Master in Computational and Applied Physics

Continuum and Fluid Mechanics

CHAPTER 1: Tensor Calculus

OUTLINE

1. Scalars, vectors and tensors. Cartesian basis. Rotation of axes.
2. Example: stress tensor.
3. Matrix algebra. Multiplication and contraction.
4. Isotropic tensors.
5. Algebraic properties of symmetric second order tensors. Eigenvalues and eigenvectors.
6. Gradient operator, divergence and curl. Gauss and Stokes theorems. Vector identities.

BIBLIOGRAPHY

- P.K.Kundu. ‘Fluid Mechanics’. Academic Press. 1990.
- R. Aris. 'Vectors, tensors and the basic equations of fluid mechanics'. Dover, 1962.
- J.M. Massaguer, A. Falqués. ‘Mecánica del continuo. Geometría y Dinámica’. Edicions UPC, 1994.
- D.E. Bourne, P.C. Kendall. 'Análisis vectorial y tensores cartesianos’. Limusa, 1976.
- L.A. Segel. ‘Mathematics applied to continuum mechanics’. Dover, 1977.

1. Scalars, vectors and tensors. Cartesian basis. Rotation of axes.

\mathscr{H} Scalar: quantity which is defined by its magnitude only.
Example: temperature, density, kinetic energy
\mathscr{A} Vector: quantity which is defined by its magnitude and direction. Given a coordinate axis, a vector is defined by three components.
Example: force, velocity, acceleration, momentum, torque
If Tensor: linear or multilinear map between vectors (or vectors and scalars). Given a coordinate axes system, a tensor is defined by, at least, nine components.
Example: stress tensor (force per area unit across any section of a body at a point), strain tensor (deformation rate of a body in any direction at a point)

Cartesian axes

X_{3} cartesian coordinates: X_{1}, X_{2}, X_{3}
ortonormal basis: $\quad \hat{e}_{1}=(1,0,0), \hat{e}_{2}=(0,1,0), \hat{e}_{3}=(0,0,1)$
position vector: $\vec{X}=\sum_{i=1}^{3} x_{i} \hat{e}_{i}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\hat{e}_{1}^{\prime}=C_{11} \hat{e}_{1}+C_{21} \hat{e}_{2}+C_{31} \hat{e}_{3} \\
\hat{e}_{2}{ }^{\prime}=C_{12} \hat{e}_{1}+C_{22} \hat{e}_{2}+C_{32} \hat{e}_{3} \\
\hat{e}_{3}^{\prime}=C_{13} \hat{e}_{1}+C_{23} \hat{e}_{2}+C_{33} \hat{e}_{3}
\end{array}\right. \\
& \hat{e}_{i}^{\prime}=\sum_{j=1}^{3} C_{j i} \hat{e}_{j}, \quad i=1,2,3
\end{aligned}
$$

$i=$ free index; $j=$ dummy index

Summation convention over repeated indexes

* In any product of terms a repeated index is held to be summed over 1,2,3.
* An index not repeated in any product can take any of the values 1,2,3.

Examples:

$$
\begin{aligned}
& \hat{e}_{i}^{\prime}=C_{j i} \hat{e}_{j} \Leftrightarrow \quad \hat{e}_{i}^{\prime}=\sum_{j=1}^{3} C_{j i} \hat{e}_{j}, \quad i=1,2,3 \\
& a_{i} b_{i j k} c_{k n}=R_{k j n k} \quad \Leftrightarrow \quad \sum_{i, k=1}^{3} a_{i} b_{i j k} c_{k n}=\sum_{k=1}^{3} R_{k j n k} \quad j, n=1,2,3
\end{aligned}
$$

Warning: an index should not be repeated more than twice.
Example:
$a_{111}+a_{222}+a_{333}=0 \quad$ should be abbreviated as $\quad \sum_{i=1}^{3} a_{i i i}=0$
but not as $a_{i i i}=0$ that would mean: $a_{111}=a_{222}=a_{333}=0$
Warning: same free indexes at both sides of an equation or for all the terms in a sum.
Example:

$$
a_{i j}-b_{i}=c_{j k} a_{k n} \quad \Leftrightarrow \quad ? ? ?
$$

Rotation matrix. Properties

$$
\mathbf{C}=\left(\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right)
$$

$$
\left(C_{1 i}, C_{2 i}, C_{3 i}\right)=\text { components of } e_{i} \text { ' on the basis } \mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}
$$ = cosinus of the angles between the new axis $x_{i}{ }^{\prime}$ and the old axes $x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, x_{3}{ }^{\prime}$

$$
\begin{aligned}
& C_{11}=\cos \theta, \quad C_{21}=\cos (\pi / 2-\theta) \\
& C_{12}=\cos (\pi / 2+\theta), \quad C_{22}=\cos \theta
\end{aligned}
$$

The transpose matrix:
verifies: $\mathbf{C} \cdot \mathbf{C}^{\mathbf{T}}=\mathbf{1} \quad$ (and also $\mathbf{C}^{\mathbf{T}} \cdot \mathbf{C}=\mathbf{1}$)

$$
\mathbf{C}^{\mathbf{T}}=\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right) \quad\left(\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right)\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This is the 'orthogonality condition' and implies that: $\quad \mathbf{C}^{-1}=\mathbf{C}^{\mathbf{T}}$

Change of the coordinates of a point.

Given that the basis' vectors change according to: $\quad \hat{e}_{i}{ }^{\prime}=C_{j i} \hat{e}_{j}$

How do the coordinates of any point change?

$$
\begin{aligned}
& \vec{x}=x_{j} \hat{e}_{j}=x_{k}^{\prime} \hat{e}_{k}^{\prime}=x_{k}^{\prime} C_{j k} \hat{e}_{j} \Rightarrow \\
& x_{j}=x_{k}^{\prime} C_{j k} \Rightarrow x_{j}^{\prime}=x_{k}\left\{C^{-1}\right\}_{j k}
\end{aligned}
$$

and since $\quad \mathbf{C}^{-1}=\mathbf{C}^{\mathbf{T}} \quad$ the coordinates do change with the same matrix \mathbf{C}

$$
x_{j}{ }^{\prime}=C_{k j} x_{k} \quad \text { or } \quad \mathbf{x}^{\prime}=\mathbf{C}^{T} \cdot \mathbf{x}
$$

Orthogonal transformations $\operatorname{det} \mathrm{C}= \pm 1 \ldots .$.

Formal definition of a vector and a scalar.

A physical quantity b is said to be a scalar if it is invariant under axis rotations, i.e.,

$$
b^{\prime}=b
$$

Three physical quantities (a_{1}, a_{2}, a_{3}) are said to define a vector \vec{a} if they change as the coordinates of a point under axis rotations, i.e.,

$$
a_{i}^{\prime}=C_{k i} a_{k}
$$

Tensors arise as linear and multilinear maps between vectors (or vectors and scalars). Given a coordinate system, a tensor is defined by 3^{n} components where n is its order. A scalar can be considered a tensor of order 0 and a vector a tensor of order 1 .
A formal definition based on the transformation of their components will be given later on.
We will first introduce a particular tensor as an example: the stress tensor

2. Stress tensor

Force per unit area across a section of a body

\vec{f} is a vector that depends on the orientation of the surface, i.e., another vector, \hat{n} How is this relation ?
$2^{\text {on }}$ Newton Law applied to the tetrahedron when $\mathrm{S} \rightarrow 0$:

$$
\begin{aligned}
& S \vec{f}+S_{1} \vec{f}_{1}+S_{2} \vec{f}_{2}+S_{3} \vec{f}_{3}=\frac{1}{3} \rho S h \vec{a} \Rightarrow \\
& \vec{f}+\frac{S_{1}}{S} \vec{f}_{1}+\frac{S_{2}}{S} \vec{f}_{2}+\frac{S_{3}}{S} \vec{f}_{3}=\frac{1}{3} \rho h \vec{a} \rightarrow 0 \\
& \quad \vec{f}_{i}=\begin{array}{l}
\text { external force on } S_{i} \\
\text { so corresponding to a normal } \vec{n}=-\hat{e}_{i}
\end{array}
\end{aligned}
$$

Matrix expression

How do the components of the stress tensor change under axis rotation?

Formal definition of a tensor.

Nine physical quantities $\left\{T_{i j}\right\}$ are said to define a second order tensor \mathbf{T} if they change as the stress tensor under axis rotations, i.e.,

$$
T_{k n}{ }^{\prime}=C_{j k} C_{i n} T_{j i}
$$

3^{n} physical quantities $\left\{T_{i_{1} \ldots i_{n}}\right\}$ are said to define a n-order tensor \mathbf{T} if they change under axis rotations as,

$$
T_{i_{1} \ldots i_{n}}{ }^{\prime}=C_{j_{1} i_{1}} C_{j_{2} i_{2}} \ldots C_{j_{n} i_{n}} T_{j_{1} \ldots j_{n}}
$$

3. Matrix algebra. Multiplication and contraction.

Matrix algebra can be expressed in several ways:
a) Matricial
b) Components
c) Intrinsic or symbolic

Example:
a) $\left(\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right)\left(\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
b) $\quad C_{i k} C_{j k}=\delta_{i j} \longleftarrow$ entries of the identity matrix: $\delta_{i j}=\left\{\begin{array}{lll}1 & \text { if } & i=j \\ 0 & \text { if } & i \neq j\end{array}\right.$
c) $\mathbf{C} \cdot \mathbf{C}^{\mathbf{T}}=\mathbf{1}$

Tensor multiplication of vectors and tensors.

Tensor product \otimes of two vectors

Any pair of vectors, \vec{a}, \vec{b}, define a linear map $\vec{a} \otimes \vec{b}$ between vectors:

$$
\vec{v} \quad \xrightarrow{\vec{a} \otimes \vec{b}}(\vec{a} \otimes \vec{b}) \vec{v} \equiv(\vec{b} \cdot \vec{v}) \vec{a}
$$

The components of tensor $\vec{a} \otimes \vec{b}$ are simply $a_{i} b_{j}$

Tensor product of vectors and tensors

In general, by multiplying the components of a n-order tensor and those of an m -order tensor, an ($\mathrm{n}+\mathrm{m}$)-order tensor is defined through its components.

Examples:
From a_{i} and T_{ij} the third order tensor: $\mathrm{Q}_{\mathrm{ijk}}=\mathrm{a}_{\mathrm{i}} \mathrm{T}_{\mathrm{jk}}$ may be defined
\square From two $2^{\text {nd }}$ order tensors, A_{ij}, B_{ij}, the $4^{\text {th }}$ order tensor $\mathrm{P}_{\mathrm{ijkl}}=\mathrm{A}_{\mathrm{ij}} \mathrm{B}_{\mathrm{kl}}$ may be defined

Quotient rule.

$>$ Let $A_{i_{1} \ldots i_{n}}, X_{j_{1} \ldots j_{m}}$ be $3^{\mathrm{n}}+3^{\mathrm{m}}$ physical quantities and let $B_{k_{1} \ldots k_{n+m}}$ be their product

$$
B_{i_{1} \ldots i_{n} j_{1} \ldots j_{m}}=A_{i_{1} \ldots i_{n}} X_{j_{1} \ldots j_{m}}
$$

> Assume that \mathbf{A} and \mathbf{B} are tensors
Then, $X_{j_{1} \ldots j_{m}}$ are the components of an m-order tensor

$$
\begin{aligned}
& \text { Namely; } \\
& \qquad \underbrace{A_{i_{1} \ldots i_{n}}}_{\text {tensor }} X_{j_{1} \ldots j_{m}}=\underbrace{B_{i_{1} \ldots i_{n} j_{1} \ldots j_{m}}}_{\text {tensor }} \Rightarrow \mathbf{X}=\text { tensor }
\end{aligned}
$$

Contraction.

Given a n-order tensor, contraction is a procedure to obtain a lower order tensor. Two indices are equated and a summation is performed over these repeated indices.

Examples:

* From the components of a $2^{\text {nd }}$ order tensor, $T_{i j}$, the only possible contraction is

$$
T_{i i}=T_{11}+T_{22}+T_{33}
$$

which is a scalar
\& From a third order tensor, $T_{i j k}$, three different contractions are possible but all of them give a vector:

$$
a_{i}=T_{i j j} \quad, \quad b_{j}=T_{i j i} \quad, \quad c_{k}=T_{i i k}
$$

$*$ From two $2^{\text {nd }}$ order tensors, $A_{i j}, B_{i j}$, the four order tensor $Q_{i j k l}=A_{i j} B_{k l}$ may be defined by multiplying. Four $2^{\text {nd }}$ order tensors may be then obtained by contracting:
$A_{i j} B_{j l}=(\mathbf{A} \cdot \mathbf{B})_{i l} \quad A_{i j} B_{k j}=\left(\mathbf{A} \cdot \mathbf{B}^{\mathrm{T}}\right)_{i k} \quad A_{i j} B_{i k}=\left(\mathbf{A}^{\mathrm{T}} \cdot \mathbf{B}\right)_{j k} \quad A_{i j} B_{k i}=(\mathbf{B} \cdot \mathbf{A})_{k j}$
The components of all of them can be computed from standard matrix product

* A second contraction may be applied to these $2^{\text {nd }}$ order tensors and a scalar is obtained in two possible ways $A_{i j} B_{j i}$ or $A_{i j} B_{i j}$. They are indicated by $\mathbf{A}: \mathbf{B}$ or by $\mathbf{A}: \mathbf{B}^{\mathbf{T}}$

4. Isotropic tensors.

An isotropic tensor is one whose components are invariant under axes rotations. i.e.

$$
T_{i_{1}, \ldots, i_{n}}^{\prime}=T_{i_{1} i_{2} \ldots i_{n}} \quad \forall i_{1} i_{2} \ldots i_{n}=1,2,3
$$

Isotropic tensor are associated to geometric invariance under rotation.

0-order isotropic tensors: all 0-order tensors are isotropic as they are scalars
$1^{\text {st }}$-order isotropic tensors: there are none
$\mathbf{2}^{\text {nd }}$-order isotropic tensors: only one, the identity tensor, whose components are given by the Kronecker delta in any basis:

$$
\delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array} \quad \boldsymbol{\delta}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right.
$$

Very common use of δ_{ij} is that in any expression where it appears with index ' i ' being contracted, it can be dropped out by substituting 'i' by ' j ' in the expression.
Examples:

$$
\delta_{i j} A_{n i m}=A_{n j m} \quad, \quad \delta_{i j} \delta_{k n} B_{i j} C_{k l}=B_{i i} C_{n l}
$$

$3^{\text {rd-order isotropic tensors: only one, the alternating tensor, whose components }}$ are

$$
\varepsilon_{i j k}=\left\{\begin{aligned}
& 1 \text { if } i, j, k=\text { even permutation of } 123 \text { (i.e., } 123 \text { or } 231 \text { or } 312 \text {) } \\
& 0 \text { if two or three indices are equal } \\
&-1 \text { if } i, j, k=\text { odd permutation of } 123 \text { (i.e., } 132 \text { or } 213 \text { or } 321 \text {) }
\end{aligned}\right.
$$

Properties:
$\square \quad \varepsilon_{i j k}=\varepsilon_{j k i}=\varepsilon_{k i j} \quad$ even permutations

$$
\varepsilon_{i j k}=-\varepsilon_{i k j}, \varepsilon_{i j k}=-\varepsilon_{k j i}, \varepsilon_{i j k}=-\varepsilon_{j i k} \quad \text { odd permutations }
$$

$\square \quad \varepsilon_{i j k} \varepsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m}$
The cross product of two vectors, reads

$$
\vec{a} \times \vec{b}=\varepsilon_{i j k} a_{j} b_{k} \hat{e}_{i}
$$

\square Given any matrix \mathbf{A}, $\operatorname{det} \mathbf{A}=\varepsilon_{i j k} A_{1 i} A_{2 j} A_{3 k}$
$4^{\text {th }}$-order isotropic tensors: there are three and their linear combinations. So the most general is:

$$
\lambda \delta_{i j} \delta_{p q}+\mu\left(\delta_{i p} \delta_{j q}+\delta_{i q} \delta_{j p}\right)+v\left(\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}\right)
$$

where λ, μ, v are arbitrary numbers.

5. Symmetric and antisymmetric second order tensors. Eigenvalues and eigenvectors

A $2^{\text {nd }}$ order tensor \mathbf{B} is called

* symmetric if $\quad B_{i j}=B_{j i}$
* antisymmetric if $B_{i j}=-B_{j i}$

Properties:

Any $2^{\text {nd }}$ order tensor can be represented as the sum of a symmetric part and an antisymmetric one:

$$
B_{i j}=\underbrace{\frac{1}{2}\left(B_{i j}+B_{j i}\right)}_{\text {symmetric }}+\underbrace{\frac{1}{2}\left(B_{i j}-B_{j i}\right)}_{\text {antisymmetric }}
$$

If $A_{i j}$ is antisymmetric and $B_{i j}$ is symmetric, then $A_{i j} B_{i j}=0$
A symmetric tensor has only 6 independent components
An antisymmetric tensor has zero diagonal components and has only 3 independent components. These 3 components are associated with a vector \rightarrow

Properties (continued):

\square Every antisymmetric tensor can be associated with a vector and vice versa

$$
\mathbf{R} \longrightarrow \omega_{k}=\frac{1}{2} \varepsilon_{k i j} R_{i j} \quad \mathbf{R}=\left(\begin{array}{ccc}
0 & \omega_{3} & -\omega_{2} \\
-\omega_{i j}=\varepsilon_{i j k} \omega_{k} & 0 & \omega_{1} \\
\left.\vec{\omega} \longrightarrow \begin{array}{ccc}
& 0
\end{array}\right), ~
\end{array}\right.
$$

Eigenvectors and eigenvalues

Eigenproblem:

Given a $2^{\text {nd }}$ order tensor, \mathbf{A}, are there vectors \vec{V} and numbers λ, such that

$$
\begin{gathered}
\mathbf{A} \cdot \vec{v}=\lambda \vec{v} \\
\vec{v}=\text { eigenvector }, \quad \lambda=\text { eigenvalue }
\end{gathered}
$$

$>\lambda$ are the solutions of the third order equation (characteristic equation)

$$
\operatorname{det}[\mathbf{A}-\lambda \boldsymbol{\delta}]=0
$$

$>$ for each $\lambda, \quad \vec{v}$ is a solution of $(\mathbf{A}-\lambda \boldsymbol{\delta}) \cdot \vec{v}=0$
$>$ the eigenvalues and the direction of the eigenvectors are invariant under axes rotations
$>$ the characteristic equation reads: $\quad \lambda^{3}-I_{1} \lambda^{2}+I_{2} \lambda-I_{3}=0$
where

$$
\begin{aligned}
& I_{1}=A_{i i}=\lambda_{1}+\lambda_{2}+\lambda_{3} \\
& I_{2}=\frac{1}{2}\left(A_{i j} A_{i j}-\left(A_{i i}\right)^{2}\right)=\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1} \\
& \quad I_{3}=\operatorname{det} \mathbf{A}=\lambda_{1} \lambda_{2} \lambda_{3}
\end{aligned}
$$

If \mathbf{A} is symmetric:

$>$ there are three eigenvalues that are real, $\lambda_{1}, \lambda_{2}, \lambda_{3}$ (not necessarily distinct)
> associated to them, there are three eigenvectors which are mutually orthogonal
$>$ if the coordinate system is rotated as to coincide with the eigenvectors, matrix \mathbf{A} takes a diagonal form:

$$
\mathbf{A}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

$>$ extremal property: the components $A_{i j}$ change with the coordinate axes, but the diagonal elements cannot be larger than the largest λ and smaller than the smallest λ

6. Gradient operator, divergence and curl.

 Gauss and Stokes theorems. Vector identitiesGiven a scalar field, $\phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$, its gradient is defined by

$$
\nabla \phi=\frac{\partial \phi}{\partial x_{i}} \hat{e}_{i}
$$

$>\nabla \phi$ is a vector
$>\nabla \phi$ gives the direction of maximum increase of ϕ
$>|\nabla \phi|=$ magnitude of the derivative of ϕ along this direction
$>\nabla \phi$ is perpendicular to the surfaces of $\phi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=$ const.
$>$ The derivative of ϕ along a direction associated to \hat{n} is $\frac{\partial \phi}{\partial n}=\hat{n} \cdot \nabla \phi$
Since $\nabla \phi$ is a vector and ϕ is a scalar, the operator ∇ itself can be considered a vector (quotient rule):

$$
\stackrel{\rightharpoonup}{\nabla}=\frac{\partial}{\partial x_{i}} \hat{e}_{i} \equiv \partial_{i} \hat{e}_{i}=\text { nabla operator }
$$

(we will omit the arrow for simplicity, $\vec{\nabla}=\nabla$)

The gradient of a vector field is a second order tensor:

$$
(\nabla \vec{v})_{i j}=\partial_{i} v_{j}
$$

such that multiplied by a unit vector \hat{n} gives the derivative of such a vector along the direction of \hat{n} :

$$
\frac{d \vec{v}}{d n}=\hat{n} \cdot \nabla \vec{v}=\left(n_{i} \partial_{i} v_{j}\right) \hat{e}_{j}
$$

Similarly, the gradient of a tensor field of order tensor n is a $\mathrm{n}+1$ order tensor with similar meaning.

The divergence of a vector field is defined as the contraction of its gradient:

$$
\nabla \cdot \vec{v}=\partial_{i} v_{i}=\frac{\partial v_{i}}{\partial x_{i}}
$$

$$
\text { (or dot product of } \nabla \text { and } \vec{v} \text {) }
$$

The divergence of a vector field at a point is associated to its flux going in or out a small surface around this point

$$
\nabla \cdot \vec{v}=\lim _{V \rightarrow 0} \frac{1}{V} \iint \vec{v} \cdot \hat{n} d S
$$

The divergence of a tensor field of n-order may be defined trough a contraction of its gradient and it is a ($\mathrm{n}-1$)-order tensor.
There are however several options depending on which contraction is performed.
For a $2^{\text {nd }}$ order tensor:

The curl of a vector field is defined as the cross product of vector ∇ and \vec{v}

$$
\nabla \times \vec{v}=\varepsilon_{i j k} \partial_{j} v_{k} \hat{e}_{i}
$$

The curl of a vector field is associated with the rotation of the vector field. Example: velocity field of a rigid body:

$$
\vec{v}=\vec{\omega} \times \vec{X} \quad \Rightarrow \quad \nabla \times \vec{v}=2 \vec{\omega}
$$

So, the curl of the velocity field is proportional to the angular velocity of the body

Gauss Theorem (divergence theorem)

$$
\begin{aligned}
& \iiint_{V} \nabla \cdot \vec{u} d V=\oiint_{\partial V} \vec{u} \cdot \hat{n} d A \\
& \iiint_{V} \frac{\partial u_{i}}{\partial x_{i}} d V=\oiint_{\partial V} u_{i} n_{i} d A
\end{aligned}
$$

$$
\begin{aligned}
& V=\text { volume } \\
& O V=\text { surface, boundary of } V
\end{aligned}
$$

$V \rightarrow S$ surface
∂S = curve, boundary of S

Stokes Theorem

$$
\iint_{A}(\nabla \times \vec{u}) \cdot \hat{n} d A=\oint_{\partial A} \vec{u} \cdot \overrightarrow{d l}
$$

```
A = surface
\partialA = curve, boundary of A
```


sign: choose one of both sides of the surface and define it as the outside, the normal vector pointing from inside to outside. Then, the positive direction of $d l$ is the anticlockwise one looking from the outside

Vector identities

$$
\begin{aligned}
& \vec{a}, \vec{b}=\text { vector fields } \quad f, g=\text { scalar fields } \\
& \nabla \cdot(\nabla \times \vec{a})=0 \quad \nabla \times(\nabla f)=0 \\
& \nabla \times(\nabla \times \vec{a})=\nabla(\nabla \cdot \vec{a})-\nabla^{2} \vec{a} \\
& \nabla^{2}(f g)=f \nabla^{2} g+g \nabla^{2} f+2 \nabla f \cdot \nabla g \\
& \nabla \times(f \vec{a})=f \nabla \times \vec{a}-\vec{a} \times \nabla f \\
& \nabla(\vec{a} \cdot \vec{b})=\vec{a} \times(\nabla \times \vec{b})+\vec{b} \times(\nabla \times \vec{a})+\vec{a} \cdot \nabla \vec{b}+\vec{b} \cdot \nabla \vec{a} \\
& \nabla \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\nabla \times \vec{a})-\vec{a} \cdot(\nabla \times \vec{b}) \\
& \nabla \times(\vec{a} \times \vec{b})=(\nabla \cdot \vec{b}) \vec{a}-(\nabla \cdot \vec{a}) \vec{b}+\vec{b} \cdot \nabla \vec{a}-\vec{a} \cdot \nabla \vec{b} \\
& \vec{a} \cdot \nabla \vec{a}=(\nabla \times \vec{a}) \times \vec{a}+\frac{1}{2} \nabla(\vec{a} \cdot \vec{a})
\end{aligned}
$$

Laplacian operator (scalar): $\quad \nabla^{2} \equiv \nabla \cdot \nabla=\partial_{i} \partial_{i}$

