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1. Solids and fluids

Solid: F >
» has a preferred shape
» It takes another (constant) shape under - L/ -

the action of (constant) external forces
¢ It relaxes to that shape when the external forces are removed
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Fluid:

¢ has not any preferred shape
¢ it changes shape continuously under the action of fixed external forces

E
N-N--
This is so for shear stresses, but:
o= -0
|

» for normal stresses fluids and
»+ normal stresses can only be a compression (usually)

solids behave similarly




*»Gases: always tend to expand and occupy
Fluids: the entire volume of any container

s Liquids: the volume does not change very much

The distinction between solids and fluids apply well to many materials
under normal conditions but:
> solids under very strong shear stresses may behave partially as fluids (plasticity)
» some fluids (like jelly, paint, polymer solutions, ...) may behave partially
as solids and have a partial memory of a “preferred shape’ (viscoelasticity)



2. Fluid statics (or Hydrostatics)

Fluid at rest:

It is empirically found that stresses are isotropic:

T=—p 1| wherepis>0 (compression)and is called the pressure

7 l

pE=V-T+p§—>Vp=pG’

momentum equation

In case of gravity:
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if g = const. ,
p = const.

g = gravity acceleration



3. Perfect gas

The density of fluids depends on pressure and temperature.

o= p(p,T)| iscalled the equation of state

most gasses in normal conditions obey the following equation of state:

p=pRT
T = absolute temperature
2R
m

m

RU = universal constant = 8.314 J mol! K1

M, = molecular mass. For dry air=28.97 Kg/kmol

Perfect gas = the limit case when this equation is verified exactly



odynamic properties of perfect gasses
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Specific heat:
(1) o L(®
m\ dT V =const. m\dT p=const.

for air at ordinary temperatures:
y=1.4 and C,=1005J Kg* K

For an adiabatic (no heat transfer) process: = const.

: , 1(0p 1
Thermal expansion coefficient o=——\— = —
p=const. T

The specific internal energy is a function of the temperature only: U = U(T)




4. Newtonian fluids

Problem of fluid motions

Equation of motion: Cauchy or momentum equations

Usually, the body forces § are known

> but, we need to know

I
Pt

Q|

V-1+p0 (m

T(V)

in order to solve for the motion

constitutive equations

Tl



Fluid at rest: Fluid in motion:

T =— p 1 T=-— p 1 +fj
p = called iti i
termocynanic roporional i the s e
pressure PIoR |
O- — Cljmn I:)mn

If the fluid is isotropic:
Ciimn = A0;O0un + 10;, 0, + 10,041,

im*~ jn

Gj; = symmetric = L=y = o =24
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But the pressure was already defined from the mean normal stress p=—=1;
3
this is called the mean pressure and it is different from the thermodynamic one
_ 2
_ 2 _
P—-p=|A+—-u|V-V
3
For incompressible fluid: |V .y = = |p=p| = T =— p5ij + 2 )7 Dij
. 2 .
In general, bulk viscosity: K =A+ glu is found to be ~ 0
2

Newtonian fluid: | =1 +— U= 0
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Air and water obey very well the Newtonian fluid model

Examples of non Newtonian fluids:

+¢ solutions containing polymer molecules
¢ blood
¢ water with clay

- Stresses are nonlinear functions of strain rates

—> Stresses depend not only on instantaneous values of strain rate but also on
its history - material with memory = viscoelastic



L = viscosity coefficient
It depends on the thermodynamic properties (T, p)

Meaning: shear experiment

vV=u F
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Meaning: the viscosity tends to smooth out the gradients in velocity
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faster particles are
slowed down

slower particles are
accelerated




Viscous dissipation

. D = —-pV-vV + 1D
deformation work shear
work associated work

to changes

in volume

2 _

Second law of
thermodynamics

T:D'>0

mechanical energy

» the viscosity is always positive
» the viscosity always dissipates

viscous

'uiDlU =2/ D'ii D'ij
u=>0
24D DY 20

, dissipation
work



5. Navier-Stokes equations

Problem of fluid motions

Equation of motion Newtonian fluid
dv. Ot i ( 2 qj
Pat o ; e ’ 3 ) :

oV
dv _op +pg 0 oV, N —Z—ﬂ%@j
dt OX. Gx OX; OX; 3 OX,

LL = const ‘% —@ g PR 'ﬁa il
HEOME = P ™ o T T axox, 3 x| o

J

Navier-Stokes equations

v ) ] )
v _ v, v, pd—=—Vp+pg—|—,uV2V+£V(V-V)
dt ot o, dt 3




but the pressure and the density changes are unknown = p and p are also variables

continuity equation and dp ~
state equation —+pV.V=0
are involved: dt

p=p(pT)

—=> T isalso a variable !

equation for the temperature is needed: first law of Thermodynamics

du _
—=1:D —-V-g+ pr
'Odt g+,

u=u(T, p)



Therefore, the dynamical problem involves at least (in general):

6 variables: velocity, pressure, density, temperature:

V(X 1), p(X,t), o(X,1),T(X,1)

6 equations:

pz—t=—Vp+p§+yV2\7+%V(V-\7)

do _

—+pV-V=0

TR

p=p(p,T)

pd—uzr:D -V-g+pr u=u(T, p)

dt



dv
pa =-Vp+p (G| Eulerequations
ov, ov,
— 4 VJ — - 1 @ + g
ot ox; pox




6. ROTGﬁﬂg frames time derivative in S

% 1 0w N at), " dt -

S|&l 2 g’ \63 X, time derivative in S’
e A du du’,

&~ A X 1 € — .

€ 2 X / 2 [dtj dt €
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antisymmetric

1 g'. S
Q. = —Egijijk —P-(%j =Qxe"

dt Euler equations l

- . ’ dU dU ~ —
() = angular velocity of frame S (_ — +QxU

relative to frame S dt /). dt 5
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dt ). Ldt /o
daQ

d=3,, + é"+f)><(§)><)‘(’)+ 2%V + —x X
dt

centripetal Coriolis
acceleration || acceleration
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Navier Stokes equations in

the rotating frame

dv'

dt

p—:

—Vp+p§+uVV +

with

—

§'= G- Q% (Qx X')- g0 ——xX

centrifugal
force / p

%v(v-v )—2p QxV'
H—l
Coriolis

force




7. Bernouilli equation

Simplified expression of the Euler equations
(equations of motion for inviscid fluid, i.e., viscosity is neglected)

Assumptions:
» Nno viscosity, u =0
> barotropic flow, i.e.,p = p(p)

» body force Is gravity (= const.) X,
Euler equations: | oy = 1 B
—+V-VV=——Vp+J0
ot Jo, T
> §=-V(gx,

- VF =d—FVp=EVp
dp P




ot Yo,
> §=-V(gx)=-V(02)
> \7V\725)><\7+V(%V2j
d dF 1
> F(p)=[—"~ = VF=—"Vp==Vp
P dp P

d P Bernouilli

D ( p) function

+VO=Vxao with @z%v2+gz+j

This equation is specially useful in two particular cases:
1. Steady flow
2. Irrotational flow



Bernouilli equation for steady flow

a—V+V@)=\7><c?) VO V
ot
l streamline
VO=Vxo| = VO LV
®:£v2+gz+j dp
2 P (p)

= constant along the streamlines

The constant may be different for different streamlines

=0 = the constant is the same everywhere in the flow



Bernouilli equation for irrotational flow

Irrotational flow:

@w=VxV=0

<~

d¢ | V=V¢

potential flow
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Application of Bernouilli: Pitot tube
device to measure a flow velocity N
> steady flow 1 h, 2
> viscosity is neglected —— | ——— —t—
> p = const. —
\7 — v X // v
—_ 1 2
1 1
~Vv} + 0z, Lt = V; + 0z, P
2 o 2
1, PP
—V, +—=—=
25 p p I P|V1=\/2g(h2—hl)

inside the vertical tubes there is hydrostatic balance:
pl = patm+pgh1 y P2 = patm+pgh2




Application of Bernouilli: orifice in a tank

» orifice small = flow approximately steady Patm
> Vviscosity is neglected . l 1
» p = const.
h
1 1 Pat
SVygz+ P oSviigy,+ 2 i
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Actually, the function

1
@):—v2+gz+£ oV L
2 o, E +VO=Vxw
has the same value everywhere since it has the same value l

at any point on the free surface = flow is irrotational Vxo=0 = =0




