

OUTLINE

- 1. Introduction. Continuum hypothesis.
- 2. Lagrangian description. Example of flow.
- 3. Eulerian description. Material derivative.
- 4. Streamlines, path lines and streamtubes
- 5. Material lines, surfaces and volumes

1. Introduction. Continuum hypothesis.

The molecular structure of matter is ignored and we deal with averages
This can be done if:
L = length scale of motions of interest >> mean free path of molecules

For example:

- ightharpoonup standart air molecule: mean free path of molecules $\sim 10^{-8}$ m
- \triangleright but, for instance, in the upper atmosphere this can be $\sim 1~\text{m}$
 - \Rightarrow standart continuum hypothesis is no longer valid unless we look at very large scales (L ~ 10 km??)

Therefore, □ we will assume that solids and fluids are continuus □ 'particles' or volume elements can theoretically be as small as we want (dV → 0) □ but in practice, if we want to compare with nature, we know that there is always a lower bound which depends upon the material and may be of the order of L ~ 10⁻³ m

2. Lagrangian description.

Kinematics = description of motion without caring for its causes, i.e., forces

Example: rolling wheel without skiding

How to describe the motion of the particles?

How to describe the motion of the particles?

First: identify each particle (for instance with polar coordinates, R, Θ)

$$x = r\omega \ t + R\cos(\Theta - \omega t)$$
$$y = R\sin(\Theta - \omega t)$$

Lagrangian description of motion

$$\vec{x} = F(\vec{X}, t)$$

$$(x,y) \quad (R, \Theta)$$

 (R, Θ) = material or Lagrangian coordinates of the particle = label for each particle

There are many options for the material coordinates. For instance, cartesian coordinates

$$x = r\omega \ t + \sqrt{X^2 + Y^2} \cos(\tan^{-1}\left(\frac{Y}{X}\right) - \omega t)$$
$$y = \sqrt{X^2 + Y^2} \sin(\tan^{-1}\left(\frac{Y}{X}\right) - \omega t)$$

$$\vec{x} = F(\vec{X}, t)$$

$$(x,y) \quad (X,Y)$$

velocity and acceleration

$$\begin{vmatrix} x = r\omega & t + R\cos(\Theta - \omega t) \\ y = R\sin(\Theta - \omega t) \end{vmatrix} v_x = r\omega + R\omega\sin(\Theta - \omega t)$$

$$v_y = -R\omega\cos(\Theta - \omega t)$$

$$a_x = -R\omega^2\cos(\Theta - \omega t)$$

$$a_y = -R\omega^2\sin(\Theta - \omega t)$$

Eulerian description.

Eulerian description \rightarrow description of the velocity field: $|\vec{v} = f(\vec{x}, t)|$

$$\vec{v} = f(\vec{x}, t)$$

Example: rolling wheel without skiding

$$v_{x} = \omega (r + y)$$

$$v_{y} = -\omega (x - \omega r t)$$
if $(x - \omega r t)^{2} + y^{2} \le r^{2}$

$$v_x = 0$$

$$v_y = 0$$
otherwise

Relationship between both descriptions

Lagrangian → **Eulerian**

$$x = r\omega \ t + R\cos(\Theta - \omega t)$$

$$y = R\sin(\Theta - \omega t)$$

$$v_x = r\omega + R\omega\sin(\Theta - \omega t)$$

$$v_y = -R\omega\cos(\Theta - \omega t)$$

$$V_y = -\omega(x - \omega r t)$$

$$P(x) = -\omega(x - \omega r t)$$

Relationship between both descriptions

Eulerian → **Lagrangian**

$$v_{x} = \omega (r + y)$$

$$v_{y} = -\omega (x - \omega r t)$$

$$\frac{dx}{dt} = \omega (r + y)$$

$$\frac{dy}{dt} = -\omega (x - \omega r t)$$

$$\frac{dx}{dt} = -\omega (x - \omega r t)$$
integration

Integration of the ODE

Particular solution of the inhomogeneous system:

$$\frac{dx}{dt} - \omega y = \omega r$$

$$\frac{dy}{dt} + \omega x = \omega^2 r t$$

$$x = \omega r t$$
 , $y = 0$

General solution of the homogeneous system:

General solution:

$$x = r\omega \ t + R\cos(\Theta - \omega t)$$
$$y = R\sin(\Theta - \omega t)$$

where R, Θ are the integration constants

Material derivative.

How can we compute the acceleration in eulerian description?

In **Lagrangian description**, the acceleration is simply the partial derivative with respect to time because this derivative is done by keeping X constant, i.e., the particle is fixed.

$$\vec{a} = \frac{\partial \vec{v}(\vec{X}, t)}{\partial t} = \frac{\partial \vec{v}(\vec{X}, t)}{\partial t} \bigg|_{\vec{X} = const.}$$

In **Eulerian description**, the acceleration is not simply the partial derivative with respect to time because this $\vec{a} \neq \frac{\partial \vec{v}(\vec{x},t)}{\partial t} = \frac{\partial \vec{v}(\vec{x},t)}{\partial t}$ derivative implies now keeping x constant, i.e., the point is fixed \Rightarrow different particles go through this point as time goes.

$$\vec{a} \neq \frac{\partial \vec{v}(\vec{x},t)}{\partial t} = \frac{\partial \vec{v}(\vec{x},t)}{\partial t} \Big|_{\vec{x}=const.}$$

If not, for example, for a steady flow $(\partial v / \partial t = 0)$, the acceleration would be always 0 !!

How can we compute the acceleration in eulerian description?

Taking into account that following the motion of a particle, $\vec{x} = F(X, t)$ and applying the 'chain rule':

$$a_{i} = \frac{d}{dt}v_{i}(\vec{X}(\vec{X},t),t) = \frac{\partial v_{i}}{\partial t} + \frac{\partial v_{i}}{\partial x_{k}} \frac{\partial x_{k}(\vec{X},t)}{\partial t} = \frac{\partial v_{i}}{\partial t} + v_{k} \frac{\partial v_{i}}{\partial x_{k}}$$

$$\vec{a} = \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v}$$

In general, given any field in Eulerian description $F(\vec{x},t)$

the time derivative at a fixed point $\frac{\partial F(\vec{x},t)}{\partial t}$ is called the **local derivative**

and the time derivative by following the material particles is called the **material derivative** and is computed as

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \vec{v} \cdot \nabla F$$

$$a_{x} = \frac{\partial v_{x}}{\partial t} + v_{x} \frac{\partial v_{x}}{\partial x} + v_{y} \frac{\partial v_{x}}{\partial y} = 0 + 0 - \omega^{2}(x - \omega rt)$$

$$a_{y} = \frac{\partial v_{y}}{\partial t} + v_{x} \frac{\partial v_{y}}{\partial x} + v_{y} \frac{\partial v_{y}}{\partial y} = \omega^{2}r - \omega^{2}(r + y) + 0$$

Lagrangian
$$a_x = -R\omega^2 \cos(\Theta - \omega t)$$
 $x = r\omega t + R\cos(\Theta - \omega t)$ $a_y = -R\omega^2 \sin(\Theta - \omega t)$ $y = R\sin(\Theta - \omega t)$

4. Path lines, streamlines, stream tubes

Path lines = trajectories of the particles

Streamlines = lines which are tangent to the velocity field at a given time

Streamlines are found by seeking the field lines of the field $\vec{v}(\vec{x},t)$ at a given t i.e., by solving the system of ODE in the parameter s:

If the velocity field is steady, streamlines and path lines coincide

Streamlines: alternative integration

$$\frac{dx}{ds} = \omega (r + y(s))$$

$$\frac{dy}{ds} = -\omega (x(s) - \omega r t)$$

$$\frac{dy}{dx} = -\frac{x - r\omega t}{y + r} \implies \int (y + r) dy = -\int (x - r\omega t) dx \implies (y + r)^2 + (x - r\omega t)^2 = const. = circumferences which are centered at (r\omegat, r)$$

5. Material volumes, surfaces and lines

= volumes, surfaces or lines which contain always the same particles

A mobile surface defined by $F(\vec{x},t) = 0$ is a material surface if and only if:

$$\frac{dF}{dt} = 0$$
, that is, $\frac{\partial F}{\partial t} + \vec{v} \cdot \nabla F = 0$

Example: rolling wheel without skiding. Diameter.

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + v_x \frac{\partial F}{\partial x} + v_y \frac{\partial F}{\partial y} =$$

$$-\omega r \tan \omega t + \frac{\omega}{(\cos \omega t)^2} (x - r\omega t) + \omega (r + y) \tan \omega t - \omega (x - r\omega t) =$$

$$\omega(y + (x - r\omega t) \tan \omega t) \tan \omega t = 0$$

It's a material line!

Example: rolling wheel without skiding. Vertical line

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + v_x \frac{\partial F}{\partial x} + v_y \frac{\partial F}{\partial y} =$$

$$-\omega r + \omega(r+y) - \omega(x-r\omega t) \cdot 0 = \omega y \neq 0$$
 unless y = 0 (center of the wheel)

It's not a material line!