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1. Introduction. Continuum hypothesis.

 The molecular structure of matter is ignored and we deal with averages 
 This can be done if: This can be done if: 

L = length scale of motions of interest >>  mean free path of molecules

F lFor example: 
 standart air molecule: mean free path of molecules  10-8 m
 but, for instance, in the upper atmosphere this can be  1 m
 standart continuum hypothesis is no longer valid unless we look 

at very large scales (L  10 km ??)

Therefore, 
 we will assume that solids and fluids are continuus 
 ‘ i l ’ l l h i ll b ll ‘particles’ or volume elements can theoretically be as small as we want  

(dV  0)
 but in practice, if we want to compare with nature, we know that there is 

always a lower bound which depends upon the material 
and may be of the order of L  10-3 m



2.  Lagrangian description. 

Kinematics = description of motion without caring for its causes, i.e., forces 

Example: rolling wheel without skiding

y 

v =  r

y

v =  rx

How to describe the motion of the particles?



Example: rolling wheel without skiding

How to describe the motion of the particles?

First: identify each particle (for instance with polar coordinates, R, )

y path line or trajectory
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Example: rolling wheel without skiding
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Example: rolling wheel without skiding

(R, ) = material or Lagrangian coordinates of the particle = label for each particle

y

There are many options for the material coordinates. 
For instance, cartesian coordinates
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velocity and acceleration
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3.  Eulerian description. 
),( txfv 
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Eulerian description  description of the velocity field:

Example: rolling wheel without skiding
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Relationship between both descriptions

Lagrangian  Eulerian
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Relationship between both descriptions

Eulerian  Lagrangian
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system of O.D.E. integration 0x initial conditions  X


)( yrv   )cos( tRtrx  
)(dx


)(

)(
trxv

yrv

y

x







)sin(
)(

tRy 

)(

)(

trxdy

yr
dt









)( trx
dt



integration



Integration of the ODE

dx 

Particular solution of the inhomogeneous system:
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General solution of the homogeneous system:

0

dy

y
dt
dx 

),1(),(, ibai 

0 x
dt
dy 

)()( baeyx t 



 

















 )cos(sincos tttx 

taking real and imaginary parts:
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where R,  are the integration constants 



M t i l d i tiMaterial derivative.

How can we compute the acceleration in eulerian description ?
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In Lagrangian description, the acceleration is simply 
the partial derivative with respect to time because 

.constX
tt


 this derivative is done by keeping X constant, i.e., 

the particle is fixed. 

In Eulerian description the acceleration is not simply

.
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In Eulerian description, the acceleration is not simply 
the partial derivative with respect to time because this 
derivative implies now keeping x constant, i.e., 
the point is fixed  different particles go throughthe point is fixed  different particles go through 
this point as time goes.

If not, for example, for a steady flow ( v / t = 0), the acceleration would be always 0 !!
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 txv 
but fluid particles have 

f d l ti !0
t a forward acceleration !



How can we compute the acceleration in eulerian description ?

),( tXFx


Taking into account that following the motion of a particle,                  
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and applying the ‘chain rule’:
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In general, given any field in Eulerian description  ),( txF 

the time derivative at a fixed point                   is called the local derivative
t
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t
and the time derivative by following the material particles is called 
the material derivative and is computed as
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Example: rolling wheel without skiding
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4   Path lines  streamlines  stream tubes4.  Path lines, streamlines, stream tubes
Path lines = trajectories of the particles

y

xx

S li li hi hStreamlines = lines which are 
tangent to the velocity field at 
a given time



Streamlines are found by seeking the field lines of the field                at a given t),( txv 

i.e., by solving the system of ODE in the parameter s:
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Integration very similar to 

that done before, but now 
t is constant and s is the 
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  variable

y
St t b li i h h

x
Stream tube = streamlines passing through 

any closed curve

circumferences 
which are centered 
at (rt,-r)

If the velocity field is steady, 
streamlines and path lines coincide



Streamlines: alternative integration

))(( syrdx  

))((

))((

trsxdy

syr
ds









))(( trsx
ds

 

   dxtrxdyrytrx
d
dy





      

    .22 consttrxry

rydx



 
 = circumferences which are     

centered at (rt r)centered at (rt,-r)



5   Material volumes  surfaces and lines5.  Material volumes, surfaces and lines

= volumes surfaces or lines which contain always the same particles

0),( txF 

= volumes, surfaces or lines which contain always the same particles

A mobile surface defined by is a material surface if and only if:),(
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Example: rolling wheel without skiding. Diameter.
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It’s a material line!



Example: rolling wheel without skiding. Vertical line

0

y

0 trx 

x
x

 t

x =  r t

00)()(














y
Fv

x
Fv

t
F

dt
dF

yx

l 0 ( f h h l)00)()(  ytrxyrr 

It’s not a material line!

unless y = 0 (center of the wheel)

It’s not a material line!


