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1. Introduction. Continuum hypothesis.

O The molecular structure of matter is ignored and we deal with averages
O This can be done if:

L = length scale of motions of interest >> mean free path of molecules

For example:

» standart air molecule: mean free path of molecules ~ 108 m
» but, for instance, in the upper atmosphere this can be ~1 m

—> standart continuum hypothesis is no longer valid unless we look
at very large scales (L ~ 10 km ?7?)

Therefore,

O we will assume that solids and fluids are continuus

O “particles’ or volume elements can theoretically be as small as we want
(dV - 0)

O but in practice, if we want to compare with nature, we know that there is

always a lower bound which depends upon the material
and may be of the order of L ~ 1023 m




2. Lagrangian description.

Kinematics = description of motion without caring for its causes, I.e., forces

Example: rolling wheel without skiding

How to describe the motion of the particles?



Example: rolling wheel without skiding

How to describe the motion of the particles?

First: identify each particle (for instance with polar coordinates, R, ®)

2 Y path line or trajectory
of particle (R, ®)

R
/e
- »

X=rw t+Rcos(®-wt) Lagrangian description

y=Rsin(@-wt) of motion X = F




Example: rolling wheel without skiding

particle

R=r0=n2 [

X=rw t+Rcos(®—wt)
y=Rsin(®@-wt)

—

X=r(w t+cos(z/2-wt))
y=rsin(z/2-wt)

particle

X=rm t+Rcos(®—-wt)

R=0,6=0 _’y: Rsin(@-wt)




Example: rolling wheel without skiding

(R, ®) = material or Lagrangian coordinates of the particle = label for each particle

There are many options for the material coordinates.
For instance, cartesian coordinates

2 Y

x:ra)t+x/X2+Y2COS(ta”1(%)‘”” ):(:F(X’t)

y =+ X2+Y? sin(tan{%) - wt) (X!Y) (X|,Y)




velocity and acceleration

X=F(X,t)

—

OF (X,1)

X=rw t+Rcos(®@—wt)
y=Rsin(®@—-wt)

V. =rw+RosIn(®-wt)
v, =-Rwcos(®-wt)

a, =—Rw’cos(®@—-wt)

-, 2
a, =—Ro"sin(@-wt)




3. Eulerian description.

Eulerian description = description of the velocity field: V

Example: rolling wheel without skiding

V. =w (r+Yy) v, =0

V,=—o (X—aort) v, =0

if (X—ort)®+y><r? otherwise



Relationship between both descriptions

Lagrangian - Eulerian

X =F(X,t)]—>

oF (X,1)

V =

—

X

>
atT

F(X,1)

X=rw t+Rcos(®—wt)

y=Rsin(®@-wt)

—

V., =Trw+RwsIn(®-wt)

=

V., =—Rwcos(®-wt)

®= a)t+tan1£

R:\/(x—a)rt)2+y2

y

X—aort

V. =w(r+vy)

V,=—0 (X-wrt)

|




Relationship between both descriptions

Eulerian - Lagrangian

d %(t)

V= f(Xt — f(X(t),1) X = X(t, X X =F (Xt
) (())T» (t, %,)|—{% = F (X, 1)
sy e ODUE. - )‘(’O — initial conditions - )Z

\‘/X:a)(r+y) %:a)(r+y) ’|x=ra)-t+Rcos(®—a)t)
y dy
—=—-0(X-ort)
dt
integration
;}




Integration of the ODE

dx 3

gt ey=er X=wrt , y=0

d

—y+ oX=0"rt

dt

T T e T P e A

dx

—-—wy=0 : :

dt x »o==x1 , (a,b)=@Q=*x1)

d\l I

+wX=0 taking real and imaginary parts:

|

(X, y) =€ (a.b) (xj iA[ co-sa)t j+ B(sin cotj _ R(C?S(@—a)t)j
y —sin ot cos wt Sin(® — wt)

X=rw t+Rcos(®—wt)
y=Rsin(®@-wt)

General solution: where R, ® are the integration constants




Material derivative.

How can we compute the acceleration in eulerian description ?

In Lagrangian description, the acceleration is simply = O
the partial derivative with respect to time because 3= OV(X,1) — ov(X.1)
this derivative is done by keeping X constant, i.e., ot ot % —const

the particle is fixed.

In Eulerian description, the acceleration is not simply s e
the partial derivative with respect to time because this 3 # ov(x,Y) = ov(x,Y)
derivative implies now keeping x constant, i.e., ot ot

the point is fixed = different particles go through

this point as time goes.
If not, for example, for a steady flow (0 v /o t = 0), the acceleration would be always 0 !!

X=const.

5\7(7@'[) _0 but fluid particles have
o a forward acceleration !




How can we compute the acceleration in eulerian description ?

Taking into account that following the motion of a particle, X = F(X,1)

and applying the “chain rule’:

d

a =—V, (X(X,1),1) = +v, —-
" dt (XG40 ot ox, ot ot ‘o 7
é{:a—v+\7-Vv
ot

In general, given any field in Eulerian description F(X,t)

o, OV, ox, (X, t) ov,  ov

the time derivative at a fixed point oF (X,1) is called the local derivative

ot

and the time derivative by following the material particles is called

the material derivative and is computed as

dF oF

dt ot

+V-VF




Example: rolling wheel without skiding

V.= (r+Yy)

A — —_ _
/' V,=—o(X-aort)

a, = Oy +V, Oy +V Ny =0+0-°(X—wrt)
ot ox oy
oV oV oV
a,=—+V,—+V,— =0 rT—a’(r+y)+0
ot OX oy

Lagrangian a, =—-Rw’cos(@—-wt)

2 -
a, =—Rao"sin(@-wt)

X=rowt+Rcos(®—wt)
y=RsIin(®-wt)




4. Path lines, streamlines, stream tt
Path lines = trajectories of the particles
y
¢ = .

Streamlines = lines which are
tangent to the velocity field at
a given time




Streamlines are found by seeking the field lines of the field V(X,t) atagivent
l.e., by solving the system of ODE in the parameter s:

% =V (X(s),1) X = X(s,t,C) C = integration constants
S
dx : .
—=w (r+y(s)) Integration very similar to X=rw t+Rcos(®—w>S)
ds — that done before, butnow RSIN(©@ - s)
dy t is constant and s is the y= -
——=—0(X(s)-ort)[ yariable
ds
. . y
Stream tube = streamlines passing through
any closed curve ~ = A

circumferences
which are centered

at (rot,-r) —

If the velocity field is steady,
streamlines and path lines coincide




Streamlines: alternative integration

o (r+y(s))

ds

Y (x(s)-ert)
ds

!

%=— X;iar)t = J'(y+ r)dy:—.’f(x—ra)t)dx —
(y + r)2 + (X — ra)’[)2 = COonst. = circumferences which are

centered at (rot,-r)
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>

= volumes, surfaces or lines which contain always the same particles

A mobile surface defined by F(X,t)=0 Isamaterial surface if and only if:

d_F:O , that is, a_F+VVF =40

dt ot

‘ dt

F(X(Xa’tl)ltl)zo F(X(Xa’tz)’tz)zo



Example: rolling wheel without skiding. Diameter.

1y a)/+
X
>

y+(X—rot)tanwt=0

X=wrt

dF oF oF oF
=—4V,—+V, —=
dt ot ox oy

—or tan ot + ( @ 02 (X—=rot)+o(r+y)tanot—o(X—rot) =
COS @

o(y+(x—rot)tan wt)tan ot =0
It’s a material line!



Example: rolling wheel without skiding. Vertical line

Ay a)/"
X—Trot=0

X=wrt

dF oOF oF oF
=—+V, —+V, —=
dt ot ox oy

—aor+ao(r+y)—o(X—rot)-0=wy =0 unlessy =0 (center of the wheel)

It’s not a material line!



