BigTable (Key-Value stores)

Key-Value stores
(BigTable)

BigTable (Key-Value stores)

AR Ll &

Knowledge objectives

N =

Explain the structural components of HDFS

Explain how to avoid overloading the master
node in HDFS

Explain the structural components of HBase
Explain the main operations available in HBase
Compare relational and co-relational data models

Explain the role of the different functional
components in Hbase

Explain the tree structure of data in Hbase
Explain the cache mechanism of Hbase client

Compare a distributed tree against a hash
structure of data

. Explain the four kinds of replication protocols
. Explain the three possible scenarios identified by

the CAP theorem

JUL D September 2015 Alberto Abellé & Oscar Romero 2

BigTable (Key-Value stores)

Understanding Objectives

1. Calculate the number of round trips
needed in the lazy adjustment of a
directory tree

2. Add a new bucket in Linear Hashing
3. Add a new node in Consistent Hashing
4. Decide the number of needed reads and

wirikA necickFArn vy

+ho
WTITES LU UUCIICIIILCC \..UIIDIDLCIIL.Y III LIIC

presence of replicas

% September 2015 Alberto Abellé & Oscar Romero
[i* gu BT H)

Goals

o Schemaless
= No explicit schema
0 Easy setup and scalability

= Continuously evolve to support a growing amount
of tasks

o Efficiency

= How well the system performs, usually measured in
terms of response time and throughput

o Reliability/Availability

= Keep delivering service even if one of its software
or hardware components fail

Comes to the price of relaxing consistency
o Simple usage
= Put and Get operations

_I%%j September 2015 Alberto Abellé & Oscar Romero 4
[gu BT E

BigTable (Key-Value stores)

I Data Lake: Load-First, Model-Later

_ P ‘_ -
-
I MEMORY GRID M
% September 2015 Alberto Abell6 & Oscar Romero

0 Apache project
= Based on Google File System (GFS)

0 Designed to meet the following requirements:

a) Handle very large collections of unstructured or
semi-structured data

b) Data collections are written once and read many
times

c) The infrastructure underlying consists of thousands
of connected machines with high failure probability

o Traditional network file systems do partially fulfil
these requirements

= Operating Systems Vs. Database Management System

Balancing query load (e.g., by means of fragmentation and
replication) boosts avallablllty and reliability

= HDFS: Equal-sized file chunks evenly distributed

Lf%%j September 2015 Alberto Abellé & Oscar Romero 6
[gu BT E

I Hadoop File System (HDES)

HDEFES 1n a Nutshell

0 A single master (coordinator)
m Receives client connections

= Maintains the description of the global file system
namespace

m Keeps track of file chunks (default: 64Mb)
O Many servers
= Receive file chunks and store them

oA sin%Ie master design forfeits availability and
scalability

= Availability and reliability: Recovery system

Replication (a chunk always in 3 servers, by default)

Monitors the system with heartbeat messages to detect
failures as soon as possible

Specific recovery system to protect the master
= Scalability: Client cache

Lf%%j September 2015 Alberto Abellé & Oscar Romero
[gu BT E

BigTable (Key-Value stores)

HDES client cache

—> (FS structure Master node
- . messages (.f'lld].[-B!'{ﬁ].E | \

BigTable (Key-Value stores)

Client chunk 4
cache J. read(;’derfﬁlel)
: (]) ; E chunk b
File namespace Chunk locations ::
“"'r- aend(ﬁlel) 3) \ § J 2)
(4) ., cenerseemans . ;
read(/dirB/filel)

S. Abiteboul et al.

ﬁ September 2015 Alberto Abellé & Oscar Romero 8
U\

Key-Value

BigTable (Key-Value stores)

o Key-value stores
= Entries in form of key-values

One key maps only to one value

key

Bob |

= Query on key only
m Schemaless

value

key

Bob

> Michael_Elisabeth_30_Bobby 2010

o Column-family key-value stores
= Entries in form of key-values

But now values are splitted in columns

= Typically query on key

May have some support for values
= Schemaless within a column

)

September 2015
[i* gu BT H)

Families and Columns

mother:Elisabeth . _ name:Bobby
father:Michael connections: 30 birth_year:2010

Alberto Abellé & Oscar Romero

9

HBase

o Apache project
= Based on Google’s Bigtable

0 Designed to meet the following requirements

= Access specific data out of petabytes of data

= [t must support
Key search
Range search
High throughput file scans

= It must support single row transactions
o Do it yourself database... own decisions
regarding:
= Data structure
= Concurrency

= Recovery availability
CAP trade-off

% September 2015 Alberto Abellé & Oscar Romero 10
[i* gu BT H)

BigTable (Key-Value stores)

Schema elements

o Stores tables (collections) and rows (instances)
= Data is indexed using row and column names (arbitrary strings)
O Treats data as uninterpreted strings (without data types)

o Each cell of a BigTable can contain multiple versions of the
same data
m Stores different versions of the same values in the rows

m Each version is identified by a timestamp
Timestamps can be explicitly or automatically assigned

BigTable (Key-Value stores)

key value

/miyl family, T Tarmihg

column, column,,)
—_————————

version; |version, .- Version,

(row:string, column:string[, time:int64])—string

ﬁ September 2015 Alberto Abellé & Oscar Romero 11
U\

Just another point of view

Relaslipnal (mmp 1N
s D — D = -

%ﬁ September 2015 Alberto Abellé & Oscar Romero 12

BigTable (Key-Value stores)

OO0O0O0OO0OO0OO0OO0OO0OO0OOOoOoOooOooOoan

HBase Shell

ALTER <tablename>, <columnfamilyparam>
COUNT <tablename>

CREATE TABLE <tablename>

DESCRIBE <tablename>

DELETE <tablename>, <rowkey>[, <columns>]
DISABLE <tablename>

DROP < tablename>

ENABLE <tablename>

EXIT

EXISTS <tablename>

GET <tablename>, <rowkey>[, <columns>]
LIST

PUT <tablename>, <rowkey>, <columnid>, <value>[, <timestamp>]
SCAN <tablename>[, <columns>]

STATUS [{summary|simple|detailed}]
SHUTDOWN

ﬁ September 2015 Alberto Abellé & Oscar Romero 13
L

BigTable (Key-Value stores)

Physical implementation

-
=)

)\

o Each table is horizontally fragmented into tablets (called “regions” in HBase)
= Dynamic fragmentation
o By default into few hundreds of Mbs
= Distributed on a cluster of machines or cloud

At each tablet rows are stored column-wise according to families (hybrid fragmentation)
» Static fragmentation (the schema determines the locality of data)
o Multiple column families can be grouped together into a locality group
= A locality group can be “in-memory”
= Block compression can be enabled (i.e., column families are compressed together)
o Metadata table (~ catalog)
= Tuples are lexicographically sorted according to the key
o Each row (entry) consists of <key, loc>
= Key: it is the last key value in that tablet
= Loc: it is the physical address of a tablet
= This is a distributed index cluster (B-tree) on top of HDFS
o It is divided into tablets and chunks
o Supports single row transactions

%ﬂ September 2015 Alberto Abellé & Oscar Romero 14

O

Functional components of HBase (I)

o Zookeeper
= Quorum of servers that stores HBase system config info
o Hmaster
= Coordinates splitting of regions/rows across nodes
= Controls distribution of HFile chunks
o Region Servers (HRegionServer)
= Services HBase client requests
Manage stores containing all column families of the region
= Logs changes
= Guarantees “atomic” updates to one column family
= Holds (caches) chunks of Hfile into Memstores, waiting to be written
o HFiles
= Consist of large (e.g., 64MB) chunks
3 copies of one chunk for availability (default)
o HDFS

m Stores all data including columns and logs
NameNode holds all metadata including namespace
DataNodes store chunks of a file
= HBase uses two HDFS file types
HFile: regular data files (holds column data)
Hlog: region’s log file (allows flush/fsync for small append-style writes)

BigTable (Key-Value stores)

o Clients

= Read and write chunks
Locality & load determine which copy to access

ﬁ September 2015 Alberto Abellé & Oscar Romero
U\

1 1 1 1
ZooKeeper HBase cluster —i HDFS cluster
1 1 1

2.7

HBase Server
keeps

B i
- 1
1 manages » 1.7 ’—‘—\
HMaster HRegion Server

1 0.1

runs an
-

I Functional components of HBase (1I)

DFS client

RSEDSEGCK secondary primary copy

copies = v

1.*
. 2“*
a erver
keeps frack 1 4holds|
" | Secondary HameNode
x 1
1.* *
. |
META. Region | HFile ‘ ‘ NameNode
1
1 .

Memstore ‘ | Storefile }1—

*

HBase

- A primary copy must be stored in the same Dataklode the HRegionServer runs on. n
- Secondary copies can be stored in any DataiMode different from the DataMode the HRegionServer runs on. B
- All the stores of a given family correspond to the same table as this family.

HDFS

A Anelement of class B is associated with n elements of A and viceversa
B —[> & Class Bis a specialization (subtype) of class A

B —Q A Class Als composed by elements of class B

September 2015 Alberto &heﬂé&%@p@l@mero 16

Root tablet

"metadata" tablets

I A Distributed Index Cluster

"metadata" tablets
[km, IGC][k'p, loc] (...)
//, \\
key “columns key ~columns \

{% k1l row 1 1) row 1
~Tk2 | row2 - row 2
g O (.u)

(...) o (...)
o)
b £
5 lkm | rowm o| k'p| rowp
un

atablet T a tablet T' other tablets

S. Abiteboul et al.

% September 2015 Alberto Abellé & Oscar Romero 17
[i* gu BT H)

HBase Design Decisions (I)

0 One master server

= Maintenance of the table schemas
Root tablet

= Monitoring of services (heartbeating)
= Assignment of tablets to servers

o Many tablet servers

= Each handling around 100-1.000 tablets
= Apply concurrency and recovery techniques

= Managing split of tablets
A tablet server decides to split
Half of its tablets are sent to another server

= Managing merge of tablets
o Client nodes

ﬁ September 2015 Alberto Abellé & Oscar Romero
SR8y

BigTable (Key-Value stores)

18

root node

I HBase Design Decisions (1)

Client
o [1,231] [232,562] [563,682] [?69,]:.000]
image l _search(856)
answer +
o 9 e image adjustment

1,231] [232,562] [563,1000]

S. Abiteboul et al.

O Mistake compensation

= The client keeps in cache the tree sent by the
master and uses it to access data

= If an out-of-range error is triggered, it is
forwarded to the root

In the worst case, 6 network round trips

ﬁ September 2015 Alberto Abellé & Oscar Romero
L

19

Distributed Hashing (alternative to a tree)

o Hash do neither support range queries nor
nearest neighbours search

o Distributed hashing challenges \
= Dynamicity: Typical hash functionh(.mmf

f(x) = x % #servers
Adding a new server implies modifying hash function

= Massive data transfer

= Communicating the new function to all servers

= Location of the hash directory: any access
must go through the hash directory

BigTable (Key-Value stores)

ﬁ September 2015 Alberto Abellé & Oscar Romero 20
SR8y

Distributed Hashing: Examples

o Most current key-value (and document-
stores) use distributed hashing
m LH*
Memcached
MongoDB (past releases)

= Consistent Hashing
Memcached / CouchDB

MAarnm~Aa~AND fA~A1irAnmd »AlAanaca)
MoOlrgouuwp (CUIIClliuL 1Cicadstc)
Cassandra

Dynamo / SimpleDB

Voldemort

BigTable (Key-Value stores)

ﬁ September 2015 Alberto Abellé & Oscar Romero
U\

21

Distributed Linear Hashing (ILH*)

0 Maintains an efficient hash in front of dynamicity
= A split pointer is kept (next bucket to split)
= A pair of hash functions are considered
%?2" and %?2"+1 (being 2"<#servers <2n+1)
= Overflow buckets are considered

When a bucket overflows the bucket pointed by the split
pointer splits (not the overflown one)

BigTable (Key-Value stores)

buckets buckets
p=0 (50 72) (b0 h3)

4.8,24,32 split .| 8:24.32

(bl n2) ~p=1 (b1 h2)
9,17,25 9,17, 25

- >y A

(b2 h2) (b2 h2) (overflow

47 eomeremennen » 10, 18,30, 38 10, 18, 30, 38 42

L. . - .

(b3 52) (b3 h2)

7, 11,15 7, 11,15

A -/) L. —y

4

Bucket b2 receives a new object Bucket b0 splits; bucket b2 is linked to a new one S. Abiteboul et al.

Alberto Abellé & Oscar Romero 22

September 2015
U\

Updating the Hash Directory in LH*

o Traditionally, each participant has a copy of
the hash directory
= Changes in the hash directory (either hash functions
or splits) imply gossiping
Including clients nodes
It might be acceptable if not too dynamic

BigTable (Key-Value stores)

0 Alternatively, they s
may contain a partial e

e 13
A h3

representation and B R PNt

assume |a2y t et p=2:

10, 18, 30, 38

adjustment s

3,19 27,43

S —

= Apply forwarding path N

4,20, 28
3) result + adjust (n=2) (§5 h3)

. S
5,21,29

S. Abiteboul et al.

ﬁ September 2015 Alberto Abellé & Oscar Romero 23
L

Consistent Hashing

o The hash function never changes

= Choose a very large domain D and map server IP
addresses and object keys to such domain

= Organize D as a ring in clockwise order so each
node has a successor

= Objects are assigned as follows:
For an object O, f(O) = D,
Let D,, and D,~ be the two nodes in the ring such that
= D, < D, <= D~
O is assigned to D,

O Further refinements:

= Assign to the same server several hash values
(virtual servers) to balance load

B Eﬁ[pe considerations for the hash directory as for

BigTable (Key-Value stores)

_I%%j September 2015 Alberto Abellé & Oscar Romero 24
s

[P1-1 IP1-1

Object b New server Object b

P2-2 IP2-2

be moved from TP1-1

to IP3-2

I Adding new server in Consistent Hashing
:

IP3-1

Object a Object a

Mapping of objects to servers Server [P3-2 is added, with local re-hashing

S. Abiteboul et al.

o Adding a new server is straightforward

= It is placed in the ring and part of its
successors’ objects are transferred to it

% September 2015 Alberto Abellé & Oscar Romero 25
U-

directories

O Tasks:

1.(5’) Individually solve one exercise
2.(10’) Explain the solution to the others
3.Hand In the three solutions

Actty
O Objective: Understand the three distributed

O Roles for the team-mates during task 2:
a)Explains his/her material
h)Asks for clarification of blur concepts
c) Mediates and controls time

_I%%j September 2015 Alberto Abellé & Oscar Romero 26
[gu BT E

Summary

ADFS components
ABase components

Data distribution structures
= B-Tree

= Linear hash

= Consistent hash

O

BigTable (Key-Value stores)
O 0O

ﬁ September 2015 Alberto Abellé & Oscar Romero
U\

27

Bibliography

S. Ghemawat et al. The Google File System. OSDI'03

F. Chang et all. Bigtable: A Distributed Storage
System for Structured Data. OSDI'06

o M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems, 3™ Ed. Springer, 2011

o P. Sadagale and M. Fowler. NoSQL distilled. Addison-
Wesley, 2013

o E. Meijer and G. Bierman. A Co-Relational model of

data for large shared data banks. Communications of
the ACM 54(4), 2011

o S. Abiteboul et al. Web data management. Cambridge
University Press, 2011

o W. Vogels. Eventually consistent. ACM QUEUE,
October 2008

BigTable (Key-Value stores)
O 0

Ny September 2015 Alberto Abellé & Oscar Romero 28

Resources

o http://hadoop.apache.org
o http://hbase.apache.org

o http://www.oracle.com/technetwork/prod
ucts/nosqldb/index.html

BigTable (Key-Value stores)

ﬁ September 2015 Alberto Abellé & Oscar Romero
L

29

