
D
oc

u
m

en
t

S
to

re
s

Document Stores

March 2014 Alberto Abelló & Oscar Romero 1

D
oc

u
m

en
t

S
to

re
s

Knowledge Objectives

1. Explain the main difference between key-
value and document stores

2. Justify why indexing is a first-class citizen
for document-stores and it is not for key-
value stores

March 2014 Alberto Abelló & Oscar Romero 2

D
oc

u
m

en
t

S
to

re
s

Application Objectives

1. Given an application layout and a small
query workload, design a document-store
providing optimal support according to a
given set of criteria

March 2014 Alberto Abelló & Oscar Romero 3

D
oc

u
m

en
t

S
to

re
s

Structuring the Value

 Essentially, they are key-value stores
 Same design and architectural features

 The value is a document
 XML (e.g., eXist)
 JSON (e.g., MongoDB and CouchDB)

 Tightly related to the Web
 Normally, they provide RESTful HTTP APIs

 So… what is the benefit of having
documents?
 New data model (collections and documents)

 New atom: from rows to documents
 Indexing
 March 2014 Alberto Abelló & Oscar Romero 4

D
oc

u
m

en
t

S
to

re
s

Designing Document Stores

 Follow one basic rule: 1 fetch for the whole
data set at hand
 Aggregate data model: check the data needed by

your application simultaneously
 Do not think relational-wise!

 Use indexes to identify finer data granularities
 Consequences:

 Independent documents
 Avoid pointing FKs (i.e., pointing at other docs)

 Massive denormalization
 A change in the application layout might be

dramatic
 It may entail a massive rearrangement of the database

documents

March 2014 Alberto Abelló & Oscar Romero 5

D
oc

u
m

en
t

S
to

re
s

JSON Document-Stores

 JSON-like documents
 MongoDB
 CouchDB

 JSON is a lightweight data interchange format
 Brackets ([]) represent ordered lists
 Curly braces ({}) represent key-value dictionaries

 Keys must be strings, delimited by quotes (")
 Values can be strings, numbers, booleans, lists, or key-

value dictionaries

 Natively compatible with JavaScript
 Web browsers are natural clients

http://www.json.org/index.html

March 2014 Alberto Abelló & Oscar Romero 6

D
oc

u
m

en
t

S
to

re
s

JSON Example

 Definition:
A document is an
object represented
with an unbounded
nesting of array
and object
constructs

March 2014 Alberto Abelló & Oscar Romero 7

D
oc

u
m

en
t

S
to

re
s

MongoDB: Data Model

 Collections
 Definition: A grouping of MongoDB documents

 A collection exists within a single database
 Collections do not enforce a schema

 MongoDB Namespace: database.collection
 Documents

 Definition: JSON documents (serialized as BSON)
 Basic atom
 Identified by _id (user or system generated)
 Aggregated view of data
 May contain

 References (NOT FKs!) and
 Embedded documents

 March 2014 Alberto Abelló & Oscar Romero 8

D
oc

u
m

en
t

S
to

re
s

MongoDB: Document Example

March 2014 Alberto Abelló & Oscar Romero 9

D
oc

u
m

en
t

S
to

re
s

MongoDB: Document Example

March 2014 Alberto Abelló & Oscar Romero 10

D
oc

u
m

en
t

S
to

re
s

Activity
 Objective: Learn how to model documents
 Tasks:

1. (15’) Model the TPC-H using documents
2. (5’) Discussion

11 March 2014 Alberto Abelló & Oscar Romero

SELECT l_orderkey,
sum(l_extendedprice*(1-
l_discount)) as revenue,
o_orderdate, o_shippriority

FROM customer, orders, lineitem
WHERE c_mktsegment = '[SEGMENT]'
AND c_custkey = o_custkey AND
l_orderkey = o_orderkey AND
o_orderdate < '[DATE]' AND
l_shipdate > '[DATE]'

GROUP BY l_orderkey,
o_orderdate, o_shippriority

ORDER BY revenue desc,
o_orderdate;

D
oc

u
m

en
t

S
to

re
s

MongoDB Shell
 Show dbs
 Use <database>
 Show collections
 Show users
 coll = db.<collection>
 Find(criteria, projection)
 Insert(document)
 Update(query, update, options)
 Save(document)
 Remove(query, justOne)
 Drop()
 EnsureIndex(keys, options)

 Notes:

 db refers to the current database
 query is a document (query-by-example)

http://docs.mongodb.org/manual/reference/mongo-shell/

March 2014 Alberto Abelló & Oscar Romero 12

http://docs.mongodb.org/manual/reference/mongo-shell/
http://docs.mongodb.org/manual/reference/mongo-shell/
http://docs.mongodb.org/manual/reference/mongo-shell/
http://docs.mongodb.org/manual/reference/mongo-shell/

D
oc

u
m

en
t

S
to

re
s

MongoDB: Querying

 Find and findOne methods
database.collection.find()
database.collection.find({ qty: { $gt: 25 } })
database.collection.find({ field: { $gt: value1, $lt: value2 } })
 Aggregation Framework

 An aggregation pipeline
 Documents enter a multi-stage pipeline that transforms

them into an aggregated result
 Filters that operate like queries
 Document transformations that modify the form of the output
 Grouping
 Sorting
 Other operations

 MapReduce

March 2014 Alberto Abelló & Oscar Romero 13

D
oc

u
m

en
t

S
to

re
s

MongoDB: The Aggregation Framework

March 2014 Alberto Abelló & Oscar Romero 14

D
oc

u
m

en
t

S
to

re
s

MongoDB: Architecture

March 2014

http://horicky.blogspot.com.es/2012/04/mongodb-architecture.html
Oscar Romero 15

D
oc

u
m

en
t

S
to

re
s

MongoDB: Storage

March 2014
http://horicky.blogspot.com.es/2012/04/mongodb-architecture.html

Oscar Romero 16

D
oc

u
m

en
t

S
to

re
s

MongoDB: Fragmentation

 Based on sharding (horizontal fragmentation)
 Shard key: a mandatory field in all documents of

the collection
 Chunk: Hash-based or range-based horizontal

fragmentation according to the shard key
 Range-based: MongoDB determines the chunks by range

 Adequate for range queries
 Hash-based: Consistent hashing (a hash function

determines the chunks)
 A Hash-indexed field is required

March 2014 Oscar Romero 17

Vs.

D
oc

u
m

en
t

S
to

re
s

MongoDB: Notation

 Shard clusters
 Shards: Nodes containing data

 A shard may contain several chunks
 Config Servers: Nodes containing the global

catalog (e.g., hash directory)
 Query routers: Nodes containing a copy of the

hash directory to redirect queries

March 2014 Oscar Romero 18

D
oc

u
m

en
t

S
to

re
s

MongoDB: Shard Clusters Management
 Query routers are replicas of the config servers

 Secondary versioning (config servers)
 Eager replication (to both config servers and query

routers)
 2PCP (potential distributed deadlocks!)

 Config Servers
 The hash directory is mandatorily replicated to avoid

single-point failures
 MongoDB asks for 3 config servers

 Writes happen if:
 A shard splits
 A chunk migrates between servers (e.g., adding servers)

 Query routers
 Read from config servers

 When they start (o restart)
 Every time a split / migration happens

March 2014 Oscar Romero 19

D
oc

u
m

en
t

S
to

re
s

MongoDB: Splitting/Migrating Chunks

 Default chunk size: 64MB
 The query router (mongos) asks a shard to split

 Inserts and updates trigger splits
 Shards rearrange the data (data migration)

 During the migration requests to that chunk address
the origin shard

 Changes made during the migration are afterwards
applied in the destination shard

 Finally, changes in the hash directory are made in the
config servers
 Query routers eagerly synchronized

 A balancer avoids uneven distributions

March 2014 Oscar Romero 20

D
oc

u
m

en
t

S
to

re
s

MongoDB: Replication
 Each shard (in a shard cluster) is a replica set

 Maps to a mongod instance (with its config servers)
 Replica Set: Master versioning with lazy replication

 One master
 Write / Update / Delete

 Several replicas
 Reads

 Replica Set management
 The master has recovery system

 Writes / Updates / Deletes and index modifications are kept in
memory (@master)

 Specific recovery system (journaling): WAL redo logging
 When the journal (i.e., log) is flushed to disk it is deleted

 Members interconnected by heartbeats
 If the master fails, voting phase to decide a new master

 PAXOS (arbiters allowed)
 If a replica fails, it catches up with the master once back

March 2014 Oscar Romero 21

D
oc

u
m

en
t

S
to

re
s

MongoDB: Well-Known Limitations
 Architectural Issues

 Thumb rule: 70% of the database must fit in memory
 Be careful with updates! (padding)

 Holes caused by reallocation
 Compact the database from time to time

 Document Issues
 The resulting document of an aggregation pipeline cannot

exceed the maximum document size (16Mb)
 GridFS for larger documents

 Attribute names are kept as they are (no catalog)
 Querying Issues

 No transactions
 Consistency only guaranteed at document level
 Strong / loose consistency parametrizable

 Thumb rule: A query must attack a single collection
 The aggregation capabilities are still rather immature
 No optimizer!

March 2014 Oscar Romero 22

D
oc

u
m

en
t

S
to

re
s

March 2014 Alberto Abelló & Oscar Romero 23

Summary

 Document-stores
 Semi-structured value
 Indexing

 Designing document-stores
 MongoDB

D
oc

u
m

en
t

S
to

re
s

March 2014 Alberto Abelló & Oscar Romero 24

Bibliography

 S. Abiteboul et al. Web Data Management.
Cambridge University Press, 2012

 E. Brewer. Towards Robust Distributed
Systems. PODC’00

 D. Battre et al. Nephele/PACTs: A
Programming Model and Execution
Framework for Web Scale Analytical
Processing. SoCC’10

 L. Liu and M.T. Özsu (Eds.). Encyclopedia
of Database Systems. Springer, 2009

D
oc

u
m

en
t

S
to

re
s

Resources

 https://www.mongodb.org
 http://exist-db.org

March 2014 Alberto Abelló & Oscar Romero 25

	Document Stores
	Knowledge Objectives
	Application Objectives
	Structuring the Value
	Designing Document Stores
	JSON Document-Stores
	JSON Example
	MongoDB: Data Model
	MongoDB: Document Example
	MongoDB: Document Example
	Activity
	MongoDB Shell
	MongoDB: Querying
	MongoDB: The Aggregation Framework
	MongoDB: Architecture
	MongoDB: Storage
	MongoDB: Fragmentation
	MongoDB: Notation
	MongoDB: Shard Clusters Management
	MongoDB: Splitting/Migrating Chunks
	MongoDB: Replication
	MongoDB: Well-Known Limitations
	Summary
	Bibliography
	Resources

