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Abstract

With more multimedia content being available than ever, the need of recommender systems
is becoming crucial. Recent studies show that including context (such as daytime, last clicked
items, weather, etc.) helps in order to give better recommendations. Factorization machines
(FM) models [17] are an effective solution for context-aware recommendation tasks. However,
FM models are based on the second-order interactions between features, which cause one of its
major drawbacks: they cannot capture complex high-order signal interactions. Some work has
already been proposed ([8], [9] and [24]) in order to address this problem. Yet, these methods
use deep neural networks (DNN) to learn high-order interactions between features, which makes
them either too expressive ([8] and [9]) or too computational expensive ([24]).

In this work, we propose to capture high-order interactions from the embedding level. We
want the feature embedding to encode not only the information from the feature itself but also
to aggregate the correlated knowledge from other features. Our approach to do so is by using
Graph Convolutional Networks (GCN) instead of the common embedding layer that conforms
recommendation models (such as FM). In that way, we will be able to keep the structure of FM
models while having the high-order signals automatically contained in the interaction between
feature embeddings.

Our solution is implemented in Pytorch [11] and it will result in a module, which could be
included in any recommender system thus leading to an end-to-end model. We build the work
following the next steps:

1. Build Graph Convolutional Network (GCN) model based on the work of [13], and adapt it
so that it can output embeddings that contain information not just from the node itself
but also form the correlated nodes as well.

2. Extend the work of [3] to context, by considering matrix completion for recommender
systems from the point of view of link prediction on graphs.

3. Incorporate the GCN module for recommender systems (unifying the first and the second
point) to Factorization Machines (FM) [17] in order to build the desired end-to-end model.
Then, FM could be substituted by any other RS model such as [9], [8] or [5], which is also
tested in our work.

Experiments indicate that context helps models to give better recommendations. Besides, it
is shown that the incorporation of GCN allows to outperform the original FM and variations in
most of the cases.

As future work, we propose some ideas in order to focus on the optimization for specific raking
tasks as well as trying different variations of GCN to see whether it can outperform the baseline
models in all the cases.
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Resum

Amb l’àmplia i creixent quantitat de contingut multimèdia d’avui en dia, la necessitat d’utilitzar
sistemes de recomanació s’ha tornat quelcom essencial. Alguns estudis recents mostren que la
inclusió de context (hora del dia, últims clics, clima, etc.) millora la qualitat de les recomanacions.

Les Màquines de Factorització (FM) [17] són una solució efectiva per a les tasques de reco-
manació tenint en compte el context. Tanmateix, les FM es basen en les interaccions de segon
ordre entre les incrustacions (embeddings) de caracteŕıstiques, fet que origina un dels seus princi-
pals problemes: no poder capturar senyals complexes d’alt ordre entre interaccions. Actualment
existeixen treballs ([8], [9] i [24]) que adrecen aquest problema. Però, aquests mètodes utilitzen
xarxes neuronals profundes (DNN) per capturar les interaccions d’alt ordre entre caracteŕıstiques,
fet que els fa ser o bé massa complexes ([8] i [9]), o bé massa costosos computacionalment ([24]).

Proposem capturar les interaccions d’alt ordre des del nivell d’incrustacions. Proposem que
les incrustacions de caracteŕıstiques no codifiquin només la informació de la pròpia caracteŕıstica
sinó que també agreguin coneixement d’altres caracteŕıstiques corralades. Per fer-ho, proposem
les Xarxes Convolucionals de Grafs (GCN) en lloc d’utilitzar la capa d’incrustacions que hi trobem
als models de recomanació (com les FM). D’aquesta manera, podem mantenir l’estructura sim-
ple dels sistemes de recomanació mentre, a la vegada, tenim els senyals d’alt ordre continguts
automàticament en la interacció entre incrustacions de caracteŕıstiques.

La nostra solució s’implementa en Pytorch [11] i esdevè un mòdul que podrà ser inclòs en
qualsevol sistema de recomanació, conformant aix́ı un model end-to-end. Per dur a terme el
treball seguim els següents passos:

• Elaborar un model de Xarxa Convolucional de Grafs (GCN) basat en el treball de [13], i
adaptar-lo de tal forma que pugui retornar incrustacions que continguin informació tant del
mateix node com també d’aquells nodes correlats.

• Ampliar el treball de [3] amb la incorporació del context, mitjançant l’extensió de l’algoritme
de completació matricial (matrix completion) per sistemes de recomanació des del punt de
vista de la predicció d’enllaços en els grafs.

• Incorporar el mòdul GCN per a sistemes de recomanació (unificant els dos primers punts)
a les Màquines de Factorització (FM) [17] per tal d’elaborar el model end-to-end desitjat.
En aquest punt, les FM podrien ser substitüıdes per qualsevol altre model de sistemes de
recomanació com [9], [8] o [5], que també incorporem en el nostre treball.

Els experiments demostren que el fet d’incorporar les dades del context ajuda als models a
millorar les recomanacions. A més a més, es demostra que la incorporació de GCN als sistemes
de recomanació millora el rendiment dels models de referència (baseline) en la majoria dels casos,
tot i que no en tots encara.

Com a proposta de treball futur, plantegem algunes idees per potenciar l’optimització de les
tasques enfocades al rànquing d’́ıtems. També proposem provar diferents variants de GCN per
veure si es poden millorar els resultats de tots els models de recomanació consistentment.
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Resumen

Con la amplia y creciente cantidad de contenido multimedia que hay hoy en d́ıa, la necesidad
de utilizar sistemas de recomendación se ha vuelto algo esencial. Algunos estudios recientes
muestran que la inclusión de contexto (hora del d́ıa, últimos clics, clima, etc.) mejora la calidad
de las recomendaciones.

Las Máquinas de Factorización (FM) [17] son una solución efectiva para las tareas de re-
comendación teniendo en cuenta el contexto. Sin embargo, las FM se basan en las interacciones
de segundo orden entre las incrustaciones (embeddings) de caracteŕısticas, lo que origina uno de
sus principales problemas: no poder capturar señales complejas de alto orden entre interacciones.
Actualmente existen trabajos ([8], [9] y [24]) que tratan de resolverlo. Sin embargo, su propuesta
es usar redes neuronales profundas (DNN) para capturar las interacciones de alto orden entre
caracteŕısticas, hecho que les hace ser o demasiado complejos ([8] y [9]) o demasiado costosos
computacionalmente ([24]).

Proponemos capturar las señales de interacciones de alto orden desde el nivel de incrustaciones,
codificando en estas no solo la información de la propia caracteŕıstica sino también la de otras
correlacionadas. Para ello, proponemos las Redes convolucionales de Grafos (GCN) para capturar
las señales de interacciones de alto orden en lugar de utilizar la capa de incrustaciones que
encontramos en los modelos de recomendación (FM). De este modo, conseguiremos mantener la
estructura simple de los sistemas de recomendación mientras que a la vez tendremos las señales
de alto orden contenidas automáticamente en las incrustaciones de caracteŕısticas.

Nuestra solución se implementa en Pytorch [11] y llega a ser un módulo que podrá ser incluido
en cualquier sistema de recomendación, conformando aśı un modelo end-to-end de entrenamiento.
Para llevar a cabo el trabajo seguimos los siguientes pasos:

• Elaborar un modelo de Red convolucional de Grafos (GCN) basado en el trabajo de [13]
y adaptarlo de tal forma que pueda devolver incrustaciones que contengan información no
sólo del mismo nodo sino también de aquellos nodos correlacionados.

• Ampliar el trabajo de [3] con la incorporación del contexto, mediante la extensión del
algoritmo de completación matricial (matrix completion) para sistemas de recomendación
desde el punto de vista de la predicción de enlaces en los grafos.

• Incorporar el módulo GCN (unificación de los dos pasos anteriores) a las Máquinas de
Factorización (FM) [17] para elaborar un modelo end-to-end. En este punto, las FM
podŕıan ser sustituidas por cualquier otro modelo de sistemas de recomendación como [9],
[8] o [5], que también incorporamos en nuestro trabajo.

Los experimentos demuestran que el hecho de incorporar el contexto a los datos ayuda a los
modelos a mejorar las recomendaciones. Además, se demuestra que la incorporación de GCN a
los sistemas de recomendación supera en rendimiento a los modelos de referencia (baseline) en
la mayoŕıa de los casos, aunque no en todos ellos aún.

Como propuesta de trabajo futuro, planteamos algunas ideas para potenciar la optimización
de las tareas enfocadas al ranking de ı́tems, aśı como probar diferentes variantes de GCN con el
fin de mejorar los resultados de forma consistente.
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Paula Gómez Duran
paula.maria.gomez@alu-
etsetb.upc.edu
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Chapter 1

Introduction

1.1 Motivation

With more multimedia content being available than ever, the need of recommender systems is
becoming bigger every day. Nowadays, even more, it is becoming harder and harder to truly find
out which are our interests unless a filter is applied when displaying the content. For that reason,
recommender systems [19] have been recently incorporated into commercial applications thus
seeking to predict the rating that a user would give to an item, as well as the preferences.

Recommendation systems help users find and select items (e.g., books, movies, restaurants)
from the huge number available on the web or in other electronic information sources [4]. So
given a large set of items and a description of the user’s needs, recommender systems present to
the user a small set of ranked items that are well suited user’s preferences. However, in recent
years recommender systems have evolved further to account for the user context when trying to
predict those relationships [1]. It is shown that taking context into account (such as daytime,
weather, etc.) adds an additional dimension to the user-item data model which can be used in
different ways during the whole recommendation process [23] in order to improve it.

In recent years, Graph Convolutional Networks[13], a type of neural network which can natu-
rally integrate node information and topological structure, started to become very popular. This
was due to its capability of working directly on graphs and leverage their structural information.
These networks, provide great potential to advance social recommendation ([25] [3] [20] [6]) since
data in social recommender systems can be represented as user-item social graph that allows to
learn latent factors (embedding) of those users and items, which is the key. Simultaneously,
Factorization Machines (FM) [17] models have also became very popular due to their capability
of being context-aware. But, as they are based on second-order interactions between features
embedding, they are not able to capture high-order interactions between features, which is a
drawback that we will try to address by capturing them from the embedding level.

In this work, we aim to extend the previous concept of user-item bi-parted graph to a multi-
parted graph version user-item-context as in Figure 1.1, where not only user-item connections
are made but also connections between user and item with context. In addition, we aim to
demonstrate that by applying Graph Convolutional Networks (GCNs) to the data it is possible
to encode in every feature embedding, not just the information of the node itself but also the
correlated knowledge from other features. In that way we would be capturing the high-order
interaction signals from the embedding level thus making possible to keep the simple structure
of FM models (or other predictions methods).

This thesis is structured as follows. A brief introduction of deep learning, related concepts
and an overview of GCN, FM and Matrix completion is given in chapter 2. The data processing
method and the implemented model are described in chapter 3. The corresponding results
are shown in chapter 4 and in chapter 5 we give an estimation of the costs associated to the
development of the project. Finally, discussion and future research directions are provided in
Chapter 6.
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(a) Bi-parted graph of user and item connections. (b) Multi-parted graph between user, item and con-
text connections.

Figure 1.1: Comparison between bi-parted graph and the multi-parted graph extension. The
number of user nodes is just an example as well as the number of items and context nodes
respectively.

1.2 Hardware and Software Resources

This project was developed using the NVIDIA TITAN V GPU of Telefonica I+D.

The algorithm was implemented in Pytorch1, using CUDA and cuDNN for fast GPU primitives.
This framework was chosen because it is a Python-based deep learning library which is open
source. Moreover, it builds applications on top of dynamic graphs, which allows the user to make
changes to the network architecture during run-time thus also making the debugging process way
easier as the source of error is easily traceable.

The training and inference experiments were performed in Telefonica research servers. To use
them, ssh command2 was employed, which is a network protocol that gives users a secure way
to access a computer over an unsecured network. In order to let the experiments run for different
hours tmux was employed, which is a terminal multiplexer that allows the user to detach to shell
sessions (for example, while a model is training) and reattach to them without interrupting the
running process.

In order to perform the graphics of the losses and the metrics while training or evaluating, we
used Tensorboard: a visualization library originally developed by TensorFlow3. It is really useful
in order to understand training/evaluation runs, tensors, and graphs.

Code is publicly available at GitHub4.

1https://www.pytorch.org/
2Also known as Secure Shell or Secure Socket Shell
3Framework similar to Pytorch user to develop deep learning applications.
4https://github.com/paulagd/pytorch-GEM
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1.3 Work Plan

This project has followed the attached work plan.
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Chapter 2

State of the art

2.1 Introduction to Deep Learning

Research in Artificial Intelligence (AI) is motivated by the objective of creating intelligent
machines that could help when solving human tasks. Its goal is to be able to do anything that
human beings can do, such as understanding the semantics in a news article, recognizing an
image, speaking, or even driving a car. Thus, intelligent systems can help us in our daily life and
improve it.

Recommendation systems (RS) are quickly becoming the primary way for users to be exposed
to the whole digital world through the lens of their experiences, behaviors, preferences, and
interests. Having RS could have positive effects on the user experience, thus translating it to
higher customer satisfaction and retention. Therefore, taking a film browser as an example, RS
could avoid the user flicking through thousands of box sets and movie titles by just presenting
a much narrower selection of items that are interesting for the user. In that way, a lot of time
would be saved for the user accordingly delivering better user experience.

However, even it is known that machines are faster and more precise than human beings
when solving mathematical problems or optimizing tasks, such as finding the best route with
GPS navigation, when it comes to the kind of tasks which hold subjective interpretation such
as judging how good a person is or choosing which film suits today’s mood, it becomes more
complicated for machines since it involves human intuition. Deep Learning presents a method
to solve some of these more intuitive problems by allowing machines to learn from experience
and not just from patterns. It does it by simulating human behavior with a structure of neurons
similar to biological neural networks, which are called artificial neural networks.

Landing these ideas from a mathematical point of view, the goal of a neural network is to
approximate some function y = f(x; θ) by learning the value of the parameters θ that result
in the best function approximation. A neural network can be composed of different layers, and
the more layers it has, the more complex the function (model) becomes. Thus, the capacity of
the model will increase as well while increasing the complexity of the function[7]. However, the
algorithm is not the only important part of deep learning: data plays a crucial role.

An enormous amount of data is necessary for Deep Learning models to learn. In fact, as
the amount of training data increases, the easier it becomes for the model to achieve a good
performance on unseen data (this is called generalization). Besides, the data needs to be provided
with labels, which will be the ones guiding the model in the learning process. So, the first time
that the model learns it will initialize randomly the weights thus producing a random output.
In that stage, the outputs will be compared with the corresponding labels through an error or
loss function and the gradients of the error will be back-propagated through the network. Then,
the Stochastic Gradient Descent algorithm is used tune the required parameters and update the
learned weights in order to optimize the loss function. Finally, the whole process is repeated by
the model until convergence, where the network will be ready to accomplish the task it has been
asked to solve.
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There are different neural network architectures depending on the type of data and the task to
be solved. We will review some of the literature involved in recommender systems and in graph
neural networks in the next sections.

2.2 Recommender systems techniques

Mass customization is becoming more popular than ever and so current recommendation
systems such as content-based filtering and collaborative filtering use different information sources
to make recommendations[2].

• Content-based Filtering: Creates a profile for each user or product to characterize its
nature. It makes recommendations based on user preferences for product features.

• Collaborative Filtering: Analyzes relationships between users and inter-dependencies
among products to identify new user-item associations. It predicts the user’s preferences
as a linear, weighted combination of other user preferences.

Both methods have limitations but we will use collaborative filtering in this work, we will not
be adding side information1 of neither users or items, so we would not be able to create a profile
for them. However, collaborative filtering suffers from the cold start problem, which is observed
when recommending items to a new user who would not have any inter-dependencies among
others.

Factorization Machines (FM) models are at the cutting edge of Machine Learning techniques
for RS which have different applications to solve the cold-start problem. Besides, they have
proven to be an extremely powerful tool with enough expressive capacity to generalize methods
such as Matrix Factorization, which is a class of collaborative filtering algorithms explained in
the next section.

2.3 Matrix Factorization

Matrix Factorization [14] is a class of collaborative filtering algorithms used in recommender
systems (RS). The way it works is by decomposing the user-item interaction matrix into two
lower dimensionality rectangular matrices whose dot product will result in the same interaction
matrix again.

When a user gives feedback to a certain movie, this collection of feedback can be represented
in a matrix form called either rating matrix or adjacency matrix, in which each row represents
each user and each column represents a different movie. This matrix will be sparse, since in a
real scenario not everyone will watch every movie and thus a lot of missing values will be present.

The intuition behind using matrix factorization to solve this problem is that there should be
some latent features that determine how a user rates an item. The assumption that the number
of features would be smaller than the number of users and the number of items is done so

1Side information refers to the user/item entity attributes in this case.
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that it makes sense to give recommendations. Not assuming that would mean that users are
not interested in the items rated by other users, under what it would make no sense to give
recommendations.

So, if we define a set U of users, and a set I of items, we know that A (adjacency matrix)
of size |U | × |I|, would be the matrix that contains all the ratings that the users have assigned
to the items. Also, we call K to the amount of latent features to discover. Our task, then, is
to find two matrices P (|U | × |K|matrix) and Q ( |I| × |K| matrix) such that their product
approximates A ≈ P×QT = Â

In this way, each row of P would represent the features of a user and each row of Q would
represent features of an item. To get the prediction of a rating of an item itemj by useri, we can

calculate the dot product of the two corresponding feature vectors: r̂ij = pTi qj =
∑k

k=1 pikqkj .

So, by finding P and Q matrices which approximate R instead of replicating it, will avoid the
predictions of all the unseen ratings to be zero. This will be done by just trying to minimize the
errors of the observed user-item pairs instead of having a zero error completely.

(a) Original adjacency matrix A (b) Reconstructed adjacency matrix Â

Figure 2.1: Comparison between A matrix (left) and its reconstruction Â (right).

2.4 Graph Convolutional Networks

A Graph Neural Network is also known as a Graph Convolutional Networks (GCN) for having
filter parameters which are typically shared over all locations in the graph or over a subset of
the graph. GCN performs a convolution on a graph instead of a typical CNN does on images
composed by pixels and it relies on the assumption that connected nodes in the graph are likely
to share the same label.

Its goal is to learn a function of signals or features on a graph G and, as defined in [13], GCN
is denoted by G = (V; E), which takes as input:

• a feature description xi for every node i summarized in a N ×D feature matrix X, with
N being the number of nodes and D the number of input features.

• a representative description of the graph structure in matrix form, which is called adjacency
matrix A ∈ RNxN and which will have both in rows and in columns the total number of
nodes.

and produces a node-level output Z, which is an N × k feature matrix with k being the
number of output features per node.
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A multi-layer Graph Convolutional Network (GCN) follow the next layer-wise propagation rule:

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)) (2.1)

where D is the diagonal degree matrix Dii =
∑

j Aij that allows to normalize A by taking

the average of neighboring node features; Â = A+ IN is the adjacency matrix of the unidirected
graph G with added self-connections in order to include the node itself that was not reflected in A
interactions; IN is the identity matrix that we use to add the self-connections; σ is an activation
function such as ReLu(∆) = max(0,∆), and W (l) is the layer-specific trainable weight matrix2.

2.5 Matrix-completion for recommender systems

In work [3], they propose Graph Convolutional Matrix Completion (GC-MC): a graph-based
auto-encoder framework for matrix completion, which builds on recent progress in deep learning
on graph-structured data [13].

They consider matrix completion for recommender systems from the point of view of link
prediction on graphs. Interaction data such as movie ratings can be represented by a bipartite
user-item graph with labeled edges denoting observed ratings. So, the task consists on predicting
the value of an unobserved entry in A, being A defined in section 2.4. They define Aij as an
observed rating from useri for itemj , while Aij = 0 would reflect an unobserved rating.

They propose a graph auto-encoder framework based on differentiable message passing on the
bipartite interaction graph but, in this work, we will just leverage the encoder model part, which
produces latent features of user and item nodes through a form of message passing3. An scheme
of GC-MC work with is shown in section 2.5 with the leveraged part for this work highlighted in
a red square.

The graph convolutional layer performs local operations that only take the direct neighbors
of a node into account, whereby the same transformation is applied across all locations in the
graph. This type of local graph convolution can be seen as a form of message passing. In this
work, they assign a specific transformation for each rating level, resulting in edge-type specific
messages µj→i,r from items j to users i. However, we will unify the rating levels in one, thus
denoting any rating a positive interaction or positive sample and therefore making binary the
adjacency matrix A. The equation is then defined in the following form:

µj→i =
1

cij
Wxj (2.2)

where cij is a normalization constant, which can either be |N (ui)| (left normalization) or√
|N (ui)||N (vj)| (symmetric normalization), with N (ui) denoting the set of neighbors of user

node i; W is the learned parameter matrix, and xj is the (initial) feature vector of itemj node.

2Note then that the initial layer of H would be H(0) = X, being X the features of the user and items and, the
last layer of H would be the node-level output H(l) = Z

3These latent user and item representations are the ones used to reconstruct the rating links through a bilinear
decoder but this is the part we are not addressing in this work
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Figure 2.2: Figure taken from [3]. The red square is the part we are leveraging from the whole
system. Left:Rating matrix M is the same with our A and its entries correspond to user-item
interactions (ratings between 1-5) or missing observations (0). Right: User-item interaction
graph with bipartite structure. Edges correspond to interaction events, numbers on edges denote
the rating a user has given to a particular item.

2.6 Factorization Machines model

In [17], they introduce Factorization Machines(FM) as a new model class that extends Matrix
Factorization 2.3 to multiple features (such as context). It is also able to estimate interactions
even in problems with huge sparsity.

The equation of FM is the following:

ŷ(x) = w0 +

n∑
i=i

wixi +

n∑
i=1

n∑
j=i+1

xixj〈vi, vj〉 (2.3)

where w0 is the global bias, wi models the strength of the i-th variable and 〈vi, vj〉 is the dot
product of two vectors of size k, which models the interaction between the i-th and j-th variable.

We should note that if the only features involved are two categorical variables (e.g. users and
items) then FM is equivalent to the matrix factorization model 2.3.
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Chapter 3

Methodology

3.1 Problem definition

The aim of this work is to build a recommender system (RS) which is based not just on
user-item interactions but also in context when predicting a recommendation. Therefore, given
a past record of items watched (or read, listened, etc.) by a user, we aim to build a RS which
helps the user discover items (movies, books, songs, etc.) of their interest. Specifically, given
<userID, itemID, contextID> occurrence sets, we need to generate a ranked list of preferred
items for each user by taking context into account. Note that our work is easily scalable to
multiple context features. We model the problem as a binary classification problem, where we
learn a function to predict whether a particular user will like a particular item or not. In the end,
we will have for every user a set of items which will be ranked in preference order so that the
most likely items to be liked by the user would be in the first positions of the ranking.

3.2 Datasets

We needed to look for datasets which would have several ratings R from Nu users on Ni

items, being Nu the total number of users and Ni the total number of items. It is constituted a
strong requirement the fact that we need an item to be rated by several users in order to allow
us building relationships between users and thus predict accurate recommendations.

Moreover, another requirement is to find datasets that provide context, either being the
context explicitly written such daytime, weather or location could be; or implicit in the data,
such as for example the timestamp of the rating, from where we can extract the last clicked item
from a user by sorting them out. We found two datasets that satisfy those requirements which
are explained now: Frappè dataset and MovieLens(1M) dataset.

3.2.1 Frappè Dataset

The frappe dataset1 contains a context-aware app usage log. It consist of 96203 entries
by 957 users for 4082 apps used in various contexts (daytime, weekday, isweekend, homework,
cost, weather, country, city). For this work, we just make use of 3 context sets; daytime (with
7 different options), country (with 80 different encoded options) and city (with 233 different
options). The reason why we opt for three context sets only is because our initial experiments
indicated that the performance of the models degrades when we incorporate too much context
infromation. This is due to the fact that some context are meaningful for being just irrelevant
when the user chooses an item. Thus, adding too much context can act as noise when training
the neural network and downgrade the performance.

1https://github.com/hexiangnan/neural_factorization_machine/tree/master/data/frappe
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3.2.2 MovieLens-1M Dataset

We use the MovieLens 1M dataset2, which has 1 million ratings from 6000 users on 4000
movies. The ratings are given to us in form of <userID, itemID, rating, timestamp> tuples.
Each user has a minimum of 20 ratings. For this dataset, we used as context the last clicked
item of each user. This way, the context is the previous movie that a user chose before the actual
item that we are evaluating.

3.3 Preprocessing, negative sampling and data split

To use the datasets in our model and obtain a good performance in RS task we first must
process the data so that it can be fed to the model. We follow the next steps:

First of all, we download the data and split it into training, validation and test data. As
explained in section 2.5, for all datasets we will drop the exact value of rating (1,2,3,4,5) and
convert it to an implicit scenario where any positive interaction is given the value of 1.

We should note that for problems where the final solution is to perform a ranking of the data,
the evaluation task is complex and it needs to be done in a specific way. Therefore, the data split
needs to be done according to that and so it cannot be done as in classical machine learning
problems where you take 70% of the data for training and keep 30% of unseen data for test. For
this task, we use the leave-one-out method as represented in Figure 3.1 to test the performance
of the models. This strategy has been widely used in literature [[10], [26], [9]] and it consists
in holding out one transaction of each user for validation (and one for testing) and treat the
remaining data as the training set. Since we are training a classifier, we will need both positive
and negative samples. The records present in the dataset are counted as positive samples so, we
will need to generate negative samples our-self. To do so, we will assume that all entries in the
user-item-context interaction matrix (also called adjacency matrix) which have no interactions
(represented by 0) are negative samples (a strong, easy to implement assumption).

We define itemi as one of the positive interacted items (which are 1 in the adjacency matrix).
Similarly, we define itemj as one of the negative interacted items (0 in the adjacency matrix).
When doing negative sampling, we fix user and context for a given interaction and just change
the itemi by sampling different itemj from the items which the user did not interact with. We
will sample as many itemj as the number of negative samples we want per user.

In order to evaluate a user, we need to have at least 3 interactions with different items to
be able to put one for training, one for validation and one for testing (due to leave-one-out
evaluation method that we are following). If we have more than three interactions per user, they
will be taken for the training set.

SO, in order to build the training set, we will take the training samples of a given user (all the
samples unless the one separated for validation and the one separated for test) and, for each of
these positive interactions, we will have <userID, itemi, contextID> plus four3 interactions
like <userID, itemj, contextID>, where itemj will be forced to be different in each of the
four samples. As we sample four negative items for every positive interaction in the training

2https://grouplens.org/datasets/movielens
3In our case we decided to sample four negative interactions for a given positive one.
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Figure 3.1: Figure showing the leave-one-out split strategy. Same procedure is followed for test
split. Green: Entire dataset containing interactions of all the users. Red: Validation set which
contains one positive interaction of each user together with negative samples of all the items
for each of the user (one per batch). Blue: Training set containing all the interactions of every
user unless the one saved for validation (and the one for test). Besides, it also contains the 4
corresponding negative samples for each of the users - which are different in each epoch.

data, the final size of the dataset will be multiplied by four. We will be doing batches of 256 and
shuffling the data in order to speed up and help the training.

For the validation case, we will just keep the positive interaction (previously separated) and
append it with Ni − 1 <userID, itemj, contextID> interactions, where the itemj will corre-
spond to every different item of the data. Thus, we will have the positive saved interaction of
a user plus the same interaction (letting the user and context fixed) Ni − 1 times, in each of
the ones we will be changing the itemi for each of the other items of the dataset. This way,
we will have a validation set which will have, for a fixed user-context, Ni interactions (one with
every item) from which just one will be the positive interaction (ground-truth). This will allow
us to evaluate the performance of our model by checking if the positive interaction (the one with
itemi) is among the top K samples of the ranking (top@K) - we would expect that. Further-
more, in order to evaluate correctly we should remove for each item the interactions which have
items that were seen in training so that they do not occupy any of the top@K positions when
performing the ranking.

To sum up:

On the one hand we will have a training dataset which is composed of positive interactions
plus four negative sampled interactions for each of this positive ones.
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On the other hand we will have a validation (and the same for test) set which will contain Ni

interactions for a fixed user and context, with just one of them being positive - interaction with
itemi - and the others being negative - sampled with all different itemj of the dataset, always
subtracting the interactions which were already seen in training.

Once we have all data ready to be used, we proceed with the model explanation.

3.4 Building Graph Factorization Machine (GFM)

In this section we will define our model by explaining the modifications that we made in order
to extend GCN to context and, finally, generalize it so that it is scalable to fit in any FM structure
model such as DFM, NFM or WD. We chose the name of GraphFM in order to point that it is
a graph version of the original FM model, which we take as a baseline. However, it is scalable
to other RS models such a s Neural FM, Deep FM or Wide Deep models (see chapter 4 for
explanation of those models), which they all are different variations of FM model.

So, we started by taking the equation of the FM model 2.3 and modifying it such that high
order interactions are captured. Our approach to do so is to make the embedding itself contain
those high order signals. We do it by performing the embeddings with a Graph Convolutional
Network instead of performing them with a classical embedding layer4. In that way, our system will
be scalable to any variation of FM model by just changing the way of obtaining the embeddings.

The equation would be written in the following way:

ŷ(x) = w0 +

n∑
i=i

wixi +

n∑
i=1

n∑
j=i+1

xixj〈g(xi), g(xj)〉 (3.1)

where g(xi) would be the GCN embedding function for feature xi. The other parameters stay
the same as defined in FM section 2.6.

From this perspective, the original FM would be a special case of GFM when g(xi) is just an
embedding table lookup operation (i.e. g(xi) = vi).

What we expect in this work is that g(xi) encodes not only the information of xi but also
knowledge from other correlated features. In Figure 3.2 below we illustrate the modifications done
in this work. So, as it can be seen, we have just changed the way of performing the embeddings
thus leading to more expressive representations for each node. In fact, the structure shown is
very important because it allows our GCN module to be scalable to any RS model which used
embeddings as a first layer. However, a lot of the work relies on how we build GCN embeddings
with g(xi) and how we extend it to context dimensions That is explained in the next section.

4An embedding layer is a representation of an entity (node, word, letter, etc.) with k latent factors. It is more
computationally efficient than other encoding ways such as one-hot encoding when using very big datasets. The
embeddings get updated during the training process of a deep neural network, and explore entities that are similar
to each other in a multi-dimensional space, which can be visualized by using dimensionality reduction techniques
like t-SNE [15]
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Figure 3.2: Scheme showing how will our model be incorporated in any other FM model by just
changing the embedding layer (left) by a GCN layer (right).

3.4.1 Building GCN embeddings with context extension

Graph convolution networks (GCN)[13] are a natural solution to construct g(xi) because it
performs information propagation in the graph thus making the learnt embeddings contain high-
order signals. The way GCN does it is by aggregating information from the local neighbourhoods
by pooling some node properties from individual nodes or by computing graph analytics so that
some extra data can bring in different information relationships from the network.

3.4.1.1 Graph construction

First of all, we need to construct a graph based on the data. For every transaction, we will
have a multi-field categorical feature vector x ∈ Rm which will be containing the indexes of the
<userID, itemID, contextID1, contextID2, ..., contextIDN> of the interaction. Note
that in order to avoid index confusions, we will need to re-index all the nodes in order to provide
them a unique identifier, thus being 0 the first user node and Nu + Ni + NNc the last context
node5.

From the graph, we first build the adjacency matrix A, which always defines the graph itself.
An illustration is done 3.3 so that it is very clear how the graph is built. Note that A is built just
with the training set data.

5Just remember that Nu refers to the total number of users, Ni to the total number of items and NNc to the
total number of context dimensions.
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Figure 3.3: Schema providing an intuition of how matrix A is built.

In this case, A would be a symmetric matrix which has both in rows and columns all the
〈user, item, context1..N 〉 node items. Besides, after re-indexing, item0 from the figure above
would be itemNu in A, item1 would be itemNu+1, and so on with all the nodes until contextNc

(from figure above) would be contextNu+Ni+NNc
.

Taking as an example an interaction of user-item with two different context such as the
weekday and the location, we can illustrate a sub-graph information as in Figure 3.4. We should
note that user-items, user-context and item-context are connected with bidirectional links while
context-context interactions are not linked.

Figure 3.4: Illustration of a sub-graph from the interaction of a user which rated an item with
two different context taken into account: weekday (Tuesday) and city (London). 3.4.

3.4.1.2 Context extension

In the original GCN for Matrix Completion paper [3] the local convolution is seen as a form of
message passing from the representations of the itemsj to the representation of the useri and
vice-versa. The message passing is done as in Equation 2.2 but, in this work, we modify their
equation in order to extend it to context, which can have either one or several dimensions (from
C1 to CN ). A possible extension for the equation would be:

µj,C1,...,CN→i =
1

cij
((Wxj)xC1 ...)xCN

(3.2)

where W is a tensor with as many dimensions as types of graph nodes we have i.e users, items
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and context dimensions. However, to avoid dealing with multidimensional arrays, we propose
another approach which makes W be a ‘big‘ matrix instead of being tensor. The corresponding
equation would be:

µj,C1,...,CN→i =
1

cij
(Wjxj +WC1xC1 +WCN

xCN
) (3.3)

In this case, W would be a ‘big‘ matrix of NNc×k dimensions which will contain in each row
the embedding of a given entity such as user, item or context. Having W defined, note that the
embedding of feature xi would be the i-th row in W .

3.5 Training Procedure

We trained the FM baseline and our GFM model by using Binary Cross Entropy, which is a
loss function suitable to binary classification tasks. More specifically, we used the Binary Cross
Entropy loss with logits from PyTorch6, which combines a Sigmoid layer and the Binary Cross
Entropy Loss in one single operation. It takes advantage of the log-sum-exp trick for numerical
stability and returns as an output a scalar.

L =
N∑
i=1

yi log(σ(pi)) + (1− yi) log(1− σ(pi)) (3.4)

where y is the label (1 for interacted or 0 non interacted items) and pi is the predicted
probability of the point being interacted for all N points.

Both models were trained using Stochastic Gradient Descent with ADAM optimization [12]
and a learning rate of 1e-4. We used Dropout regularization [21] which helps prevent overfitting
by dropping some units of the network during training. The specific dropout values used for the
experiments are specified in chapter 4.

An epoch is when the entire dataset is passed forward and backward through the network.
Every epoch will have the whole data split in batches of 256 samples (in our case we use batch
size = 256) and during training, the model will update the weights using Stochastic Gradient
Descent with ADAM optimization to generate a better prediction for each step.

In order to find the optimal weights we would be looking for the point where the validation
loss is minimum (assuming that the training loss is always decreasing). So, we should stop
training the model when the validation loss stops decreasing and starts increasing (early stopping
technique[16]). In this work, the model will be trained until the validation loss is going up for
more than 10 epochs in order to find out the best performance. Results are shown in chapter 4.

6https://pytorch.org/docs/stable/nn.html?highlight=bcewithlogitsloss#torch.nn.

BCEWithLogitsLoss
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3.6 Evaluation

We used Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) metrics on
the validation set for evaluating the recommendation quality of the models.

• HR@K: It is a recall-based metric, measuring whether the test item is in the top@K
positions of the recommendation list (1 for yes and 0 otherwise).

• NDCG@K: It is a measure of ranking quality which gives us information about where in
the ranking is our GT sample, this assigning higher scores to the top− ranked items. It is
computed by the following equation:

1/ log2(2 + index) (3.5)

where index is the position of the item in the list.

As an output, our model will give a score (logit) for each item present in the validation/test
set for a given user. The items are sorted in decreasing order of their score, and top@K items
are given as recommendation. If the GT positive sample (which is only one for each user) is
present in this top@K list, HR would be one for this user, else it will be zero. The final HR is
reported after averaging for all users and an analogous calculation is done for NDCG but using
the respective formula for the computation of the metric.

While training, we will be minimizing the cross-entropy loss with logits. However, the real
strength of recommender systems lies in giving a ranked list of top@K items which a user is most
likely to interact with. Thus, metrics like NDCG and HR help in capturing this phenomenon by
indicating the quality of our ranked lists.
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Chapter 4

Experimental Results

In this section, we describe the experiments we do. They are divided into two sections where
we will show, firstly, how adding relevant context helps to RS when giving recommendations and,
secondly, the difference in terms of performance between the baselines and their corresponding
graph-versions. Finally, we will add a section where we will discuss the experimental results
conclusions.

Before showing the results, we give an insight of the baselines models with the ones our model
is compared to in order to briefly explain their differences.

Baselines

We implemented all models using Pytorch. We compare the performance of the following
baseline vs their performance when incorporating our model (GFM) for capturing embeddings
(graph version). The baselines are:

• Factorization Machines (FM) [17]: As described in 2.3, this is the original FM. We
rewrote the official implementation1 to the Pytorch version.

• Neural Factorization Machines (NFM) [9]: It is a strong baseline which feeds FM
second-order interaction terms into a multi-layer perceptron (MLP) to learn nonlinear and
high-order interaction signals.

• Deep Factorization Machines (DFM) [8]: It ensembles the original FM but adding a
third term which are the embeddings fed into a multi-layer perceptron (MLP).

• Wide&Deep (WD) [5]: Its similar to DFM but removing the FM term of the equation.
So, it is just a linear regression plus the MLP of the embedding features.

4.1 Non-context vs context in recommendation systems

In this section, we perform different experiments in order to state that adding context to
RS helps the model to give better recommendations. Our approach is to train each of the
baselines with and without context (green and red rows from 4.1 respectively) information and
then evaluate them for the top@K items, where K = {10, 20} mean that we should seek for our
GT sample being in the 10 or 20 top items for each of the metrics HR and NDCG. In the next
figures, [4.1 and 4.2], it can be observed that, in both baselines, adding context helps a lot to
the model when predicting recommendations. It has to be note that for each of the datasets the
results are different and this is due to the different number of users and items that they have,
which will affect to the performance when averaging the metrics.

1http://www.libfm.org
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Figure 4.1: Comparison between context and non-context data for the different baselines on the
Frappe dataset.

Figure 4.2: Comparison between context and non-context data for the different baselines on the
ML-1M dataset.
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4.2 Baselines vs their Graph-version performance

In this section we performed different experiments for each of the datasets (Frappè and ML-
1M) in order to see whether the graph version of a baseline model is able to outperform it.

The hyperparameters we used are a learning rate of 0.001 with Adam optimizer, a batch size
of 256 and an embedding dimension of 64 for all the models. We run all the experiments for
300 epochs until convergence of the metrics.The time elapsed and the dropout regularization
probability is written in the table results for each of the training experiments (all with GPU
including training and evaluation every 10 epochs).

On the one hand, for Frappè dataset we will train for each of the baselines the original model
(i.e. FM, NFM, DFM, WD) and their corresponding graph version (i.e. GFM, GNFM, GDFM,
GWD). However, the graph version of a model does not always outperform the baseline for both
metrics, specially in cases where models are already too expressive (like NDM and DFM). For that
reason we propose two more experiments which consist in pre-training the embeddings of each
baseline and then use them as input features for the GCN layer (X) or as an initialization of its
learned weights (W ). Thus, instead of taking the identity matrix as feature matrix X which is fed
as an H(0) in 2.1, we will take the pre-trained embeddings of each baseline (i.e. the pre-trained
embeddings of FM will be used as X when training GFM) or, instead of initializing randomly the
W of the same equation, we will initialize it with the pre-trained embeddings (transfer-learning
[22]).

Then, we will run four different experiments for each of the baselines: 1.Original model or
baseline (i.e. FM), 2.Graph version (i.e. GFM), 3.Pre-trained embeddings as input features X
(i.e. pre-GFM-I), 4.Pre-trained embeddings as initialization for W (i.e. pre-GFM-W). Results are
shown in figure 4.3 in order to compare the metrics of the four different trained models for each
of the baselines.

On the other hand, for ML-1M dataset, we have the results shown in figure 4.4. We should
note that the results of the two different datasets are written in different tables because they can
not be compared, as they each have different number of users, of items and of context as well
as different number of total interactions. For that reason, a score of HR@10=0.1 in ML-1M can
mean a good performance while the same score metric in Frappe dataset would mean having
disastrous performance of the model. Thus, as in ML-1M the graph-version of the models already
outperform each of the baselines respectively, for this dataset we will not be doing the pre-trained
embedding experiments.

FRAPPE dataset

In the figure 4.3, we can observe that a consistent outperforming of the baselines is just
achieved for FM and WD models when capturing the high-order signal interactions from the
embedding level (in FM we need to modify the GFM model by initializing W to the pre-trained
FM embeddings while in WD its enough by just training GWD model from scratch). However, in
more expressive models like NFM or DFM, we could just achieve the improvement of either the
ranking (HR metric in pre-trained W experiments) or of its quality (NDCG metric in pre-trained
I experiments) but not from both at the same time. We propose many research lines in the
Future Work section of chapter 6 in order to solve that problem.
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Figure 4.3: Results of 1. original model, 2. graph version, 3.pre-trained embeddings as input
features X, 4.pre-trained embeddings as initialization of W . Results computed for each of the
baselines (FM, NFM, DFM, WD) highlighted in red on the Frappe dataset.

ML-1M dataset

In Figure 4.4, we can observe that a consistent outperforming of the baselines is achieved for
all the models when capturing the high-order signal interactions from the embedding level.

Besides, if we focus on the Time elapsed row, we can note that the time that the Graph version
models take for training and evaluating the model is much bigger than the time consumed for
training the baselines. However, we state that the graph version of the models take a lot less
time to converge than the baselines, needing the baseline models over 250 epochs to converge
while the graph-version models converge in epoch 75 approximately.
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Figure 4.4: Results of 1. original model, 2. graph version. Results computed for each of the
baselines (FM, NFM, DFM, WD) in the ML-1M dataset.

4.3 Discussion

FM models are the reference models for being an effective solution for context-aware recom-
mender systems. However, they are insufficient to capture high-order and nonlinear interaction
signals. Because of that, several recent efforts have enhanced FM with neural networks like in
NFM and in DFM models, which we should assume as strong baselines. They are more expressive
than FM, which can actually be seen as a special case of NFM but without hidden layers or DFM
without the MLP term.

Therefore, we realise that it made no sense to compare Graph Factorization Machines (our
model) with NFM or DFM models but instead compare each baseline with its corresponding
graph version: comparing FM vs GFM; NFM with GNFM; DFM with GDFM; and WD with
GWD. At that stage, we achieved to outperform the baselines for both datasets when evaluating
HR and NDCG metrics. However, for Frappè dataset, we couldn’t achieve to outperform NFM
or DFM in both metrics yet. Therefore, we think that we should analyse as future work if its
due to the difference in the amount of data (Frappè dataset is smaller) or due to the context
relevance that we are using.
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Chapter 5

Budget

The hardware resources needed for the project were a Macintosh laptop and a NVIDIA GPU.
The GPU was used during 5 months for the development of the model, which adds to 3.360 hours
of computation. We compute the computation cost based on Amazon Web Services (AWS) rates1

for p2.xlarge instances with one NVIDIA K80. Regarding software, we used Pycharm Professional
which licence cost 89 e .

The main costs of this projects comes from the salary of the researches and the time spent in
it. The team for the development of this thesis is formed by two senior engineers as the advisors
and myself as a junior engineer. The length of the project was 22 weeks, as presented in the
Gantt diagram. Assuming a commitment of 30 weekly hours by the Junior engineer (myself)
plus an average of 1h per week from each advisor on weekly meetings, the complete costs for the
project are the following:

Amount Cost/hour Time Total

GPU p2.xlarge 1 0,90 e 3.364h 3.024 e

Pycharm Professional 1 - - 89 e

Junior engineer 1 10,00 e 600h 6.000 e

Senior engineer 2 30,00 e 22h 1.320 e

Other equipment - - - 3.000 e

Total 13.433 e

Table 5.1: Cost of the project. Other equipment includes campus services and employed laptop.

1https://aws.amazon.com/ec2/instance-types/p2/?nc1=h_ls
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Chapter 6

Conclusion and Future Work

The main goal of our work was to capture the high-order signal interactions from the em-
bedding level by using a Graph Convolutional Networks (GCN) extended to context. To do so,
we had three main contributions in this work: demonstrate that adding context data helps the
models to achieve more accurate performance; modify GCN in order to extend it to context; and
integrate GCN in FM models thus using them to capture those high-order signal interactions
from the embedding level.

The first contribution is clearly achieved in section 4.1, where we present for each of the
baselines the results when training the models with and without context. We can state that
relevant context clearly helps recommender systems when giving recommendations. Regarding
the second contribution, we modified GCN by taking as an approach the extension of matrix-
completion algorithm[3] to multiple context. Finally, in order to achieve the third contribution,
we integrated the GCN extended algorithm into FM in order to use them as the new layer for
capturing the embeddings.

Thus, we presented an effective model for capturing high-order signal interactions in context-
aware recommender systems, which we called Graph Factorization Machines (GFM) and which is
based on FM structure in order to be scalable to any of the FM variation models such as NFM,
DFM or WD. Therefore, at the same time we show that the novel idea of capturing high-order
interactions from the embedding level through a graph-convolutional layer is scalable to any other
model by just changing the way of capturing embeddings.

Regarding the results, we state that using graph convolutions helps to encode better infor-
mation and thus give better recommendations. This is due to the fact that graph convolutions
encode in each node of the graph (feature embeddings), not just the information of the node
itself but also the information of correlated nodes thus leveraging the graph structure which is
created from the data. Reaching this point though has not been a straight line. Many incon-
veniences aroused when building the model, specifically when tuning the hyperparameters and
designing how to pre-train the GCN model and improve its performance. In fact, we do not have
a consistent solution which works for any model and any dataset. However, we can say overall
that we came up with an structure which allows to capture high-order signal interactions and
which allows to outperform the baselines in most of the cases.

As a future work, we plan to change the BCE with logits loss for the Bayesian Personalized
Ranking (BPR) loss [18], which is specific for ranking prediction problems. Besides, we plan to
extend the work by adding more datasets which will allow us to extract data patterns and end
up with a solution which is consistent for integrating it with any model and any dataset. Last
but not least, we propose to find a way for evaluating the results not just in a quantitative way
but in a qualitative way as well.

Code is publicly available at https://github.com/paulagd/pytorch-GEM.
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