
ta
ba

se
s

bu
te

d
D

at
D

is
tri

Distributed DatabasesDistributed Databases

September 2015 Alberto Abelló & Oscar Romero 1

ta
ba

se
s

Knowledge objectives
bu

te
d

D
at

1. Enumerate the main goals of Big Data Management
2. Explain the different transparency layers in DDBMS

D
is

tri

p p y y
3. Draw a classical reference architecture for DDBMS
4. Enumerate the five main challenges in data distribution
5. Distinguish vertical and horizontal fragmentationg g
6. Recognize the complexity and benefits of data allocation
7. Distinguish the four replication synchronization strategies
8. Explain the main obstacles to achieve linear scalability according to

th U i l S l bilit Lthe Universal Scalability Law
9. Explain the benefits and difficulties of a distributed catalog
10. Enumerate the phases of distributed query processing
11 Explain the difference between data shipping and query shipping11. Explain the difference between data shipping and query shipping
12. Explain the different kinds of parallelism
13. Distinguish between answer time and query cost
14 Explain the CAP theorem14. Explain the CAP theorem
15. Distinguish between ACID and BASE
16. Explain the benefits of sequential read in front of random access
17 Explain five characteristics of NewSQL architectures

September 2015 Alberto Abelló & Oscar Romero 2

17. Explain five characteristics of NewSQL architectures

ta
ba

se
s

Understanding Objectives
bu

te
d

D
at

1. Identify the potential consequences of a

D
is

tri given data replication strategy
2. Given an query and a dabatase design, q y g ,

recognize the difficulties and
opportunities behind distributed querypp q y
processing

September 2015 Alberto Abelló & Oscar Romero 3

ta
ba

se
s

Big Data Management Goals (I)
bu

te
d

D
at

 Schemaless: No explicit schema
[d t t t]

D
is

tri

 Reliability / availability: Keep delivering

[data structure]

 Reliability / availability: Keep delivering
service even if its software or hardware
components fail [recovery][distribution]components fail

 Scalability: Continuously evolve to support
a growing amount of tasks

[recovery]

[distribution]

[distribution]

a growing amount of tasks
 Efficiency: How well the system performs,

ll d i t f

[distribution]

usually measured in terms of response
time (latency) and throughput (bandwith)
[distribution]
September 2015 Alberto Abelló & Oscar Romero 4

[distribution]

ta
ba

se
s

Big Data Management Goals(II)
bu

te
d

D
at

 Fragmentation (Parallel writes)

D
is

tri  At design time (static) / on-the-fly (dynamic)
 Global catalog management
R li i (P ll l d) Replication (Parallel reads)
 Replica synchronization

d h (l l) Overcome Impedance Mismatch (Polyglot)
 Mapping between data models

Th bl i th h d i d f i  The problem is the overhead incurred for mapping
the structures of the origin data model into the
structures of the destination data model
 Already discussed by the OODBMS community

back in the 80s-90s!
 A single data model: the relational modelg

September 2015 Alberto Abelló & Oscar Romero 5

B
ig

 D
at

a
Distributed Database

se
s

an
d

B

 A distributed database (DDB) is a database where
d t t i di t ib t d l

ed
D

at
ab

as data management is distributed over several
nodes in a network.
 Each node is a database itself

D
is

tri
bu

te  Each node is a database itself
 Potential heterogeneity

 Nodes communicate through the network

FRAGMENTATION

REPLICATIONREPLICATION

6September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Distributed Architectures

se
s

an
d

B

 Main objective: hide implementation (i.e.,

ed
D

at
ab

as physical) details to the users
 Data independency at the logical and physical

l l t b t d

D
is

tri
bu

te level must be guaranteed
 Inherited from centralized DBs (ANSI SPARC)

 Network transparency Network transparency
 Data access must be independent regardless where

data is stored
E h d t bj t t h i Each data object must have a unique name

 Replication transparency
 The user must not be aware of the existing replicas The user must not be aware of the existing replicas

 Fragmentation transparency
 The user must not be aware of partitioning

7September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Transparencylayers

se
s

an
d

B
ed

D
at

ab
as

D
is

tri
bu

te

8September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Extended ANSI-SPARC Architecture

se
s

an
d

B
ed

D
at

ab
as

D
is

tri
bu

te

 Global catalog
 Mappings between ESs – GCS and GCS – LCSs

 Each node has a local catalog
M i b LCS IS Mappings between LCSi – ISi

9September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Centralized DBMS Architecture

se
s

an
d

B
ed

D
at

ab
as

D
is

tri
bu

te

10September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Distributed DBMS (System-R) Architecture

se
s

an
d

B
(y)

ed
D

at
ab

as
D

is
tri

bu
te

11September 2015 Alberto Abelló & Oscar Romero

 Introduce a critical reasoning on the reference architecture

ta
ba

se
s

Challenges in data distribution
bu

te
d

D
at

g
I. Distributed DB design

 Data fragments

D
is

tri  Data replication
 Node distribution

II. Distributed DB catalog
F t ti t d ff Wh t l th DB t l Fragmentation trade-off: Where to place the DB catalog
 Global or local for each node
 Centralized in a single node or distributed
 Single-copy vs. Multi-copy

III. Distributed query processing
 Data distribution / replication
 Communication overhead

i ib d iIV. Distributed transaction management
 How to enforce the ACID properties

 Replication trade-off: Queries vs. Data consistency between replicas (updates)
 Distributed recovery system Distributed recovery system
 Distributed concurrency control system

V. Security issues
 Network security

September 2015 Alberto Abelló & Oscar Romero 12

B
ig

 D
at

a
Challenge I: DDB Design

se
s

an
d

B

 Given a DB and its workload, how should

ed
D

at
ab

as the DB be split and allocated to sites as to
optimize certain objective functions

D
is

tri
bu

te

 Minimize resource consumption for query
processing

 Two main issues:
 Data fragmentation
 Data allocation

 Data replication

13September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Data Fragmentation

se
s

an
d

B

 Fragmentation of data is useful for several
reasons

ed
D

at
ab

as reasons…
 An application typically accesses only a subset of data
 Different subsets are (naturally) needed at different

D
is

tri
bu

te  Different subsets are (naturally) needed at different
sites

 The degree of concurrency is enhanced
 Facilitates parallelism

 Fragments likely to be used jointly can be colocated to
minimize communication overheadminimize communication overhead

 However…
 May lead to poorer performance when multipley p p p

fragments need to be joined
 It becomes more costly to enforce the dependency

between attributes in different fragmentsbetween attributes in different fragments
September 2015 Alberto Abelló & Oscar Romero 14

B
ig

 D
at

a
Decide Data Allocation

se
s

an
d

B

 Given a set of fragments, a set of sites on which a number
of applications are running, allocate each fragment such

ed
D

at
ab

as

pp g, g
that some optimization criterion is met (subject to certain
constraints)

 It is known to be a NP-hard problem

D
is

tri
bu

te  The optimal solution depends on many factors
 Location in which the query originates
 The query processing strategies (e.g., join methods)

 Furthermore, in a dynamic environment the workload and access , y
pattern may change

 The problem is typically simplified with certain assumptions
(e.g., only communication cost considered)

l h b ld d l d Typical approaches build cost models and any optimization
algorithm can be adapted to solve it
 Heuristics are also available: (e.g., best-fit for non-replicated

fragments)fragments)
 Sub-optimal solutions

15September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Hadoop Distributed File System: Example

se
s

an
d

B
ed

D
at

ab
as

1

2

1

2

D
is

tri
bu

te 2 2

1 2 121 2 12

16

By Víctor Herrero. Big Data Management & Analytics (UPC School)
September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Manage Data Replication

se
s

an
d

B

 Replicating fragments improves the system throughput but raises
some other issues:
 Consistency

ed
D

at
ab

as  Consistency
 Update performance

 Most used replication protocols
 Eager – Lazy replication

D
is

tri
bu

te  Primary – Secondary versioning

Eventually Strong y
ConsistentConsistency

17September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Activity

se
s

an
d

B

 Objective: Understand the consequences behind each
data replication strategy

ed
D

at
ab

as data replication strategy
 Tasks:

1. (10’) By pairs, answer the following questions:
I Discuss the questions below with your peer

D
is

tri
bu

te I. Discuss the questions below with your peer
II. What is the most important feature for each scenario?

2. (5’) Discussion

 You are a customer using an e-commerce based on
heavy replication (e.g., Amazon):
 Show a database replication strategy (e g sketch it)  Show a database replication strategy (e.g., sketch it)

where you buy an item, but this item does not appear in
your basket.

 You reload the page: the item appears. What happened? p g pp pp
 You delete an item from your command, and add another

one: the basket shows both items. What happened?
 Will the situation change if you reload the page?

18September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
What About the System Scalability?

se
s

an
d

B

 How do we define “Scalability”? And

ed
D

at
ab

as “Elasticity”?
 3 minutes to think of it!

D
is

tri
bu

te

 It is a design issue
 Current systems do not tell you how many y y y

CPUs or servers you must use
 The Universal Scalability Law (USL) – The Universal Scalability Law (USL)

Gunther 1993
 It is a mathematical definition of scalability It is a mathematical definition of scalability

 Main idea: You cannot model what you cannot
formally define

19September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
The Universal Scalability Law (I)

se
s

an
d

B

 It can model both Sw or Hw scalability
The USL is defined as follo s

ed
D

at
ab

as  The USL is defined as follows:

D
is

tri
bu

te

 C: System’s capacity (i.e., throughput) improvement
 Improvement of queries per second Improvement of queries per second

 N: System’s concurrency
 (Sw): Number of users / processes active
 (Hw): Number of CPUs

 σ: System’s contention. Performance degradation
due to serial instead of parallel processingdue to se a stead o pa a e p ocess g

 κ: System’s consistency delay (aka coherency delay).
Extra work needed to keep synchronized shared data
(i e inter process communication)(i.e., inter-process communication)

20September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
The Universal Scalability Law (II)

se
s

an
d

B

 If both σ = 0 and κ = 0, we obtain linear

ed
D

at
ab

as scalability
 If κ = 0, it simplifies to Amdahl’s law

D
is

tri
bu

te

, p

21September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
The USL at Work

se
s

an
d

B

 Method:

ed
D

at
ab

as

 [Step 1] Empirical analysis: Compute C
(throughput) for different values of N
()

D
is

tri
bu

te (concurrency)
 [Step 2] Perform statistical regression against

gathered data (needs some data cooking first)gathered data (needs some data cooking first)
 [Step 3] Reverse the transformation to find the
σ (contention) and κ (consistency delay) σ (contention) and κ (consistency delay)
parameters

 How to apply this method step by step: How to apply this method step by step:
http://www.percona.com/files/white-
papers/forecasting mysql scalability pdfpapers/forecasting-mysql-scalability.pdf

22September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
The USL at Work: Example

se
s

an
d

B

 System’s Setting
 Percona’s MySQL Server with XtraDB

ed
D

at
ab

as  Percona s MySQL Server with XtraDB
 Cisco UCS server (2 processors, each with 6 cores and each core can run two

threads: 24 threads)
 384GB memory

Step 1:
Step 3:

D
is

tri
bu

te Step 1:

Step 2:

Points are fit in a
second-order σ and κ are next

t d f d bpolynomial: ax2+bx+0,
and a and b are
computed

computed from a and b.
Next, we apply the USL

formula

23September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Measuring Scalability

se
s

an
d

B

 Ideally, scalability should be linear
 Scalability is normally measured in terms of

ed
D

at
ab

as  Scalability is normally measured in terms of
speed-up and scale-up
 Speed-up: Measures performance when adding Hw for a

constant problem size

D
is

tri
bu

te constant problem size
 Linear speed-up means that N sites solve in T/N time, a

problem solved in T time by 1 site
 Scale-up: Measures performance when the problem size  Scale up: Measures performance when the problem size

is altered with resources
 Linear scale-up means that N sites solve a problem N*T times

bigger in the same time 1 site solves the same problem in T
timetime

 The USL shows that linear scalability is hardly
achievable
 σ (contention) could be avoided (i.e., σ = 0) if our code

has no serial chunks (everything parallelizable)
 κ (consistency delay) could be avoided (i.e., κ = 0) if

replicas can be synchronized without sending messagesreplicas can be synchronized without sending messages
24September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Challenge II: Global Catalog

se
s

an
d

B

 Centralized version (@master)

ed
D

at
ab

as

 Accessing it is a bottleneck
 Single-point failure

M dd i

D
is

tri
bu

te  May add a mirror

 Poorer performance

 Distributed version (several masters) Distributed version (several masters)
 Replica synchronization

 Potential inconsistencies Potential inconsistencies

25September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Activity

se
s

an
d

B

 Objective: Recognize the difficulties and opportunities behind
distributed query processing

 Tasks:

ed
D

at
ab

as  Tasks:
1. (10’) By pairs, answer the following questions:

I. What are the main differences between these two distributed access plans?
II. Under which assumptions is one or the other better?

Li t th t k di t ib t d ti i t id ith d t

D
is

tri
bu

te III. List the new tasks a distributed query optimizer must consider with regard to a
centralized version

2. (5’) Discussion

26September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Challenge III: Distributed Query Processing

se
s

an
d

B

 Communication cost (data shipping)

ed
D

at
ab

as  Not that critical for LAN networks
 Assuming high enough I/O cost

 Fragmentation / Replication

D
is

tri
bu

te  Fragmentation / Replication
 Metadata and statistics about fragments (and

replicas) in the global catalogreplicas) in the global catalog
 Join Optimization

 Joins order Joins order
 Semijoin strategy

 How to decide the execution plan How to decide the execution plan
 Who executes what
 Exploit parallelism (!) Exploit parallelism (!)

27September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Phases of Distributed Query Processing

se
s

an
d

B
Q y g

ed
D

at
ab

as
D

is
tri

bu
te

28September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Physical Optimizer

se
s

an
d

B

 Transforms an internal query
representation into an efficient plan

ed
D

at
ab

as representation into an efficient plan
 Replaces the logical query operators by specific

algorithms (plan operators) and access methods

D
is

tri
bu

te algorithms (plan operators) and access methods
 Decides in which order to execute them

 This is done by This is done by…
 Enumerating alternative but equivalent plans

 Dataflow diagram that pipes data through a graph of
query operators

 Estimating their costs
Searching for the best solution Searching for the best solution
 Using available statistics regarding the physical state

of the system

29September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Global Physical Optimizer

se
s

an
d

B

 Generation of Execution Alternatives

ed
D

at
ab

as

 Ordering
 Left or right deep trees

D
is

tri
bu

te  Bushy trees

 Site selection (exploit DATA LOCATION)
 Comparing size of the relations Comparing size of the relations
 More difficult for joins (multi-way joins)
 Size of the intermediate joins must be considered

 Algorithms to process the query operators
 Parallelism (!)

30September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Site Selection

se
s

an
d

B

 Data shipping

ed
D

at
ab

as

 The data is retrieved from the stored site to
the site executing the query

D
is

tri
bu

te  Avoid bottlenecks on frequently used data

 Query shipping
 The evaluation of the query is delegated to the

site where it is stored
T id f i  To avoid transferring

large amount of data

 Hybrid strategy  Hybrid strategy

31September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Parallel Query Processing

se
s

an
d

B

 Employ parallel hardware effectively (i.e., reduce
the response time)

ed
D

at
ab

as

p)
 Process pieces in different processors
 Serial algorithms adapted to multi-thread environments
 Divide input data set into disjoint subsets

D
is

tri
bu

te  Divide input data set into disjoint subsets
 May hurt overall execution time (i.e., throughput)

 Ideally linear speed-up
Additi l h d f t t bl i Additional hardware for a constant problem size
 Addition of computing power should yield proportional

increase in performance
 N nodes should solve the problem in 1/N timep /

 Ideally linear scale-up
 Problem size is altered with the resources

 Sustained performance for a linear increase in both size and p
workload, and number of nodes
 N nodes should solve a problem N times bigger in the

same time

32September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Kinds of Parallelism

se
s

an
d

B

 Inter-query

ed
D

at
ab

as

 Intra-query
 Intra-operator

D
is

tri
bu

te

p
 Unary

 Static partitioning
 Binary

 Static or dynamic partitioning
I t t Inter-operator
 Independent
 Pipelined Pipelined

 Demand driven (pull)
 Producer driven (push)

33September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Choosing the Best Execution Plan

se
s

an
d

B

 Response Time
 Time needed to execute a query (user’s clock)

ed
D

at
ab

as

q y ()
 Benefits from parallelism

 Operations divided into N operations
 Total Cost Model

D
is

tri
bu

te  Sum of local cost and communication cost
 Local cost

 Cost of central unit processing (#cycles),
 Unit cost of I/O operation (#I/O ops)

 Communication cost
 Commonly assumed it is linear in the number of bytes transmitted
 Cost of initiating a message and sending a message (#messages)
 Cost of transmitting one byte (#bytes)

 Knowledge required
 Size of elementary data units processed
 Selectivity of operations to estimate intermediate results

 Does not account the usage of parallelisms (!) Does not account the usage of parallelisms (!)
 Hybrid solutions

34September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Cost Model Example

se
s

an
d

B

 Parameters:
 Local processing:

ed
D

at
ab

as  Local processing:
 Average CPU time to process an instance (Tcpu)
 Number of instances processed (#inst)

I/O ti ti (T)

D
is

tri
bu

te  I/O time per operation (TI/O)
 Number of I/O operations (#I/Os)

 Global processing:
 Message time (TMsg)
 Number of messages issued (#msgs)
 Transfer time (send a byte from one site to another) (TTR)
 Number of bytes transferred (#bytes)

 It could also be expressed in terms of packets
 Calculations: Calculations:
Resources = Tcpu * #inst + TI/O * #I/Os + TMsg * #msgs + TTR * #bytes
Respose Time = Tcpu * seq#inst + TI/O * seq#I/Os + TMsg * seq#msgs + TTR * seq#bytes

35September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Challenge IV: Distributed Tx Management

se
s

an
d

B
g g

 ACID properties are not always necessary

ed
D

at
ab

as

 All can be relaxed
 Relaxing Consistency and Durability

D
is

tri
bu

te

g y y
 Entails data loss
 Save synchronization timeSave synchronization time

 Relaxing Atomicity and Isolation
 Generate interferences Generate interferences
 Save locks and contention

36September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Trade-Off: Performance Vs. Consistency

se
s

an
d

B
y

ed
D

at
ab

as

Consistency
(Ratio of correct answers)

Performance
(System throughput)

D
is

tri
bu

te

() (y g p)

37September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
CAP Theorem

se
s

an
d

B

 Eric Brewer. CAP Theorem: any networked

ed
D

at
ab

as shared-data system can have at most two
of three desirable properties:

D
is

tri
bu

te

 consistency (C) equivalent to having a single
up-to-date copy of the data;

 high availability (A) of that data (for updates);
and

l k i i () tolerance to network partitions (P)
 Example:

E ACID

Update

Eager
Replication C ->

A ->
P ->

OK
NO
OK

38

P > OK

September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
CAP Theorem

se
s

an
d

B

 Eric Brewer. CAP Theorem: any networked

ed
D

at
ab

as shared-data system can have at most two
of three desirable properties:

D
is

tri
bu

te

 consistency (C) equivalent to having a single
up-to-date copy of the data;

 high availability (A) of that data (for updates);
and

l k i i () tolerance to network partitions (P).
 Example:

L R li ti BASE

Update

Lazy Replication
C ->
A ->
P ->

NO
OK
OK

39

P > OK

September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
CAP Theorem

se
s

an
d

B

 Eric Brewer. CAP Theorem: any networked

ed
D

at
ab

as shared-data system can have at most two
of three desirable properties:

D
is

tri
bu

te

 consistency (C) equivalent to having a single
up-to-date copy of the data;

 high availability (A) of that data (for updates);
and

l k i i () tolerance to network partitions (P).
 Example:

E ????

Update
C ->
A ->
P ->

OK
OK
NO

Eager
Replication

40

P > NO

September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
CAP Theorem Revisited

se
s

an
d

B

 The CAP theorem is not about choosing two out of the three
forever and ever

ed
D

at
ab

as  Distributed systems are not always partitioned
 Without partitions: CA
 Otherwise…

 Detect a partition

D
is

tri
bu

te  Detect a partition
 Normally by means of latency (time-bound connection)

 Enter an explicit partition mode limiting some operations choosing either:
 CP (i.e., ACID by means of e.g., 2PCP or PAXOS) or,

 If a partition is detected the operation is aborted If a partition is detected, the operation is aborted
 AP (i.e., BASE)

 The operation goes on and we will tackle this next
 If AP was chosen, enter a recovery process commonly known as partition

recovery (e.g., compensate mistakes and get rid of inconsistencies y (g , p g
introduced)
 Achieve consistency: Roll-back to consistent state and apply ops in a deterministic

way (e.g., using time-stamps)
 Reduce complexity by only allowing certain operations (e.g., Google Docs)
 Commutative operations (concatenate logs sort and execute them) Commutative operations (concatenate logs, sort and execute them)

 Repair mistakes: Restore invariants violated
 Last writer wins

41September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
On the Need of a New Architecture

se
s

an
d

B

 Distribution is needed to overcome the
h ll t d

ed
D

at
ab

as challenges presented
 To provide scalability, efficiency (by means of

ll li) li bilit / il bilit

D
is

tri
bu

te parallelism), reliability / availability
 But RDDBMS do not meet them (RDDBMS bottlenecks)

CAP th f l ti Th i  CAP theorem formulation: There is a
trade-off in distributed systems; either

il bilit i t b l availability or consistency can be always
guaranteed (not both)

RDDBMS h i RDDBMS choose consistency
 NOSQL systems, most of the times, choose

a ailabilitavailability
42September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
CAP Theorem: Examples

se
s

an
d

B

 Yahoo’s PNUTS (AP): Assumes data is partitioned
according to where the user is

ed
D

at
ab

as according to where the user is
 Remote copies are maintained asynchronously
 The master copy is local (to decrease latency)

Facebook (AP) Uniq e maste

D
is

tri
bu

te  Facebook (AP): Unique master
 Master copy in always one location (higher latency)
 After 20’’ the user’s traffic reverts to a closer copy

(hi h h f ll b th t ti h ld fl t th (which hopefully, by that time, should reflect the
change)

 HTML5 (AP): Full Availability
 On-client persistent storage (master copy)
 Allows to go offline -> massive recovery process

 Google (CP): Considers primary partitions (data  Google (CP): Considers primary partitions (data
centers in USA, Germany, Sweden, etc.)
 CA within partitions
 CP between partitions using PAXOS (e g Megastore)  CP between partitions using PAXOS (e.g., Megastore)

43September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Most Typical Solutions (I)

se
s

an
d

B

 Random Vs. Sequential Reads

ed
D

at
ab

as

q
 Take the most out of databases by boosting

sequential reads

D
is

tri
bu

te sequential reads
 Enables pre-fetching
 Option to maximize the effective read ratio (by a  Option to maximize the effective read ratio (by a

good DB design)

44
September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Most Typical Solutions (II)

se
s

an
d

B

 Sequential reads
 Key design

ed
D

at
ab

as  Key design
 Primary indexes to implement the global catalog

 Distributed Tree: WiredTiger, HBase, etc.

D
is

tri
bu

te

s bu ed ee ed ge , ase, e c
 Consistent Hashing: Voldemort, MongoDB (until 2.X),

etc.
 Bloom filters to avoid distributed look ups Bloom filters to avoid distributed look ups
 In-memory processing
 Columnar block iteration: Vertical fragmentation Columnar block iteration: Vertical fragmentation

+ fixed-size values + compression (run length
encoding)

H il l it d b l i t d d t b Heavily exploited by column-oriented databases
 Only for read-only workloads

45September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
New Architectures: NewSQL

se
s

an
d

B
Q

(idea) For OLTP systems RDBMS can also be outperformed
 Main memory DB

l h 1 b fi i

ed
D

at
ab

as  A DB less than 1Tb fits in memory
 20 nodes x 32 Gb (or more) costs less than 50,000US$

 Undo log is in-memory and discarded on commit
 One thread systems

D
is

tri
bu

te

y
 Perform incoming SQL commands to completion, without interruption

 One transaction takes less than 1ms
 No isolation needed

 Grid computing Grid computing
 Enjoy horizontal partitioning and parallelism

 Add new nodes to the grid without going down
 High availability

C t it f th  Cannot wait for the recovery process
 Multiple machines in a Peer-To-Peer configuration

 Reduce costs
 Human costs are higher than Hw and Swg

 An expert DBA is expensive and rare
 Alternative is brute force

 Automatic horizontal partitioning and replication
 Execute queries at any replica and updates to all of them

 Optimize queries at compile time
46September 2015 Alberto Abelló & Oscar Romero

B
ig

 D
at

a
Summary

se
s

an
d

B

 Big Data Management Goals

ed
D

at
ab

as  Distributed Database Systems Architecture
 Distributed Database Design

D
is

tri
bu

te  Fragmentation
 Replication

 Distributed Catalog Distributed Catalog
 Distributed Query Processing

 Kinds of Parallelism Kinds of Parallelism
 Distributed Transaction Processing

 CAP Theorem CAP Theorem
 Universal Scalability Law
 NewSQL

September 2015 Alberto Abelló & Oscar Romero 47

 NewSQL

B
ig

 D
at

a
Bibliography

se
s

an
d

B

 M. T. Özsu and P. Valduriez. Principles of
Distributed Database Systems 3rd Ed

ed
D

at
ab

as Distributed Database Systems, 3rd Ed.
Springer, 2011

 L Liu M T Özsu (Eds) Encyclopedia of

D
is

tri
bu

te  L. Liu, M.T. Özsu (Eds.). Encyclopedia of
Database Systems. Springer, 2009

 N. J. Gunther. A Simple Capacity Model of  N. J. Gunther. A Simple Capacity Model of
Massively Parallel Transaction Systems. CMG
National Conference, 1993

 M. Stonebraker, S. Madden, D. J. Abadi, S.
Harizopoulos, N. Hachem, P. Helland. The End
f A hit t l E (It' Ti f of an Architectural Era (It's Time for a

Complete Rewrite).

September 2015 Alberto Abelló & Oscar Romero 48

