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Abstract

Motivation: Laplacian matrices capture the global structure of networks and are widely used to study
biological networks. However, the local structure of the network around a node can also capture biological
information. Local wiring patterns are typically quantified by counting how often a node touches different
graphlets (small, connected, induced sub-graphs). Currently available graphlet-based methods do not
consider whether nodes are in the same network neighbourhood.
Contribution: To combine graphlet-based topological information and membership of nodes to the same
network neighbourhood, we generalize the Laplacian to the Graphlet Laplacian, by considering a pair of
nodes to be ‘adjacent’ if they simultaneously touch a given graphlet.
Results: We utilize Graphlet Laplacians to generalize spectral embedding, spectral clustering and network
diffusion. Applying Graphlet Laplacian based spectral embedding, we visually demonstrate that Graphlet
Laplacians capture biological functions. This result is quantified by applying Graphlet Laplacian based
spectral clustering, which uncovers clusters enriched in biological functions dependent on the underlying
graphlet. We explain the complementarity of biological functions captured by different Graphlet Laplacians
by showing that they capture different local topologies. Finally, diffusing pan-cancer gene mutation scores
based on different Graphlet Laplacians, we find complementary sets of cancer related genes. Hence,
we demonstrate that Graphlet Laplacians capture topology-function and topology-disease relationships in
biological networks.
Availability: http://www0.cs.ucl.ac.uk/staff/natasa/graphlet-laplacian/index.html
Contact: natasa@cs.ucl.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Systems biology is flooded with large scale “omics” data. Genomic,
proteomic, interactomic, metabolomic and other data, are typically
modeled as networks (also called graphs). This abundance of networked
data started the fields of network biology, allowing us to uncover molecular
mechanisms of a broad range of diseases, such as rare Mendelian disorders
(Smedley et al., 2014), cancer (Leiserson et al., 2015), and metabolic
diseases (Baumgartner et al., 2018). In personalized medicine, network
analysis is applied to the tasks of bio-marker discovery (Li et al., 2015),

patient stratification (Gligorijević et al., 2016) and drug repurposing
(Durán et al., 2017).

Many network analysis methods use the Laplacian matrix as it
captures the global wiring patterns of a network (see section 1.1).
These methods include spectral clustering, spectral embedding and
network diffusion. Each of these families of methods relies on the fact
that the eigendecomposition of the Laplacian matrix naturally uncovers
network clusters (see section 1.2). Applications of spectral embedding
include visualizing genetic ancestry (Lee et al., 2010) and pseudo-
temporal ordering of single-cell RNA-seq profiles (Campbell et al., 2015).
Applications of spectral clustering include detection of functional sub-
network modules in single-cell genomic networks (Bartlett et al., 2017) and
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identification of functional modules in co-regulatory networks (Luo et al.,
2018). Network diffusion methods are widely used for protein function
prediction (Cao et al., 2013) and discovery of disease genes and disease
modules, see Cowen et al. (2017) for a full review.

1.1 Laplacian matrix definition

The Laplacian matrix captures the global structure of a network: for each
node it captures the adjacency relationship with other nodes (i.e. who are its
neighbours) and its degree centrality (a measure of the node’s importance
in the network). In a network, G(V,E), two nodes, u and v, are adjacent
if there exists an edge (u, v) ∈ E connecting them. The adjacency of all
nodes in graph G is represented in an n× n symmetric adjacency matrix
A:

A(u, v) =

{
1 if (u, v) ∈ E
0 otherwise.

(1)

The neighbourhood of a node is defined as the set of nodes adjacent to
it. A node’s degree is the size of its neighbourhood, or equivalently, the
number of nodes that are adjacent to it. The degree matrix ofG is defined
as the diagonal matrix, D, where D(u, u) is equal to the degree of node
u:

D(u, v) =

{
deg(u) if u = v

0 otherwise.
(2)

The Laplacian,L, is defined asL = D−A.The symmetrically normalized
Laplacian, Lsym, is defined as Lsym = D−1/2LD−1/2.

1.2 Laplacian matrix eigendecomposition

j Spectral clustering, spectral embedding and network diffusion analyze
networks based on the eigendecomposition of the Laplacian matrix
naturally uncovering densely connected sub-networks present in the
network. The eigendecomposition of L, is defined as LU = UΛ, where
the i-th column of the n×nmatrixU is known as the i-th eigenvector and
Λ is the diagonal matrix whose diagonal elements are the corresponding
eigenvalues. Uncovering densely connected sub-networks present in the
network (i.e. network clustering), can be defined as solving the ratio-
cut problem: to cut a network into d similar-sized sub-networks whilst
minimizing the number of edges being cut. An approximation of this
problem is formulated as follows:

minimize
U∈<n×d

trace(UTLU) subject to: UTU = I, (3)

where each column of U is a normalized indicator vector assigning each
node to one of the d sub-networks. This problem is solved by d normalized
eigenvectors of L associated with d smallest eigenvalues, illustrating how
the Laplacian matrix captures clusters present in the network.

1.3 Matrix alternatives to the Laplacian

Laplacian matrices only capture direct interactions between nodes. To
capture the influence of long-range interactions between nodes, Estrada
(2012) proposed the k-path Laplacian by generalizing the concepts of
adjacency and degree. The k-path Laplacian defines a pair of nodes u and
v to be k-adjacent if the shortest path distance between them is equal to
k. Analogously, k-path degree, degk(u), generalizes the concept of the
degree to the number of length k shortest paths that have node u as an
endpoint. The k-path Laplacian, LPk , is defined as:

LPk (u, v) =


−1 if d(u, v) = k

degk(u) if u = v

0 otherwise.

(4)

Vicus is an alternative to the Laplacian that captures the intricacies of
a network’s local structure (Wang et al., 2017) based on network label
diffusion. Label diffusion is defined as P = BQ, where the n× dmatrix
Q assigns the n nodes of network G to one of d possible labels ( for
labeled nodes), B is an n × n diffusion matrix, and the reconstructed
matrix P is an n × d matrix used for predicting labels for unlabeled
nodes. To give Vicus its ‘local’ interpretation, the label diffusion process
determining B is constrained to diffuse information of each node only to
its direct neighbourhood. Under given assumptions and defining Vicus as
LV = (I − BT )(I − B), it was shown that Q can be learned as the
eigenvectors of LV . As Q captures the local connectivity between nodes
that is implied by the ‘localized’ diffusion matrixB and can be computed
as the eigenvectors of LV , Vicus is interpreted as a Laplacian matrix.
Vicus is applied to protein module discovery and ranking of genes for
cancer subtyping (Wang et al., 2017).

1.4 Problem

All Laplacian based applications are based on the same underlying
principle of guilt by association, inferring information on a given node
based on the group of nodes it is most tightly connected with. However,
alternative approaches have inferred information on a given node based on
the shape of its interaction pattern, typically independent of the identity
of the nodes it is interacting with. These alternative approaches are based
on graphlets, small connected sub-graphs (see section 2.1 for a formal
definition), to capture the local topology around a node in a network. For
example, graphlet based methods have been applied to predict protein
function (Milenković and Pržulj, 2008; Davis et al., 2015) and to identify
new cancer genes (Milenković et al., 2010) directly from the similarities
in terms of their interaction patterns in PPI networks.

Alternatives to the Laplacian matrix that take local topology into
account have been suggested. The k-path Laplacian captures the influence
of long-range interactions between nodes, but ignores short-range
interactions. Vicus captures local topology around each node as the
strength of its connection to its neighbours after applying a localized
label diffusion algorithm. Although Vicus is focused on capturing local
topology, it lacks interpretability from a structural perspective.

1.5 Contribution

We introduce the Graphlet Laplacian, allowing us to analyze nodes based
on their network neighbourhoods, whilst restricting the pattern of their
interactions to that of a prespecified graphlet. Hence, each graphlet
(Figure 1-A) has its own corresponding Graphlet Laplacian. We generalize
spectral embedding, spectral clustering and network diffusion to utilize
Graphlet Laplacians. Through graphlet-generalized spectral clustering of
model networks and biological networks, we show that different Graphlet
Laplacians capture different local topologies. By applying graphlet-
generalized spectral embedding, we visually demonstrate that Graphlet
Laplacians capture biological functions as well. We quantify this through
graphlet-generalized spectral clustering analysis. We show that Graphlet
Laplacians are not only as biologically relevant as alternative Laplacian
matrices, but also capture complementary biological functions. Finally,
by graphlet-generalized diffusing of pan-cancer gene mutation scores
on the human PPI network, we show that Graphlet Laplacians capture
complementary disease mechanisms. We compare our results against
those based on alternative state the art Laplacian matrices. A similar
methodology based on network motifs was presented by Benson et al.
(2016) for spectral clustering of directed networks. compare our results to
those of the standard Vicus.
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2 Materials and methods

2.1 Graphlet Laplacian definition

We generalize the Laplacian matrix so that it can capture the local topology
of a network around a node in a broader sense than the identity of its direct
neighbours. One of the most sensitive methodologies to capture network
topology around a node are graphlets: small, connected, non-isomorphic,
induced sub-graphs of a large network (Pržulj et al., 2004). All graphlets
up to four nodes are depicted in Figure 1-A. To illustrate how graphlets
can be used to quantify the local topology around a node, consider node a
in the dummy network presented in Figure 1-B. Graphlet G1 (i.e. a three
node path) that touches node a can be found in this dummy network twice:
via paths a-b-c and a-b-e. Node a is said to touch G1 twice. By making
these counts for a given node over all graphlets, the local network topology
for a given node can be quantified by means of a vector, as illustrated for
node a in Figure 1-C. Here we see that node a can be found as part of an
edge once (G0), as part of a three node path twice (G1), never as part of
a triangle (G2) and so on.

Having established that by counting how often a node touches graphlets
can be used to quantify its local topology, we go on and generalize the
concept of the Laplacian to that of a Graphlet Laplacian by generalizing
the definitions of adjacency and degree to ones based on graphlets. First,
we define two nodes u and v of G to be graphlet-adjacent with respect
to a given graphlet, Gk , if they simultaneously touch Gk . Going back to
our previous example, we find that nodes a and b are graphlet-adjacent
w.r.t. graphlet G1 twice, as G1 can be induced on the dummy network
twice: via paths a-b-c and a-b-e, each time including both nodes a and
b. Similarly, nodes a and c and nodes a and e are graphlet adjacent only
once, w.r.t. graphlet G1.

Given this extended definition of adjacency, we define the graphlet
based adjacency matrix as:

Ak(u, v) =

{
akuv if u 6= v

0 otherwise,
(5)

where akuv is equal to the number of times nodes u and v are graphlet-
adjacent w.r.t graphlet Gk . Analogously, the graphlet degree generalizes
the node degree as the number of times node u touches graphlet Gk . We
extend the degree matrix to the Graphlet Degree matrix for graphlet Gk ,

Dk(u, v) =

{
dku if u = v

0 otherwise,
(6)

where dku is the number of times node u touches graphlet Gk . For an
underlying graphlet Gk , we define the Graphlet Laplacian LGk , as:

LGk = Dk − (Ak/θ). (7)

where θ = size(Gk)− 1. As opposed to the Laplacian simply capturing
for each node its neighbours, the Graphlet LaplacianLGk captures for each
node how strongly (i.e. frequently) each node is connected in the shape
of Gk with each of the other nodes. LG0 and LG1 are illustrated in Figure
1-C. Finally, note that the Graphlet Laplacian for graphlet G0, LG0 , is
equivalent to the standard Laplacian, L.

2.2 Graphlet Laplacian properties

To allow for an easy interpretation of the Graphlet Laplacian for each
graphlet,Gk , we introduce the two-step transformation function, T , which
maps graph G to its Graphlet Laplacian representation: T (G,Gk) =

LGk . First, T converts G = {V,E} to a weighted network G′ =

{V,E′}, where the weight of each edge (u, v) in G′ corresponds to

(A)
G0 G1 G2 G3 G4 G5 G6 G7 G8

(B)

G:

abc

ed

(C)

Graphlet G0 G1 G2 G3 G4 G5 G6 G7 G8 
Graphlet  
Count(a) 

1 2 0 2 1 0 0 0 0 

 

(D) LG0 =


1 −1 0 0 0

−1 3 −1 0 −1
0 −1 2 −1 0

0 0 −1 2 −1
0 −1 0 −1 2

 LG1 =


2 −1 −.5 0 −.5
−1 5 −1.5 −1 −1.5
−.5 −1.5 3 −1 −1
0 −1 −1 3 −1
−.5 −1.5 −1 −1 4


Fig. 1. Illustration graphlets and Graphlet Laplacians. Node a is coloured in green
throughout. The graphlet counts of node a for graphlet G0 and G1 are coloured in red
throughout. A: All graphlets with up to 4 nodes, labeledG0 toG8 . B: A dummy network.
C: A vector of graphlet counts describing the local topology of node a in the example
network, G. Node a touches graphlet G0 via edge (a, b). Node a touches graphlet G1

twice, via paths a-b-c and a-b-e. D: The Graphlet Laplacians for graphlets G0 and G1 ,
applied on the network, G, shown in panel B. The diagonal elements correspond to the
graphlet counts of each node; e.g. LG

0 (1, 1) is equal to 1, the number of times node a
touches graphletG0 ,LG

1 (1, 1) is equal to 2, the number of times node a touches graphlet
G1 . The off-diagonal elements correspond to the number of times two nodes touch a
given graphlet together, scaled by size(Gk) − 1. LG

0 (1, 2) = −1, as a and b form
G0 once and size(G0) − 1 = 1. LG

1 (1, 2) = −1, as a and b form G1 twice and
size(G1)− 1 = 2.

akuv/(size(Gk) − 1) measured in G. Next, T converts G′ to its
standard Laplacian representation. This shows that the Graphlet Laplacian
can be interpreted as the Laplacian of an undirected weighted network.
Therefore, the Graphlet Laplacian retains the following key properties of
the Laplacian:

• The Graphlet Laplacian, LGk , is symmetric and positive semi-definite.
• The smallest eigenvalue is 0 and the corresponding eigenvector is the

constant vector 1. eigenvector
• The Graphlet Laplacian has n non-negative, real-valued eigenvalues:

0 = λk1 ≤ λk2 , . . . , λkn.
• The multiplicity of the eigenvalue 0 equals the number of connected

components in G′, which we refer to as graphlet based components.

2.3 Spectral embedding

Spectral Embedding embeds a network in a lower dimensional space,
placing nodes close in space if they share many neighbours. Here, we
generalize the Laplacian Eigenmap embedding algorithm (Belkin and
Niyogi, 2003) so that two nodes are embedded close in space if they
frequently simultaneously touch a given graphlet. Given an unweighted
network G with n nodes, we find a low dimensional embedding, Y =

[y1, ...,yn] ∈ Rd×n such that if nodes u and v are frequently graphlet-
adjacent with respect to graphletGk , then y(u) and y(v) are close in the
d-dimensional space by solving:

minimize
Y

n∑
u=1

n∑
v=1

Ak(u, v) ‖yu − yv‖2

subject to : Y Dk1 = 0 and Y DkY T = I,

(8)
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where Ak is the graphlet-based adjacency matrix of G for graphlet Gk ,
Dk is the graphlet-based degree matrix ofG for graphletGk . The columns
of Y are found as the generalized eigenvectors associated with the 2nd

to (d + 1)th smallest generalized eigenvalues solving Y LGk = ΛY Dk ,
where Λ is the diagonal matrix with the generalized eigenvalues along its
diagonal.

2.4 Spectral clustering

Spectral clustering uncovers groups of nodes in a network that form densely
connected network clusters. By generalizing spectral clustering to Graphlet
Laplacian based spectral clustering, we are able to identify network
components that are densely connected with respect to a given graphlet.
Many different variations of spectral clustering exist (Von Luxburg, 2007).
Aiming for a balanced clustering, we generalize normalized spectral
clustering as defined by Ng et al. (2002) to use different Laplacians
including Graphlet Laplacians, all denoted by a generic L in algorithm 1.
We skip the normalization step (i.e. step 1) for Vicus, as Vicus is already
normalized.

Algorithm 1 Normalized spectral clustering
Input A network G with n nodes, and a number of clusters d.
Output d clusters of the n nodes of G.

1: Compute the Laplacian matrix, L, and corresponding diagonal matrix,
D, for the network G.

2: Compute the normalized Laplacian as: Lsym = D−1/2LD−1/2.
3: Compute the d eigenvectors of Lsym associated with its d smallest

eigenvalues: Y = [y1, . . . ,yd] ∈ Rn×d.
4: Normalize Y so that each row has unit norm.
5: Cluster the n points {y}nu=1 into d groups using k-means.

For each network, we determine the numbers of clusters, d, by using
the rule of thumb: d ≈

√
n/2 (Kodinariya and Makwana, 2013). In

the Supplement Section 1, we present the justification for this approach,
based on inspection of the spectra of different Laplacian matrices of each
network. Because of the heuristic nature of spectral clustering, we perform
20 runs for each clustering and consolidate them into a single clustering
applying ensemble clustering (Ghosh and Strehl, 2002).

2.5 Network diffusion

Network diffusion refers to a family of related techniques, which propagate
information on nodes through the network. Here, we will focus on
generalizing the diffusion kernel to graphlet based diffusion kernel. The
diffusion kernel is often called the ‘heat kernel’, as it can be viewed as
describing the flow of heat originating from the nodes across the edges
of a graph with time. In network biology, nodes typically represent genes
and ‘heat’ on a node represents experimental measurements. For a set of n
nodes, these measurements are encoded in vector P0 ∈ Rn. Information
is diffused as follows: P = HP0, where H is a diffusion kernel. For a
given graphletGk , we define the graphlet based diffusion kernel,Hk

α, as:

Hk
α = e−αL

G
k , (9)

where the parameter α ∈ R controls the level of diffusion. This way,
diffusion of information on nodes propagates between nodes restrained by
how often they form a given graphlet Gk together.

2.6 Topological dissimilarity of networks

2.6.1 Graphlet Correlation Distance
The Graphlet Correlation Distance (GCD-11) is the current state of the
art heuristic for measuring the topological distance between networks

(Yaveroǧlu et al., 2014). First, the global wiring pattern of a network is
captured in its Graphlet Correlation Matrix (GCM), an 11× 11 symmetric
matrix comprising the pairwise Spearman’s correlations between 11
different graphlet based counts over all nodes in the network. The Graphlet
Correlation Distance between two networks is computed as the Euclidean
distance of the upper triangle values of their GCMs.

2.6.2 Non-graphlet based network descriptors
The difference between the following non-graphlet based network
descriptors can be used to measure the distance between two networks:

• The degree distribution is the distribution of node degrees over all
nodes. It is summarized as a vector of counts, i.e. the kth value is the
number of nodes that have degree k. To measure the distance between
two networks, this vector is first rescaled to reduce the contribution
of higher degree nodes. The pairwise distance between two networks
is the euclidean distance between their rescaled degree distribution
vectors. For more details, see (Yaveroǧlu et al., 2014).

• The diameter of a connected network is the maximum shortest path
distance that is observed among all node pairs. The distance between
two networks is the absolute difference of their diameters.

• The average clustering coefficient is the total number of three node
cliques in the network over the number of possible three node cliques
in the network. The distance between two networks is the absolute
difference of their average clustering coefficient.

2.7 Cluster enrichment analysis

To assess if a cluster of genes is biologically relevant, we measure if it is
statistically significantly enriched in a specific biological annotation term
by applying the hyper-geometric test. That is, we consider each cluster
as a ’sampling without replacement’, in which each time we find a given
annotation, we count that as a ’success’. The probability of observing the
same or higher enrichment (i.e. successes) of the given annotation purely
by chance is equal to:

p = 1−
X−1∑
i=0

(K
i

)(M −K
N − i

)
/
(M
N

)
, (10)

whereN is the number of annotated genes in the cluster, X is the number of
genes annotated with the given annotation in the cluster,M is the number
of annotated genes in the network, andK is the number of genes annotated
with the given annotation in the network. An annotation is considered to be
statistically significantly enriched if its enrichment p-value is lower than
or equal to 5% after application of the Benjamini and Hochberg correction
for multiple hypothesis testing.

2.8 Data

2.8.1 Real biological network data collection
We create three types of molecular interaction networks for human
and baker’s yeast (S. cerevisiae) by collecting the following data:
experimentally validated protein-protein interactions (PPIs) from IID
version 2018-05 (Kotlyar et al., 2016) and BioGRID version 3.4.161 (Stark
et al., 2006), genetic interactions from the same version of BioGRID,
and gene co-expressions from COXPRESdb version 6.0 (Okamura et al.,
2015).

2.8.2 Random model network generation
For each of the following eight random network models we generate ten
networks containing 2,000 nodes at edge density of 1.5%: Erdős-Rènyi
random graphs (ER) (Erdős Paul and Rényi Alfréd, 1959), generalized
random graphs with the degree distribution matching to the input graph



“main_revision” — 2019/5/8 — page 5 — #5

Graphlet Laplacian 5

(ER-DD) (Newman, 2010), Barabási-Albert scale-free networks (SF)
(Barabási and Albert, 1999), geometric random graphs (GEO) (Penrose,
2003), geometric graphs that model gene duplications and mutations
(GEO-GD) (Pržulj et al., 2010), stickiness-index based networks (Sticky)
(Pržulj and Higham, 2006), popularity-similarity optimization graphs
(PSO) (Papadopoulos et al., 2012) and nonuniform PSO graphs (nPSO)
(Muscoloni and Cannistraci, 2018). A summary on the basic properties
of these networks and how to generate them can be found in Supplement
Section 2.1.

2.8.3 Biological annotations
For each gene in our biological networks, we collect the most specific
experimentally validated biological process annotations (BP), cellular
component annotations (CC) and molecular function annotations (MF)
present in the Gene Ontology (GO) (Ashburner et al., 2000).

2.8.4 Cancer gene annotations
We collect the pan-cancer gene mutation frequency scores computed by
Leiserson et al. (2015) for the purpose of detecting pan-cancer disease
modules. Leiserson et al. (2015) collected raw pan-cancer mutation data,
such as SNV’s, indels and CNA’s, from the TCGA database (Kandoth et al.,
2013). These data were filtered to exclude statistical outliers and include
only the samples (corresponding to a patient) for which SNV and CNA data
were available. The resulting data set contains mutations on 11,565 genes
across 3,110 patients in cancers across 20 different tissues. Additionally,
we collect the sets of known cancer driver genes in all available tissues
from IntOGen (Gonzalez-Perez et al., 2013) and Cosmic (Futreal et al.,
2004).

3 Results and discussion
We investigate the potential usage of Graphlet Laplacians to analyze
network data via embedding, clustering and network diffusion
experiments. We consider Graphlet Laplacians for graphlets with up to four
nodes. We compare our results to the state of the art Laplacian matrices:
the standard Laplacian, the k-path Laplacian and Vicus. We consider path
lengths up to three for thek-path Laplacian, corresponding to the maximum
size of the considered graphlets underlying the Graphlet Laplacian. We
set Vicus’ diffusion parameter to 0.9, as this value is recommended in
the original paper (Wang et al., 2017) and leads to the largest number of
enriched functions (see Section 3.2).

3.1 Graphlet Laplacians capture different local topologies

While the standard Laplacian simply captures the direct neighborhoods of
nodes and can be used to cluster densely connected nodes together, the
graphlet-based neighborhood captured by our Graphlet Laplacian allows
for clustering of nodes that strongly participate in a given graphlet of
interest. Because different graphlets capture different local topologies
around nodes in a network (e.g., G3 involve paths while G8 involves
cliques), clusters obtained by using different Graphlet Laplacian are
expected to possess different topological features, which we assess as
follows.

To assess if two graphlet Laplacians, LGi and LGj , capture different
topologies, we apply each Laplacian to cluster nodes in a network using
Graphlet Laplacian based spectral clustering. The resulting clusters are
used to partition the network into two sets of sub-networks, by inducing
the sub-networks from each clustering. LGi and LGj capture different
topologies if the corresponding sets of sub-networks have significantly
different topology, which we measure by the overlap of two distributions:
the distribution of GCD-11 distances between the sub-networks produced
from LGi with the sub-networks produced from LGj and distribution
of GCD-11 distances between the sub-networks produced from LGi .

The two Graphlet Laplacians capture statistically significantly different
topologies if the Wilcoxon-Mann-Whitney U-test (MWU) between the
two distributions of distances is lower than or equal to 5% (see Figure
2 for the case of LG0 and LG4 ). For each type of model network, we
perform this test ten times and report the least significant p-value for each
pairwise comparison of Graphlet Laplacian based sub-networks. We also
considered the following non-graphlet based network distance measures:
degree distribution distance, diameter distance, and average clustering
coefficient distance (see section 2.6.2). In general and independent of the
network distance measure used, clusters obtained from different Graphlet
Laplacians are typically statistically significantly topologically different at
the 5% significance level. This is true across all of our biological networks
and most of our model networks, with some exceptions in geometric
models which are known to have homogeneous structure. Thus, Graphlet
Laplacians not only capture network cluster that have different topology,
but can also be used to measure the structural homogeneity of a given
network.

We illustrate this by investigating how the parameters of the PSO/nPSO
model networks influence the topological homogeneity of the networks
generated, see Supplementary Figures 7,8 and 9. At a low temperature (i.e.
nodes are connected to nearby nodes) and low number of communities (i.e.
the angle of each node is sampled from a univariate Gaussian), both types
of networks are homogeneous. As temperature increases, newly added
nodes are more uniformly connected in space (i.e. are more randomly
connected), making the generated PSO and nPSO networks closer to ER
networks, thus breaking the homogeneous structure. In nPSO networks,
increasing the number of communities increases the homogeneity of the
networks. This effect stronger lower temperatures.

0 1 2 3 4 5
GCD11 distance

0

25
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75

100

125
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175
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un

t

GCD11( G
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4 )
GCD11( G

4 , G
0 )

Fig. 2. Comparison of topological distance distributions between sub-networks
captured by two different Graphlet Laplacians in the human PPI network. The
distribution of GCD-11 distances between the sub-networks from LG

0 (in blue) is
statistically significantly different from the distribution of GCD-11 distances between the
sub-networks fromLG

0 and the sub-networks fromLG
4 (in red) with MWU p-values <5%.

This means thatLG
0 and LG

4 capture different topologies in the human PPI network.

3.2 Different Graphlet Laplacians capture different
biological functions

In biological networks, genes having similar functions tend to be densely
connected to each other (Hartwell et al., 1999), which is why spectral
clustering based on the standard Laplacian matrix has been used to uncover
functional regions in networks (Bu et al., 2003). Alternatively, graphlets
have been used to show that functionally related genes tend to be similarly
wired, independent of them being densely connected (Milenković and
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Pržulj, 2008). As graphlet Laplacians capture both types of information,
they should also capture biological functions.

To informally visualize this, we perform spectral embedding. We focus
on the embedding of the yeast GI network, for which we use 14 core
biological process annotations defined by Costanzo et al. (2016). We
illustrate the spectral embedding of the symmetrically normalized LG3
Graphlet Laplacian in Figure 3. The embeddings of the other Laplacian
matrices of the yeast GI network can be found in the Supplement, Section
3. As seen in Figure 3, the spectral embedding of LG3 correctly groups
and separates the biological processes of ‘nuclear cytoplasmic transport’,
‘metabolism / mitochondria’, ‘Golgi / endosome / vacuole sorting’ and
‘Chrom. seg. / kinetoch. / spindle / micro tub.’. In the supplement, we
illustrate that Vicus and the Laplacian fail to find any grouping at all,
placing all of the nodes in the same dense cluster. Embeddings based on
LP2 and LP3 succeed in separating different genes into different clusters,
but without grouping them in a biologically meaningful way.

Next, we aim to quantify this result by measuring the difference in
functions captured by different Graphlet Laplacians. We apply Graphlet
Laplacian based spectral clustering for each graphlet on our set of human
molecular networks and assess the functional enrichments in terms of
the percentage of clusters enriched and the total number of annotations
enriched (Figure 4). Additionally, we create a baseline to validate the
statistical significance of our enrichment results. We perform the same
experiment 100 times with randomized GO-annotations. We do this by
swapping the sets of gene annotations in the molecular networks such that
no gene has its original set of annotations.

First, we observe that clusterings based on all Graphlet Laplacians but
LG4 tend to be of similar quality as those based on the standard Laplacian
or Vicus, both in terms of percentage of clusters enriched as well as total
number of annotations enriched.LP2 and LP3 capture the lowest amount of
functions in PPI networks, both in terms of percentage of clusters enriched
and GO-BP annotations enriched. Secondly, in our randomized experiment
with randomized GO-annotations, we consistently find 0% of the clusters
to be enriched, regardless of the type of Laplacian matrix used. This shows
that all Laplacian based enrichments are statistically significant. We find
similar results in yeast, see Supplement, Section 5. In the Supplement,
we additionally observe that for each network and annotation type, there
is always at least one Graphlet Laplacian that shows a larger number of
the total number of enriched annotations than Vicus. We conclude that
Graphlet Laplacians are at least as biologically relevant as the standard
Laplacian, k-path Laplacian and Vicus.

Having established that Graphlet Laplacian based clusters capture
biological functions, we quantify the overlap in their enriched functions. In
the Supplement, Section 6, we calculate the Jaccard Index between the sets
of enriched functions corresponding to each Graphlet Laplacian. For GO-
BP enrichments in clusterings on the human PPI and COEX networks, the
average Jaccard Index is 0.22 and 0.30 respectively, meaning that different
Graphlet Laplacians capture different functions. To further demonstrate
this point, we present the number of GO-BP functions that are enriched
only in the clustering obtained by a particular Graphlet Laplacian in Figure
5. We observe that each type of Laplacian matrix shows a tendency to
capture some distinct biological functions, indicating the link between the
biological function and the topology of these diverse molecular networks.
The same is observed for GO-MF and GO-CC annotations, both in yeast
and human networks (see the Supplement, Section 7). Combining this
observation with our previous results, we can conclude that Graphlet
Laplacian based spectral clustering allows for distinguishing different
sets of similarly wired network components that are not only biologically
relevant, but may also capture complementary biological functions.

Fig. 3. Capturing biological functions with Graphlet Laplacian LG
3 . 2D spectral

embedding of the yeast GI network using the Graphlet Laplacian forG3 . Points represent
genes and are color-coded with 14 core biological process annotations defined by Costanzo
et al. (2016).

3.3 Different Graphlet Laplacians capture complementary
sets of pan-cancer related genes

Laplacian based approaches towards predicting cancer related genes are
based on guilt by association: genes which tend to be connected to
frequently mutated genes are used as cancer gene predictions. Here
we show that by considering the different shapes (i.e. graphlets) by
which genes can be connected to frequently somatically mutated genes,
complementary cancer mechanisms can be captured.

We do this by diffusing (see section 2.5) the gene mutation frequency
scores (see section 2.8.4) on the human PPI network based on different
Graphlet Laplacian matrices. Network diffusion is a method underlying
many of the different approaches of cancer gene prioritization (Cowen
et al., 2017). We prioritize genes as potential cancer related genes
according the highest diffused score first. We measure the quality of these
scores using the area under the Precision-Recall (PR) curve and the area
under the Receiver Operator Characteristic (ROC) curve. We assume a
gene is correctly classified as a cancer related gene if it is known to be a
cancer driver gene in at least one type of cancer (see section 2.8.4). We
observe that accuracy is independent of the Graphlet Laplacian used and
on par with the standard Laplacian, with an average area under the PR and
ROC curves of 0.21 and 0.78 respectively. In terms of accuracy Graphlet
Laplacian based scores consistently outperform those based on k-path or
Vicus, which achieve an average area under the PR and ROC curve of 0.17
and 0.74 and 0.14 and 0.73 respectively (see Supplementary Figures 17
and 18).

In Figure 6 we evaluate the overlap between the top hundred highest
ranking cancer related genes per Laplacian, measured using the Jaccard
Index. We observe five distinct clusters of different Laplacian matrices
capturing different sets of cancer related genes. Importantly, diffusion
based on three sets of Graphlet Laplacians (LG{2,5,7}, L

G
{1,3,4,6} and

LG{8}) provide scores dissimilar to those achieved using the standard
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Fig. 4. Cluster Quality. A: For our set of human molecular networks (color-coded), the
percentage of clusters enriched in BP annotations, with clusters obtained based on spectral
clustering using different Laplacian matrices (x-axis). B: For our set of human molecular
networks, the total number of enriched GO-BP annotations in clusters obtained based on
spectral clustering using different Laplacian matrices (x-axis).
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Fig. 5. GO-BP uniquely enriched. The number of annotations that are uniquely enriched
in clusterings based on the indicated Laplacian matrix for each biological network (color
coded).

Laplacian (the average Jaccard Index of each cluster with the standard
Laplacian based scores being 0.79, 0.87 , 0.65 respectively). Conversely,
the highest scoring genes based on LP{2,3} prove to overlap greatly with
those based on the standard Laplacian (the average Jaccard Index being
0.91). Vicus based diffusion provides cancer related gene scores dissimilar
from all other Laplacian matrices, be it at lower accuracy, as shown above.
Similar results are obtained applying graphlet generalized diffusion on
the human COEX network, as shown in Supplement, Sections 8 and 9.
We conclude that Graphlet Laplacian based diffusion can be used to find
complementary sets of cancer related genes.

4 Conclusion
In this paper, we introduce Graphlet Laplacians for simple networks
to simultaneously capture graphlet-based topological information and
neighborhood membership information. We demonstrate that they can
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Fig. 6. Overlap of highest scoring cancer related genes. Evaluating the overlap in the sets
of the top 100 highest scoring genes based on different Laplacians measured by the Jaccard
Index, with scores computed by performing network diffusion of mutation frequency scores
on the human PPI network.

straightforwardly be plugged into current Laplacian based network
analysis methods widely used in systems biology, using spectral clustering,
spectral embedding and network diffusion as example applications.

Through our generalized spectral embedding and spectral clustering
methods on real and model networks, we show that different Graphlet
Laplacians capture sub-networks having distinct local topologies and that
are enriched in different, but complementary sets of biological annotations.
Finally, we show that our generalized network diffusion of pan-cancer gene
mutation scores resulted in complementary sets of cancer related genes for
gene prioritization dependent on the underlying graphlet. In all the tested
applications, our Graphlet Laplacians perform as good as and often better
than k-path and Vicus Laplacians, while being directly interpretable.

As indicated, Graphlet Laplacians can directly replace the traditional
Laplacian matrix in state-of-the-art network analysis methods, allowing
them to consider alternative ways of how nodes are connected. For
instance, our Graphlet laplacians could be used to extend embedding
methods such as hyper-coalescent embedding (Muscoloni et al., 2017),
which may result in more relevant community detections in biological
networks and in more accurate analyses of the dynamics of cells’ biological
processes. Furthermore, Laplacian matrices are used in data-integration
frameworks to incorporate prior knowledge (e.g., via so-called graph
regularizations in matrix factorization based data integration). Thus, using
our Graphlet Laplacians in such data-integration frameworks could result
in biologically more accurate patient stratifications, biomarker discoveries,
and drug-target interaction predictions (Gligorijević et al., 2016)

Finally, the applications of Graphlet Laplacians are not limited to
biology, as the generalized network-analysis tools are applicable in any
discipline that uses network representations, including physics, social
sciences, and economy.
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