
st
or

es
)

y-
Va

lu
e

s
Ta

bl
e

(K
ey

B
ig

Ta Key-Value stores
(BigTable)

Alberto Abelló & Oscar Romero 1September 2015

st
or

es
)

Knowledge objectives
y-

Va
lu

e
s

1. Explain the structural components of HDFS
2. Explain how to avoid overloading the master

Ta
bl

e
(K

ey

p a o to a o d o e oad g t e aste
node in HDFS

3. Explain the structural components of HBase
4 Explain the main operations available in HBase

B
ig

Ta 4. Explain the main operations available in HBase
5. Compare relational and co-relational data models
6 Explain the role of the different functional 6. Explain the role of the different functional

components in Hbase
7. Explain the tree structure of data in Hbase

E l i th h h i f Hb li t8. Explain the cache mechanism of Hbase client
9. Compare a distributed tree against a hash

structure of datastructure of data
10. Explain the four kinds of replication protocols
11. Explain the three possible scenarios identified by

th CAP th
Alberto Abelló & Oscar Romero 2

the CAP theorem
September 2015

st
or

es
)

Understanding Objectives
y-

Va
lu

e
s

1. Calculate the number of round trips

Ta
bl

e
(K

ey needed in the lazy adjustment of a
directory tree

B
ig

Ta

2. Add a new bucket in Linear Hashing
3 Add a new node in Consistent Hashing3. Add a new node in Consistent Hashing
4. Decide the number of needed reads and

writes to guarantee consistency in the writes to guarantee consistency in the
presence of replicas

Alberto Abelló & Oscar Romero 3September 2015

st
or

es
)

Goals
y-

Va
lu

e
s

 Schemaless
 No explicit schema

Ta
bl

e
(K

ey No explicit schema
 Easy setup and scalability

 Continuously evolve to support a growing amount

B
ig

Ta Co uous y e o e o suppo a g o g a ou
of tasks

 Efficiency
How well the system performs usually measured in How well the system performs, usually measured in
terms of response time and throughput

 Reliability/Availabilityy y
 Keep delivering service even if one of its software

or hardware components fail
 Comes to the price of relaxing consistencyp g y

 Simple usage
 Put and Get operations

Alberto Abelló & Oscar Romero 4September 2015

st
or

es
)

Data Lake: Load-First, Model-Later
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

5
Alberto Abelló & Oscar RomeroSeptember 2015

st
or

es
)

Hadoop File System (HDFS)
y-

Va
lu

e
s

 Apache project
 Based on Google File System (GFS)

Ta
bl

e
(K

ey Based on Google File System (GFS)
 Designed to meet the following requirements:

a) Handle very large collections of unstructured or

B
ig

Ta a) a d e e y a ge co ec o s o u s uc u ed o
semi-structured data

b) Data collections are written once and read many
timestimes

c) The infrastructure underlying consists of thousands
of connected machines with high failure probability

 Traditional network file systems do partially fulfil Traditional network file systems do partially fulfil
these requirements
 Operating Systems Vs. Database Management Systemp g y g y

 Balancing query load (e.g., by means of fragmentation and
replication) boosts availability and reliability
 HDFS: Equal-sized file chunks evenly distributed

Alberto Abelló & Oscar Romero 6September 2015

st
or

es
)

HDFS in a Nutshell
y-

Va
lu

e
s

 A single master (coordinator)
 Receives client connections

Ta
bl

e
(K

ey Receives client connections
 Maintains the description of the global file system

namespace
k f fil h k (d f l 6 b)

B
ig

Ta Keeps track of file chunks (default: 64Mb)
 Many servers

 Receive file chunks and store them Receive file chunks and store them
 A single master design forfeits availability and

scalability
 Availability and reliability: Recovery system

 Replication (a chunk always in 3 servers, by default)
 Monitors the system with heartbeat messages to detect o to s t e syste t ea tbeat essages to detect

failures as soon as possible
 Specific recovery system to protect the master

 Scalability: Client cachey

Alberto Abelló & Oscar Romero 7September 2015

st
or

es
)

HDFS client cache
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

Alberto Abelló & Oscar Romero 8

S. Abiteboul et al.

September 2015

st
or

es
)

Key-Value
y-

Va
lu

e
s

 Key-value stores
 Entries in form of key-values

Ta
bl

e
(K

ey

y
 One key maps only to one value

 Query on key only
 Schemaless

B
ig

Ta

Bob Michael_Elisabeth_30_Bobby_2010

key value

 Column-family key-value stores
 Entries in form of key-values

 But now values are splitted in columns But now values are splitted in columns
 Typically query on key

 May have some support for values
 Schemaless within a column Schemaless within a column

Bob mother:Elisabeth

key Families and Columns

connections:30 name:Bobby

9

Bob father:Michael connections:30 y
birth_year:2010

Alberto Abelló & Oscar RomeroSeptember 2015

st
or

es
)

HBase
y-

Va
lu

e
s

 Apache project
 Based on Google’s Bigtable

Ta
bl

e
(K

ey Based on Google s Bigtable
 Designed to meet the following requirements

 Access specific data out of petabytes of data

B
ig

Ta ccess spec c da a ou o pe aby es o da a
 It must support

 Key search
 Range search Range search
 High throughput file scans

 It must support single row transactions
D it lf d t b d i i Do it yourself database… own decisions
regarding:
 Data structureData structure
 Concurrency
 Recovery availability

CAP trade off CAP trade-off
Alberto Abelló & Oscar Romero 10September 2015

st
or

es
)

Schema elements
y-

Va
lu

e
s

 Stores tables (collections) and rows (instances)
 Data is indexed using row and column names (arbitrary strings)

Ta
bl

e
(K

ey

g (y g)
 Treats data as uninterpreted strings (without data types)
 Each cell of a BigTable can contain multiple versions of the

same data

B
ig

Ta

 Stores different versions of the same values in the rows
 Each version is identified by a timestamp

 Timestamps can be explicitly or automatically assigned

key value

family1 family2 familyn…

column1 column2 columnm…

version1 version2 versionp…

(t i l t i [ti i t64]) t i(row:string, column:string[, time:int64])string
Alberto Abelló & Oscar Romero 11September 2015

st
or

es
)

Just another point of view
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta Child Parent

Child Parent

Alberto Abelló & Oscar Romero 12September 2015

st
or

es
)

HBase Shell
y-

Va
lu

e
s

 ALTER <tablename>, <columnfamilyparam>
 COUNT <tablename>

Ta
bl

e
(K

ey COUNT <tablename>
 CREATE TABLE <tablename>
 DESCRIBE <tablename>
 DELETE <tablename> <rowkey>[<columns>]

B
ig

Ta DELETE <tablename>, <rowkey>[, <columns>]
 DISABLE <tablename>
 DROP < tablename>
 ENABLE <tablename> ENABLE <tablename>
 EXIT
 EXISTS <tablename>
 GET <tablename>, <rowkey>[, <columns>], y [,]
 LIST
 PUT <tablename>, <rowkey>, <columnid>, <value>[, <timestamp>]
 SCAN <tablename>[, <columns>][]
 STATUS [{summary|simple|detailed}]
 SHUTDOWN

Alberto Abelló & Oscar Romero 13September 2015

st
or

es
)

Physical implementation
y-

Va
lu

e
s

Ta
bl

e
(K

ey

Key

B
ig

Ta

 Each table is horizontally fragmented into tablets (called “regions” in HBase)
 Dynamic fragmentation

 By default into few hundreds of Mbs
 Distributed on a cluster of machines or cloud

 At each tablet rows are stored column wise according to families (hybrid fragmentation) At each tablet rows are stored column-wise according to families (hybrid fragmentation)
 Static fragmentation (the schema determines the locality of data)

 Multiple column families can be grouped together into a locality group
 A locality group can be “in-memory”

 Block compression can be enabled (i.e., column families are compressed together)
 Metadata table (~ catalog) Metadata table (~ catalog)

 Tuples are lexicographically sorted according to the key
 Each row (entry) consists of <key, loc>

 Key: it is the last key value in that tablet
 Loc: it is the physical address of a tablet

 This is a distributed index cluster (B-tree) on top of HDFS() p
 It is divided into tablets and chunks
 Supports single row transactions

Alberto Abelló & Oscar Romero 14September 2015

st
or

es
)

Functional components of HBase (I)
y-

Va
lu

e
s

 Zookeeper
 Quorum of servers that stores HBase system config info

 Hmaster

Ta
bl

e
(K

ey Hmaster
 Coordinates splitting of regions/rows across nodes
 Controls distribution of HFile chunks

 Region Servers (HRegionServer)
 Services HBase client requests

B
ig

Ta Services HBase client requests
 Manage stores containing all column families of the region

 Logs changes
 Guarantees “atomic” updates to one column family
 Holds (caches) chunks of Hfile into Memstores, waiting to be written() , g

 HFiles
 Consist of large (e.g., 64MB) chunks

 3 copies of one chunk for availability (default)
 HDFS

 Stores all data including columns and logs
 NameNode holds all metadata including namespace
 DataNodes store chunks of a file

 HBase uses two HDFS file types
 HFile: regular data files (holds column data)g ()
 Hlog: region’s log file (allows flush/fsync for small append-style writes)

 Clients
 Read and write chunks

 Locality & load determine which copy to access

Alberto Abelló & Oscar Romero 15September 2015

st
or

es
)

Functional components of HBase (II)
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

16Victor HerreroAlberto Abelló & Oscar RomeroSeptember 2015

st
or

es
)

A Distributed Index Cluster
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

Alberto Abelló & Oscar Romero 17

S. Abiteboul et al.

September 2015

st
or

es
)

HBase Design Decisions (I)
y-

Va
lu

e
s

 One master server
M i t f th t bl h

Ta
bl

e
(K

ey Maintenance of the table schemas
 Root tablet

 Monitoring of services (heartbeating)

B
ig

Ta Monitoring of services (heartbeating)
 Assignment of tablets to servers

 Many tablet serversy
 Each handling around 100-1.000 tablets
 Apply concurrency and recovery techniques
 Managing split of tablets

 A tablet server decides to split
 Half of its tablets are sent to another server Half of its tablets are sent to another server

 Managing merge of tablets
 Client nodes

Alberto Abelló & Oscar Romero 18September 2015

st
or

es
)

HBase Design Decisions (II)
y-

Va
lu

e
s

 Split and merge affects the distributed

Ta
bl

e
(K

ey tree, which must be updated
 Gossiping

B
ig

Ta

 Lazy updates: discrepancies may cause out-of-
range errors, which triggers a stabilization
(i t k ti) t l(mistake compensation) protocol

 Mistake compensation
S. Abiteboul et al.

 The client keeps in cache the tree sent by the
master and uses it to access data

 If an out-of-range error is triggered, it is
forwarded to the root

In the o st case 6 net o k o nd t ips In the worst case, 6 network round trips
Alberto Abelló & Oscar Romero 19September 2015

st
or

es
)

Distributed Hashing (alternative to a tree)
y-

Va
lu

e
s

 Hash do neither support range queries nor

Ta
bl

e
(K

ey nearest neighbours search
 Distributed hashing challenges

B
ig

Ta

g g
 Dynamicity: Typical hash function

f(x) = x % #servers S. Abiteboul et al.()
 Adding a new server implies modifying hash function

 Massive data transfer

S. Abiteboul et al.

 Communicating the new function to all servers
 Location of the hash directory: any access

t th h th h h di tmust go through the hash directory

Alberto Abelló & Oscar Romero 20September 2015

st
or

es
)

Distributed Hashing: Examples
y-

Va
lu

e
s

 Most current key-value (and document-

Ta
bl

e
(K

ey stores) use distributed hashing
 LH*

B
ig

Ta

 Memcached
 MongoDB (past releases)

C i t t H hi Consistent Hashing
 Memcached / CouchDB
 MongoDB (current release) MongoDB (current release)
 Cassandra
 Dynamo / SimpleDBy / p
 Voldemort

Alberto Abelló & Oscar Romero 21September 2015

st
or

es
)

Distributed Linear Hashing (LH*)
y-

Va
lu

e
s

 Maintains an efficient hash in front of dynamicity
A split pointe is kept (ne t b cket to split)

Ta
bl

e
(K

ey A split pointer is kept (next bucket to split)
 A pair of hash functions are considered

 %2n and %2n+1 (being 2n≤#servers <2n+1)

B
ig

Ta

 Overflow buckets are considered
 When a bucket overflows the bucket pointed by the split

pointer splits (not the overflown one)

Alberto Abelló & Oscar Romero 22

S. Abiteboul et al.

September 2015

st
or

es
)

Updating the Hash Directory in LH*
y-

Va
lu

e
s

 Traditionally, each participant has a copy of
the hash directory

Ta
bl

e
(K

ey the hash directory
 Changes in the hash directory (either hash functions

or splits) imply gossiping
I l di li t d

B
ig

Ta Including clients nodes
 It might be acceptable if not too dynamic

Alt ti l th Alternatively, they
may contain a partial
representation and representation and
assume lazy
adjustment
 Apply forwarding path

Alberto Abelló & Oscar Romero 23

S. Abiteboul et al.

September 2015

st
or

es
)

Consistent Hashing
y-

Va
lu

e
s

 The hash function never changes
 Choose a very large domain D and map server IP

Ta
bl

e
(K

ey Choose a very large domain D and map server IP
addresses and object keys to such domain

 Organize D as a ring in clockwise order so each
node has a successor

B
ig

Ta node has a successor
 Objects are assigned as follows:

 For an object O, f(O) = Do
 Let Do’ and Do’’ be the two nodes in the ring such that

 Do’ < Do <= Do’’
 O is assigned to Do’’

 Further refinements:
 Assign to the same server several hash values

(virtual servers) to balance load(virtual servers) to balance load
 Same considerations for the hash directory as for

LH*

Alberto Abelló & Oscar Romero 24September 2015

st
or

es
)

Adding new server in Consistent Hashing
y-

Va
lu

e
s

Ta
bl

e
(K

ey
B
ig

Ta

S. Abiteboul et al.

 Adding a new server is straightforward

S b tebou et a

 It is placed in the ring and part of its
successors’ objects are transferred to it

Alberto Abelló & Oscar Romero 25September 2015

st
or

es
)

Activity
y-

Va
lu

e
s

 Objective: Understand the three distributed

Ta
bl

e
(K

ey directories
 Tasks:

B
ig

Ta

1.(5’) Individually solve one exercise
2.(10’) Explain the solution to the others() p
3.Hand in the three solutions

 Roles for the team-mates during task 2:
a)Explains his/her materiala)Explains his/her material
b)Asks for clarification of blur concepts
)Mediates and controls timec)Mediates and controls time

Alberto Abelló & Oscar Romero 26September 2015

st
or

es
)

Summary
y-

Va
lu

e
s

 HDFS components

Ta
bl

e
(K

ey

 HBase components
 Data distribution structures

B
ig

Ta Data distribution structures
 B-Tree
 Linear hash Linear hash
 Consistent hash

Alberto Abelló & Oscar Romero 27September 2015

st
or

es
)

Bibliography
y-

Va
lu

e
s

 S. Ghemawat et al. The Google File System. OSDI’03
 F Chang et all Bigtable: A Distributed Storage

Ta
bl

e
(K

ey F. Chang et all. Bigtable: A Distributed Storage
System for Structured Data. OSDI’06

 M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems 3rd Ed Springer 2011

B
ig

Ta Database Systems, 3rd Ed. Springer, 2011
 P. Sadagale and M. Fowler. NoSQL distilled. Addison-

Wesley, 2013
E M ij d G Bi A C R l ti l d l f E. Meijer and G. Bierman. A Co-Relational model of
data for large shared data banks. Communications of
the ACM 54(4), 2011
S Abit b l t l W b d t t C b id S. Abiteboul et al. Web data management. Cambridge
University Press, 2011

 W. Vogels. Eventually consistent. ACM QUEUE,
O b 2008October 2008

Alberto Abelló & Oscar Romero 28September 2015

st
or

es
)

Resources
y-

Va
lu

e
s

 http://hadoop.apache.org

Ta
bl

e
(K

ey

 http://hbase.apache.org
 http://www.oracle.com/technetwork/prod

B
ig

Ta http://www.oracle.com/technetwork/prod
ucts/nosqldb/index.html

Alberto Abelló & Oscar Romero 29September 2015

