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1. Solids and fluids
Solid:
 has a preferred shape
 it takes another (constant) shape under

F


 it takes another (constant) shape under    
the action of (constant) external forces
 it relaxes to that shape when the external forces are removed

Fluid:
 has not any preferred shapeas o a y p e e ed s ape
 it changes shape continuously under the action of fixed external forces

F


F


This is so for shear stresses, but: 
 for normal stresses fluids and 

solids behave similarly 

 normal stresses can only be a compression (usually)



Gases: always tend to expand and occupy 
Fluids: the entire volume of any container 

Liquids: the volume does not change very much  

The distinction between solids and fluids apply well to many materials 
under normal conditions but:under normal conditions but:
 solids under very strong shear stresses may behave partially as fluids (plasticity)
 some fluids (like jelly, paint, polymer solutions, …) may behave partially 

as solids and have a partial memory of a ‘preferred shape’ (viscoelasticity) p y p p ( y)



2. Fluid statics (or Hydrostatics) 

Fluid at rest:

It is empirically found that stresses are isotropic:It is empirically found that stresses are isotropic: 

1τ p where p is > 0 (compression) and is called the pressure
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gravity accelerationg
if g = const. , 
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3. Perfect gas 

)( T

The density of fluids depends on pressure and temperature.

),( Tp  is called the equation of state

most gasses in normal conditions obey the following equation of state:
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T = absolute temperature

RU = universal constant = 8.314 J mol-1 K-1

mm = molecular mass.  For dry air= 28.97 Kg/kmol 

Perfect gas = the limit case when this equation is verified exactly



Thermodynamic properties of perfect gassesThermodynamic properties of perfect gasses
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for air at ordinary temperatures:
VCy p

=1.4  and  Cp=1005 J Kg-1 K-1

pFor an adiabatic (no heat transfer) process: const.
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Thermal expansion coefficient
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The specific internal energy is a function of the temperature only:  U =  U(T)



4. Newtonian fluids 

Problem of fluid motions

gvd 


  τ

Equation of motion: Cauchy or momentum equations

 Fam




Usually the body forces are knowng

g
dt

  τ  Fam 

Usually, the body forces        are known

 but, we need to know        
i d t l f th ti

g

)(vτ
in order to solve for the motion

constitutive equations



Fluid at rest: Fluid in motion:

1τ p σ1τ  p

dditi l t hi h
p = called 

additional stresses which are 
proportional to the strain rate:

mnijmnij Dc

p
thermodynamic 
pressure
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If the fluid is isotropic:
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ij = symmetric   =  DD   2ij = symmetric     ijkkijij DD   2
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But the pressure was already defined from the mean normal stress p 1
But the pressure was already defined from the mean normal stress iip 
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this is called the mean pressure and it is different from the thermodynamic one
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For incompressible fluid: 0 v  pp  ijijij Dp  2

2
In general, bulk viscosity: 

3
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 is found to be  0
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 Newtonian fluid: 0
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Air and water obey very well the Newtonian fluid modely y

Examples of non Newtonian fluids: 
 solutions containing polymer moleculesg p y
 blood
 water with clay

 Stresses are nonlinear functions of strain rates
 Stresses depend not only on instantaneous values of strain rate but also on 

its history  material with memory  viscoelastic



 = viscosity coefficient
i d d h h d i i (T )it depends on the thermodynamic properties (T, )

Meaning: shear experiment
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Meaning: the viscosity tends to smooth out the gradients in velocity

v=u
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f t ti lfaster particles are 
slowed down

l i l21
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slower particles are 
accelerated
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Viscous dissipation

':': DτDτ  vp 

deformation work hdeformation 
work

work 
associated 
to changes
in volume

shear
work

in volume
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DDD ''2''Second law of 
thermodynamics

ijijijij DDD ''2''  
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viscous
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 the viscosity is always positive
 th i it l di i t 0''2 ijij DD dissipation

work
 the viscosity always dissipates 

mechanical energy



5. Navier-Stokes equations 

Equation of motion

Problem of fluid motions

Newtonian fluid
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Equation of motion Newtonian fluid
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Navier-Stokes equations
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but the pressure and the density changes are unknown   and p are also variables 

continuity equation and 
state equation
are involved:

0 v
dt
d 

),( Tp 

 T is also a variable ! T is also a variable !

equation for the temperature is needed:  first law of Thermodynamics
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h f h d i l bl i l l (i l)Therefore, the dynamical problem involves at least (in general):

6 variables: velocity, pressure, density, temperature: 

),(,),(),,(,),( txTtxtxptxv  
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6 equations:
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If iscosit can be neglected:If viscosity can be neglected: 
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  Euler equations
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6. Rotating frames 



time derivative in S
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time derivative in S’S S’
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Euler equations
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angular velocity of frame S’ 
relative to frame S
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Navier Stokes equations in
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Navier Stokes equations in 
the rotating frame
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7. Bernouilli equation

Simplified expression of the Euler equations 
(equations of motion for inviscid fluid, i.e., viscosity is neglected)

Assumptions:
 no viscosity,  = 0

 x
3x

3êgg 


 barotropic flow, i.e., = (p)
 body force is gravity (= const.)
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with Bernouilli
function

This equation is specially useful in two particular cases:
1. Steady flow
2. Irrotational flow



Bernouilli equation for steady flow
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= constant along the streamlines

)(2 p

The constant may be different for different streamlines

 0


the constant is the same everywhere in the flow



Bernouilli equation for irrotational flow

Irrotational flow: 0 v

    v

potential flow
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Application of Bernouilli: Pitot tubepp

device to measure a flow velocity

h
h2 steady flow



h1
 steady flow
 viscosity is neglected
  = const.
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inside the vertical tubes there is hydrostatic balance:
p = p +gh + hp1 = patm+gh1 , p2 = patm+gh2



Application of Bernouilli: orifice in a tankpp
patm

1
streamline orifice small  flow approximately steady

 viscosity is neglected
  const
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has the same value everywhere since it has the same value 
at any point on the free surface  flow is irrotational
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