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Knowledge objectives

N =

Explain the structural components of HDFS

Explain how to avoid overloading the master
node in HDFS

Explain the structural components of HBase
Explain the main operations available in HBase
Compare relational and co-relational data models

Explain the role of the different functional
components in Hbase

Explain the tree structure of data in Hbase
Explain the cache mechanism of Hbase client

Compare a distributed tree against a hash
structure of data

. Explain the four kinds of replication protocols
. Explain the three possible scenarios identified by

the CAP theorem
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Understanding Objectives

1. Calculate the number of round trips
needed in the lazy adjustment of a
directory tree

2. Add a new bucket in Linear Hashing
3. Add a new node in Consistent Hashing
4. Decide the number of needed reads and
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presence of replicas
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Goals

o Schemaless
= No explicit schema
0 Easy setup and scalability

= Continuously evolve to support a growing amount
of tasks

o Efficiency

= How well the system performs, usually measured in
terms of response time and throughput

o Reliability/Availability

= Keep delivering service even if one of its software
or hardware components fail

Comes to the price of relaxing consistency
o Simple usage
= Put and Get operations
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I Data Lake: Load-First, Model-Later
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0 Apache project
= Based on Google File System (GFS)

0 Designed to meet the following requirements:

a) Handle very large collections of unstructured or
semi-structured data

b) Data collections are written once and read many
times

c) The infrastructure underlying consists of thousands
of connected machines with high failure probability

o Traditional network file systems do partially fulfil
these requirements

= Operating Systems Vs. Database Management System

Balancing query load (e.g., by means of fragmentation and
replication) boosts avallablllty and reliability

= HDFS: Equal-sized file chunks evenly distributed
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HDEFES 1n a Nutshell

0 A single master (coordinator)
m Receives client connections

= Maintains the description of the global file system
namespace

m Keeps track of file chunks (default: 64Mb)
O Many servers
= Receive file chunks and store them

oA sin%Ie master design forfeits availability and
scalability

= Availability and reliability: Recovery system

Replication (a chunk always in 3 servers, by default)

Monitors the system with heartbeat messages to detect
failures as soon as possible

Specific recovery system to protect the master
= Scalability: Client cache
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HDES client cache
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S. Abiteboul et al.
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Key-Value

BigTable (Key-Value stores)

o Key-value stores
= Entries in form of key-values

One key maps only to one value

key

Bob |

= Query on key only
m Schemaless

value

key

Bob

> Michael_Elisabeth_30_Bobby 2010

o Column-family key-value stores
= Entries in form of key-values

But now values are splitted in columns

= Typically query on key

May have some support for values
= Schemaless within a column

)
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Families and Columns

mother:Elisabeth . _ name:Bobby
father:Michael connections: 30 birth_year:2010

Alberto Abellé & Oscar Romero
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HBase

o Apache project
= Based on Google’s Bigtable

0 Designed to meet the following requirements

= Access specific data out of petabytes of data

= [t must support
Key search
Range search
High throughput file scans

= It must support single row transactions
o Do it yourself database... own decisions
regarding:
= Data structure
= Concurrency

= Recovery availability
CAP trade-off
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Schema elements

o Stores tables (collections) and rows (instances)
= Data is indexed using row and column names (arbitrary strings)
O Treats data as uninterpreted strings (without data types)

o Each cell of a BigTable can contain multiple versions of the
same data
m Stores different versions of the same values in the rows

m Each version is identified by a timestamp
Timestamps can be explicitly or automatically assigned

BigTable (Key-Value stores)

key value

/miyl family, T Tarmihg

column, column,, )
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version; |version, .- Version,

(row:string, column:string[, time:int64])—string
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Just another point of view
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HBase Shell

ALTER <tablename>, <columnfamilyparam>
COUNT <tablename>

CREATE TABLE <tablename>

DESCRIBE <tablename>

DELETE <tablename>, <rowkey>[, <columns>]
DISABLE <tablename>

DROP < tablename>

ENABLE <tablename>

EXIT

EXISTS <tablename>

GET <tablename>, <rowkey>[, <columns>]
LIST

PUT <tablename>, <rowkey>, <columnid>, <value>[, <timestamp>]
SCAN <tablename>[, <columns>]

STATUS [{summary|simple|detailed}]
SHUTDOWN
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Physical implementation

-
=)

)\

o Each table is horizontally fragmented into tablets (called “regions” in HBase)
= Dynamic fragmentation
o By default into few hundreds of Mbs
= Distributed on a cluster of machines or cloud

At each tablet rows are stored column-wise according to families (hybrid fragmentation)
» Static fragmentation (the schema determines the locality of data)
o Multiple column families can be grouped together into a locality group
= A locality group can be “in-memory”
= Block compression can be enabled (i.e., column families are compressed together)
o Metadata table (~ catalog)
= Tuples are lexicographically sorted according to the key
o Each row (entry) consists of <key, loc>
= Key: it is the last key value in that tablet
= Loc: it is the physical address of a tablet
= This is a distributed index cluster (B-tree) on top of HDFS
o It is divided into tablets and chunks
o Supports single row transactions
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Functional components of HBase (I)

o Zookeeper
= Quorum of servers that stores HBase system config info
o Hmaster
= Coordinates splitting of regions/rows across nodes
= Controls distribution of HFile chunks
o Region Servers (HRegionServer)
= Services HBase client requests
Manage stores containing all column families of the region
= Logs changes
= Guarantees “atomic” updates to one column family
= Holds (caches) chunks of Hfile into Memstores, waiting to be written
o HFiles
= Consist of large (e.g., 64MB) chunks
3 copies of one chunk for availability (default)
o HDFS

m Stores all data including columns and logs
NameNode holds all metadata including namespace
DataNodes store chunks of a file
= HBase uses two HDFS file types
HFile: regular data files (holds column data)
Hlog: region’s log file (allows flush/fsync for small append-style writes)

BigTable (Key-Value stores)

o Clients

= Read and write chunks
Locality & load determine which copy to access
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HBase

- A primary copy must be stored in the same Dataklode the HRegionServer runs on. n
- Secondary copies can be stored in any DataiMode different from the DataMode the HRegionServer runs on. B
- All the stores of a given family correspond to the same table as this family.

HDFS

A Anelement of class B is associated with n elements of A and viceversa
B —[> & Class Bis a specialization (subtype) of class A

B —Q A Class Als composed by elements of class B
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Root tablet

"metadata" tablets

I A Distributed Index Cluster
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S. Abiteboul et al.
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HBase Design Decisions (I)

0 One master server

= Maintenance of the table schemas
Root tablet

= Monitoring of services (heartbeating)
= Assignment of tablets to servers

o Many tablet servers

= Each handling around 100-1.000 tablets
= Apply concurrency and recovery techniques

= Managing split of tablets
A tablet server decides to split
Half of its tablets are sent to another server

= Managing merge of tablets
o Client nodes
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root node

I HBase Design Decisions (1)

Client
o [1,231] [232,562] [563,682] [?69,]:.000]
image l _search(856)
answer +
o 9 e image adjustment

1,231] [232,562] [563,1000]

S. Abiteboul et al.

O Mistake compensation

= The client keeps in cache the tree sent by the
master and uses it to access data

= If an out-of-range error is triggered, it is
forwarded to the root

In the worst case, 6 network round trips
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Distributed Hashing (alternative to a tree)

o Hash do neither support range queries nor
nearest neighbours search

o Distributed hashing challenges \
= Dynamicity: Typical hash functionh(.mmf

f(x) = x % #servers
Adding a new server implies modifying hash function

= Massive data transfer

= Communicating the new function to all servers

= Location of the hash directory: any access
must go through the hash directory

BigTable (Key-Value stores)
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Distributed Hashing: Examples

o Most current key-value (and document-
stores) use distributed hashing
m LH*
Memcached
MongoDB (past releases)

= Consistent Hashing
Memcached / CouchDB

MAarnm~Aa~AND fA~A1irAnmd »AlAanaca)
MoOlrgouuwp (CUIIClliuL 1Cicadstc)
Cassandra

Dynamo / SimpleDB

Voldemort

BigTable (Key-Value stores)
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Distributed Linear Hashing (ILH*)

0 Maintains an efficient hash in front of dynamicity
= A split pointer is kept (next bucket to split)
= A pair of hash functions are considered
%?2" and %?2"+1 (being 2"<#servers <2n+1)
= Overflow buckets are considered

When a bucket overflows the bucket pointed by the split
pointer splits (not the overflown one)

BigTable (Key-Value stores)

buckets buckets
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Bucket b2 receives a new object Bucket b0 splits; bucket b2 is linked to a new one S. Abiteboul et al.
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Updating the Hash Directory in LH*

o Traditionally, each participant has a copy of
the hash directory
= Changes in the hash directory (either hash functions
or splits) imply gossiping
Including clients nodes
It might be acceptable if not too dynamic
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0 Alternatively, they s
may contain a partial e
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S. Abiteboul et al.
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Consistent Hashing

o The hash function never changes

= Choose a very large domain D and map server IP
addresses and object keys to such domain

= Organize D as a ring in clockwise order so each
node has a successor

= Objects are assigned as follows:
For an object O, f(O) = D,
Let D,, and D,~ be the two nodes in the ring such that
= D, < D, <= D~
O is assigned to D,

O Further refinements:

= Assign to the same server several hash values
(virtual servers) to balance load

B Eﬁ[pe considerations for the hash directory as for

BigTable (Key-Value stores)
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[P1-1 IP1-1

Object b New server Object b

P2-2 IP2-2

be moved from TP1-1

to IP3-2

I Adding new server in Consistent Hashing
:

IP3-1

Object a Object a

Mapping of objects to servers Server [P3-2 is added, with local re-hashing

S. Abiteboul et al.

o Adding a new server is straightforward

= It is placed in the ring and part of its
successors’ objects are transferred to it
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directories

O Tasks:

1.(5’) Individually solve one exercise
2.(10’) Explain the solution to the others
3.Hand In the three solutions

Actty
O Objective: Understand the three distributed

O Roles for the team-mates during task 2:
a)Explains his/her material
h)Asks for clarification of blur concepts
c) Mediates and controls time
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Summary

ADFS components
ABase components

Data distribution structures
= B-Tree

= Linear hash

= Consistent hash

O

BigTable (Key-Value stores)
O 0O
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Resources

o http://hadoop.apache.org
o http://hbase.apache.org

o http://www.oracle.com/technetwork/prod
ucts/nosqldb/index.html
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