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Abstract. In this paper the creation of a nonlinear, transient surrogate model is described
that can be used within an aeroelastic coupling-scheme in the transonic range. The
method is based on the theory of artifical neural networks as well as the autoregressive
moving average method (ARMA). It can be shown that the method is able to approximate
the nonlinear aeroelastic behaviour of the NLR7301 airfoil. Also limit cycle oscillations
can be approximated with acceptable accuracy.

1 INTRODUCTION

Aeroelasticity is an important aspect in modern aircraft design and cannot be neglected
in the optimization process of flight performance. The challenge herein is the complexity
of an aeroelastic simulation, which is normally separated in two coupled subsystems, the
aerodynamic and the structural subsystem. This coupled problem can be solved with
high accuracy by combining a computational fluid dynamics solver (CFD) with a compu-
tational structure mechanics solver (CSM) within a CFD-CSM-coupling scheme. On the
one hand with such a coupling scheme influences due to separation, transition or shocks
can be considered, but on the other hand the computational effort is very high.
In general the solution of the aerodynamic subsystem needs much more computational ef-
fort than the structural subsystem, especially in simplified systems like a 2D airfoil or 3D
wing sections. Furthermore in aeroelasticity only a fracture of the calculated aerodynamic
values are needed, for example the global lift and global pitching moment of the airfoil or
the pressure distribution on the coupling surface. However the whole aerodynamic system
has to be solved completely each timestep.
Therefore the aim within this paper is the creation of a surrogate model for the nonlinear,
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transient aerodynamic subsystem that provides only the neccessary data and allows much
faster aeroelastic analysis with high accuracy. Such a surrogate model would also allow
more complex aeroelastic calculations like manouvers as well as atmospheric disturbances
like gusts within an acceptable time.
Reduced order modelling in aeroelasticity became an important field of research in the
last years. For flutter boundary prediction methods based on Hopf bifurcation were suc-
cessfully applied. According to Henshaw et al. [1] harmonic balance (HB), high order
harmonic balance (HOHB), center manifold, normal form and numerical continuation
methods can be used for bifurcation analysis. Another approach is the eigenvalue realiza-
tion algorithm (ERA) [1, 6], which identifies a linear state-space-formulation of a given
system. Furthermore proper orthogonal decomposition (POD) is widely used for model
reduction [12]. Lucia et al. [6] also uses POD in combination with the second order
Volterra series to approximate nonlinear behaviour.
Finally different types of neural networks have been used to predict the behaviour of
aeroelastic systems. Voitcu for example uses classic multilayer perceptron networks (MLP-
ANN) to predict a closed aeroelastic system with structural nonlinearities [9, 10]. In the
contrary Won proposes a radial basis function network (RBF-ANN) to approximate the
aerodynamic behaviour of the AGARD 445.6 wing [13].
The approach chosen in this paper is based on Won’s RBF networks but is modified to
allow an efficient multiple input multiple output mapping.

2 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) are mathematical models of biological neural net-
works, which are naturally also known as brains. An ANN is a quite variable mapping
method that can be used in many different fields like physics, biologics, economics and
engineering, especially in control engineering. There exist many modifications of artificial
neural networks but most of them are based on the multilayer perceptron network (MLP-
ANN), which is explained shortly in the following. For more details the reader is referred
to Hagan et al. [4].

2.1 Multilayer Perceptron Neural Network

A MLP-ANN consists of one or more layers, which also consist of one or more neurons.
In general the architecture1 is optional but it has strong influence on the networks pre-
diction precision. So the number of layers and neurons that are neccessary for a proper
system identification depends on the complexity and nonlinearity of the observed system.
In figure 1 a feed forward MLP-ANN with two layers is shown.

Like in biological neural networks the neurons are the backbones of the ANN. A neuron

1The architecture is the outer topology meaning the number of layers as well as the inner topology
meaning the number of neurons per layer
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Figure 1: Two layer feed forward MLP-ANN

in a MLP-ANN consists of a bias b, its weighted connections to other neurons wi and a
transfer function f(n) also called activation function. In general the neurons transfer
function is user-defined, but often set to linear f(n) = n or hyperbolic functions f(n) =
tanh(n). The answer an of a single neuron to j given inputs x is calculated with equation
1.

an = fn(bn +

j
∑

k=0

wn,kxk) (1)

An important property of neural networks is that the ability to learn. The learning
process of a MLP-ANN is the optimization of the bias values and weight factors in order
to match the target output. The network learning process is the difficult part in ANN
usage, because the training set as well as the architecture must be well chosen.
An important method for the network training is the backpropagation algorithm, which
allows the systematic training of multilayer networks. The backpropagation can be used
with several optimization methods like steepest descent, Levenberg-Marquardt or New-
tons method. The backpropagation as well as the optimization algorithms are described
in Hagan et al. [4].
Well designed networks should be able to predict the behaviour of nonlinear multiple
input multiple output (MIMO) systems, but finding the best architecture can be quite
difficult.

2.2 Radial Basis Function Artificial Neural Network

Another type of neural network is mentioned by Won [13] called radial basis function
networks (RBF-ANN). This network uses radial basis functions, for example gaussian
functions as shown in equation 4, in order to approximate nonlinear systems. The network
Won proposes is quite a simple summation of the gaussian functions (see eq. 3), which
have the ability as universal function approximators.

fn(x) = e
− (x−cn)2

σ2
n (2)
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o(x) =
k

∑

j=1

e
−

(x−cj)2

σ2
j (3)

This kind of networks has a more simple architecture than the MLP-ANN but the
mapping of different types of inputs to target outputs is inefficient because the RBF-
neurons must cover the whole input range. Furthermore Won proposes a simple training
algorithm using the pseudo inverse of the neuron outputs. This training method led to
unsatisfying results during the investigations for this paper, which will be explained in
section 3.1.
Therefore in this paper a hybrid of both network types is used. Neurons with gaussian
RBF are used in a special layer called prelayer to capture nonlinear effects but the network
itself is a small MLP-ANN. Furthermore the prelayer is divided into neuron clusters in
order to increase the efficiency. Due to this clustering the network is called clustered
artificial neural network (CANN).

3 CLUSTERED ARTIFICIAL NEURAL NETWORKS

The clustered artificial neural network is in fact a MLP-ANN with an extra layer
placed between the input values and the multilayer perceptron network (cf. fig. 2). The
prelayer consists of neuron clusters that are designed for one type of input and which
are not involved in the training process. The neurons of each cluster have the same
gaussian transfer functions as shown in equation 4. The neuron centers cn are distributed
equidistantly over the range of input values given by the training set. The width σ of
the gaussian functions of each cluster is set to σn = 2(cn − cn−1), so it is defined by the
distance between the neuron centers within the current cluster. The number of neurons
N per cluster is optional but should be chosen depending on the range of input values as
well as the training set.
A given input value is therefore transformed into N values which can be described as an
input vector C(x). The entries of C(x) are values between 0 and 1 whereupon the value
depends on the distance between neuron center to the input value: If the input x equals
the center c the neurons output is 1, but the larger the distance between x and c is the
smaller is the neurons output. This means that the position of the maximum value of
the entries depends on the scalar value of x. This vector is then fed into the ANN and
mapped to an output.

C(x) = [f1(x), f2(x), ..., fN(x)] = [e−
(x−c1)2

σ2 , e−
(x−c2)2

σ2 , ..., e−
(x−cN )2

σ2 ] (4)

3.1 Properties and limitations of CANN

The main advantage of the CANN is its simple architecture. The prelayer replaces the
hidden layers of the classic MLP-ANN so that only the output layer remains. Thus it is
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possible to use only one neuron with a linear transfer function for each output to cover
nonlinearities within the cluster range. In fact for more complex problems the prelayer
may also be combined with a real multilayer network but for the current problem one
neuron per output was used. According to that the network training can be performed
quite easily, because the network only consists of one layer with linear neurons which have
to be optimized. In fact this leads to a linear optimization problem which can be solved
with the pseudo-inverse as Won proposed [13]. Unfortunatly the input matrix, which
has to be inverted is conditioned badly which leads to poor results of the pseudo-inverse
training process. For this reason the steepest descent algorithm with conjugate gradient
method was used in this paper which is described by Hagan [4]. The investigations
showed that the simply structured and easily implemented CANN-method is able to
predict nonlinear behaviour with acceptable precision. It is important to say, that a
MLP-ANN with a well-designed architecture might be more precise than a CANN but
the topology of this well-fitted architecture must be defined first.
A further limitation of the method is the ability of extrapolation. The cluster boundaries,
which are set during the training process, define the covered input range. Input values
laying out off these cluster boundaries lead to zero valued prelayer output vectors v(i) = 0.
Thus the input values outside the cluster boundaries are neglected by the prelayer. This
aspect is not a real disadvantage, because a reliable extrapolation of nonlinear systems is
in fact not possible.

3.2 Usage as Transient Predictor

Until now a nonlinear mapping method for MIMO systems was described. In order
to apply the method to transient, timediscretized systems an approach similar to the
autoregressive moving average (ARMA) is used, like it is proposed by Won [13]. The
ARMA method predicts the response of a linear, timediscretized single input single output
system at the time t with the sum of m past inputs x and n past outputs o like it is shown
in equation 5. The coefficients aj and bk have to be determined so that the model error
is minimized.

o(t) =
m

∑

j=0

ajx(t − j) +
n

∑

k=1

bko(t − k) (5)

This approach is a simple neural network with a single linear neuron without a bias.
Hence this method is also applicable to more complex networks like MLP-ANNs as well
as CANNs. In contrast to ARMA in this paper the gradients of the past n inputs are
observed instead of the outputs, because the usage of past outputs has a destabilizing
effect.
Furthermore m is set to 1 so only the input of the current timestep is used and the time
history of motion is only respected by the gradients. The advantage herein is that the
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CANN is able to learn easily the approximation of the static as well as the transient
behaviour of the system, because in the static case the gradients are set to zero and only
the remaining input is mapped to the target output. Another aspect is, that the gradients
contain the information of the time step size implicitly.
With these modifications and the assumption that there exists one layer behind the
prelayer with one neuron per target output the approximation of o(t) can be described
with equation 6.

o(t) = a0Cx(x(t)) +
n

∑

k=0

bkC ẋ(ẋ(t − k)) (6)

The degrees of freedom of the observed two dimensional, rigid aeroelastic model are
the pitch angle α and the plunge excitation h. Regarding that only the velocity of plunge
motion ḣ and not the plunge excitation h itself influences the aerodynamics, h is neglected
as input parameter. Furthermore the gradients are scaled with the freestream flow velocity
u∞ to cover the aerodynamic dependency of the freestream flow conditions. For the same
reason the dimensionless lift and pitching moment coefficient are used as target outputs.

So the input parameters are α, α̇
u∞

, ḣ
u∞

and the target output parameters are the lift
coefficient CL and the pitching momentum coefficient CM . A scheme of the used CANN
is shown in figure 2.

Figure 2: CANN-scheme used for transient aeroelastic systems

4 RESULTS

The method is demonstrated on the NLR7301 airfoil which is shown in figure 3. The
CFD data are calculated with the TAU -code of the German Aerospace Center (DLR)
[2, 3]. Weber [11] as well as Tang [7] showed that viscous effects have to be respected
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for proper limit cycle calculation. Both of them suggest the Spalart-Allmaras turbulence
model which is therefore also used in this paper. To neglect influences due to the transition
location a fully turbulent flow is assumed.
Furthermore the number of neurons per cluster in the prelayer is set to N = 30 and the
number of observed former gradients is set to m = 75, which is chosen due to parameter
studies.

Figure 3: Geometry of the investigated NLR7301 airfoil

4.1 Network Training

In the following pitch and plunge motion of the CANN-CSD-coupling are compared
with the results of the CFD-CSD-coupling at various Mach numbers (see Tab. 2). It
is important to say that a network is identified at a fixed Mach number, so for each of
the investigated Mach numbers at Ma = 0.753, Ma = 0.7 and Ma = 0.65 an according
network was trained. On the other hand the freestream flow parameters pressure p∞,
velocity u∞ and density ρ∞ change with the temperature T∞ at a fixed Mach as well as a
fixed Reynolds number. The free stream parameters are connected with the Sutherland
model, the ideal gas law, the Mach number definition and the Reynolds number definition.
According to that the flow conditions can be manipulated even if the Mach and Reynolds
number is fixed, which is why different free stream temperatures T∞ are investigated with
the same network at each Mach number.

In application the network must correctly react on different frequencies and amplitudes.
This flexibility must be learned during the training which is why it is neccessary to
provide as different training sets as possible to the network. The three networks in this
paper were trained with a standardized bundle of forced motion training sets to show
the practicability of the method. It is important that the training sets include different
amplitudes and frequencies to ensure the required flexibility.
An example for a bundle of forced motion training sets is shown in figure 4. In addition
to the shown transient sets a small set of 33 static calculations with αStatic = −8◦...8◦ is
also involved in the network training to ensure correct approximation of static cases.
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(a) (b)

(c) (d)

(e)

Figure 4: Example of a bundle of training set for one Mach number

4.2 Usage as Surrogate Model

After the network was trained it can be used in a two degree of freedom coupling
scheme with a structure model. In this paper the structure model of Tang [7] is used for
the coupled investigations of which the parameters are given in table 1. The governing
equation of motion is given in 7.
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Table 1: Parameters of the structure model by Tang [7]

m 26.64kg Ic/4 0.086m2kg
sα 0.378mkg Kh 1.21 · 106N/m
Kα 6.68 · 103Nm/rad Dh 82.9kg/s
Dα 0.197m2kg/rad/s

The deformation and load transfer between the structure and the surrogate model is
quite trivial: The output values of the structure model h and α are used as network input
and the network output values CL and CM are given back to the structure model. The
lift L(t) and the pitching moment M(t) can then be recalculated from CL and CM with
the current flow conditions.
Furthermore an iterative staggered coupling with Aitken relaxation and first order pre-
dictor is used as it is described by Unger [8]. For the time integration of the structural
system the Newmark method is used (see Hughes [5]).

[

m sα

sα Ic/4

] (

ḧ
α̈

)

+

[

Dh 0
0 Dα

] (

ḣ
α̇

)

+

[

Kh 0
0 Kα

] (

h
α − α0

)

=

(

L(t)
M(t)

)

(7)

LCO case

First the LCO case at Ma = 0.753 is observed. Weber as well as Tang performed their
LCO investigations without a structural damper and with an initial angle of attack of
α0 = 0.6◦. In order to match their results no damper is used in this case, so Dh = Dα = 0
and the same initial angle of attack is applied. Here the first time steps are critical,
because the surrogate model needs the gradients of former time steps (see equation 6),
which are not available during this phase. Therefore the unknown gradients are set to zero.

In figure 5 the predicted motion of the CANN-CSM-model is compared with the calcu-
lated motion of the CFD-CSM-scheme. The amplitudes of the predicted motion increases
faster than the reference solution between t = 0.2 and t = 0.8 (see figure 5 on the left
hand side) but the final LCO amplitude is predicted quite well as it can be seen in figure
5 on the right hand side. The temporal offset between the predicted and the calculated
motion can be explained with small differences in the frequencies. In figure 6 (a) and
(b) the corresponding CL and CM coefficients are shown. In both diagrams the nonlinear
effects can be recognized due to the nonelliptic shape of the hysteresis loop.

The computational effort of the CFD-CSM-scheme for the presented LCO-case is about
92 hours on two Intel i7 cores with 2.8 GHz. In contrast to that the surrogate model needs
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Figure 5: Comparison of CFD- and CANN-results of the LCO-case

(a) (b)

Figure 6: a) Approximated lift coefficient vs. h ; b) Approximated pitching moment
coefficient

for the same calculation 6 minutes and 13 seconds on a single Intel i7 core with 2.8 GHz.
So the surrogate model needs 0.1% of the time with half of the processor power to predict
the LCO behaviour.
It is important to say, that the creation of the surrogate model takes also about 23 hours
per Mach number, because training sets have to be calculated (ca. 21h) and the network
has to be trained as well (ca. 2h).

Investigation of other Mach numbers

Furthermore two other Mach numbers with different free stream conditions are inves-
tigated, which can found in table 2. In all observed cases the Reynolds number and
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Reynolds length are constant at Re = 1.723 · 106 and LRe = 0.3m. In these investigations
the dampers Dh and Dα are set to the values of table 1 and the initial angle to α0 = 0◦.
Furthermore during the first 100 steps (t100 = 0.02) a forced motion is applied to the cou-
pled model with α(t) = π

180
sin(200t) and h(t) = 0. The training sets for both networks

were calculated at a free stream temperature of T = 273.15K.

Table 2: Aerodynamic parameters of the observed cases

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Ma 0.7 0.7 0.7 0.65 0.65 0.65

T∞[K] 173.15 273.15 373.15 173.15 273.15 373.15
u∞[m/s] 184.635 231.902 271.047 171.447 215.337 251.687

In figures 7, 8 and 9 the predicted and the calculated airfoil motion is compared. In
the beginning of each time series during the transient non-periodic phase the prediction
matches the calculation with quite good accuracy. Even the dependency of the free stream
conditions are covered in an acceptable manner. But it is also noticeable that after the
transient starting phase the difference between the predicted and calculated amplitude
increases with the time. This means that the stability limit of the surrogate model does
not match the stability limit of the CFD-system. This lack of accuracy may be fixed with
a better chosen training set.
Nevertheless it can be summarized, that the presented method is able to represent the
aerodynamic system behaviour and can therefore substitute the CFD code within a CFD-
CSM-coupling scheme for efficient aeroelastic analysis.

5 CONCLUSIONS

A method is presented, which is able to substitute the CFD-code within a CFD-CSM-
coupling scheme with two degrees of freedom. Also nonlinear, transient effects can be
covered by the method, which is demonstrated at the LCO-case as well as several exam-
ples at different transonic Mach numbers. Even the dependency of different free stream
flow conditions at a fixed Mach number can be regarded, but the surrogate model also
shows a lack of accuracy respective to the stability behaviour of the system.
Another important aspect is the computational effort needed for the creation of the surro-
gate model. It can be shown that the system behaviour can be identified with several not
specially chosen trainings sets. For more complex aeroelastic investigations like manou-
vers or influences caused by gusts the choice of training sets should be optimized for a
proper approximation of the stability behaviour.
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(a)

(b)

Figure 7: CANN vs. CFD Cases 1 & 2
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(a)

(b)

Figure 8: CANN vs. CFD Cases 3 & 4
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(a)

(b)

Figure 9: CANN vs. CFD Cases 5 & 6

16




