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1. Scalars, vectors and tensors. Cartesian basis. 
R t ti  f xRotation of axes.

 Scalar: quantity which is defined by its magnitude only. 
Example: temperature, density, kinetic energy

 Vector: quantity which is defined by its magnitude and direction Given a Vector: quantity which is defined by its magnitude and direction. Given a 
coordinate axis, a vector is defined by three components.

Example: force, velocity, acceleration, momentum, torque
 Tensor: linear or multilinear map between vectors (or vectors and scalars). 

Given a coordinate axes system, a tensor is defined by, at least,  nine  
components.p

Example: stress tensor (force per area unit across any section of a body at a 
point), strain tensor (deformation rate of a body in any direction at a point)



Cartesian axes

x 3x

ê
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Summation convention over repeated indexes
 In any product of terms a repeated index is held to be summed over 1,2,3.
An index not repeated in any product can take any of the values 1,2,3.

Examples: 3Examples:
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Warning: an index should not be repeated more than twice.
Example:

h ld b bb i d 0
3

a0333222111  aaa should be abbreviated as 0
1


i

iiia

but not as 0iiia that would mean: 0333222111  aaa

Warning: same free indexes at both sides of an equation or for all the terms in a sum.

??? kjkiij acbaExample: ??? knjkiij acba



Rotation matrix. Properties
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This is the ‘orthogonality condition’ and implies that: TCC 1



Change of the coordinates of a point. 

jjii eCe ˆ'ˆ Given that the basis’ vectors change according to: 

How do the coordinates of any point change? 

 jkkjjkkj
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the coordinates do change with the same matrix Cand since TCC 1

kkjj xCx ' or xCx'  T

Orthogonal transformations …..  det C = 1 …..



Formal definition of a vector and a scalar. 

A physical quantity b is said to be a scalar if it is invariant under axis rotations, i.e.,

bb' bb '

Three physical quantities  (a1, a2, a3) are said to define a vector
if they change as the coordinates of a point under axis rotations, i.e., 

a

kkii aCa '

Tensors arise as linear and multilinear maps between vectors (or vectors and scalars). 
Given a coordinate system, a tensor is defined by 3n components where n is its order.
A scalar can be considered a tensor of order 0 and a vector a tensor of order 1.
A formal definition based on the transformation of their components will be given 
later on.
We will first introduce a particular tensor as an example: the stress tensor



2. Stress tensor

F


Force per unit area across a section of a body 
(force of part B on part A: then the normal is outwards from A):
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is a vector that depends on the orientation of the surface, i.e., another vector,  n̂f p , , ,

How is this relation ?
2on Newton Law applied to the tetrahedron when S  0 : 
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Matrix expression

Symmetry of the stress tensor !!332211  nnnf 
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How do the components of the stress tensor change under axis rotation?
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Formal definition of a tensor. 

Nine physical quantities           are said to define a second order tensor
if they change as the stress tensor under axis rotations, i.e.,

T ijT
if they change as the stress tensor under axis rotations, i.e., 

jiinjkkn TCCT '

3n physical quantities                are said to define a n-order tensor
if they change under axis rotations as

T 
niiT ...1

if they change under axis rotations as,

nnnn jjijijijii TCCCT ...... 122111
...'

nnnn



3. Matrix algebra. Multiplication and contraction. 

Matrix algebra can be expressed in several ways:
a) Matriciala) Matricial
b) Components
c) Intrinsic or symbolic 

Example: 
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Tensor multiplication of vectors and tensors. 

 
Tensor product   of two vectors

ba
,Any pair of vectors,          , define a linear map                between vectors:

avbvba  )()( v
ba




ba




avbvba )()( v

The components of tensor               are simply   ba


 jiba

Tensor product of vectors and tensors
In general by multiplying the components of a n-order tensor and those of anIn general, by multiplying the components of a n-order tensor and those of an 
m–order tensor, an (n+m)-order tensor is defined through its components.

Examples:Examples:
 From ai and Tij the third order tensor:  Qijk=ai Tjk may be defined 
From two 2nd order tensors, Aij , Bij, the 4th order tensor Pijkl=AijBkl may be defined



Quotient rule.

Let                            be  3n+3m physical quantities and let               be their product  
mn jjii XA ...... 11

,
mnkkB

...1

XAB 
mnmn jjiijjii XAB ............ 1111



Assume that A and B are tensors

Then, are the components of an m-order tensor 
mjjX ...1

Namely;

mnmn jjiijjii BXA ............ 1111


tensor tensor  X = tensortensor tensor  X  tensor



Contraction.

Given a n-order tensor, contraction is a procedure to obtain a lower order tensor.
Two indices are equated and a summation is performed over these repeated indices.

Examples:
 From the components of a 2nd order tensor,         ,  the only possible contraction is ijT

332211 TTTTii 
which is a scalar

 From a third order tensor,            , three different contractions are possible but all of them 
give a vector:

332211ii

ijkT
give a vector:

 From two 2nd order tensors,               , the four order tensor                     
may be defined by multiplying. Four 2nd order tensors may be then obtained 

iikkijijijji TcTbTa  ,,
ijij BA , klijijkl BAQ 

y y p y g y
by contracting:    

 iljlij BA BA   ikkjij BA TBA   jkikij BA BAT   kjkiij BA AB 

The components of all of them can be computed from standard matrix product

A second contraction may be applied to these 2nd order tensors and a scalar is obtained 
in two possible ways or They are indicated by AB or by ABTBA BAin two possible ways              or            . They are indicated by  AB or by ABjiij BA ijij BA



4. Isotropic tensors. 

3,2,1...' 21  iiiiii iiiTT
An isotropic tensor is one whose components are invariant under axes rotations. i.e.

3,2,1...21...... 2121
 niiiiii iiiTT

nn

Isotropic tensor are associated to geometric invariance under rotation. 

0-order isotropic tensors: all 0-order tensors are isotropic as they are scalars

1st-order isotropic tensors: there are nonep

2nd-order isotropic tensors: only one, the identity tensor, whose components are given 
by the Kronecker delta in any basis:











 010
001

δ

by the Kronecker delta in any basis:                                      

ij
1  if   i=j

0 if ij 



 100

Very common use of ij is that in any expression where it appears with index ‘i’ being 
contracted, it can be dropped out by substituting ‘i’ by ‘j’ in the expression. 

0  if   ij

co c ed, c be d opped ou by subs u g by j e e p ess o .
Examples:

nliiklijknijnjmnimij CBCBAA   ,



3rd-order isotropic tensors: only one, the alternating tensor, whose components 
areare

ijk

1  if   i,j,k= even permutation of 123  (i.e., 123 or 231 or 312)

0  if   two or three indices are equal

Properties:

-1  if   i,j,k= odd permutation of 123 (i.e., 132 or 213 or 321)

Properties:

 kijjkiijk   even permutations



jikijkkjiijkikjijk   ,, odd permutations

kmjnknjmimnijk  

 The cross product of two vectors,  reads

jjj

ikjijk ebaba ˆ


 Given any matrix A,  det A = ijk A1iA2jA3k



4th-order isotropic tensors: there are three and their linear combinations. So the p
most general is: 

)()( jpiqjqipjpiqjqippqij  

where , ,  are arbitrary numbers.



5. Symmetric and antisymmetric second order tensors.
Ei l  d i tEigenvalues and eigenvectors

A 2nd order tensor B is called 
 symmetric if   Bij = Bji
 antisymmetric if  Bij = -Bji

P tiProperties:

Any 2nd order tensor can be represented as the sum of a symmetric part and 
i ian antisymmetric one:    jiijjiijij BBBBB 

2
1

2
1

t i ti t i

 If Aij is antisymmetric and Bij is symmetric, then   AijBij = 0

symmetric antisymmetric

A symmetric tensor has only 6 independent components

 A ti t i t h di l t d h l 3 An antisymmetric tensor has zero diagonal components and has only 3 
independent components. These 3 components are associated with a vector 



Properties (continued):p ( )

 Every antisymmetric tensor can be associated with a vector and vice versa

R ijkijk R
2
1















 0

0

13

23




R



kijkijR  



  012 



Eigenvectors and eigenvaluesg g

Eigenproblem:
Given a 2nd order tensor A are there vectors and numbers  such thatvGiven a 2 order tensor, A, are there vectors         and numbers  , such thatv

vv  A ?


i t  i l

  are the solutions of the third order equation (characteristic equation)

  0d t δA 

v eigenvector ,      = eigenvalue

 for each ,        is a solution of
 the eigenvalues and the direction of the eigenvectors are invariant under

  0det  δA 
v   0 vδA 

 the eigenvalues and the direction of the eigenvectors are invariant under 
axes rotations

 the characteristic equation reads: 
where

032
2

1
3  III 

  AI 3211   iiAI

   133221
2

2 2
1   iiijij AAAI

d AI
are invariant under axes rotations

3213 det  AI



If A is symmetric:

 there are three eigenvalues that are real, 1, 2, 3 (not necessarily distinct)g , 1, 2, 3 ( y )

 associated to them, there are three eigenvectors which are mutually orthogonal

 if th di t t i t t d t i id ith th i t if the coordinate system is rotated as to coincide with the eigenvectors, 
matrix A takes a diagonal form:









 2

1

00
00




A

 extremal property: the components A change with the coordinate axes but the








 3

2

00
00


A

 extremal property: the components Aij change with the coordinate axes, but the 
diagonal elements cannot be larger than the largest  and smaller than the smallest 



6. Gradient operator, divergence and curl. 
G  d St k  th m  V t  id titiGauss and Stokes theorems. Vector identities

iê






Given a scalar field, (x1,x2,x3), its gradient is defined by

i
ix



  is a vector
  gives the direction of maximum increase of 

n̂ 



 n

n
ˆ

 || = magnitude of the derivative of  along this direction
  is perpendicular to the surfaces of (x1,x2,x3) = const. 
 The derivative of  along a direction associated to      is   

n
Since  is a vector and  is a scalar, the operator  itself can be considered 
a vector (quotient rule):




 ˆˆ


bl t


 iii
i

ee
x

ˆˆ nabla operator

( ill i h f i li i )


(we will omit the arrow for simplicity,             )



The gradient of a vector field is a second order tensor:

  jiij vv 


such that multiplied by a unit vector gives the derivative of such a vectorn̂such that multiplied by a unit vector          gives the derivative of such a vector 
along the direction of       :   

n
n̂

  jjii evnvn
dn

vd ˆˆ 




Si il l th di t f t fi ld f d t i +1 d t

dn

Similarly, the gradient of a tensor field of order tensor n is a n+1 order tensor 
with similar meaning.



The divergence of a vector field is defined as the contraction of its gradient:

v

i

i
ii x

vvv






(or dot product of         and         )     v

The divergence of a vector field at a point is associated to its flux going in or out 
a small surface around this point 

dSnv
V

v
V  


ˆ1lim
0



V

),,( 321 xxxv


VV

The divergence of a tensor field of n-order may be defined trough a contraction of 
its gradient and it is a (n-1)-order tensor. 
There are however several options depending on which contraction is performed. 
For  a 2nd order tensor: 

 

 kikiT T
  jkiijk TT

  jjiiT  T



The curl of a vector field is defined as the cross product of vector  and v

ikjijk evv ˆ 

The curl of a vector field is associated with the rotation of the vector field. 
Example: velocity field of a rigid body:


 2 vxv

So, the curl of the velocity field is proportional to the angular velocity of the body




v



Gauss Theorem (divergence theorem)

dAndA ˆ  



V V

dAnudVu ˆ

dV

dA

dAnudVu
ii

i  



 VdV

V = volume

x V
ii

V i

V  V

V = surface, boundary of V

Al i 2DAlso in 2D: dlndl ˆ
dl

  dldSuu
 



 


 21Sx2

dS   dlnunudS
xx SS








 


 2211

2

2

1

1

 S

x1

V  S surface
S = curve, boundary of S (in general in n-dimensions, n>1)



Stokes Theorem

dAndA ˆ

  

A

  dludAnu
AA

 


 ˆ

A
dl

A f

inside

A = surface
A = curve, boundary of A

sign: choose one of both sides of the surface and define it  
as the outside, the normal vector pointing from inside to outside.
Then the positive direction of is the anticlockwise onedloutside

n̂

inside
Then, the positive direction of      is the anticlockwise one 
looking from the outside

dl



Vector identities

ba
 , gf ,vector fields scalar fields

   f  0 a   0 f

    aaa  2

  gffggffg  2222

  faafaf 
  faafaf 

      abbaabbaba 


     bbb
     baabba 



      baabbaabba




   aaaaaa 


2
1

Laplacian operator (scalar):  ii2


