NUMERICAL SIMULATION OF DROPLET SHAPES IN EXTERNAL ELECTRIC FIELD, GRAVITY AND SURFACE TENSION

TAN-IL SUNG*, HONG-SOON CHOI†, YOUNG-SUN KIM+ AND IL HAN PARK*

* School of Information and Communication Engineering
 Sungkyunkwan University
 Suwon 440-746, Korea
 E-mail: ihpark@skku.ac.kr, Web page: http://www.laem.skku.edu

† School of Electrical Engineering
 Kyungpook National University
 Sangju 742-711, Korea
 Email: tochs@knu.ac.kr , Web page: http://www.knu.ac.kr

+Department of Electrical Engineering and Computer Science
 MIT
 Cambridge, MA 02139, USA
 youngsun@mit.edu

Key words: Electrowetting, Electric body force, Surface tension, Shape deformation, Multiphysics Problems.

Abstract. The electrowetting is a phenomenon that the shape of droplet is deformed by external electric field. The most of electrowetting studies have been presented by researchers with mechanical viewpoint. In this paper, we present a numerical method to calculate the droplet shape by taking into account the effects of external electric field, surface tension and gravity. The numerical analysis for shape calculation is formulated by using the equilibrium condition of hydrostatical pressure in the coupled system of external electric field and surface tension in the presence of gravity. The model is numerically implemented and coupled using a standard finite element procedure. The proposed method is numerically tested and validated in a shaping problem of water droplet placed above a conductor coated by dielectric material in external electric field. The electrowetting phenomenon was successfully modeled and analyzed by the proposed approach.

1 INTRODUCTION

The electrowetting is a phenomenon that the shape of droplet is deformed by external electric field. Various applications, such as lap-on-a-chip, electronic display, and adjustable lenses are based on the electrowetting phenomenon. In recent papers, they assert that the shape of droplet is initially determined by the contact angle, and then the contact angle is changed by applying a voltage between two electrodes [1,2].

It is commonly understood that the contact angle, with no applied voltage, is only
determined by the triple line as shown in Figure 1. The angle can be calculated using the following relation (1),

\[\gamma_L \cos \theta = \gamma_S - \gamma_L \]

where \(\gamma \) is the surface tension coefficient (e.g., \(\gamma_{LG} \) at a liquid/gas interface) and \(\theta \) is the contact angle. When a voltage is applied, the relation (1) is modified to (2) to consider the influence of the electric field [1],

\[\gamma_{LG} \cos \theta = \gamma_S - \gamma_L + \frac{1}{2} CV^2 \]

where \(C \) is the capacitance and \(V \) is the applied voltage. It was asserted that Maxwell stress can be used as the electric pressure [3].

![Diagram showing forces at the triple line](image)

(a) Hydrophilic contact, \(\theta < 90^\circ \)
(b) Hydrophobic contact, \(\theta > 90^\circ \)

Figure 1: Schematic view of the forces at the triple line (Solid, Liquid, Gas)

From the mechanical viewpoint [4]-[7], the shape of droplet is determined by the contact angle. And the change of contact angle by the voltage is explained to be due to the change of material property by the voltage. However, this paper aims to analyze the electrowetting in electrical viewpoint using the distributed electric force, which is generated by electric field distribution. That is, we couple the static fluid system with the electric system to form a coupled system equation for calculation of the droplet shape [8].

We present a numerical method to calculate the droplet shape by taking into account the effects of external electric field, surface tension and gravity. The different physical phenomena influence each other and they constitute a coupled system. So, their transient interaction between them is very complicated and difficult to analyze and calculate. Thus, in this paper, the numerical analysis for shape calculation is formulated by using the equilibrium condition of hydrostatical pressure in the coupled system of external electric field and surface tension in the presence of gravity.

The model is numerically implemented and coupled using a standard finite element procedure. The proposed method is numerically tested and validated in a shaping problem of water droplet placed above a conductor coated by dielectric material in external electric field.
2 PROPOSED APPROACH

From the hydrostatical force equilibrium, the pressure on the surface can be expressed as follows [8],

\[p_i = \int_{L_0}^{L_i} (\rho g + \mathbf{f}_e) \cdot d\mathbf{l} + p_0 + p_{LS} \quad i = 1,2,\ldots,n \]

(3)

where \(p \) is the isotropic mechanical scalar pressure, \(i \) is the index for indicating different positions on the surface, \(n \) is the number of control positions, \(\rho \) is the mass density of the liquid, \(g \) is the acceleration vector of gravity, \(\mathbf{f}_e \) is the Kelvin force density in the liquid, \(L_0 \) is an arbitrary fixed position on the free surface of the liquid, \(p_0 \) is the atmospheric pressure, \(L \) is a position on the droplet surface and \(p_{LS} \) is an additional pressure by surface curvature at position \(L \).

The line integration path should go through the inside of the fluid to consider the internal body force. It is noted that the path can be arbitrary because the pressure \(p_i \) is independent of the integration path. In the state of hydrostatical equilibrium, all the \(p_i \) should be the atmospheric pressure, \(p_0 \).

From [9], the formula of volume force density is written as

\[\mathbf{f}_e = - (\mathbf{P} \cdot \nabla) \nabla V = (\mathbf{P} \cdot \nabla) \mathbf{E} \]

(4)

where \(\mathbf{P} \) is polarization, \(\mathbf{E} \) is electric field intensity and \(V \) is the electric scalar potential.

The calculation technique of pressure using surface tension is shown in Figure 2(a). Also, the points in Figure 2(b) represent the control points to draw the surface of droplet. Pressure by surface tension is expressed as follows (5).

\[P_{st} = p_{LS} = \frac{2 \sigma d\theta}{r d\theta} = \frac{2 \sigma}{r} \quad (N/m^2) \]

(5)

Where \(\sigma \) is the surface tension constant of water, \(r \) is the radius, determined by control points.

The model is numerically implemented and coupled using a standard finite element procedure. The proposed method is numerically tested and validated in a shaping problem of water droplet placed above a conductor coated by dielectric material in external electric field.
3 NUMERICAL ANALYSIS

From the stage of the experiment, Figure 3 shows the dimensions and properties for a numerical model. An axis-symmetric 3D formulation was derived and a finite element analysis was performed. From (4), the equation in cylindrical coordinates, multiplying it by r to avoid singularities at $r = 0$, the equation becomes

$$f_e = \frac{1}{r}(\mathbf{P} \cdot \nabla) r E_0$$

where r denotes the radial directional components and E_0 is the external electric field intensity. E_0 is expressed as follows [8],

$$E_0 = \frac{1 + \varepsilon}{2} E$$

The concept of an external field was first introduced by Kelvin, as follows in [9]. The electromagnetic external field can be also found in [10]-[12].

![Figure 3](image)

Figure 3: Numerical model from the experimental stage. Axis-symmetric 2D formulation and finite element analysis were performed. The line integration path should go through the inside of the fluid. The line integration path is used to calculate the pressure on the droplet surface. 30 points on the surface were used for the pressure calculating.

The droplet shape is detected with the pressure equilibrium condition at control points. The surface tension on the droplet through the radius and hysteresis phenomenon is ignored. The volume of the droplet is 5 $\mu\ell$, and the Teflon coating thickness is 6 μm. The integration path to the control points is shown in Figure 4.
Figure 4: Flowchart to find surface control point by the hydrosttatical equilibrium condition.

The free surface profile of the droplet can be obtained through numerical iteration, whose algorithm is based on the condition that the pressures on the free surface are the same. Figure 4 presents the overall flowchart of the procedure.

4 NUMERICAL RESULT

Figure 5 shows equi-potential lines passing through the surface of initial and final shape when 200 ν is applied.

![Figure 5](image)

Figure 5: Body Surfaces of 1 $\mu\ell$ droplet and flux distributions of (a) initial and (b) final shape.
Figure 6 shows the electromagnetic body force density distribution near the tip of the electrode when the voltage is applied. The force density near the tip of the electrode is larger than the points far from the electrode.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6.png}
\caption{Body force density distribution. The arrows to visualize the body force density are drawn in each of the elements.}
\end{figure}

Figure 7 shows the trajectory of the droplet shape detected with the pressure equilibrium condition at control points.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure7.png}
\caption{Numerical analysis results. Trajectories of the 1 μℓ droplet surface profile. Applied voltage : 50 \(V \) (a) and 200 \(V \) (b), The potential line for the last shape.}
\end{figure}
The final shapes of droplet according to the various applied voltage is shown in Figure 8. The volume constraint condition is adopted to determine the shape of droplet. The larger the voltage, the flatter the droplet shape. The result shows that the electrowetting phenomenon was successfully modeled and analyzed using the proposed approach.

![Figure 8: Comparison of droplet surface according to the applied voltage](image)

(a) Distance between tip and bottom – 1mm (b) Distance between tip and bottom – 0.5mm

5 EXPERIMENT

In Figure 9 presents photos of the experiment.

![Figure 9: Experimental equipments used to observe electrowetting phenomena.](image)

A detailed description of the measurement procedure follows. First, a 5 μl water droplet is placed on the grounded metal plate coated with Teflon. Second, voltage is applied to the electrode in the droplet. The distance between the tip of the electrode and coated metal plate was 1.5 mm and 0.5 mm. A picture of the droplet shape is taken using a CCD camera.
Tan-Il Sung, Hong-Soon Choi, Young-Sun Kim and Il-Han Park.

Figure 10: Photographs of shape deformation with applied voltage and depth of the electrode

5 CONCLUSION

In this paper, we present a numerical approach to represent the effect of electric field in electrowetting phenomenon. The electrowetting phenomenon can be regarded as a result of electromagenetic body force and surface tension. The proposed approach was successfully modeled and analyzed qualitatively for the electrowetting phenomenon. We have obtained a significant result although the experimental part permits only to analyze qualitatively the electrowetting phenomenon. We can get many advantages to analyze the electrowetting phenomenon from electrical viewpoint. Variations of voltage, the depth of electrode, the sort and thickness of the dielectric coating are easily treated in the electromagnetic viewpoint. The reason why contact angle is saturated, fingering effect near contact line, contact line instability radiation of light can be explained reliably, if electrowetting is continuously studied with electrical aspect.

ACKNOWLEDGMENT

This work was supported by the Human Resources Development of the Korea Insitute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Knowledge Economy. (No. 20104010100630-11-1-000)

REFERENCES

