Data intensive flows

Knowledge objectives

- Recognize the importance of usability and taking a user-centered approach
- Remember BPMN elements regarding flow objects, swimlanes, connections, and data artifacts

Understanding Objectives

1. Assign ETL uses to BPMN elements

Application Objectives

 Given a description of an ETL process, model it using BPMN

User centered design

"It is users and not data that are important."

- Focus on the users
- Needed activities
 - Specify the context of use
 - Specify the user and business requirements
 - Design the product
 - Evaluate the design

Usable systems

- Effectiveness
 - Does it do the job?
- Efficiency
 - How easily does it do the job?
- Satisfaction
 - How enjoyable is it to do the job?

Consistent representation

- Complete
 - The user can get all information
- Correct
 - The user cannot derive any other information

Classification of business processes

Workflow management system

Technological Challenges

- Business Process Management
- Service Composition
- Service Infrastructure and Management

Comparison between ETL and BPM

- Benefits of treating ETL as a type of process
 - Provide an abstract view (implementation independent)
 - Monitor and report in terms of the abstract view
- ETL is batch oriented, while BPM is event oriented
 - We can also consider pipelining ETL
 - This is more appropriate for streaming

ETL operations

- Extraction
- Schema modification
 - Projection
 - Field splitters
 - Attribute addition
- Aggregation
- Value derivation
 - Value mapper
 - Lookups
 - String processing
 - Scripting
 - Cryptography
- Dataset alteration
 - Filtering
 - Duplicate removal
 - Sampling
- External calls
 - Check for existence
 - Send e-mail
 - Write to log
- Others
 - Delay row
 - Blocking step
 - Abort

Process Modelling Viewpoints

BPMN idea

A BPMN process model is a graph consisting of four types of elements (among others):

BPMN main elements

Flow elements

Gateways

- Exclusive Decision / Merge
 - Indicates locations within a business process where the sequence flow can take two or more alternative paths
 - Only one of the paths can be taken

- Parallel Fork / Join
 - Provide a mechanism to synchronize parallel flow and to create parallel flow
 - Depicted by a diamond shape that must contain a marker that is shaped like a plus sign

Example of gateways

Sub-processes

- An activity in a process can "invoke" a separate (sub-)process
- Use this feature to:
 - Break down large models into smaller ones, making them easier to understand and maintain
 - → process hierarchies
 - 2. Share common fragments across multiple processes
 - → shared subprocesses
 - Identify parts of a process that should be:
 - Repeated
 - Executed multiple times in parallel
 - Cancelled
- Good practice is that the top-level process should be simple (no gateways) and should show the main phases of the process
 - This is sometimes called a "value chain"
 - Each phase then becomes a sub-process

Example of process hierarchies

Process Receive and Level 3 Inquity and Validate Quote Order Receive Order Level 4 **Enter Order Check Credit** $\overline{+}$ Credit Clear Order Available? **Access Credit** Level 5 Record Contact customer account rep.

Multiple instance marker

- □ ≡: Sequential repetition of an activity/sub-process
- | | | |: Parallel repetition of an activity/subprocess
- Useful when the same activity should be executed for multiple entities or data items,
 - Examples:
 - Request quotes from multiple suppliers
 - Check the availability for each line item in an order separately
 - Send and gather questionnaires for multiple witnesses in the context of an insurance claim

Example of Multiple instance activity

Resource elements

- Resource classes are captured using:
 - Pools <u>independent</u> organizational entities
 - □ E.g., Customer, Supplier, East-Tallinn Hospital, Tartu Clinic
 - Lanes resource classes in the same organizational space and sharing common systems
 - Sales Department, Marketing Department
 - Clerk, Manager, Engineer
- Resource class is a set of resources with shared characteristics
 - E.g., Clerk, Manager, Insurance Officer
- A resource class may be a
 - Role (skill, competence, qualification)
 - Classification based on what a resource can do or is expected to do
 - Group (department, team, office, organizational unit)
 - Classification based on the organization's structure

Pools and Swimlanes

Example of Pools

Example of Lanes

Artifacts

- Are depicted by a rectangle that has its upperright corner folded over
- Represent input and output of a process activity

Data stores are containers of data objects that need be persisted beyond the duration of a process instance

Associations are used to link artifacts such as data objects and data stores with flow objects (e.g., activities)

Example of Artifacts

Events

	Start			Intermediate				End
	Standard	Event Sub-Process Interrupting	Event Sub-Process Non-Interrupting	Catching	Boundary Interrupting	Boundary Non- Interrupting	Throwing	Standard
None: Untyped events, indicate start point, state changes or final states.			 		 	 		\circ
Message: Receiving and sending messages.								
Timer: Cyclic timer events, points in time, time spans or timeouts.		0	(0)	0	0			
Error: Catching or throwing named errors.	 	\otimes	 				 	\otimes
Compensation: Handling or triggering compensation.	 	\bigcirc	 	 		 		•
Link : Off-page connectors. Two corresponding link events equal a sequence flow.					 			
Terminate: Triggering the immediate termination of a process.	 	 	 	 	 	 	 	

Example of Events

30

Data-based vs. event-based decision

- In an XOR-split gateway, one branch is chosen based on expressions evaluated over available data
 - Choice is made immediately when the gateway is reached
- Sometimes, the choice must be delayed until something happens
 - Choice is based on a "race between events"
- BPMN distinguishes between:
 - Exclusive decision gateway (XOR-split)
 - Event-based decision gateway

Example of Event-based Decision

Boundary events

- Sometimes during a sub-process execution, some event may occur that needs some action...
- Such events are placed at the boundaries of the sub-process (boundary events)
- Two flavors:
 - Interrupting boundary events
 - Non-interrupting boundary events

Boundary Events – Example

Exception handling (error events)

- Exceptions are events that deviate a process from its "normal" course
- Handling exceptions often involves stopping a sub-process and performing a special activity
- Achieved using two event nodes:
 - An "end error event" that stops the enclosing subprocess execution
 - An "intermediate error event" attached to the enclosing subprocess – this is where the process execution will continue after the error

Example of Error events

Event sub-processes

- An event sub-process are processes attached to a parent process, that are triggered when an event happens
- Alternative to putting a boundary noninterrupting event around the parent process

Example of Event sub-processes

Choreographies

- Focus on interactions occurring between two or more parties
 - Each interaction involves an exchange of messages (one or more)
- Each activity element contains the information of the participants
 - Light band for the initiator
 - Dark band for the recipient

Example of choreographies

Good practices

- Hierarchical design
 - a) By using BPMN levels (1&2) notation
 - Main flow
 - Exception handling
 - b) By drilling down activities into subprocesses
- Completeness
- Clarity (unambiguous)
- Shareability between business and IT
- Structural consistency (use standards)

Activity

- Objective: Use BPMN to model an ETL process
- □ Tasks:
 - 1. (15') Individually draw a proposal of the corresponding ETL part
 - 2. (15') Match all three proposals in to one
 - 3. Hand in the merged proposal
- Roles for the team-mates during task 2:
 - a) Explains his/her material
 - b) Asks for clarification of blur concepts
 - c) Mediates and controls time

Summary

ETL	BPMN				
Extraction/Load	Data store				
Input/Output	Data objects				
Parallelism	AND-gateway				
Load balance	XOR-gateway				
Complex task	Subprocess				
Pipelining	Multiple instance marker				
Multiple components	Swimlanes				
Multiple resources	Pools				
Exception handling	Error events				
Compensation actions	Compensation events				
Control flow	Even based decisions & Boundary events & Event subprocess				

Bibliography

- T. Catarci et al. User-Centered Data Management.
 Morgan & Claypool, 2010
- R. T. Ng et al. Perspectives on Business Intelligence.
 Synthesis Lectures on Data Management. Morgan- & Claypool, 2012
- M. Weske. Business Process Management Concepts, Languages, Architectures. Springer, 2007
- B. Silver. *BPMN Method & Style*. Cody-Cassidy Press, 2011 (2nd edition)
- M. Dumas et al. Fundamentals of Business Process Management. Springer, 2012
- A. Vaisman and E. Zimanyi. Data Warehouse systems.
 Springer, 2014
- K. Wilkinson et al. Leveraging Business Process Models for ETL design. ER'2010

Resources

- http://www.signavio.com
- http://www.bpmb.de/images/BPMN2_0_Poster_EN.pdf
- http://oozie.apache.org
- https://sqoop.apache.org
- http://flume.apache.org

