
In
-M

em
or

y
D

at
ab

as
es

September 2013 Alberto Abelló & Oscar Romero 1

In-Memory Databases

In
-M

em
or

y
D

at
ab

as
es

September 2013 Alberto Abelló & Oscar Romero 2

Knowledge objectives
1. Justify the viability of in-memory databases
2. Sketch the functional architecture of SAP HANA
3. Explain three techniques to improve memory

usage
4. Explain two techniques to implement parallelism
5. Explain three problems to implement parallelism
6. Explain three typical optimization techniques in

RDBMS related to column storage
7. Explain five optimization techniques specific of

columnar storage
8. Explain how SAP HANA chooses the best layout
9. Explain four optimizations implemented in SAP

HANA to improve data access

In
-M

em
or

y
D

at
ab

as
es

Understanding Objectives

1. Given the data in a column, use run-
length encoding with dictionary to
compress it

2. Given a data setting, justify the choice of
either row or column storage

September 2013 Alberto Abelló & Oscar Romero 3

In
-M

em
or

y
D

at
ab

as
es

Some figures

 Hw Offers
 Memory:

 Cost: Less than 50.000US$

 Sw Demands
 For TPC-C:

September 2013 Alberto Abelló & Oscar Romero 4

Memory per node 32Gb-100Gb
Number of nodes 20
Total 640Gb-2Tb

Space per warehouse 100Mb
Number of warehouses 1000
Total 100Gb

In
-M

em
or

y
D

at
ab

as
es

SAP HANA architecture

September 2013 Alberto Abelló & Oscar Romero 5

In
-M

em
or

y
D

at
ab

as
es

Typical RDBMSs optimizations

 Vertical partitioning
 Each table splits in a set of two-columned

partitions (key, attributes)
 Improves useful read ratio

 Use index-only query plans
 Create a collection of indexes that cover all

columns used in a query
 No table access is needed

 Use a collection of materialized views such
that there is a view with exactly the
columns needed to answer each query

September 2013 Alberto Abelló & Oscar Romero 6

In
-M

em
or

y
D

at
ab

as
es

Materialized aggregates are not necessary

 Simplified data model
 Simplified application logic
 Higher level of concurrency
 Contemporaneousness of aggregated

values

September 2013 Alberto Abelló & Oscar Romero 7

In
-M

em
or

y
D

at
ab

as
es

Technical foundations

 Optimizing the usage of memory hierarchies
 Using parallelism
 Optimizing the data layout
 Using compression
 Virtualizing

 Limited overhead
 When reading memory pages, the hypervisor is often not

required to be called

September 2013 Alberto Abelló & Oscar Romero 8

In
-M

em
or

y
D

at
ab

as
es

Size Latency Bandwidth

L1 cache 32 KB 1.5 ns

L2 cache 256 KB 4 ns

L3 cache (shared) 30 MB 15 ns

Main memory (local) 256GB x 2 x 8 60ns-100ns 13-17GB

Main memory (neighbour blade) 4TB 500+ ns 3GB

Solid State memory Up to TBs 200,000ns 0.5GB

Hard Disk Up to PBs 10,000,000 ns 0.07GB

2,500€/TB

25€/TB

Caches hierarchy

April 2014 Alberto Abelló & Oscar Romero 9

Shared memory (25,000€/TB)

Core

L1-L2 cache

L3 cache

L1-L2 cache

Core
CPU

Core

L1-L2 cache

L3 cache

L1-L2 cache

Core
CPU

In
-M

em
or

y
D

at
ab

as
es

Memory usage
 Avoid cache misses

 Bring only relevant data
 Use associativity (typically 8-way)

 Possibilities
 Direct mapped
 N-way
 Fully

 Low associativity facilitates searching
 High associativity facilitates replacement policies

 Use locality
 Two different kinds

 Spatial
 Use pre-fetching

 Promote sequential access
 Temporal

 Replacement policies (LRU)
 Reduces the number of CPU stalls while waiting for memory

 Create a cache-conscious design
 Use only aligned memory

 Allocate memory blocks that are aligned to the width of a cache line
 Padding if necessary

 Store many fixed size elements consecutively
 Avoid indirections to find contents (i.e., “next” pointer)

 September 2013 Alberto Abelló & Oscar Romero 10

In
-M

em
or

y
D

at
ab

as
es

Parallelism
 Kinds

 Inter-transaction
 Intra-transaction

 Inter-query
 Intra-query

 Inter-operation
 Intra-operation

 Techniques
 Pipelining

 Difficulties:
 Short process trees
 Some operators need all input data at once
 Skewed cost of operations

 Partitioning
 Typical operations benefitting

 Table scan
 Aggregation
 Join

 Problems
 High startup cost

 One process per core
 Contention (at Hw level)

 Use multi-channel memory controllers
 Skew

 Define fast operations

September 2013 Alberto Abelló & Oscar Romero 11

In
-M

em
or

y
D

at
ab

as
es

Column-Oriented Specific Optimizations

 Tuples are identified by their position
 No PK needed to be replicated with each column

 Specific join algorithms
 Column-specific compression techniques

 Multiple sorting of data (replication)
 Not in SAP HANA

 Block iteration
 When combined with late materialization it is

known as vectorized query processing
 Late materialization

September 2013 Alberto Abelló & Oscar Romero 12

In
-M

em
or

y
D

at
ab

as
es

Compression

 Main objective is not reducing data space but
reducing I/Os

 Data stored in columns is more compressible than
data stored in rows
 High data value locality (less value entropy)
 Benefits from sorting

 Two main trends
 Heavy weight compression (e.g., Lempel-Ziv)

 In general, not that useful but it might be if there is a (huge)
gap between memory bandwidth and CPU performance

 Lightweight compression (e.g., Run-Length Encoding)
 Improves performance by reducing I/O cost
 May allow the query optimizer work directly on compressed data

 Decompression is not needed in front of bitwise AND / OR

September 2013 Alberto Abelló & Oscar Romero 13

In
-M

em
or

y
D

at
ab

as
es

Examples of light-weight compression

 Values coding
 Dictionary encoding

 Repetitions coding
 Common value suppression

 Sparse coding
 Cluster coding
 Run-length encoding

 Memory usage optimization
 Bit compression
 Variable byte coding

September 2013 Alberto Abelló & Oscar Romero 14

In
-M

em
or

y
D

at
ab

as
es

Run-length Encoding with dictionary

September 2013 Alberto Abelló & Oscar Romero 15

Bravo
Bravo
null
null
null

Charlie
Charlie
Charlie

Column A

Bravo
Charlie

Dictionary

1
1
0
0
0
2
2
2

Dictionary
positions

2
3
3

1
0
2

Dictionary
positions #values

Bravo
Charlie

Dictionary

1
4
7

Ending
Row

Index

In
-M

em
or

y
D

at
ab

as
es

Block Iteration

 Blocks of values of the same column are
passed to the next operation in a single
function call

 Values inside the block can be:
 Iterated as in an array (fixed-width)
 Remain codified (compressed) together

 Not necessarily using multiples of 8 bits
 I can count or even identify the tuples for which the

predicate is true
 Exploits parallelism / pipelining

September 2013 Alberto Abelló & Oscar Romero 16

In
-M

em
or

y
D

at
ab

as
es

Late Materialization
 Tuple construction can be done at the beginning or at

the end of the query

 Advantages
 Some tuples do not need to be constructed (because of

selections and projections)
 Some columns remain compressed more time
 Cache performance is improved (kept at column level)
 Helps block iteration for values of fixed length columns

September 2013 Alberto Abelló & Oscar Romero 17

In
-M

em
or

y
D

at
ab

as
es

Advantages of columnar tables

 Higher performance for column operations
 Higher data compression rates

 Compressed data can be loaded into CPU
cache more quickly

 With dictionary coding, the columns are stored
as sequences of bit-coded integers

 Compression can speed up operations such as
scans and aggregations if the operator is
aware of the compression

 Elimination of additional indexes
 Parallelization

September 2013 Alberto Abelló & Oscar Romero 18

In
-M

em
or

y
D

at
ab

as
es

Row storage conditions

 The table has a small number of rows,
such as configuration tables

 The application needs to process only a
single record at a time (many selects or
updates of single records)

 The application typically needs to access
the complete record

 The columns contain mainly distinct values
so the compression rate would be low

 Aggregations and fast searching are not
required
September 2013 Alberto Abelló & Oscar Romero 19

In
-M

em
or

y
D

at
ab

as
es

Columnar storage conditions

 Calculations are executed on a single column
or a few columns only

 The table is searched based on the values of
a few columns

 The table has a large number of columns
 The table has a large number of rows, and

columnar operations are required (aggregate,
scan, and so on)

 The majority of columns contain only a few
distinct values (compared to the number of
rows), resulting in higher compression rates

September 2013 Alberto Abelló & Oscar Romero 20

In
-M

em
or

y
D

at
ab

as
es

Finding the best layout
 Consider hybrid partitioning per table

 Computational cost is NP-hard
 Needed information

 Workload
 Frequency of each query
 Access plan and cost of each query

 Take intermediate results and repetitive access into
account

 Value distribution and selectivity of predicates
 Work in three phases

1. Determine primary partitions (i.e., subsets of attributes
always accessed together)

2. Inspect permutations of primary partitions
3. Inspect all combinations generated in the previous

phase
i. Generate a disjoint and covering combination
ii. Evaluate its cost

September 2013 Alberto Abelló & Oscar Romero 21

In
-M

em
or

y
D

at
ab

as
es

Data access optimizations
 Use stored procedures
 Data aging by dynamic horizontal partitioning

depending on the lifecycle of objects
 By default only active data is incorporated into query

processing
 The definition of active data is given by the application

 Modifications are performed on a differential buffer
 Merge process is carried out per table

 Implies decompressing the table and compressing everything back
 It is done on-line

 Append-only tables
 Point representation (i.e., timestamp of the change) for

OLTP
 Interval representation (i.e., valid time of the tuple

version) for OLAP

September 2013 Alberto Abelló & Oscar Romero 22

In
-M

em
or

y
D

at
ab

as
es

Activity

 Objective: Understand the contribution of
in-memory databases

 Tasks:
1.(3’) Read one use case
2.(5’) Explain the use case to the others
3.(5’) Find the main contribution of SAP HANA in all

the cases
4.Hand in a brief explanation of the contribution

 Roles for the team-mates during task 2:
a)Explains his/her material
b)Asks for clarification of blur concepts
c)Mediates and controls time

September 2013 Alberto Abelló & Oscar Romero 23

In
-M

em
or

y
D

at
ab

as
es

September 2013 Alberto Abelló & Oscar Romero 24

Summary

 Technical foundations of SAP HANA
 Optimizing the usage of memory hierarchies
 Using parallelism
 Optimizing the data layout

 Row storage
 Column storage
 Hybrid

 Using compression
 Virtualizing

 Data access optimizations in SAP HANA

In
-M

em
or

y
D

at
ab

as
es

Bibliography
 H. Plattner and A. Zeier. In-Memory Data

Management. Springer , 2011
 SAP HANA. Database for Next-Generation

Business Applications and Real-Time
Analytics. White paper, 2012

 D. Abadi, et al. Column-stores vs. row-stores:
how different are they really? SIGMOD
Conference, 2008

 M. Stonebraker et al. C-Store: A Column-
oriented DBMS. VLDB, 2005

 G. Copeland and S. Khoshafian. A
Decomposition Storage Model. SIGMOD
Conference, 1985

September 2013 Alberto Abelló & Oscar Romero 25

In
-M

em
or

y
D

at
ab

as
es

Resources

 http://developers.sap.com
 http://www.vertica.com
 https://www.monetdb.org
 http://ibmbluhub.com
 http://www.oracle.com/us/corporate/features/dat

abase-in-memory-option/index.html

September 2013 Alberto Abelló & Oscar Romero 26

	In-Memory Databases
	Knowledge objectives
	Understanding Objectives
	Some figures
	SAP HANA architecture
	Typical RDBMSs optimizations
	Materialized aggregates are not necessary
	Technical foundations
	Caches hierarchy
	Memory usage
	Parallelism
	Column-Oriented Specific Optimizations
	Compression
	Examples of light-weight compression
	Run-length Encoding with dictionary
	Block Iteration
	Late Materialization
	Advantages of columnar tables
	Row storage conditions
	Columnar storage conditions
	Finding the best layout
	Data access optimizations
	Activity
	Summary
	Bibliography
	Resources

