Document Stores

Knowledge Objectives

1. Explain the main difference between key-
value and document stores

2. Justify why indexing is a first-class citizen
for document-stores and it is not for key-

value stores

% March 2014 Alberto Abell6 & Oscar Romero
QU

Application Objectives

1. Given an application layout and a small
query workload, design a document-store
providing optimal support according to a
given set of criteria

% March 2014 Alberto Abell6 & Oscar Romero
QU

Structuring the Value

O Essentially, they are key-value stores
= Same design and architectural features
O The value i1s a document
= XML (e.g., eXist)
= JSON (e.g., MongoDB and CouchDB)
O Tightly related to the Web
= Normally, they provide RESTful HTTP APIs
O So... what Is the benefit of having
documents?

= New data model (collections and documents)
New atom: from rows to documents

= Indexing

g March 2014 Alberto Abell6 & Oscar Romero
0 S

Designing Document Stores

O Follow one basic rule: 1 fetch for the whole
data set at hand

= Aggregate data model: check the data needed by
your application simultaneously

Do not think relational-wise!
= Use indexes to identify finer data granularities

O Conseqgquences:
= Independent documents
Avoid pointing FKs (i.e., pointing at other docs)
= Massive denormalization

= A change in the application layout might be
dramatic

It may entail a massive rearrangement of the database
documents

{i—g&% March 2014 Alberto Abell6 & Oscar Romero
QU

JSON Document-Stores

0 JSON-like documents

= MongoDB
= CouchDB

o JSON is a lightweight data interchange format
= Brackets ([]) represent ordered lists

= Curly braces ({}) represent key-value dictionaries
Keys must be strings, delimited by quotes (")

Values can be strings, numbers, booleans, lists, or key-
value dictionaries

O Natively compatible with JavaScript
m Web browsers are natural clients

http://www.json.org/index.html

g@% March 2014 Alberto Abell6 & Oscar Romero 6
QU

JSON Example = g we

"genre": "drama",

"summary™: "On a fall night in 2003, Harvard undergrad and computer

programming genius Mark Zuckerberg sits down at his computer

and heatedly begins working on a new idea. In a fury of blogging

- - - and programming, what begins in his dorm room scon becomes a global

D fl n Itlon L] social network and a revolution in communication. A mere six years

D e - and 500 million friends later, Mark Zuckerberg is the youngest
billionaire in history... but for this entrepreneur, success leads
to both personal and legal complications.",

A document is an oo

"last_name"™: "Fincher™,
"first_name"™: "Dawid",

object represented , “

"actors™: [

- {
with an unbounded s e
"birth date™: ™1083",
n esti n Of arra : "role": "Mark Zuckerberg"
g y Jl "first_name": "Rooney",
- "last_name": "Mara",
and object S
constructs e e,

"birth_date™: "19283",

"role": " Eduardo Saverin "
be
{
"first name": "Justin",
"last_name": "Timberlake",
"birth_date™: "1881",
"role": "Sean Parker™
H

}
@ Serge Abiteboul, loana Manokescu, Philippe Rigaux, Marie-Christine Eousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011,

March 2014 Alberto Abell6 & Oscar Romero 7

MongoDB: Data Model

O Collections
= Definition: A grouping of MongoDB documents

A collection exists within a single database
Collections do not enforce a schema

= MongoDB Namespace: database.collection

O Documents
= Definition: JSON documents (serialized as BSON)

J March 2014
QU

Basic atom
Identified by id (user or system generated)
Aggregated view of data
May contain
= References (NOT FKs!) and
= Embedded documents

Alberto Abell6 & Oscar Romero

MongoDB: Document Example

user document

\

{
_1d: <ObjectlIdil>,
username: "123xyz

}

contact document

{
_id: <ObjectId2>,

user_id: <ObjectIdil>,
phone: "123-456-7890",
email: "xyz@example.com”

ad

e

3

N

access document

%F March 2014

{
_id: <ObjectId3>,

user_id: <ObjectIdl>,
level: 5,
group: "dev”

)

Alberto Abell6 &

Oscar Romero

MongoDB: Document Example

{

_id: <ObjectIdl>,

username: "123xyz",

contact: {

phone: "123-456-7890",
email: "xyz@example.com”
¥
access: {
level: 5,
group: l‘l‘devl‘l
)

)
)

%F March 2014

Alberto Abell6 & Oscar Romero

Embedded sub-

document

Embedded sub-

document

10

Actity

O Objective: Learn how to model documents

O Tasks:

1. (15’) Model the TPC-H using documents

2. (5’) Discussion

March 2014

PART (P_)
SF*200.000

PARTKEY —

NAME -

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

SUPPLIER (S_) -
SF*10,000

SUPPKEY -

NAME

ADDRESS

NATIONKEY Bl

PHONE

ACCTBAL

COMMENT

Alberto Abell6 & Oscar Romero

PARTSUPP (PS)
SF*500,000

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

CUSTOMER (C_)
SF*150,000

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

NATION (N_)
25

NATIONKEY

NAME

REGIONKEY

COMMENT

LINEITEM (L)
SF*6,000,000

ORDERKEY

ORDERS (0)
SF*1,500,000

ORDERKEY

PARTKEY

SUPPKEY

CUSTKEY

ORDERSTATUS

LINENUMBER

TOTALPRICE

QUANTITY

EXTENDEDPRICH

ORDERDATE

DISCOUNT

ORDER-
PRIORITY

TAX

CLERK

RETURNFLAG

SHIP-
PRIORITY

LINESTATUS

COMMENT

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

REGION (R)
5

REGIONKEY

NAME

COMMENT

11

MongoDB Shell

OO0O0O0O0O0oOO0OO0Oo0OoOooao

O

5

Show dbs

Use <database>

Show collections

Show users

coll = db.<collection>
Find(criteria, projection)
Insert(document)
Update(query, update, options)
Save(document)
Remove(query, justOne)

Drop()
Ensurelndex(keys, options)

Notes:
m db refers to the current database
= duery is a document (query-by-example)

March 2014 Alberto Abell6 & Oscar Romero

12

http://docs.mongodb.org/manual/reference/mongo-shell/
http://docs.mongodb.org/manual/reference/mongo-shell/
http://docs.mongodb.org/manual/reference/mongo-shell/
http://docs.mongodb.org/manual/reference/mongo-shell/

MongoDB: Querying

O Find and findOne methods
database.collection.find()
database.collection.find({ qty: { $gt: 25 } })
database.collection.find({ field: { $gt: valuel, $It: value2 } })

O Aggregation Framework
= An aggregation pipeline
= Documents enter a multi-stage pipeline that transforms
them into an aggregated result

Filters that operate like queries
Document transformations that modify the form of the output
Grouping
Sorting
Other operations

0 MapReduce

g@% March 2014 Alberto Abell6 & Oscar Romero 13
QU

MongoDB: The Aggregation Framework

Collection

db.orders.aggregate(
$match phase—{ $match: { status: "A" } 3},

$group phase——»{ $group: { _id: "$cust_id"”,total: { $sum: "$amount” } } }

)
{
cust_id: "A123",
amount: 588,
status: "A"
1 ‘ cust_id: “"A123"
_1d: :
amount: 588, Results
{ status: "A"
cust_id: "A123", } {
amount: 258, _id: "A123",
status: "A" total: 756
} { }
cust_id: "A123",
(Snatch > e Seroup >
cust_id: "B212", 3 {
amount: 288,
status: "A" total: 209
: custid: e,)
amount: 288,
{ status: "A"
cust_id: "A123", }
amount: 388,
status: "D"
1

orders

% March 2014 Alberto Abell6 & Oscar Romero

MongoDB: Architecture

Shard Shard Shard Shard Shard Shard
Server Server Server Server Server Server
(primary) (secondary) (primary) (secondary) (primary) (secondary)

Keep a map between key range and chunk
Keep a map between chunk and shard

Monitor the write request and statistically estimate
whether the chunk reaching its max capacity.
Initiate split request if necessary

| Config
Server
(mongod)

For update, route request based on doc shard key
Periodically poll chunk distribution among shards For query, route request if find criteria contain shard
Trigger migration when unbalance is detected key. Otherwise, do scatter and gather
Client Lib For sort by shard key, route request sequentially
For sort by non-shard key, scatter the sort request
and merge/sort the result from different servers

http://horicky.blogspot.com.es/2012/04/mongodb-architecture.html

qg};é%{ March 2014 Oscar Romero 15

Qc
j_l_)

MongoDB: Storage

Free Free Free
space space space
Free Free
space space

. . Btree Btree
struct Disklocation { Collection -
fileNo Namespace { Index

offset Namespace

} Btree Btree Btree Btree
Mode Node Node Node

Doc Doc Doc Doc
Record Record Record Record

Actual data + padding
Padding factor is collection specific

http://horicky.blogspot.com.es/2012/04/mongodb-architecture.html
March 2014 Oscar Romero 16

MongoDB: Fragmentation

O Based on sharding (horizontal fragmentation)

= Shard key: a mandatory field in all documents of
the collection

= Chunk: Hash-based or range-based horizontal
fragmentation according to the shard key
Range-based: MongoDB determines the chunks by range
= Adequate for range queries

Hash-based: Consistent hashing (a hash function
determines the chunks)

= A Hash-indexed field is required

|

Chtnk | Chunk 2 Chunk 3 Chﬁnk"r

-+

March 2014 Oscar Romero 17
QU

MongoDB: Notation

0 Shard clusters

= Shards: Nodes containing data
A shard may contain several chunks

= Config Servers: Nodes containing the global
catalog (e.g., hash directory)

= Query routers: Nodes containing a copy of the
hash directory to redirect queries

March 2014 Oscar Romero
QU

18

MongoDB: Shard Clusters Management

O Query routers are replicas of the config servers
= Secondary versioning (config servers)

= Eager replication (to both config servers and query
routers)

2PCP (potential distributed deadlocks!)

O Config Servers

= The hash directory is mandatorily replicated to avoid
single-point failures
MongoDB asks for 3 config servers
= Writes happen if:
A shard splits
A chunk migrates between servers (e.g., adding servers)

O Query routers

= Read from config servers
When they start (o restart)
Every time a split / migration happens

J March 2014 Oscar Romero 19
QU

MongoDB: Splitting/ Migrating Chunks

0 Default chunk size: 64MB

O The query router (mongos) asks a shard to split
= Inserts and updates trigger splits

O Shards rearrange the data (data migration)

= During the migration requests to that chunk address
the origin shard

= Changes made during the migration are afterwards
applied in the destination shard

= Finally, changes in the hash directory are made In the
config servers

Query routers eagerly synchronized

O A balancer avoids uneven distributions

J March 2014 Oscar Romero 20
QU

MongoDB: Replication

O Each shard (in a shard cluster) is a replica set
= Maps to a mongod instance (with its config servers)

O Replica Set: Master versioning with lazy replication
= One master
Write / Update / Delete

m Several replicas
Reads

O Replica Set management

= The master has recovery system

Writes / Updates / Deletes and index modifications are kept in
memory (@master)

Specific recovery system (journaling): WAL redo logging
When the journal (i.e., log) is flushed to disk it is deleted

= Members interconnected by heartbeats

= If the master fails, voting phase to decide a new master
PAXOS (arbiters allowed)

= If a replica fails, it catches up with the master once back

J March 2014 Oscar Romero
QU

21

MongoDB: Well-Known Limitations

O Architectural Issues

= Thumb rule: 70% of the database must fit in memory

= Be careful with updates! (padding)
Holes caused by reallocation
Compact the database from time to time

O Document Issues

= The resulting document of an aggregation pipeline cannot
exceed the maximum document size (16Mb)

= GridFS for larger documents
= Attribute names are kept as they are (nho catalog)
O Querying Issues
= No transactions

Consistency only guaranteed at document level
Strong / loose consistency parametrizable

= Thumb rule: A query must attack a single collection
= The aggregation capabilities are still rather immature
= NoO optimizer!

J March 2014 Oscar Romero 22
QU

Summary

O Document-stores
m Semi-structured value

® Indexing
O Designing document-stores
O MongoDB

ﬂ.,:t March 2014 Alberto Abell6 & Oscar Romero
&

23

Bibliography

O S. Abiteboul et al. Web Data Management.
Cambridge University Press, 2012

O E. Brewer. Towards Robust Distributed
Systems. PODC’'00

O D. Battre et al. Nephele/PACTs: A
Programming Model and Execution
-ramework for Web Scale Analytical
Processing. SoCC’10

o L. Liu and M.T. Ozsu (Eds.). Encyclopedia
of Database Systems. Springer, 2009

Rt March 2014 Alberto Abell6 & Oscar Romero 24
_]_Q_r__

Resources

O https://www.mongodb.org
O http://exist-db.org

%ﬁﬁ March 2014 Alberto Abell6 & Oscar Romero

25

	Document Stores
	Knowledge Objectives
	Application Objectives
	Structuring the Value
	Designing Document Stores
	JSON Document-Stores
	JSON Example
	MongoDB: Data Model
	MongoDB: Document Example
	MongoDB: Document Example
	Activity
	MongoDB Shell
	MongoDB: Querying
	MongoDB: The Aggregation Framework
	MongoDB: Architecture
	MongoDB: Storage
	MongoDB: Fragmentation
	MongoDB: Notation
	MongoDB: Shard Clusters Management
	MongoDB: Splitting/Migrating Chunks
	MongoDB: Replication
	MongoDB: Well-Known Limitations
	Summary
	Bibliography
	Resources

