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OUTLINE

Relative motion of neighbouring particles.
Strain tensor.

Strain and rotation.

Variation of volumes and areas.

Strain rate and vorticity.

Time variation of volumes, areas and lengths.
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1. Relative motion of neighbouring points.

Example: shear deformation of a body between t, and t,
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1. Relative motion of neighbouring points.

Example:

dx =dX + (b+2cY)dY
dy =dY
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2. Strain tensor.

Deformation = change of the distances between particles
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Example: shear deformation
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meaning of the components of the strain tensor?
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d X =(0,0)dS —— ds®-dS® = 2E;dX,dX; = 2E,, dS*

E,; = change of length along x; axis

d X =(010)dS —— ds*—dS* = 2E;dX,dX, = 2E,, dS°

E,, = change of length along x, axis

d X =(0,01)dS —— ds*—dS* = 2E;dX,dX, = 2E,, dS°

E,; = change of length along X, axis




Example: shear deformation
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Example: shear deformation
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Computation of the changes in length

y1 1=t t=t,
i ey
4
. dX=F-dX =F-tdS
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dX =fdS = unitvector
ds® —dS?
ds*-dS®=2E,d X;d X, = s = 2Bt
Change in length per unit of initial length: _
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Changes In direction

2 0 : : :
F= [ j d % Isotropic transformation =
only changes in length,
d :~> ] / no changes in direction
| 2\0; d % anisotropic transformation =

F = : TISTOTTAL
[o 1/2] also changes in direction
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Computation of the changes in direction
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Computation of the changes in direction

y

s — (6, +2E; Jtt',
J1+2E tt J1+2E, t' '
| —2E
A@ — 12
o J1+2E, 1+ 2E,,

So, the non diagonal entries of E are related to the changes in the angles
between material lines along the axes

1
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Principal axes of the strain tensor

Since E Is symmetric, there always are three principal directions

with real eigenvalues =
any deformation is a stretching or compression (without rotation)

along three directions which are mutually orthogonal * 0 0)
. ) ) . _ 11
using these directions as coordinate axes: E=[0 e, O
\ 0 0 €33
b/2
b/2
(E—11)-6 =0——{A=b/2, *=(11)
A=-bl2, €=(1-1)

0 -b/2)| & =1+2E", -1=+1-b-1~-h/2

if |b|<<1

(blz 0 j g =+1+2E,, -1=1+b-1~b/2,




3. Strain and rotation.

Polar theorem:
any linear map F can be decomposed as

F=Q-U

where Q is an orthogonal transformation and U is symmetric
Q and U are unique (also, F=V-Q, but this is not needed now)

» Since det F = +1, Q is actually a rotation.
» Since U is symmetric, it is a stretching along principal directions,

so that it 1s a deformation with

Therefore, any motion of a body is locally the superposition of:
» a deformation

e a rigid rotation

e a shift (which is not captured by F)




It can be proven that:

U=1 — Q =const.,
everywhere in the body l.e., the same everywhere in the body

This means that if there is no deformation the rigid rotation
IS the same everywhere in the body = rigid body motion

Don’t confuse !
+¢ the rigid body rotation which rotates all the vectors by the same angle
with

. :
+» the rotation associated to a strain which rotates different vectors by different angles
*
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’0 *
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rigid body rotation, Q deformation, U (or E)



4. Variation of volumes and areas.

Volume variation

dv = (d X! xd %2)-d % = det{(dx' ), }= det{F,, (X "), }=
det{F -dX } = det{F} det{dX } = det{F }dV

ﬂ:detF
dv




Example:
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Area variation

dv=da-dl =d&a-F-dL
dv=detFdV =detFd A-d L

} da-F=(detF)dA =

da=(detF)dA-F*




Example:
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5. Strain rate and vorticity

+t=t,
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Let’s now consider that t, Is changing, that is, the time variation and
let’s think of the Eulerian description.

Which is the relative motion of neighbouring points?

Example: parallel shear flow
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In general:

=—"dx. dv=L-dX

L. = % = Vvelocity gradient tensor

» which part of the relative motion
does correspond to strain

and which part does correspond to rigid body rotation?
> which is the relationship with the Lagrangian description ?




Let us consider the Lagrangian description, X = )?()Zt)

/

dox(X,t)] @ (ox(X,t)] ov, ov, ox dF _, £
= = = b | ———— — y
dt OoX j OoX j ot OX i oX, OX i dt
CE—-0. U = symmetric = deformation
Polar theorem: F =Q-U Q = orthogonal - rigid body rotation
d=F ., dQ
L = F= — .y
dt dt Q Q

Now, one can take the material coordinates as the coordinates of the particles

at any fixed time, in particular, t, = t, , the time where the computation of L is done.
Thus, the reference configuration can by chosen so that:

Qit)—=>1,Ut)=>1 fort,>t,
SO that: L du
dt

lLS)
dt

=D+W

t:to

t:tO




du ‘ |
D=— = strain rate tensor.
at |uz1 Is symmetric because U is symmetrical.

= deformation part of the relative motion
dQ - |
W=—2> = vorticity or rotation tensor.
dt 0-1 Is antisymmetric because (dQ/dt)-QTis antisymmetric

= rigid body rotation part of the relative motion

D = symmetric part of L, W = antisymmetric part of L =

D:i(L_|_|_T) ’ WZE(L_LT)
2 2
vector associated to the vorticity tensor Q. =-— 1 gijijk W-dX = QxdX
1 1
€ = _%‘%‘ijk AL (aij —0Vi )= Egijkajvk
vorticity vector

= angular velocity in case of a rigid body rotation B =V xV = 2@




Example: parallel shear flow
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Example: parallel shear flow. Rate of change of an arbitrary vector.
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Example: parallel shear flow. Rate of change of an arbitrary vector.
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Example: parallel shear flow. Rate of change of an arbitrary vector.
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Computation of the rate of change in length

i(dSZ)zi(zd X-E-dX)=2dX -—-dX
dt dt

dE

dt
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and similarly for D,, and D,




Computation of the rate of change in relative angle

dX-dX'=dsds'cosé

D zdx)= 5 ge iy 25 = v dx,rax dv, =
dt dt dt
L dx; dx; +de dx,'= L;dx;dx; +dx L;dx; "=

IIJ

rY *
.....
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do
dt

Now, if dX=(10,0)ds, dx'=(0L0)ds

dé
so that 6’:% 2D, =- dtlz




Principal axes of the strain rate tensor

D.. DD, relative angular velocity of the axes

Since the strain rate tensor is symmetric, there exist three principal directions
with respect to which

h U 0 dv = d.é, ds
D=0 d, O T
0 0 d, I )
that is, the deformation is just | dv=
a stretching along these axes without rotation. / >

Warning: this is locally and at a particular time  d V = d,€, ds



6. Time variation of volumes and areas
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Another proof:

Let (X4,X,,X3) be principal axes of D at a given point and time =

e

1 d

1 d
dx)=D,,, — —(dx*)=D,,, — —(dx’)=D
ot at =P r G () =Da g (@) =Ds
t=t Idx3 t:t0+dtI
— o
d x3+(Dg,dt) d x°
./C‘l xz\‘
e / d x°+(D,,dt) d x
X —
d x'+(D,,dt) d x*
OV = ()
dVv dt dx dx“dx”® dt tr (D) is invariant =
In any coordinate system:
o)y S S ()
dx” dt dx“ dt dx® dt
= d(dV)—t D)= _v.y
D,,+D,, + D,, =tr(D) YT =tr( )_8_xi_ -V




Time variation of areas
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