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In-Memory Databases 
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Knowledge objectives 
1. Justify the viability of in-memory databases 
2. Sketch the functional architecture of SAP HANA 
3. Explain three techniques to improve memory 

usage 
4. Explain two techniques to implement parallelism 
5. Explain three problems to implement parallelism 
6. Explain three typical optimization techniques in 

RDBMS related to column storage 
7. Explain five optimization techniques specific of 

columnar storage 
8. Explain how SAP HANA chooses the best layout 
9. Explain four optimizations implemented in SAP 

HANA to improve data access 
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Understanding Objectives 

1. Given the data in a column, use run-
length encoding with dictionary to 
compress it 

2. Given a data setting, justify the choice of 
either row or column storage 
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Some figures 

 Hw Offers 
 Memory: 

 
 Cost: Less than 50.000US$ 

 Sw Demands 
 For TPC-C: 
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Memory per node 32Gb-100Gb
Number of nodes 20
Total 640Gb-2Tb

Space per warehouse 100Mb
Number of warehouses 1000
Total 100Gb
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SAP HANA architecture 
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Typical RDBMSs optimizations 

 Vertical partitioning 
 Each table splits in a set of two-columned 

partitions (key, attributes) 
 Improves useful read ratio 

 Use index-only query plans 
 Create a collection of indexes that cover all 

columns used in a query 
 No table access is needed 

 Use a collection of materialized views such 
that there is a view with exactly the 
columns needed to answer each query 
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Materialized aggregates are not necessary 

 Simplified data model 
 Simplified application logic 
 Higher level of concurrency 
 Contemporaneousness of aggregated 

values 
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Technical foundations 

 Optimizing the usage of memory hierarchies 
 Using parallelism 
 Optimizing the data layout 
 Using compression 
 Virtualizing 

 Limited overhead 
 When reading memory pages, the hypervisor is often not 

required to be called 
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Size Latency Bandwidth 

L1 cache 32 KB 1.5 ns 

L2 cache 256 KB 4 ns 

L3 cache (shared) 30 MB 15 ns 

Main memory (local) 256GB x 2 x 8 60ns-100ns 13-17GB 

Main memory (neighbour blade) 4TB 500+ ns 3GB 

Solid State memory Up to TBs 200,000ns 0.5GB 

Hard Disk Up to PBs 10,000,000 ns 0.07GB 

2,500€/TB 

25€/TB 

Caches hierarchy 
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Shared memory (25,000€/TB) 

Core 

L1-L2 cache 

L3 cache 

L1-L2 cache 

Core 
CPU 

Core 

L1-L2 cache 

L3 cache 

L1-L2 cache 

Core 
CPU 
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Memory usage 
 Avoid cache misses 

 Bring only relevant data 
 Use associativity (typically 8-way) 

 Possibilities 
 Direct mapped 
 N-way 
 Fully 

 Low associativity facilitates searching 
 High associativity facilitates replacement policies 

 Use locality 
 Two different kinds 

 Spatial 
 Use pre-fetching 

 Promote sequential access 
 Temporal 

 Replacement policies (LRU) 
 Reduces the number of CPU stalls while waiting for memory 

 Create a cache-conscious design 
 Use only aligned memory 

 Allocate memory blocks that are aligned to the width of a cache line 
 Padding if necessary 

 Store many fixed size elements consecutively 
 Avoid indirections to find contents (i.e., “next” pointer) 
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Parallelism 
 Kinds 

 Inter-transaction 
 Intra-transaction 

 Inter-query 
 Intra-query 

 Inter-operation 
 Intra-operation 

 Techniques 
 Pipelining 

 Difficulties: 
 Short process trees 
 Some operators need all input data at once 
 Skewed cost of operations 

 Partitioning 
 Typical operations benefitting 

 Table scan 
 Aggregation 
 Join 

 Problems 
 High startup cost 

 One process per core 
 Contention (at Hw level) 

 Use multi-channel memory controllers 
 Skew 

 Define fast operations 
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Column-Oriented Specific Optimizations 

 Tuples are identified by their position 
 No PK needed to be replicated with each column 

 Specific join algorithms 
 Column-specific compression techniques 

 Multiple sorting of data (replication) 
 Not in SAP HANA 

 Block iteration 
 When combined with late materialization it is 

known as vectorized query processing 
 Late materialization 
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Compression 

 Main objective is not reducing data space but 
reducing I/Os 

 Data stored in columns is more compressible than 
data stored in rows 
 High data value locality (less value entropy) 
 Benefits from sorting 

 Two main trends 
 Heavy weight compression (e.g., Lempel-Ziv) 

 In general, not that useful but it might be if there is a (huge) 
gap between memory bandwidth and CPU performance 

 Lightweight compression (e.g., Run-Length Encoding) 
 Improves performance by reducing I/O cost  
 May allow the query optimizer work directly on compressed data 

 Decompression is not needed in front of bitwise AND / OR 
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Examples of light-weight compression 

 Values coding 
 Dictionary encoding 

 Repetitions coding 
 Common value suppression 

 Sparse coding 
 Cluster coding 
 Run-length encoding 

 Memory usage optimization 
 Bit compression 
 Variable byte coding 
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Run-length Encoding with dictionary 
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Block Iteration 

 Blocks of values of the same column are 
passed to the next operation in a single 
function call 

 Values inside the block can be: 
 Iterated as in an array (fixed-width) 
 Remain codified (compressed) together 

 Not necessarily using multiples of 8 bits 
 I can count or even identify the tuples for which the 

predicate is true 
 Exploits parallelism / pipelining 
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Late Materialization 
 Tuple construction can be done at the beginning or at 

the end of the query 
 

 
 
 
 
 
 
 

 Advantages 
 Some tuples do not need to be constructed (because of 

selections and projections) 
 Some columns remain compressed more time 
 Cache performance is improved (kept at column level) 
 Helps block iteration for values of fixed length columns 
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Advantages of columnar tables 

 Higher performance for column operations 
 Higher data compression rates 

 Compressed data can be loaded into CPU 
cache more quickly 

 With dictionary coding, the columns are stored 
as sequences of bit-coded integers 

 Compression can speed up operations such as 
scans and aggregations if the operator is 
aware of the compression 

 Elimination of additional indexes 
 Parallelization 
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Row storage conditions 

 The table has a small number of rows, 
such as configuration tables 

 The application needs to process only a 
single record at a time (many selects or 
updates of single records) 

 The application typically needs to access 
the complete record 

 The columns contain mainly distinct values 
so the compression rate would be low 

 Aggregations and fast searching are not 
required 
September 2013 Alberto Abelló & Oscar Romero 19 
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Columnar storage conditions 

 Calculations are executed on a single column 
or a few columns only 

 The table is searched based on the values of 
a few columns 

 The table has a large number of columns 
 The table has a large number of rows, and 

columnar operations are required (aggregate, 
scan, and so on) 

 The majority of columns contain only a few 
distinct values (compared to the number of 
rows), resulting in higher compression rates 
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Finding the best layout 
 Consider hybrid partitioning per table 

 Computational cost is NP-hard 
 Needed information 

 Workload 
 Frequency of each query 
 Access plan and cost of each query 

 Take intermediate results and repetitive access into 
account 

 Value distribution and selectivity of predicates 
 Work in three phases 

1. Determine primary partitions (i.e., subsets of attributes 
always accessed together) 

2. Inspect permutations of primary partitions 
3. Inspect all combinations generated in the previous 

phase 
i. Generate a disjoint and covering combination 
ii. Evaluate its cost 
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Data access optimizations 
 Use stored procedures 
 Data aging by dynamic horizontal partitioning 

depending on the lifecycle of objects 
 By default only active data is incorporated into query 

processing 
 The definition of active data is given by the application 

 Modifications are performed on a differential buffer 
 Merge process is carried out per table 

 Implies decompressing the table and compressing everything back 
 It is done on-line 

 Append-only tables 
 Point representation (i.e., timestamp of the change) for 

OLTP 
 Interval representation (i.e., valid time of the tuple 

version) for OLAP 
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Activity 

 Objective: Understand the contribution of 
in-memory databases 

 Tasks: 
1.(3’) Read one use case 
2.(5’) Explain the use case to the others 
3.(5’) Find the main contribution of SAP HANA in all 

the cases 
4.Hand in a brief explanation of the contribution 

 Roles for the team-mates during task 2: 
a)Explains his/her material 
b)Asks for clarification of blur concepts 
c)Mediates and controls time 
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Summary 

 Technical foundations of SAP HANA 
 Optimizing the usage of memory hierarchies 
 Using parallelism 
 Optimizing the data layout 

 Row storage 
 Column storage 
 Hybrid 

 Using compression 
 Virtualizing 

 Data access optimizations in SAP HANA 
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Resources 

 http://developers.sap.com  
 http://www.vertica.com 
 https://www.monetdb.org 
 http://ibmbluhub.com 
 http://www.oracle.com/us/corporate/features/dat

abase-in-memory-option/index.html 
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