on its diagonal.

There are two key points that make a reduction method computationally efficient,
which are its ability to:

• converge rapidly to the expected solution when adding modes in the basis, thus
allowing a subsequent reduction in the number of dofs, as well as a reasonable time
allocated to the computation of the modes,

• preserve or improve the sparsity of the matrices after projection, and ideally produce
diagonal submatrices.

The former aspect will be examined on an example in Section 4. Regarding the second

aspect, the sparsity of matrices K
(2)
P and CP after projection on the modal basis is fun-

damental to take advantage of the diagonal form of projected K
(1)
P and MP. The choices

made for the discretization of porous media, among which the separation of the “static”
and “dynamic” parts of the effective bulk modulus, seem to fulfill this requirement. In

fact, as will be shown in Section 4, it results in sparse reduced K
(2)
P and CP, and even

orthogonality of some modes with respect to these matrices. Therefore, after testing the

m retained modes for their orthogonal properties with respect to K
(2)
P and CP, they are

separated into o “orthogonal” (ΦPo) and n “non-orthogonal” (ΦPn) ones, so that:

[

ΦPn ΦPo

]T
MP

[

ΦPn ΦPo

]

=

[

In 0
0 Io

]

(21a)

[

ΦPn ΦPo

]T
K

(1)
P

[

ΦPn ΦPo

]

=

[

Ωn 0
0 Ωo

]

(21b)

[

ΦPn ΦPo

]T
K

(2)
P

[

ΦPn ΦPo

]

=

[

κn 0
0 κo

]

(21c)

[

ΦPn ΦPo

]T
CP

[

ΦPn ΦPo

]

=

[

ζn 0
0 ζo

]

(21d)

where In, Ωn and Io, Ωo, κo, ζo are diagonal matrices of respective dimensions n and o,
while κn and ζn are non-diagonal sparse square matrices of dimension n.

There are several options for the choice of attachment functions, but in this work,
the single degree of freedom (dof) per node associated to the acoustic domain is put
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to advantage. Attachment functions are computed as the K
(1)
P – static responses of the

porous media to unit pressure successively imposed at each interface acoustic dof:

[

−AIP
T K

(1)
P

]

[

II
ΨPI

]

=
[

0
]

⇒ ΨPI = K
(1)−1

P AIP
T (22)

Again, assumption is made that K
(1)
P is not singular. If otherwise, a shift in frequency us-

ing the mass matrix MP can be set instead, to define pseudo-static attachment functions,
but is not considered in this work.

The corresponding change of basis, leaving acoustic dofs uncondensed, is then:





PĪ

PI

UP



 =





IĪ 0 0 0
0 II 0 0
0 ΨPI ΦPn ΦPo













PĪ

PI

αn

αo









(23)

where αn and αo are the modal coordinates vectors associated to the selected “non-
orthogonal” and “orthogonal” modes respectively.

Applying change of basis (23) to symmetrized Eq. (18) leads to the following reduced
set of equations:



















1
ω2KĪ Ī −MĪ Ī

1
ω2KĪI −MĪI 0 0

1
ω2KIĪ −MIĪ

1
ω2KII −MII −K

(1)
PII

0 0
0 0 Ωn 0
0 0 0 Ωo









+
(

˜Kf − P0

)











0 0 0 0

0 K
(2)
PII

K
(2)
PIn

K
(2)
PIo

0 K
(2)
PnI

κn 0

0 K
(2)
PoI

0 κo











+iω˜b









0 0 0 0
0 CPII CPIn CPIo

0 CPnI
ζn 0

0 CPoI 0 ζo









− ω2









0 0 0 0
0 MPII MPIn MPIo

0 MPnI
In 0

0 MPoI 0 Io

























PĪ

PI

αn

αo









=









UFb

0
0
0









(24)

where for BP ∈ {K(1)
P ,K

(2)
P ,CP,MP}:

BPII
= ΨT

PIBPΨPI

BPIn
= ΨT

PIBPΦPn = BT
PnI

BPIo
= ΨT

PIBPΦPo = BT
PoI

This reduction can be further improved using dynamic condensation of the “orthogonal”
modal coordinates, which is rather straightforward, and not presented in this contribution.

4 APPLICATION AND RESULTS

The proposed reduction of porous media is tested on a dissipative poro-acoustic exam-
ple initially proposed in [6]. It consists of a 3D hexahedric acoustic cavity of dimensions
0.4 × 0.6 × 0.75 m3 (see Fig. 3), with rigid walls, and filled with air. One wall is cov-
ered with a 5 cm-thick porous layer. The low frequency behaviour is tested applying a
harmonic volume velocity source (Eq. (9)) at a corner of the cavity opposite the layer.
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to advantage. Attachment functions are computed as the K
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P – static responses of the
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[

−AIP
T K

(1)
P

]

[

II
ΨPI

]

=
[

0
]

⇒ ΨPI = K
(1)−1

P AIP
T (22)

Again, assumption is made that K
(1)
P is not singular. If otherwise, a shift in frequency us-

ing the mass matrix MP can be set instead, to define pseudo-static attachment functions,
but is not considered in this work.

The corresponding change of basis, leaving acoustic dofs uncondensed, is then:





PĪ

PI

UP



 =





IĪ 0 0 0
0 II 0 0
0 ΨPI ΦPn ΦPo













PĪ

PI

αn

αo









(23)

where αn and αo are the modal coordinates vectors associated to the selected “non-
orthogonal” and “orthogonal” modes respectively.

Applying change of basis (23) to symmetrized Eq. (18) leads to the following reduced
set of equations:



















1
ω2KĪ Ī −MĪ Ī

1
ω2KĪI −MĪI 0 0

1
ω2KIĪ −MIĪ

1
ω2KII −MII −K

(1)
PII

0 0
0 0 Ωn 0
0 0 0 Ωo









+
(

˜Kf − P0

)











0 0 0 0

0 K
(2)
PII

K
(2)
PIn

K
(2)
PIo

0 K
(2)
PnI

κn 0

0 K
(2)
PoI

0 κo











+iω˜b









0 0 0 0
0 CPII CPIn CPIo

0 CPnI
ζn 0

0 CPoI 0 ζo









− ω2









0 0 0 0
0 MPII MPIn MPIo

0 MPnI
In 0

0 MPoI 0 Io

























PĪ

PI

αn

αo









=









UFb

0
0
0









(24)

where for BP ∈ {K(1)
P ,K

(2)
P ,CP,MP}:

BPII
= ΨT

PIBPΨPI

BPIn
= ΨT

PIBPΦPn = BT
PnI

BPIo
= ΨT

PIBPΦPo = BT
PoI

This reduction can be further improved using dynamic condensation of the “orthogonal”
modal coordinates, which is rather straightforward, and not presented in this contribution.

4 APPLICATION AND RESULTS

The proposed reduction of porous media is tested on a dissipative poro-acoustic exam-
ple initially proposed in [6]. It consists of a 3D hexahedric acoustic cavity of dimensions
0.4 × 0.6 × 0.75 m3 (see Fig. 3), with rigid walls, and filled with air. One wall is cov-
ered with a 5 cm-thick porous layer. The low frequency behaviour is tested applying a
harmonic volume velocity source (Eq. (9)) at a corner of the cavity opposite the layer.
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Frame Fluid Porous
c0 = 343 m/s φ = 0.96

λ = 905357 Pa γ = 1.4 σ = 32 kNs/m4

µ = 264062 Pa Pr = 0.71 α∞ = 1.7
ρs = 30 kg/m3 ρf = 1.21 kg/m3 Λ = 90 µm

η = 1.84 · 10−5 Ns/m2 Λ′ = 165 µm

Table 3: Air and porous material parameters

The cavity is discretized by a 8 × 12 × 15 mesh of 8-node hexahedric elements with
pressure as single degree of freedom per node. The porous material, described by the
Biot-Allard theory, and which material parameters are given in Table 3, is discretized
by a 8 × 12 × 5 mesh of 8-node hexahedric elements (Fig. 3), with 6 dofs per node
corresponding to the fluid and solid phase displacements. Sticking Dirichlet boundary
conditions are applied to the porous foam face in contact with the covered wall, and
sliding conditions are prescribed on the side faces (see Table 2). This leads to a FE model
with 1872 acoustic dofs, and 3070 porous dofs.
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Figure 3: Acoustic cavity mesh and dimensions - Mean quadratic pressure reference FRF

The frequency response of the mean quadratic pressure in the acoustic cavity is given
as an output (Fig. 3). The convergence is first checked, increasing the number of modes
included in the basis, for a response in the range [0− 1000] Hz. Although many modes are
needed in order to capture the dynamic behaviour of the porous media in the considered
frequency range, the solution eventually converges toward the original solution (Fig. 4).

However, the interest of the proposed method specifically lies in the fact that real-
valued modes are computed directly from the coupled porous problem, leading to good
sparsity properties, as illustrated in Fig. 5. Thus, the 3070 porous media dofs are down-
sized to 800 modal unknowns, of which 414 correspond toK

(2)
P - and CP-orthogonal modes,

as introduced in Subsection 3.2. The sparsity is mostly affected by the use of attachment
functions which fully couple interface dofs to modal unknowns. From a storage perspec-
tive, using K

(1)
P –static response for attachment function leads to uncoupled interface and

modal unknowns in the reduction of K
(1)
P (See Eq. 24).
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Figure 4: Mean quadratic pressure FRF. Convergence of the reduction: 100, 500, 800 modes
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Figure 5: Sparsity of the system matrix for unreduced and reduced porous media

Regarding the computation time, a reduction including 800 modes in the basis leads to
a factor 2.6 to 3.5 for the CPU time (Fig. 6), with 500 increments computed, depending
whether the offset due to modes computation is taken into account or not.
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Figure 6: CPU time comparison for FRF computation

5 CONCLUSION

In this communication, the variational formulation of a harmonic poro-acoustic problem
was presented. In order to improve the computational efficiency of the FE model, a modal-
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Regarding the computation time, a reduction including 800 modes in the basis leads to
a factor 2.6 to 3.5 for the CPU time (Fig. 6), with 500 increments computed, depending
whether the offset due to modes computation is taken into account or not.

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

700

800

Number of frequency increments

C
P

U
 ti

m
e 

(s
)

Unreduced problem
Reduced problem − including modes computation

Figure 6: CPU time comparison for FRF computation

5 CONCLUSION

In this communication, the variational formulation of a harmonic poro-acoustic problem
was presented. In order to improve the computational efficiency of the FE model, a modal-
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based reduction of the poroelastic material was proposed, and tested on a rigid cavity
treated with a porous layer. On this test application, the porous dofs were downsized
from 3070 to 800 dofs, thus downsizing the coupled problem from 4942 to 2672 dofs, while
preserving good sparsity properties. The computation time is therefore greatly improved.
Regarding accuracy, the reduced model showed excellent match with the original problem
up to 800 Hz, and good approximation up to 1000 Hz. This method can be easily combined
with a similar reduction for the acoustic part evaluated by the authors [10]. Ongoing
works are focusing on improvements for faster convergence to a good approximation of
the original solution, as well as predictive criterion for modal truncation of the basis.
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