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Scalars, vectors and tensors. Cartesian basis. Rotation of axes.

Example: stress tensor.

Matrix algebra. Multiplication and contraction.

Isotropic tensors.
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6. Gradient operator, divergence and curl. Gauss and Stokes theorems.
\ector identities.
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1. Scalars, vectors and tensors. Cartesian basis.
Rotation of axes.

Scalar: quantity which is defined by its magnitude only.
Example: temperature, density, kinetic energy

Vector: quantity which is defined by its magnitude and direction. Given a
coordinate axis, a vector is defined by three components.

Example: force, velocity, acceleration, momentum, torque

Tensor: linear or multilinear map between vectors (or vectors and scalars).
Given a coordinate axes system, a tensor is defined by, at least, nine
components.

Example: stress tensor (force per area unit across any section of a body at a
point), strain tensor (deformation rate of a body in any direction at a point)



A
Cartesian axes
X X3  cartesian coordinates: X, , X, , X
& ] 3
3 A , ortonormal basis: €, =(1,0,0),¢€,=(010),
€, X 3
2 - . g A
” position vector: X = Z X.€.
1 i=1
Rotation of axis
'=C,,6,+C,6,+C,8,
i e,'=C,e +C,e,+C,e,
> Al a a
2! 6,'=C.6 +C,6 +C,é,
R 3
€, 8 "= 8. =
2 §'=> C,é, i=123

j=1
| = free index; j = dummy index

é,=(0,0,1)



Summation convention over repeated indexes
¢ In any product of terms a repeated index is held to be summed over 1,2,3.
¢ An index not repeated in any product can take any of the values 1,2,3.

Examples:

I nl

3
2 =CE o &=3C8§, 1=128
j=1

3

a; bijkan = Rkjnk N Zai bijkan :Z Rkjnk J,n=123

I,k=1 k=1

Warning: an index should not be repeated more than twice.
Example: 3
Ay11 T Aoy +aAz33 =0 should be abbreviated as Z a; =0
=1

butnotas a,, =0 that would mean: 9y = 8yyp = Aggy =0

Warning: same free indexes at both sides of an equation or for all the terms in a sum.

Example: a.

j _bi :Cjkakn = ?77



Rotation matrix. Properties

Cll C12 C13
c=/C, C, C, (C1i ,C,is Csi) = components of ¢;” on the basis e, e,, &
= cosinus of the angles between the new

Ca Ci Gy axis x;” and the old axes x;’, X,’, X5’
. X,
X, X,
C,=cosd, C, =cos(z/2-0)
0 C, =cos(z/2+8), C,,=cosé
Y X]_
The transpose matrix: verifies: C-CT=1 (andalso CT-C =1)
Cll C21 C31
CT — C12 C22 C32 Cll C12 C13 Cll C21 C31 1 00
C13 ng ng C21 C22 C23 C12 sz C32 =10 1 0
C31 C32 C33 C13 C23 C33 O O 1

This is the ‘orthogonality condition’ and implies that: (! = CT



Change of the coordinates of a point.

D>

Given that the basis’ vectors change according to: éi' Cji J.

How do the coordinates of any point change?

N

X=Xj€j =X &'=XCyue; =

_ ' " -1
Xj =% Cy = xj—xk{C }jk

and since C ! =C" the coordinates do change with the same matrix C

Xj'=CyXx or x'=C'-x

Orthogonal transformations ..... detC =41 .....



Formal definition of a vector and a scalar.

A physical quantity b is said to be a scalar if it is invariant under axis rotations, i.e.,

b'=b

—

Three physical quantities (a,, a,, a5) are said to define a vector a
iIf they change as the coordinates of a point under axis rotations, i.e.,

aiI: Ckiak

Tensors arise as linear and multilinear maps between vectors (or vectors and scalars).
Given a coordinate system, a tensor is defined by 3" components where n is its order.
A scalar can be considered a tensor of order 0 and a vector a tensor of order 1.

A formal definition based on the transformation of their components will be given
later on.

We will first introduce a particular tensor as an example: the stress tensor



2. Stress tensor

Force per unit area across a section of a body
(force of part B on part A: then the normal is outwards from A):

£

f —lim—
S—0 S

f isavector that depends on the orientation of the surface, i.e., another vector, N

How is this relation 7

2°" Newton Law applied to the tetrahedron when S — O :

Sf+S,f,+S,f,+8S, fszépShé =

f+%ﬂ+%ﬂ+%ﬂ =%phé’—>0

—

f, = external force on S,
so corresponding to a normal N = —€,




S.
> S; are the projections of S = g’ =C0Sd. =n.

—

> f. = external force on S, A

so corresponding to a normal N = —€,

— fi = fi = force per unit area corresponding to
the normals N = +€,

—

‘ f= nlz_:l + nzfz + n32?3 therefore, f is a linear function of N

‘ f = T(ﬁ) T = stress tensor




Matrix expression

Symmetry of the stress tensor !!

;IIIIII

Tij — Tji

(ril,riz,ris): components of 7.

Typ Typ  Tg3
( fl, f2 , f3) = (nl, n,, n3) Toy Ty Ty stress tensor
\ B T e Tij — compgenents of the stress tensor

32 components = second order tensor

meaning of the components

] 7

T3
T
23
T13
7 71 T
2 / 111179, T33 = horma

X
v

stresses
T15yTy31To11 Tygyee. = shear
stresses

14, > 0 2 pulling ; T4, <0 : pushing (compression)



How do the components of the stress tensor change under axis rotation?
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'): !C }m (Cjkn |Tji): Cianknleji

)n| \ jk '|

(Cjkz-jiCin): N7y,

<

1T 1 T
Tkn — CjkCInle or T C -T- C




Formal definition of a tensor.

Nine physical quantities {Tij } are said to define a second order tensor T
If they change as the stress tensor under axis rotations, i.e.,

To'=C,Cy T,

in " ji

3" physical quantities {T - } are said to define a n-order tensor T
If they change under axis rotations as,

. .=C.C...C..T

I1-"|n Jlll JZ'Z Jnin JlJn




3. Matrix algebra. Multiplication and contraction.

Matrix algebra can be expressed in several ways:
a) Matricial

b) Components

c) Intrinsic or symbolic

Example:

Ch Cp Cu|Cy Cy Gy 100

a) Cn Cp Cu|Cy, Cp Cpi=(0 10
Ca G Cu Gy Cp C 0 01 1if iz

b) C.kC _5_ «—— entries of the identity matrix: 5
01If I

¢c) C-C'=1



Tensor multiplication of vectors and tensors.

Tensor product ® of two vectors

Any pair of vectors, d, b , define a linear map 8 ® b between vectors:

i®b

v (A®b)V=(b-V)a

The components of tensor a &® 6 are simply aibj

Tensor product of vectors and tensors
In general, by multiplying the components of a n-order tensor and those of an
m-order tensor, an (n+m)-order tensor is defined through its components.

Examples:

L From a, and T;; the third order tensor: Q;,=a; T, may be defined

O From two 2 order tensors, A;; , By;, the 4™ order tensor Py, =A;;B, may be defined




Quotient rule.

>Let A o X
B.

vndsin = Yo K i

...j. be 3"+3Mphysical quantities and let Bkl---kn+m be their product

» Assume that A and B are tensors

Then, X i,..jare the components of an m-order tensor
i

Namely;

i o i
———" \ ~ ~ _
tensor tensor — X = tensor




Contraction.

Given a n-order tensor, contraction IS a procedure to obtain a lower order tensor.
Two indices are equated and a summation is performed over these repeated indices.

Examples:
% From the components of a 2" order tensor, Tij , the only possible contraction is
T =T+ T, +T5
which is a scalar
¢ From a third order tensor, Tijk , three different contractions are possible but all of them

give a vector:
q :Tijj ’ bj :Tiji Gy :Tiik
% From two 2"9 order tensors, Aj , Bij , the four order tensor Qijkl = Aij B,

may be defined by multiplying. Four 2" order tensors may be then obtained
by contracting:

Aﬁijl - (A'B)il 'Aﬁj Bkj — (A'BT)i 'Aﬁj Bik = (AT ‘B),—k Aﬁj Bki — (B'A)kj
The components of all of them can be computed from standard matrix product

% A second contraction may be applied to these 2" order tensors and a scalar is obtained
in two possible ways A;Bj; or A;B;; . They are indicated by A:B or by A:BT



4. Isotropic tensors.

An isotropic tensor Is one whose components are invariant under axes rotations. I.e.

T, . =T. . Vil.l =123

iy ...y iy ..y

Isotropic tensor are associated to geometric invariance under rotation.

0-order isotropic tensors: all 0-order tensors are isotropic as they are scalars

15t-order isotropic tensors: there are none

2"d_order isotropic tensors: only one, the identity tensor, whose components are given
by the Kronecker delta in any basis
o 1 0 O
11f 1=
S;=1_ .. .. 3=/0 1 0
0if I
0 0 1

Very common use of §; is that in any expression where it appears with index ‘i° being
contracted, it can be dropped out by substituting ‘i’ by ‘j” in the expression.

Examples:
5ij Anim = Anjm , §ij5kn BijCkI = BiiCnI




3rd-order isotropic tensors: only one, the alternating tensor, whose components
are

1 if 1,j,k=even permutation of 123 (i.e., 123 or 231 or 312)

& = 4 0 If two or three indices are equal
-1 if 1,),k= odd permutation of 123 (i.e., 132 or 213 or 321)

Properties:

Q& = € = i even permutations

ik = ~Cikj 1 Gjj

QO Sik€imn = 5_im5|<n _5jn5km
O The cross product of two vectors, reads axb = gijkajbkéi

0 Given any matrix A, det A = gy, AjAyA;,




4th_order isotropic tensors: there are three and their linear combinations. So the
most general is:

A6;i0  + 1(6,0, + 6,40,,) + V(6,04 — 01,0 ,)

]
where A, u, v are arbitrary numbers.




5. Symmetric and antisymmetric second order tensors.
Eigenvalues and eigenvectors

A 2nd order tensor B is called
< symmetric If B; = B;;

o antisymmetric If B'J — 'Bji

Properties:

3 Any 2" order tensor can be represented as the sum of a symmetric part and
an antisymmetric one: 1

1
B; = E(Bij +B; )+§(Bij - Bji)
symmztric antis;frmmetric

Q If A;j is antisymmetric and B;; is symmetric, then A;B;; = 0

O A symmetric tensor has only 6 independent components

O An antisymmetric tensor has zero diagonal components and has only 3
independent components. These 3 components are associated with a vector —p»



Properties (continued):

L Every antisymmetric tensor can be associated with a vector and vice versa

1 _
R » 0 =—&R; (0 “s G)Z\
2 R=|-w, O 0)
@ » Ry =&y o, -o 0



Eigenvectors and eigenvalues

Eigenproblem:
Given a 2" order tensor, A, are there vectors V and numbers A , such that
A-V=AV| ?

V = eigenvector, A = eigenvalue

» ) are the solutions of the third order equation (characteristic equation)
det[A—18]=0

> foreach A, V isa solution of (A /18) O
> the eigenvalues and the direction of the eig cto

axes rotations
» the characteristic equation reads: - |112 + |2,1 — |3 =0

where I =Ai=A4+4+4

_%('Aﬁjpﬁj _(Aﬁi)z):ﬂ'llz T At A
,=detA =1, 4,

rs are invariant under

are invariant under axes rotations



If A Is symmetric:

> there are three eigenvalues that are real, A, A,, A, (not necessarily distinct)

» associated to them, there are three eigenvectors which are mutually orthogonal

> if the coordinate system is rotated as to coincide with the eigenvectors,

matrix A takes a diagonal form: A4 0 O
A=|0 4 O
0 0 A

> extremal property: the components A;; change with the coordinate axes, but the
diagonal elements cannot be larger than the largest A and smaller than the smallest A



6. Gradient operator, divergence and curl.
Gauss and Stokes theorems. Vector identities

Given a scalar field, ¢(x1,X5,X3), Its gradient Is defined by

Vo= % éi
OX,;

»> V¢ is a vector

» Vo gives the direction of maximum increase of ¢

» |Vo| = magnitude of the derivative of ¢ along this direction

» V¢ is perpendicular to the surfaces of ¢(Xy,X,,X3) = const. o

> The derivative of ¢ along a direction associated to N Is  ——= n-Veg

Uil

Since V¢ is a vector and ¢ is a scalar, the operator V itself can be considered
a vector (quotient rule): 5

V=2
OX;

€ = 0.6 = nabla operator

(we will omit the arrow for simplicity, V=V )



The gradient of a vector field is a second order tensor:

(W), =0y,

such that multiplied by a unit vector N gives the derivative of such a vector
along the direction of N :

>

4V _h.vu=(

i nav)

Il R

Similarly, the gradient of a tensor field of order tensor n is a n+1 order tensor
with similar meaning.




The divergence of a vector field is defined as the contraction of its gradient:

N s
UVi

V-V=0V, =

(or dot productof V and V )

The divergence of a vector field at a point is associated to its flux going in or out
a small surface around this point

N i '~
V(X1’X2’X3) 1
/' V-\7=Iim—_”\7-ﬁd8
V V—>OV

/

The divergence of a tensor field of n-order may be defined trough a contraction of
its gradient and it is a (n-1)-order tensor.

There are however several options depending on which contraction is performed.
For a 2" order tensor:
OiTy = (V'T)k

(VT)ijk =0;Ty <

aiTji :(T'V)j




The curl of a vector field is defined as the cross product of vector Vand V

VXV =&, 0V,

The curl of a vector field is associated with the rotation of the vector field.
Example: velocity field of a rigid body:

V=wxX = VxV=20

So, the curl of the velocity field is proportional to the angular velocity of the body




Gauss Theorem (divergence theorem)

mv-adv :ﬁﬁ-ﬁdA
V oV

Ou.
—dV = n. dA
([15av - ffun

V = volume
A = surface, boundary of V

Also in 2D:

dl =ndl

Xy
LX&

V — S surface
A5 = curve, boundary of S (in general in n-dimensions, n>1)

”(aul + auzj ds = §3(u1n1 +u,n, )dl
0S

JLoX  0OX,
oS



Stokes Theorem

dA = AdA

outside

inside 7
dl
A = surface

AA = curve, boundary of A

sign: choose one of both sides of the surface and define it

as the outside, the normal vector pointing from inside to outside.
Then, the positive direction of dlis the anticlockwise one
looking from the outside




Vector identities
a.b = vector fields f, g = scalar fields

V-(Vxd)=0 Vx(Vf)=0
Vx(Vxd)=V(V-a)-V’a

Laplacian operator (scalar): Vi=V.V = Giﬁi



