
st
or

es
)

y-
Va

lu
e

s
Ta

bl
e

(K
ey

B
ig

Ta Key-Value stores
(BigTable)

Alberto Abelló & Oscar Romero 1September 2015

st
or

es
)

Knowledge objectives
y-

Va
lu

e
s

1. Explain the structural components of HDFS
2. Explain how to avoid overloading the master

Ta
bl

e
(K

ey

p a o to a o d o e oad g t e aste
node in HDFS

3. Explain the structural components of HBase
4 Explain the main operations available in HBase

B
ig

Ta 4. Explain the main operations available in HBase
5. Compare relational and co-relational data models
6 Explain the role of the different functional 6. Explain the role of the different functional

components in Hbase
7. Explain the tree structure of data in Hbase

E l i th h h i f Hb li t8. Explain the cache mechanism of Hbase client
9. Compare a distributed tree against a hash

structure of datastructure of data
10. Explain the four kinds of replication protocols
11. Explain the three possible scenarios identified by

th CAP th
Alberto Abelló & Oscar Romero 2

the CAP theorem
September 2015

st
or

es
)

Understanding Objectives
y-

Va
lu

e
s

1. Calculate the number of round trips

Ta
bl

e
(K

ey needed in the lazy adjustment of a
directory tree

B
ig

Ta

2. Add a new bucket in Linear Hashing
3 Add a new node in Consistent Hashing3. Add a new node in Consistent Hashing
4. Decide the number of needed reads and

writes to guarantee consistency in the writes to guarantee consistency in the
presence of replicas

Alberto Abelló & Oscar Romero 3September 2015

st
or

es
)

Goals
y-

Va
lu

e
s

 Schemaless
 No explicit schema

Ta
bl

e
(K

ey  No explicit schema
 Easy setup and scalability

 Continuously evolve to support a growing amount

B
ig

Ta Co uous y e o e o suppo a g o g a ou
of tasks

 Efficiency
How well the system performs usually measured in  How well the system performs, usually measured in
terms of response time and throughput

 Reliability/Availabilityy y
 Keep delivering service even if one of its software

or hardware components fail
 Comes to the price of relaxing consistencyp g y

 Simple usage
 Put and Get operations

Alberto Abelló & Oscar Romero 4September 2015

st
or

es
)

Data Lake: Load-First, Model-Later
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

5
Alberto Abelló & Oscar RomeroSeptember 2015

st
or

es
)

Hadoop File System (HDFS)
y-

Va
lu

e
s

 Apache project
 Based on Google File System (GFS)

Ta
bl

e
(K

ey  Based on Google File System (GFS)
 Designed to meet the following requirements:

a) Handle very large collections of unstructured or

B
ig

Ta a) a d e e y a ge co ec o s o u s uc u ed o
semi-structured data

b) Data collections are written once and read many
timestimes

c) The infrastructure underlying consists of thousands
of connected machines with high failure probability

 Traditional network file systems do partially fulfil  Traditional network file systems do partially fulfil
these requirements
 Operating Systems Vs. Database Management Systemp g y g y

 Balancing query load (e.g., by means of fragmentation and
replication) boosts availability and reliability
 HDFS: Equal-sized file chunks evenly distributed

Alberto Abelló & Oscar Romero 6September 2015

st
or

es
)

HDFS in a Nutshell
y-

Va
lu

e
s

 A single master (coordinator)
 Receives client connections

Ta
bl

e
(K

ey  Receives client connections
 Maintains the description of the global file system

namespace
k f fil h k (d f l 6 b)

B
ig

Ta  Keeps track of file chunks (default: 64Mb)
 Many servers

 Receive file chunks and store them Receive file chunks and store them
 A single master design forfeits availability and

scalability
 Availability and reliability: Recovery system

 Replication (a chunk always in 3 servers, by default)
 Monitors the system with heartbeat messages to detect o to s t e syste t ea tbeat essages to detect

failures as soon as possible
 Specific recovery system to protect the master

 Scalability: Client cachey

Alberto Abelló & Oscar Romero 7September 2015

st
or

es
)

HDFS client cache
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

Alberto Abelló & Oscar Romero 8

S. Abiteboul et al.

September 2015

st
or

es
)

Key-Value
y-

Va
lu

e
s

 Key-value stores
 Entries in form of key-values

Ta
bl

e
(K

ey

y
 One key maps only to one value

 Query on key only
 Schemaless

B
ig

Ta

Bob Michael_Elisabeth_30_Bobby_2010

key value

 Column-family key-value stores
 Entries in form of key-values

 But now values are splitted in columns But now values are splitted in columns
 Typically query on key

 May have some support for values
 Schemaless within a column Schemaless within a column

Bob mother:Elisabeth

key Families and Columns

connections:30 name:Bobby

9

Bob father:Michael connections:30 y
birth_year:2010

Alberto Abelló & Oscar RomeroSeptember 2015

st
or

es
)

HBase
y-

Va
lu

e
s

 Apache project
 Based on Google’s Bigtable

Ta
bl

e
(K

ey  Based on Google s Bigtable
 Designed to meet the following requirements

 Access specific data out of petabytes of data

B
ig

Ta ccess spec c da a ou o pe aby es o da a
 It must support

 Key search
 Range search Range search
 High throughput file scans

 It must support single row transactions
D it lf d t b d i i  Do it yourself database… own decisions
regarding:
 Data structureData structure
 Concurrency
 Recovery availability

CAP trade off CAP trade-off
Alberto Abelló & Oscar Romero 10September 2015

st
or

es
)

Schema elements
y-

Va
lu

e
s

 Stores tables (collections) and rows (instances)
 Data is indexed using row and column names (arbitrary strings)

Ta
bl

e
(K

ey

g (y g)
 Treats data as uninterpreted strings (without data types)
 Each cell of a BigTable can contain multiple versions of the

same data

B
ig

Ta

 Stores different versions of the same values in the rows
 Each version is identified by a timestamp

 Timestamps can be explicitly or automatically assigned

key value

family1 family2 familyn…

column1 column2 columnm…

version1 version2 versionp…

(t i l t i [ti i t64]) t i(row:string, column:string[, time:int64])string
Alberto Abelló & Oscar Romero 11September 2015

st
or

es
)

Just another point of view
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta Child Parent

Child Parent

Alberto Abelló & Oscar Romero 12September 2015

st
or

es
)

HBase Shell
y-

Va
lu

e
s

 ALTER <tablename>, <columnfamilyparam>
 COUNT <tablename>

Ta
bl

e
(K

ey  COUNT <tablename>
 CREATE TABLE <tablename>
 DESCRIBE <tablename>
 DELETE <tablename> <rowkey>[<columns>]

B
ig

Ta  DELETE <tablename>, <rowkey>[, <columns>]
 DISABLE <tablename>
 DROP < tablename>
 ENABLE <tablename> ENABLE <tablename>
 EXIT
 EXISTS <tablename>
 GET <tablename>, <rowkey>[, <columns>], y [,]
 LIST
 PUT <tablename>, <rowkey>, <columnid>, <value>[, <timestamp>]
 SCAN <tablename>[, <columns>][]
 STATUS [{summary|simple|detailed}]
 SHUTDOWN

Alberto Abelló & Oscar Romero 13September 2015

st
or

es
)

Physical implementation
y-

Va
lu

e
s

Ta
bl

e
(K

ey

Key

B
ig

Ta

 Each table is horizontally fragmented into tablets (called “regions” in HBase)
 Dynamic fragmentation

 By default into few hundreds of Mbs
 Distributed on a cluster of machines or cloud

 At each tablet rows are stored column wise according to families (hybrid fragmentation) At each tablet rows are stored column-wise according to families (hybrid fragmentation)
 Static fragmentation (the schema determines the locality of data)

 Multiple column families can be grouped together into a locality group
 A locality group can be “in-memory”

 Block compression can be enabled (i.e., column families are compressed together)
 Metadata table (~ catalog) Metadata table (~ catalog)

 Tuples are lexicographically sorted according to the key
 Each row (entry) consists of <key, loc>

 Key: it is the last key value in that tablet
 Loc: it is the physical address of a tablet

 This is a distributed index cluster (B-tree) on top of HDFS() p
 It is divided into tablets and chunks
 Supports single row transactions

Alberto Abelló & Oscar Romero 14September 2015

st
or

es
)

Functional components of HBase (I)
y-

Va
lu

e
s

 Zookeeper
 Quorum of servers that stores HBase system config info

 Hmaster

Ta
bl

e
(K

ey  Hmaster
 Coordinates splitting of regions/rows across nodes
 Controls distribution of HFile chunks

 Region Servers (HRegionServer)
 Services HBase client requests

B
ig

Ta  Services HBase client requests
 Manage stores containing all column families of the region

 Logs changes
 Guarantees “atomic” updates to one column family
 Holds (caches) chunks of Hfile into Memstores, waiting to be written() , g

 HFiles
 Consist of large (e.g., 64MB) chunks

 3 copies of one chunk for availability (default)
 HDFS

 Stores all data including columns and logs
 NameNode holds all metadata including namespace
 DataNodes store chunks of a file

 HBase uses two HDFS file types
 HFile: regular data files (holds column data)g ()
 Hlog: region’s log file (allows flush/fsync for small append-style writes)

 Clients
 Read and write chunks

 Locality & load determine which copy to access

Alberto Abelló & Oscar Romero 15September 2015

st
or

es
)

Functional components of HBase (II)
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

16Victor HerreroAlberto Abelló & Oscar RomeroSeptember 2015

st
or

es
)

A Distributed Index Cluster
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

Alberto Abelló & Oscar Romero 17

S. Abiteboul et al.

September 2015

st
or

es
)

HBase Design Decisions (I)
y-

Va
lu

e
s

 One master server
M i t f th t bl h

Ta
bl

e
(K

ey  Maintenance of the table schemas
 Root tablet

 Monitoring of services (heartbeating)

B
ig

Ta  Monitoring of services (heartbeating)
 Assignment of tablets to servers

 Many tablet serversy
 Each handling around 100-1.000 tablets
 Apply concurrency and recovery techniques
 Managing split of tablets

 A tablet server decides to split
 Half of its tablets are sent to another server Half of its tablets are sent to another server

 Managing merge of tablets
 Client nodes

Alberto Abelló & Oscar Romero 18September 2015

st
or

es
)

HBase Design Decisions (II)
y-

Va
lu

e
s

 Split and merge affects the distributed

Ta
bl

e
(K

ey tree, which must be updated
 Gossiping

B
ig

Ta

 Lazy updates: discrepancies may cause out-of-
range errors, which triggers a stabilization
(i t k ti) t l(mistake compensation) protocol

 Mistake compensation
S. Abiteboul et al.

 The client keeps in cache the tree sent by the
master and uses it to access data

 If an out-of-range error is triggered, it is
forwarded to the root

In the o st case 6 net o k o nd t ips In the worst case, 6 network round trips
Alberto Abelló & Oscar Romero 19September 2015

st
or

es
)

Distributed Hashing (alternative to a tree)
y-

Va
lu

e
s

 Hash do neither support range queries nor

Ta
bl

e
(K

ey nearest neighbours search
 Distributed hashing challenges

B
ig

Ta

g g
 Dynamicity: Typical hash function

f(x) = x % #servers S. Abiteboul et al.()
 Adding a new server implies modifying hash function

 Massive data transfer

S. Abiteboul et al.

 Communicating the new function to all servers
 Location of the hash directory: any access

t th h th h h di tmust go through the hash directory

Alberto Abelló & Oscar Romero 20September 2015

st
or

es
)

Distributed Hashing: Examples
y-

Va
lu

e
s

 Most current key-value (and document-

Ta
bl

e
(K

ey stores) use distributed hashing
 LH*

B
ig

Ta

 Memcached
 MongoDB (past releases)

C i t t H hi Consistent Hashing
 Memcached / CouchDB
 MongoDB (current release) MongoDB (current release)
 Cassandra
 Dynamo / SimpleDBy / p
 Voldemort

Alberto Abelló & Oscar Romero 21September 2015

st
or

es
)

Distributed Linear Hashing (LH*)
y-

Va
lu

e
s

 Maintains an efficient hash in front of dynamicity
A split pointe is kept (ne t b cket to split)

Ta
bl

e
(K

ey  A split pointer is kept (next bucket to split)
 A pair of hash functions are considered

 %2n and %2n+1 (being 2n≤#servers <2n+1)

B
ig

Ta

 Overflow buckets are considered
 When a bucket overflows the bucket pointed by the split

pointer splits (not the overflown one)

Alberto Abelló & Oscar Romero 22

S. Abiteboul et al.

September 2015

st
or

es
)

Updating the Hash Directory in LH*
y-

Va
lu

e
s

 Traditionally, each participant has a copy of
the hash directory

Ta
bl

e
(K

ey the hash directory
 Changes in the hash directory (either hash functions

or splits) imply gossiping
I l di li t d

B
ig

Ta  Including clients nodes
 It might be acceptable if not too dynamic

Alt ti l th  Alternatively, they
may contain a partial
representation and representation and
assume lazy
adjustment
 Apply forwarding path

Alberto Abelló & Oscar Romero 23

S. Abiteboul et al.

September 2015

st
or

es
)

Consistent Hashing
y-

Va
lu

e
s

 The hash function never changes
 Choose a very large domain D and map server IP

Ta
bl

e
(K

ey  Choose a very large domain D and map server IP
addresses and object keys to such domain

 Organize D as a ring in clockwise order so each
node has a successor

B
ig

Ta node has a successor
 Objects are assigned as follows:

 For an object O, f(O) = Do
 Let Do’ and Do’’ be the two nodes in the ring such that

 Do’ < Do <= Do’’
 O is assigned to Do’’

 Further refinements:
 Assign to the same server several hash values

(virtual servers) to balance load(virtual servers) to balance load
 Same considerations for the hash directory as for

LH*

Alberto Abelló & Oscar Romero 24September 2015

st
or

es
)

Adding new server in Consistent Hashing
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

S. Abiteboul et al.

 Adding a new server is straightforward

S b tebou et a

 It is placed in the ring and part of its
successors’ objects are transferred to it

Alberto Abelló & Oscar Romero 25September 2015

st
or

es
)

Activity
y-

Va
lu

e
s

 Objective: Understand the three distributed

Ta
bl

e
(K

ey directories
 Tasks:

B
ig

Ta

1.(5’) Individually solve one exercise
2.(10’) Explain the solution to the others() p
3.Hand in the three solutions

 Roles for the team-mates during task 2:
a)Explains his/her materiala)Explains his/her material
b)Asks for clarification of blur concepts
)Mediates and controls timec)Mediates and controls time

Alberto Abelló & Oscar Romero 26September 2015

st
or

es
)

Summary
y-

Va
lu

e
s

 HDFS components

Ta
bl

e
(K

ey

 HBase components
 Data distribution structures

B
ig

Ta  Data distribution structures
 B-Tree
 Linear hash Linear hash
 Consistent hash

Alberto Abelló & Oscar Romero 27September 2015

st
or

es
)

Bibliography
y-

Va
lu

e
s

 S. Ghemawat et al. The Google File System. OSDI’03
 F Chang et all Bigtable: A Distributed Storage

Ta
bl

e
(K

ey  F. Chang et all. Bigtable: A Distributed Storage
System for Structured Data. OSDI’06

 M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems 3rd Ed Springer 2011

B
ig

Ta Database Systems, 3rd Ed. Springer, 2011
 P. Sadagale and M. Fowler. NoSQL distilled. Addison-

Wesley, 2013
E M ij d G Bi A C R l ti l d l f  E. Meijer and G. Bierman. A Co-Relational model of
data for large shared data banks. Communications of
the ACM 54(4), 2011
S Abit b l t l W b d t t C b id  S. Abiteboul et al. Web data management. Cambridge
University Press, 2011

 W. Vogels. Eventually consistent. ACM QUEUE,
O b 2008October 2008

Alberto Abelló & Oscar Romero 28September 2015

st
or

es
)

Resources
y-

Va
lu

e
s

 http://hadoop.apache.org

Ta
bl

e
(K

ey

 http://hbase.apache.org
 http://www.oracle.com/technetwork/prod

B
ig

Ta  http://www.oracle.com/technetwork/prod
ucts/nosqldb/index.html

Alberto Abelló & Oscar Romero 29September 2015

