Continuum and Fluid Mechanics

CHAPTER 5:
 Basic equations of Fluid Mech friicst

Albert Falqués

Applied Physics Department Technical University of Catalonia

OUTLINE

1. Solids and fluids
2. Fluid Statics
3. Perfect gas
4. Newtonian fluids
5. Navier-Stokes equations
6. Rotating frames
7. Bernouilli equation

1. Solids and fluids

Solid:

* has a preferred shape
* it takes another (constant) shape under the action of (constant) external forces
 * it relaxes to that shape when the external forces are removed

Fluid:

* has not any preferred shape
* it changes shape continuously under the action of fixed external forces

This is so for shear stresses, but: $>$ for normal stresses fluids and solids behave similarly

normal stresses can only be a compression (usually)

Fluids: $\left\{\begin{array}{l}\text { Gases: always tend to expand and occupy } \\ \text { the entire volume of any container } \\ \& \text { Liquids: the volume does not change very much }\end{array}\right.$

The distinction between solids and fluids apply well to many materials under normal conditions but:
$>$ solids under very strong shear stresses may behave partially as fluids (plasticity)
$>$ some fluids (like jelly, paint, polymer solutions, ...) may behave partially as solids and have a partial memory of a 'preferred shape' (viscoelasticity)

2. Fluid statics (or Hydrostatics)

Fluid at rest:

It is empirically found that stresses are isotropic:
$\vec{g}=$ gravity acceleration

$$
\text { if } \mathrm{g}=\text { const. , }
$$

$$
\rho=\text { const. }
$$

3. Perfect gas

The density of fluids depends on pressure and temperature.

$$
\rho=\rho(p, T) \quad \text { is called the equation of state }
$$

most gasses in normal conditions obey the following equation of state:

$$
p=\rho R T
$$

$$
\begin{aligned}
& T=\text { absolute temperature } \\
& R=\frac{R_{U}}{m_{m}} \\
& R_{U}=\text { universal constant }=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& m_{m}=\text { molecular mass. For dry air }=28.97 \mathrm{Kg} / \mathrm{kmol}
\end{aligned}
$$

Perfect gas $=$ the limit case when this equation is verified exactly

Thermodynamic properties of perfect gasses

Specific heat:

$$
\begin{array}{lr}
C_{V}=\frac{1}{m}\left(\frac{d Q}{d T}\right)_{V=\text { const. }} C_{p}=\frac{1}{m}\left(\frac{d Q}{d T}\right)_{p=\text { const. }} & C_{p}-C_{v}=R_{U} \\
\text { for air at ordinary temperatures: } & \gamma=\frac{C_{p}}{C_{V}}
\end{array}
$$

For an adiabatic (no heat transfer) process: $\frac{p}{\rho^{\gamma}}=$ const.
Thermal expansion coefficient $\quad \alpha=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{p=\text { const. }}=\frac{1}{T}$

The specific internal energy is a function of the temperature only: $U=U(T)$

4. Newtonian fluids

Problem of fluid motions

Equation of motion: Cauchy or momentum equations

$$
\rho \frac{d \vec{v}}{d t}=\nabla \cdot \boldsymbol{\tau}+\rho \vec{g}
$$

$$
(m \vec{a}=\vec{F})
$$

Usually, the body forces \vec{g} are known
$>$ but, we need to know $\boldsymbol{\tau (\vec { v })}$
in order to solve for the motion

Fluid at rest:

$$
\begin{gathered}
\hline \boldsymbol{\tau}=-p 1 \\
p=\text { called } \\
\text { thermodynamic } \\
\text { pressure }
\end{gathered}
$$

Fluid in motion:

additional stresses which are proportional to the strain rate:

$$
\sigma_{i j}=c_{i j m n} D_{m n}
$$

If the fluid is isotropic:

$$
\begin{gathered}
c_{i j m n}=\lambda \delta_{i j} \delta_{m n}+\mu \delta_{i m} \delta_{j n}+\gamma \delta_{i n} \delta_{j m} \\
\sigma_{\mathrm{ij}}=\text { symmetric } \Rightarrow \quad \mu=\gamma \Rightarrow \sigma_{i j}=2 \mu D_{i j}+\lambda D_{k k} \delta_{i j} \\
\tau_{i j}=-p \delta_{i j}+\lambda D_{k k} \delta_{i j}+2 \mu D_{i j}
\end{gathered}
$$

But the pressure was already defined from the mean normal stress $\quad \bar{p}=-\frac{1}{3} \tau_{\text {ii }}$
this is called the mean pressure and it is different from the thermodynamic one

$$
\begin{array}{r}
\overline{\tau_{i j}=-p \delta_{i j}+\lambda D_{k k} \delta_{i j}+2 \mu D_{i j}} \Rightarrow \begin{array}{|}
\bar{p}=p-\left(\lambda+\frac{2}{3} \mu\right) D_{i i} \\
p-\bar{p}=\left(\lambda+\frac{2}{3} \mu\right) \nabla \cdot \vec{v}
\end{array} \\
\end{array}
$$

For incompressible fluid: $\nabla \cdot \vec{v}=0 \Rightarrow p=\bar{p} \Rightarrow \tau_{i j}=-p \delta_{i j}+2 \mu D_{i j}$

In general, bulk viscosity: $\quad \kappa=\lambda+\frac{2}{3} \mu \quad$ is found to be ≈ 0
Newtonian fluid: $\kappa=\lambda+\frac{2}{3} \mu=0 \longrightarrow \tau_{i j}=-\left(p+\frac{2}{3} \mu \nabla \cdot \vec{v}\right) \delta_{i j}+2 \mu D_{i j}$

Air and water obey very well the Newtonian fluid model

Examples of non Newtonian fluids:

* solutions containing polymer molecules
\star blood
* water with clay
\rightarrow Stresses are nonlinear functions of strain rates
\rightarrow Stresses depend not only on instantaneous values of strain rate but also on its history \rightarrow material with memory \rightarrow viscoelastic
$\mu=$ viscosity coefficient it depends on the thermodynamic properties (T, ρ)

Meaning: shear experiment

$$
\mu=\frac{F / A}{u / b}
$$

Meaning: the viscosity tends to smooth out the gradients in velocity

Viscous dissipation

$$
\begin{array}{ccc|}
\hline \boldsymbol{\tau}: \mathbf{D} \quad= & -p \nabla \cdot \vec{v} & + \\
\begin{array}{c}
\boldsymbol{\tau}^{\prime}: \mathbf{D}^{\prime} \\
\hline \text { deformation } \\
\text { work }
\end{array} & \begin{array}{c}
\text { work } \\
\text { associated } \\
\text { to changes } \\
\text { in volume }
\end{array} & \\
& \text { shear } \\
& \text { work } \\
& & \\
\hline
\end{array}
$$

viscous
dissipation work

5. Navier-Stokes equations

Problem of fluid motions

$$
\begin{aligned}
& \text { Equation of motion } \\
& \left.\left.\begin{array}{l}
\text { Newtonian fluid } \\
\rho \frac{d v_{i}}{d t}=\frac{\partial \tau_{j i}}{\partial x_{j}}+\rho g_{i} \\
\rho \frac{d v_{i}}{d t}=-\frac{\partial p}{\partial x_{i}}+\rho g_{i}+\frac{\partial}{\partial x_{j}}\left(\mu+\frac{2}{3} \mu \nabla \cdot \vec{v}\right) \delta_{i j}+2 \mu D_{i j} \\
\hline x_{j}
\end{array}+\frac{\partial v_{j}}{\partial x_{i}}\right)-\frac{2 \mu}{3} \frac{\partial v_{k}}{\partial x_{k}} \delta_{i j}\right) \\
& \mu=\text { const. } \rightarrow \quad \rho \frac{d v_{i}}{d t}=-\frac{\partial p}{\partial x_{i}}+\rho g_{i}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}+\frac{\mu}{3} \frac{\partial}{\partial x_{i}}\left(\frac{\partial v_{j}}{\partial x_{j}}\right)
\end{aligned}
$$

Navier-Stokes equations

$$
\frac{d v_{i}}{d t}=\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}
$$

$$
\rho \frac{d \vec{v}}{d t}=-\nabla p+\rho \vec{g}+\mu \nabla^{2} \vec{v}+\frac{\mu}{3} \nabla(\nabla \cdot \vec{v})
$$

but the pressure and the density changes are unknown $\rightarrow \rho$ and p are also variables

continuity equation and state equation are involved:

$$
\begin{aligned}
& \frac{d \rho}{d t}+\rho \nabla \cdot \vec{v}=0 \\
& \rho=\rho(p, T)
\end{aligned}
$$

$\Rightarrow T$ is also a variable!
equation for the temperature is needed: first law of Thermodynamics

$$
\rho \frac{d u}{d t}=\boldsymbol{\tau}: \mathbf{D}-\nabla \cdot \vec{q}+\rho r
$$

$$
u=u(T, \rho)
$$

Therefore, the dynamical problem involves at least (in general):
6 variables: velocity, pressure, density, temperature:

$$
\vec{v}(\vec{x}, t), p(\vec{x}, t), \rho(\vec{x}, t), T(\vec{x}, t)
$$

6 equations:

$$
\left\{\begin{array}{l}
\rho \frac{d \vec{v}}{d t}=-\nabla p+\rho \vec{g}+\mu \nabla^{2} \vec{v}+\frac{\mu}{3} \nabla(\nabla \cdot \vec{v}) \\
\frac{d \rho}{d t}+\rho \nabla \cdot \vec{v}=0 \\
\rho=\rho(p, T) \\
\rho \frac{d u}{d t}=\boldsymbol{\tau}: \mathbf{D}-\nabla \cdot \vec{q}+\rho r \quad u=u(T, \rho)
\end{array}\right.
$$

If viscosity can be neglected:

6. Rotating frames
time derivative in S

$$
\left(\frac{d \vec{u}}{d t}\right)_{S}=\frac{d u_{i}}{d t} \hat{e}_{i}
$$

$$
\begin{gathered}
x_{3} \uparrow \\
\vec{u}=u_{i} \hat{e}_{i}=u_{i}^{\prime} \hat{e}_{i}^{\prime} \Rightarrow\left(\frac{d u}{d t}\right)_{S}=\frac{d u_{i}^{\prime}}{d t} \hat{e}_{i}^{\prime}+u_{i}^{\prime}\left(\frac{d \hat{e}_{i}^{\prime}}{d t}\right)_{S}=\left(\frac{d \vec{u}}{d t}\right)_{S^{\prime}}+u_{i}^{\prime}\left(\frac{d \hat{e}_{i}^{\prime}}{d t}\right)_{S}=\frac{d u_{i}}{d t} \hat{e}_{i} \\
\left(\frac{d \hat{e}_{i}^{\prime}}{d t}\right)_{S}=? \\
\left.\hat{e}_{i}^{\prime}=Q_{j i} \hat{e}_{j} \Rightarrow \frac{d \vec{u}}{d t}\right)_{S^{\prime}}=\frac{d u_{i}^{\prime}}{d t} \hat{e}_{i}^{\prime}
\end{gathered}
$$

$$
\begin{aligned}
& \text { time derivative in } \mathrm{S}^{\prime} \\
& \left(\frac{d \vec{u}}{d t}\right)_{S^{\prime}}=\frac{d u_{i}^{\prime}}{d t} \hat{e}_{i}^{\prime}
\end{aligned}
$$

antisymmetric

Euler equations
$\vec{\Omega}=$ angular velocity of frame S, relative to frame S

$$
\left(\frac{d \vec{u}}{d t}\right)_{S}=\left(\frac{d \vec{u}}{d t}\right)_{S^{\prime}}+\vec{\Omega} \times \vec{u}
$$

7. Bernouilli equation

Simplified expression of the Euler equations (equations of motion for inviscid fluid, i.e., viscosity is neglected)

Assumptions:

$>$ no viscosity, $\mu=0$
$>$ barotropic flow, i.e., $\rho=\rho(p)$
$>$ body force is gravity (= const.)

Euler equations:

$$
\begin{aligned}
& \frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \nabla \vec{v}=-\frac{1}{\rho} \nabla p+\vec{g} \\
& >\vec{g}=-\nabla\left(g x_{3}\right) \\
& >\vec{v} \cdot \nabla \vec{v}=\vec{\omega} \times \vec{v}+\nabla\left(\frac{1}{2} v^{2}\right) \quad \text { vector identity already proven } \\
& >F(p) \equiv \int \frac{d p}{\rho(p)} \Rightarrow \nabla F=\frac{d F}{d p} \nabla p=\frac{1}{\rho} \nabla p
\end{aligned}
$$

This equation is specially useful in two particular cases:

1. Steady flow
2. Irrotational flow

Bernouilli equation for steady flow

The constant may be different for different streamlines
$\vec{\omega}=0 \Rightarrow$ the constant is the same everywhere in the flow

Bernouilli equation for irrotational flow

Irrotational flow: $\vec{\omega}=\nabla \times \vec{v}=0 \quad \Leftrightarrow \quad \exists \phi \mid \vec{v}=\nabla \phi$
potential flow

$\frac{\partial \phi}{\partial t}+\frac{1}{2} v^{2}+g z+\int \frac{d p}{\rho(p)}=F(t)$

Application of Bernouilli: Pitot tube

device to measure a flow velocity
$>$ steady flow
$>$ viscosity is neglected
$>\rho=$ const.

$$
\frac{1}{2} v_{1}^{2}+g z_{1}+\frac{p_{1}}{\rho}=\frac{1}{2} v_{2}^{2}+g z_{2}+\frac{p_{2}}{\rho}
$$

$$
\begin{aligned}
& \text { inside the vertical tubes there is hydrostatic balance: } \\
& p_{1}=p_{a t m}+\rho g h_{1}, p_{2}=p_{a t m}+\rho g h_{2}
\end{aligned}
$$

Application of Bernouilli: orifice in a tank

$>$ orifice small \Rightarrow flow approximately steady
$>$ viscosity is neglected
> $\rho=$ const.

$$
\frac{1}{2} v_{1}^{2}+g z_{1}+\frac{p_{1}}{\rho}=\frac{1}{2} v_{2}^{2}+g z_{2}+\frac{p_{2}}{\rho}
$$

Actually, the function

$$
\Theta=\frac{1}{2} v^{2}+g z+\frac{p}{\rho}
$$

has the same value everywhere since it has the same value at any point on the free surface \Rightarrow flow is irrotational

$$
\begin{aligned}
& \frac{\partial \vec{v}}{\partial t}+\nabla \Theta=\vec{v} \times \vec{\omega} \\
& \vec{v} \times \vec{\omega}=0 \quad \Rightarrow \quad \vec{\omega}=0
\end{aligned}
$$

