
In
-M

em
or

y
D

at
ab

as
es

September 2013 Alberto Abelló & Oscar Romero 1

In-Memory Databases

In
-M

em
or

y
D

at
ab

as
es

September 2013 Alberto Abelló & Oscar Romero 2

Knowledge objectives
1. Justify the viability of in-memory databases
2. Sketch the functional architecture of SAP HANA
3. Explain three techniques to improve memory

usage
4. Explain two techniques to implement parallelism
5. Explain three problems to implement parallelism
6. Explain three typical optimization techniques in

RDBMS related to column storage
7. Explain five optimization techniques specific of

columnar storage
8. Explain how SAP HANA chooses the best layout
9. Explain four optimizations implemented in SAP

HANA to improve data access

In
-M

em
or

y
D

at
ab

as
es

Understanding Objectives

1. Given the data in a column, use run-
length encoding with dictionary to
compress it

2. Given a data setting, justify the choice of
either row or column storage

September 2013 Alberto Abelló & Oscar Romero 3

In
-M

em
or

y
D

at
ab

as
es

Some figures

 Hw Offers
 Memory:

 Cost: Less than 50.000US$

 Sw Demands
 For TPC-C:

September 2013 Alberto Abelló & Oscar Romero 4

Memory per node 32Gb-100Gb
Number of nodes 20
Total 640Gb-2Tb

Space per warehouse 100Mb
Number of warehouses 1000
Total 100Gb

In
-M

em
or

y
D

at
ab

as
es

SAP HANA architecture

September 2013 Alberto Abelló & Oscar Romero 5

In
-M

em
or

y
D

at
ab

as
es

Typical RDBMSs optimizations

 Vertical partitioning
 Each table splits in a set of two-columned

partitions (key, attributes)
 Improves useful read ratio

 Use index-only query plans
 Create a collection of indexes that cover all

columns used in a query
 No table access is needed

 Use a collection of materialized views such
that there is a view with exactly the
columns needed to answer each query

September 2013 Alberto Abelló & Oscar Romero 6

In
-M

em
or

y
D

at
ab

as
es

Materialized aggregates are not necessary

 Simplified data model
 Simplified application logic
 Higher level of concurrency
 Contemporaneousness of aggregated

values

September 2013 Alberto Abelló & Oscar Romero 7

In
-M

em
or

y
D

at
ab

as
es

Technical foundations

 Optimizing the usage of memory hierarchies
 Using parallelism
 Optimizing the data layout
 Using compression
 Virtualizing

 Limited overhead
 When reading memory pages, the hypervisor is often not

required to be called

September 2013 Alberto Abelló & Oscar Romero 8

In
-M

em
or

y
D

at
ab

as
es

Size Latency Bandwidth

L1 cache 32 KB 1.5 ns

L2 cache 256 KB 4 ns

L3 cache (shared) 30 MB 15 ns

Main memory (local) 256GB x 2 x 8 60ns-100ns 13-17GB

Main memory (neighbour blade) 4TB 500+ ns 3GB

Solid State memory Up to TBs 200,000ns 0.5GB

Hard Disk Up to PBs 10,000,000 ns 0.07GB

2,500€/TB

25€/TB

Caches hierarchy

April 2014 Alberto Abelló & Oscar Romero 9

Shared memory (25,000€/TB)

Core

L1-L2 cache

L3 cache

L1-L2 cache

Core
CPU

Core

L1-L2 cache

L3 cache

L1-L2 cache

Core
CPU

In
-M

em
or

y
D

at
ab

as
es

Memory usage
 Avoid cache misses

 Bring only relevant data
 Use associativity (typically 8-way)

 Possibilities
 Direct mapped
 N-way
 Fully

 Low associativity facilitates searching
 High associativity facilitates replacement policies

 Use locality
 Two different kinds

 Spatial
 Use pre-fetching

 Promote sequential access
 Temporal

 Replacement policies (LRU)
 Reduces the number of CPU stalls while waiting for memory

 Create a cache-conscious design
 Use only aligned memory

 Allocate memory blocks that are aligned to the width of a cache line
 Padding if necessary

 Store many fixed size elements consecutively
 Avoid indirections to find contents (i.e., “next” pointer)

 September 2013 Alberto Abelló & Oscar Romero 10

In
-M

em
or

y
D

at
ab

as
es

Parallelism
 Kinds

 Inter-transaction
 Intra-transaction

 Inter-query
 Intra-query

 Inter-operation
 Intra-operation

 Techniques
 Pipelining

 Difficulties:
 Short process trees
 Some operators need all input data at once
 Skewed cost of operations

 Partitioning
 Typical operations benefitting

 Table scan
 Aggregation
 Join

 Problems
 High startup cost

 One process per core
 Contention (at Hw level)

 Use multi-channel memory controllers
 Skew

 Define fast operations

September 2013 Alberto Abelló & Oscar Romero 11

In
-M

em
or

y
D

at
ab

as
es

Column-Oriented Specific Optimizations

 Tuples are identified by their position
 No PK needed to be replicated with each column

 Specific join algorithms
 Column-specific compression techniques

 Multiple sorting of data (replication)
 Not in SAP HANA

 Block iteration
 When combined with late materialization it is

known as vectorized query processing
 Late materialization

September 2013 Alberto Abelló & Oscar Romero 12

In
-M

em
or

y
D

at
ab

as
es

Compression

 Main objective is not reducing data space but
reducing I/Os

 Data stored in columns is more compressible than
data stored in rows
 High data value locality (less value entropy)
 Benefits from sorting

 Two main trends
 Heavy weight compression (e.g., Lempel-Ziv)

 In general, not that useful but it might be if there is a (huge)
gap between memory bandwidth and CPU performance

 Lightweight compression (e.g., Run-Length Encoding)
 Improves performance by reducing I/O cost
 May allow the query optimizer work directly on compressed data

 Decompression is not needed in front of bitwise AND / OR

September 2013 Alberto Abelló & Oscar Romero 13

In
-M

em
or

y
D

at
ab

as
es

Examples of light-weight compression

 Values coding
 Dictionary encoding

 Repetitions coding
 Common value suppression

 Sparse coding
 Cluster coding
 Run-length encoding

 Memory usage optimization
 Bit compression
 Variable byte coding

September 2013 Alberto Abelló & Oscar Romero 14

In
-M

em
or

y
D

at
ab

as
es

Run-length Encoding with dictionary

September 2013 Alberto Abelló & Oscar Romero 15

Bravo
Bravo
null
null
null

Charlie
Charlie
Charlie

Column A

Bravo
Charlie

Dictionary

1
1
0
0
0
2
2
2

Dictionary
positions

2
3
3

1
0
2

Dictionary
positions #values

Bravo
Charlie

Dictionary

1
4
7

Ending
Row

Index

In
-M

em
or

y
D

at
ab

as
es

Block Iteration

 Blocks of values of the same column are
passed to the next operation in a single
function call

 Values inside the block can be:
 Iterated as in an array (fixed-width)
 Remain codified (compressed) together

 Not necessarily using multiples of 8 bits
 I can count or even identify the tuples for which the

predicate is true
 Exploits parallelism / pipelining

September 2013 Alberto Abelló & Oscar Romero 16

In
-M

em
or

y
D

at
ab

as
es

Late Materialization
 Tuple construction can be done at the beginning or at

the end of the query

 Advantages
 Some tuples do not need to be constructed (because of

selections and projections)
 Some columns remain compressed more time
 Cache performance is improved (kept at column level)
 Helps block iteration for values of fixed length columns

September 2013 Alberto Abelló & Oscar Romero 17

In
-M

em
or

y
D

at
ab

as
es

Advantages of columnar tables

 Higher performance for column operations
 Higher data compression rates

 Compressed data can be loaded into CPU
cache more quickly

 With dictionary coding, the columns are stored
as sequences of bit-coded integers

 Compression can speed up operations such as
scans and aggregations if the operator is
aware of the compression

 Elimination of additional indexes
 Parallelization

September 2013 Alberto Abelló & Oscar Romero 18

In
-M

em
or

y
D

at
ab

as
es

Row storage conditions

 The table has a small number of rows,
such as configuration tables

 The application needs to process only a
single record at a time (many selects or
updates of single records)

 The application typically needs to access
the complete record

 The columns contain mainly distinct values
so the compression rate would be low

 Aggregations and fast searching are not
required
September 2013 Alberto Abelló & Oscar Romero 19

In
-M

em
or

y
D

at
ab

as
es

Columnar storage conditions

 Calculations are executed on a single column
or a few columns only

 The table is searched based on the values of
a few columns

 The table has a large number of columns
 The table has a large number of rows, and

columnar operations are required (aggregate,
scan, and so on)

 The majority of columns contain only a few
distinct values (compared to the number of
rows), resulting in higher compression rates

September 2013 Alberto Abelló & Oscar Romero 20

In
-M

em
or

y
D

at
ab

as
es

Finding the best layout
 Consider hybrid partitioning per table

 Computational cost is NP-hard
 Needed information

 Workload
 Frequency of each query
 Access plan and cost of each query

 Take intermediate results and repetitive access into
account

 Value distribution and selectivity of predicates
 Work in three phases

1. Determine primary partitions (i.e., subsets of attributes
always accessed together)

2. Inspect permutations of primary partitions
3. Inspect all combinations generated in the previous

phase
i. Generate a disjoint and covering combination
ii. Evaluate its cost

September 2013 Alberto Abelló & Oscar Romero 21

In
-M

em
or

y
D

at
ab

as
es

Data access optimizations
 Use stored procedures
 Data aging by dynamic horizontal partitioning

depending on the lifecycle of objects
 By default only active data is incorporated into query

processing
 The definition of active data is given by the application

 Modifications are performed on a differential buffer
 Merge process is carried out per table

 Implies decompressing the table and compressing everything back
 It is done on-line

 Append-only tables
 Point representation (i.e., timestamp of the change) for

OLTP
 Interval representation (i.e., valid time of the tuple

version) for OLAP

September 2013 Alberto Abelló & Oscar Romero 22

In
-M

em
or

y
D

at
ab

as
es

Activity

 Objective: Understand the contribution of
in-memory databases

 Tasks:
1.(3’) Read one use case
2.(5’) Explain the use case to the others
3.(5’) Find the main contribution of SAP HANA in all

the cases
4.Hand in a brief explanation of the contribution

 Roles for the team-mates during task 2:
a)Explains his/her material
b)Asks for clarification of blur concepts
c)Mediates and controls time

September 2013 Alberto Abelló & Oscar Romero 23

In
-M

em
or

y
D

at
ab

as
es

September 2013 Alberto Abelló & Oscar Romero 24

Summary

 Technical foundations of SAP HANA
 Optimizing the usage of memory hierarchies
 Using parallelism
 Optimizing the data layout

 Row storage
 Column storage
 Hybrid

 Using compression
 Virtualizing

 Data access optimizations in SAP HANA

In
-M

em
or

y
D

at
ab

as
es

Bibliography
 H. Plattner and A. Zeier. In-Memory Data

Management. Springer , 2011
 SAP HANA. Database for Next-Generation

Business Applications and Real-Time
Analytics. White paper, 2012

 D. Abadi, et al. Column-stores vs. row-stores:
how different are they really? SIGMOD
Conference, 2008

 M. Stonebraker et al. C-Store: A Column-
oriented DBMS. VLDB, 2005

 G. Copeland and S. Khoshafian. A
Decomposition Storage Model. SIGMOD
Conference, 1985

September 2013 Alberto Abelló & Oscar Romero 25

In
-M

em
or

y
D

at
ab

as
es

Resources

 http://developers.sap.com
 http://www.vertica.com
 https://www.monetdb.org
 http://ibmbluhub.com
 http://www.oracle.com/us/corporate/features/dat

abase-in-memory-option/index.html

September 2013 Alberto Abelló & Oscar Romero 26

	In-Memory Databases
	Knowledge objectives
	Understanding Objectives
	Some figures
	SAP HANA architecture
	Typical RDBMSs optimizations
	Materialized aggregates are not necessary
	Technical foundations
	Caches hierarchy
	Memory usage
	Parallelism
	Column-Oriented Specific Optimizations
	Compression
	Examples of light-weight compression
	Run-length Encoding with dictionary
	Block Iteration
	Late Materialization
	Advantages of columnar tables
	Row storage conditions
	Columnar storage conditions
	Finding the best layout
	Data access optimizations
	Activity
	Summary
	Bibliography
	Resources

