

MASTER THESIS

 TITLE: Convolutional Neural Networks for classifying studio/non-studio
frames in TV news programs

MASTER DEGREE: Master's degree in Applied Telecommunications and
Engineering Management (MASTEAM)

AUTHOR: Alexis Nevot Ezpeleta

ADVISOR: Francesc Tarrés Ruiz

DATE: July, 6th 2020

Title: Convolutional Neural Networks for classifying studio/non-studio frames
in TV news programs

Author: Alexis Nevot Ezpeleta

Advisor: Francesc Tarrés Ruiz

Date: July 06, 2020

Abstract

This project has studied an unusual topic on image recognition and
classification that can have numerous utilities on multimedia content. The
approach studied on this project has been scenes recognition on TV news
programs, which is a good starting point to distinguish scenes on visual content
displayed on TV. The work in this project can be the first steps to segment
scenes on movies, series, documentaries, etc…

The methodology used to build a program capable to recognise and classify
images is Deep Learning, a subset of Machine Learning based on artificial
neural networks that learn from representations of data obtained after
performing some operations on the input images. As in Machine Learning, a
training process with multiple example outputs is necessary to make the system
capable to figure out the rules to obtain those outputs (categories) from the
given inputs (frames). To build an image recognition system, the most suitable
framework (previous comparison has been made between some of them) has
been installed to code the operations that lead to the image classification and
the results to evaluate its performance.

Another important part to complete this project is the data collection and
management, the data volume has to be large and diverse in order to increase
the number and type of patterns or features learnt from the representations,
and therefore, to increase the system’s capability to generalize. It also has to
be managed properly, in order to not difficult the learning process with
additional, human errors.

The last part of this project consists on training the classifier in the different
architectures, check which input parameters lead to the best performance and
compare the results to decide which of them is the most appropriate to classify
TV news program images. After the training is finished, the system must be
tested with never-seen data in order to check its real performance and obtain
a proper evaluation.

CONTENTS

INTRODUCTION .. 1

CHAPTER 1. CONVOLUTIONAL NEURAL NETWORKS 3

1.1. Deep Learning and architecture overview .. 3

1.1.1. Convolution operation layer .. 4

1.1.2. Max Pooling operation layer ... 5

1.1.4. Flatten layer .. 6

1.1.4. Loss function and optimizer .. 7

1.1.5. Activation functions in neurons ... 8

1.2. Convolutional Neural Networks background ... 9

1.2.1. GPU (Graphical Processing Unit) ... 10

1.2.2. ImageNet database .. 11

CHAPTER 2. KERAS – DEVELOPMENT TOOLS .. 13

2.1 Keras, TensorFlow, PyTorch and Caffe comparison ... 13

2.2 Building the CNN ... 14

2.1.2. Loading pre-trained architectures ... 15

2.2.2 Adding classifier on top of architectures ... 15

2.2.3. Generating data to CNN from original input images... 16

2.2.4. Compiling and training the model ... 16

2.2.5. Generating predictions ... 17

2.1. Loss function and learning algorithms ... 17

2.3.1. Loss Function ... 18

2.3.2. Learning algorithm (SGD) ... 18

2.4. Optimizers .. 19

2.4.1. SGD with Momentum ... 19

2.4.2. RMSprop ... 19

2.4.3. ADAM (Adaptive Moment estimation) .. 20

2.5. Used CNN architectures ... 21

2.5.1. VGG Net ... 21

2.5.2. GoogLeNet Inception module ... 22

2.5.3. XCEPTION ... 23

CHAPTER 3. BUILDING THE DATASET .. 25

3.1. Obtaining videos.. 25

3.1.1. From deferred programs: Video on Demand .. 25

3.1.2. Live streaming: Personal Video Recorder (PVR) ... 26

3.1.3. Videos’ properties ... 27

3.2. From videos to frames – FFMPEG ... 28

3.2.1 FFMPEG syntax ... 29

3.2.2. Naming frames ... 29

3.3. Frames’ classification ... 30

3.3.1. Data management .. 31

CHAPTER 4. TRAINING AND RESULTS ... 34

4.1. Results for architecture VGG16 ... 34

4.2. Results for architecture VGG19 ... 34

4.3. Results for Inception V3 ... 35

4.4. Results for Xception .. 35

CONCLUSIONS ... 38

REFERENCES ... 41

Annexes .. 43

Introduction 1

INTRODUCTION

This project’s objective is to classify images, in particular, frames belonging to TV
news programs. The approach performed in this project could be the first step in
multimedia applications, to provide the capability to search specific scenes in
multimedia content.

The methodology used for that purpose is Deep Learning, which is a subset of
Machine Learning and AI. DL has similarities with ML in terms of learning rules,
a new programming paradigm that suits perfect to automate known tasks, but the
difference is that DL is a methodology capable to learn the features coming from
the representations obtained in the Convolutional Neural Networks, a very
effective tool to recognise and classify images. Its current hype is increasing its
popularity, attracting the interest of more people that introduce new topics
susceptible to use image classification thanks to the possibility of transferring the
learning obtained with high-performance equipment capable to compete on
image recognition challenges.

The first step is to obtain the necessary number of frames to train (learning
process) the system that performs the classifications. With the collection of a data
set, the next step is to build a system that, after the training process, is capable
to classify the frames corresponding to the provided categories. To use the
functionalities of the Convolutional Neural Networks, a DL framework must be
installed in order to load all the images, do the training process and obtain the
classification results. The choice of the framework is subjective and normally it
depends on which is the most suitable for the user, and for that reason a
comparison of different frameworks has been made on the second chapter of this
project. Apart from the frameworks, a common element in frameworks has been
compared: the optimizer, which is important to minimize errors during the
classification task. The architectures used to do the classifications are also
explained in Chapter 2.

After collecting enough videos of the newscasts with the methods explained on
chapter 3, these videos have been sliced into frames to build the dataset. Once
the dataset is built, and, in order to maximize the system’s accuracy, the frames
have been properly tagged with their corresponding categories, ensuring not
additional, human errors worsen the classification results. Usually, not all frames
will be correctly classified, reason for which is necessary to prepare properly the
data and add some functions to maximize the effectiveness of the training
process. To improve the system’s performance, some techniques in
Convolutional Neural Networks that have proved to be effective will be used to
overcome the problem of using a small dataset, which is the case of this project.

With the data collected, the system can begin the training and display the results:
In the first place, the validation results with known data will give an idea of how
accurate is the system and the overall error during the classification, and the last
evaluation, which consists on classification of never-seen data will reveal how
efficient is the classifier. The validation results allow to tune some input

2 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

parameters with the objective of improving the results in classifications (validation
and test). The results obtained in this work are the best that the dataset and the
training parameters allow.

The results obtained with the tested architectures show that the results, and
therefore, the generalization ability is better with shallow architectures, as stated
by the Occam’s razor principle[1].

The structure of this work is described here:

 Chapter 1 explains the corresponding field that contains the methods to
analyse the images and get the representations from which it can perform
the classifications.

 Chapter 2 is focused on the environments from which image recognition
and classification can be performed, explains which functions have been
used, some of the available optimizers and the description of the
architectures used to do the classifications.

 Chapter 3 explains how the videos of the TV news programs are obtained,
and from these videos, the frames to build the dataset to train the system,
along with the proper management that sorts the data to ensure we obtain
the expected results from the classification task.

 Chapter 4 shows and explains the results obtained after using the different
architectures coming from the ILSVRC contest.

Convolutional Neural Networks 3

CHAPTER 1. CONVOLUTIONAL NEURAL NETWORKS

This chapter explains the general architecture of a Convolutional Neural Network
(CNN), its functions and the background that compose the full system that takes
as input the images of the dataset and performs the classification. First of all, we
explain the methodology used to build the system: Deep Learning (DL) and how
this methodology has been used in this project to reach its main goal.
The next section explains the set of operations that compose the core of DL
because this part comprises some concepts of Artificial Intelligence (AI) and the
way the system learns.

The last section explains the DL background in terms of hardware and
programming, the evolution of programming paradigm and some recent history
of DL, topic used to introduce the architectures used in this project that will be
explained extensively in Chapter 2.

1.1. Deep Learning and architecture overview

The goal of this project is to build a system capable to classify different types of
scenes in TV News Programs, those taken at the TV studio and those taken from
video reports. We will call these frames simply as studio and non-studio frames.

One of the most popular methodologies to classify and recognise images is Deep
Learning (DL). Today, most Deep Learning architectures for image recognition
are based on Convolutional Neural Networks (CNN) to learn representations of
data at different levels of abstraction. Actually, the depth in a neural network is
related to the number of layers used to represent the information of the image at
different levels of detail. In general, first layers represent a low-level abstraction
of the original image such as lines, corners, edges, etc.; higher layers usually
represent higher-level interactions between images’ objects. NN name comes as
reference to neurobiology despite there is no evidence that the human brain has
a similar learning method [2].

Despite DL has achieved more breakthroughs apart from image recognition and
classification, these will not be commented here because they are not in focus
within this project. Before going into details about CNNs, an architecture overview
is shown to provide a bird’s eye-view [3]. In general, CNNs stack these layers to
conform the next structure:

 Input: The incoming information that handles this layer are pixel values of
the image with the three colour channels RGB.

 Convolution: These layers compute the output of neurons connected to
local regions in the input or other layers.

 MaxPooling: Necessary to downsample extracted images after
convolutions for computational reasons.

 Fully Connected (FC): Required layer to perform the classification, with a
neuron per class.

4 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Another layer is necessary first to convert the convolution format to the FC in
order to get the classifications, the flatten layer, explained in section 1.1.4.

The elements to describe in neural networks are listed here:

 The layers and the combination of these to create the network.

 The input data: Original input images to classify.

 The Loss function: Feedback about predicted and real categories.

 Optimizer: Determines the algorithm for adapting the parameters in the
learning procedure.

1.1.1. Convolution operation layer

In order to recognise features in images, each layer extracts many
representations (also called feature maps, from now on, the word feature map
can mean either the original input image or a feature map) from a single input
image by sliding convolutional filters (also called kernels) across its width and
height.

From a single input image, a feature map per filter is obtained, and to bring some
clarity, a main parameter in convolution layers is the number of filters to apply, in
the case, using 64 filters will output 64 feature maps, different with each other,
from a single convolution layer. Filters are small matrixes with values (weights)
designed to detect objects, features, shapes[4]… that are used in Image
processing to sharpen, detect edges, blur images, estimate vertical contours…

The size of these filters is usually 3x3, 5x5 pixels, this feature allows learning
patterns in any position of the image, thanks to the values of the filters’ weights,
and depending on the image dimension, the filter size may cause a dimension
reduction on feature maps during successive convolutions due to border effects
[2]. This way of learning reduces the number of total weights, which means as
well a reduction of the number of parameters to process, and therefore, the
number of necessary images to learn.

Fig 1.1 Example of convolution operation on number 4 (MNIST database)

Convolutional Neural Networks 5

In the previous example about convolution, there are filters sliding throughout the
image with their pre-set values and indications about which features of the image
are being learnt. To provide information about filters and their use, an example is
shown:

Fig 1.2 Example of filtered grey image

Computationally speaking, an image is a grid of pixels, which values ranges from
0 to 255 in three channels corresponding to the RGB model, but before managing
values on that range, these will be first normalized between 0 and 1 for
convenience during the processes yet to come. The filters slide over the image
carrying out an element-wise product and sum of the filter matrix with the part of
the input it is currently on (see [4]). Each layer applies multiple filters with initial
small random values of their weights [5], so the output will be far from expected,
but with every example processed the weights are adjusted a little in the right
direction, reducing loss score, a term that will be explained in section 1.1.3. These
weights are adjusted gradually depending on a feedback signal in order to
minimize the Loss function, which is the main objective of the learning process,
also called training, a mechanism that makes Machine Learning and Deep
Learning systems capable to distinguish and classify information.

1.1.2. Max Pooling operation layer

This operation has the main objective of downsampling the feature maps. To
avoid that downsampling may introduce a loss in significant information, it is
convenient to slide windows over the images and output the maximum value of
each channel. This concept is similar to convolution because a window slides
throughout all the images to perform the Max Pooling operation (see [6]), but
instead of transforming patches via element-wise product, the transformation is
carried out by extracting the maximum value of the pixels contained in the Max
Pooling window with size 2x2 pixels. The reasons to downsample the images are
simple:

 To reduce the number of coefficients per sample and so, the computational
load of the network. Too many coefficients suppose overfitting[7], no ability
to generalize when recognising learnt features if these appear with slight
differences.

 To eliminate spatial hierarchy when learning features, this means
recognising patterns or features regardless their position and orientation.

6 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

 Another difference with the convolution operation is the number of strides: in the
convolution operation, once the transformation is completed, the next step is to
repeat the same operation in the next column of the grid of pixels, that is stride 1.
After the Max Pooling operation, the same operation is repeated skipping one
column, being the stride in this case 2, this operation supposes an advantage
respect to FC layers, in which all neurons are connected and therefore, more
parameters have to be processed.

Fig 1.3 Max Pooling scheme

The target of MaxPooling is to extract the pixel with maximum value because the
features recognised during convolution tend to be encoded over these pixels with
maximum value, which recalls a concept called maximal presence [8]. Not all type
of pool operations use this mechanism to downsample images. There are
variations such as average pooling that also downsample the feature maps but
instead of extracting the pixel of maximum value of its sliding window, it calculates
the average value of all the pixels in the window and outputs that value, but the
truth is that there are no alternatives to max pool that work better. In comparison,
the information obtained by MaxPooling becomes diluted if the downsample
method is average pooling.

1.1.4. Flatten layer

Since the layer in charge of classification is FC type, it won’t admit as input the
multiple feature maps delivered by the MaxPooling layer, which has a similar
format to convolution layer, but with height and width reduced. Actually their
output format is: (height, width, number of feature maps). This format defines the
feature map dimensions and the number of feature maps obtained after the
convolution operation in which multiple filters have been applied.

But this kind of format cannot be an input to a FC layer, the only format FC layers
admit is 1-D type, the number of elements to process. It is necessary then to
convert this format (height, width, number of feature maps) to this (height x width
x number of feature maps), but before feeding the classification layer, all the
delivered data coming from previous layers must be converted to densely
connected format [2], where the numbers of parameters to process is the same.
The appropriate layer to perform this task is the flatten layer. (Fig 1.4) shows the
different processes of formats (shapes) and number of parameters when going
from convolution layers to FC layers.

Convolutional Neural Networks 7

Fig 1.4 Flattening scheme

1.1.4. Loss function and optimizer

As mentioned in previous sections, filters’ initial weights are random, so probably,
the first classifications will be far from correct. The mechanism in charge to
compare the networks’ predictions obtained at its output with the real category is
the Loss function [5]. Of course, we are the ones who decide to which category
belong the input images, which means we are responsible of the images
matching their category, in this case, as example, we have to check carefully in
the dataset that a picture of just a landscape (‘Video_New’ category) is not tagged
as ‘Reporter’ for example.

Going one step beyond, the mechanism used by CNN to learn which
representations are mapped to the right category and which are mapped to a
wrong category underlies on the filters’ weights: with their current value, the
network performs Convolution and Max Pooling operations enough times to map
learnt patterns and features to categories to generate a prediction. This prediction
and the true target (real category) are introduced as input to the Loss function
(also called Objective function), which returns a Loss score, a value that indicates
the network how far is the prediction from the true target.

This score is used as feedback by the Optimizer to update the filters’ weights
every iteration (closer to the true target) until they achieve the correct value, those
that make the Loss function output the lowest Loss score and therefore,
maximizing classification’s accuracy [2]. This is the central algorithm in Deep
Learning, which is called Backpropagation and the continuous updates of the
filters’ weights is the part in which the network is trained.

Basically backpropagation comprises multiple variables (weights) and one target:
To find the values of the weights that minimize the Loss function. These elements
call Gradient operation, in this case an algorithm related to gradient operation:
(Gradient Descent).

8 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

As there is more than one Optimizer in CNN, different types, will be compared in
terms of convergence time and accuracy along this document. A scheme about
Loss function and Optimizer interaction is shown below in figure (Fig. 1.5).

Fig 1.5 Interaction between Layers, Loss function and Optimizer

1.1.5. Activation functions in neurons

An activation function defines an output from a neuron for a given set of inputs,
the term activation is inspired by activity in human brains, where different neurons
fire, or are activated by different stimuli, but in the case of artificial neurons, the
model of a single neuron (McCulloch & Pitts – 1943) contemplates the existence
of these elements [5]:

 Inputs (𝑋1,…, 𝑋𝑁)

 Weights (𝑊1,…, 𝑊𝑁)

 Bias (b)

 Output (Y)

A neuron can have multiple inputs and multiple outputs, and the relationship
between the mentioned elements is the formula:

 Y = S[∑ 𝑊𝑖𝑁𝑖=1 𝑋𝑖 + b] (1,1)

For this model, S is the activation function that in order to avoid linearity has this
mathematical definition:

Fig 1.6 Non-linear activation function

Convolutional Neural Networks 9

However, this model has some drawbacks to carry out images’ recognition and
classification as intended in this project:

 Binary output

 Weights and activation threshold are already predefined.

 Lacks flexibility.

The neurons in the next layers cannot be fed with the just the output delivered by
the neurons from the previous layer (see [2]), if so, we just would get a linear
combination and multilayer would be equivalent as a single layer. This output
must be defined in a way that depending on its value and the established
threshold, a neuron is activated in the next layer or not, an alternative is mapping
input signals into output signals needed for the neural network to function. The
most common activation functions [9] for image recognition are:

 ReLU (Rectified Linear Unit): mathematically is defined as Y= max (0,X),
it is used by convolution layers because it provides the network a fast
convergence and its non-linearity allows backpropagation (despite looking
similar to a linear function, it is not and its derivative is a step function).

Fig 1.7 ReLU activation function

 Sigmoid: Despite being computationally expensive, this function performs
better for binary classifications thanks to its soft gradient and the clarity of
its predictions for values x > 2 and x < -2, Y values tend to be to the edge
of the curve, very close to 0 or 1. The output of this function is the
probability to belong to one of the two classes.

 Softmax: All classification problems require a final dense/fully connected
layer with one neuron per class to deliver as output the category to which
belongs the input frame in multiple categories. This output is the probability
distribution to belong to each class, normalized between 0 and 1.

1.2. Convolutional Neural Networks background

Until now, we have explained the operations performed in CNN to obtain the
ability of recognising the images and how to classify them correctly, but those
operations are not at hand for any commodity equipment, this way of
programming is a new paradigm (ML/DL paradigm) compared to classical
programming, in which it is possible to run any program in almost any computer.
Hereunder, some requirements to run DL programs are explained.

10 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

1.2.1. GPU (Graphical Processing Unit)

Unlike classical programming paradigm, in which data is processed according to
programmed rules to obtain an output, the ML paradigm [5] (the same as DL)
seems slightly different: supplying data and answers expected from that data, the
output should be the rules that produced the original answers from the input data,
as it is indicated in (Fig. 1.8).

Fig 1.8 Different programming paradigms

Despite it seems a small change, the reality is that obtaining the rules from data
and answers has required several years and technological outbreaks. The main
difference about these two paradigms is the intelligence: in classical
programming it is absolutely necessary to provide specific data with specific steps
about what to do according to the programmed rules, and what to do if an
exception comes to all expected results. Differently from the ML paradigm, a
program coming from this paradigm lacks intelligence. An example could be
identifying a reporter: It would be necessary to indicate the presence of elements
such a person appearing in the centre of the image, holding a microphone on the
hand, or in the suit… Endless indications that make unfeasible to contemplate all
possible cases.

In the Machine Learning paradigm (valid for DL as well), the system eventually
learns to figure out how to make the right decision to obtain a known output for a
given input by performing the CNN operations. An important advantage of this, is
translation invariance, back to the previous example, identifying a reporter, the
system would learn which representations in the different feature maps match the
category ‘Reporter’. A possible pattern for this category could be the microphone,
a not too distant person from the camera… This paradigm conforms the basis of
AI, which consists in automating intellectual tasks performed by humans.

Changing from the classical programming paradigm to the machine learning
paradigm does not consist only on changing procedures or ways to program, it is
necessary to change, at least, the equipment. The classical programming
equipment, however, probably is not capable by itself to perform convolutions in
which patterns and features are identified and used to classify images. The
essential equipment used in DL paradigm to make possible to do all the
necessary convolutions over thousands of images and classify them is the GPU
[10] (Graphical Processing Unit), which is a popular element in gamers’
computers: The graphic card.

Convolutional Neural Networks 11

Another element necessary in the ML paradigm is storage, not only the capability
to perform all the operations in the CNNs. The number of images to build the data
set can be about tens of thousands and with a proper resolution, only the dataset
used in this project reaches perfectly 20 GB, which makes a huge difference
respect the classical programming paradigm.

Apart from a fast CPU to process data and to achieve the computational power
required to run DL models, companies like NVIDIA or AMD have focused their
efforts on developing fast, massively parallel chips to render complex 3D scenes
on commodity equipment in real time. In 2007 NVIDIA created a computing
platform: CUDA (Compute Unified Device Architecture) with the idea of using the
GPU for parallel programing to solve complex problems[].

The last significant difference is the time to see the results. The training process
can go from hours to days, which supposes the biggest difference between the
two paradigms. The paradigm shift, however, has fostered the acquisition of fully
equipped computers with multiple GPUs to keep training during days to move
forward in DL, as described below.

1.2.2. ImageNet database

Some years after the creation of the CUDA platform, an image recognition
challenge arose in March 2010: ILSVRC (ImageNet Large Scale Virtual
Recognition Challenge). ImageNet is a visual database designed to implement
visual object recognition software with currently more than 14 million of images
and more than 20.000 categories. It runs an image recognition contest every year
in which the winner is the one that detects, classifies and locates correctly the
highest number of objects and scenes over a dataset provided by ImageNet.

A very important milestone in the DL history is the victory of the CNN AlexNet
(created by Alex Krizhevsky), in the ILSVRC in the year 2012, it is considered a
milestone because the classification error rate decreased a 61% respect to the
previous error rate in 2011 (from 0.26% in 2011 to the 0.16%) [12], an important
reduction that has been considered a very important breakthrough in DL.
Checking the top 5 ranking from that year, the second best error rate was a 10.8%
higher.

The importance of ImageNet in this project is not about DL or CNNs history, the
architectures of CNNs used along history in all the contests, contains several
convolution, MaxPooling, fully connected layers that are necessary to manage
the quantity of parameters that are necessary to recognise scenes and objects of
more than 20.000 categories over more than 14 million of images nowadays. As
can be deducted, commodity equipment is not prepared for such daunting task;
the computation necessary to compete in contests such as ILSVRC requires
dedicated computers with multiple GPUs training for a long time, a requirement
that is not feasible to complete this project.

Notwithstanding, the progress of those trainings can be saved and transferred to
other networks, advantage that has been taken from that feature, to load those
parameters in the different architectures used in this project.

12 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Fig 1.9 Small overview of ImageNet architectures

(Fig. 1.9) shows the winning architectures of all ImageNet challenges over the
years as introduction, because most of them will appear in this document as
tested architectures to perform the classification task.

The equipment used for this project is described in Annex A1 (Hardware
specifications).

Keras - Development Tools 13

CHAPTER 2. KERAS – DEVELOPMENT TOOLS

This chapter describes the environment used to build the different CNNs in this
project, the description explains the code that has made possible obtaining the
results of the image classification, but before explaining the environment, the first
section here under compares different DL frameworks available to create neural
networks.
The code to build the network in Python will be detailed, beginning with the load
of architectures and ending with the classifications [2]. This comprises creating
the models with layers, transforming the original input images into data that can
be fed to the CNN, compiling the model, training and finally displaying the results.
Despite being in a new programming paradigm, problems that move us further
from our objective may arise, but some strategies to cope with them will be
explained as well.
Different loss functions and optimizers will be explained in detail to analyse which
is the most suitable to perform the image classification of this project.
Also the different network architectures will be explained and detailed in this
chapter, the comparison about the results will be shown and explained in Chapter
4.

2.1 Keras, TensorFlow, PyTorch and Caffe comparison

More businesses and companies are moving to the use of AI in order to automate
tasks and improve their performance, bringing intelligence to machines thanks to
the use of ML and/or DL systems. Depending on the technology they work with
and the desired purpose, the choice of the framework to develop the system is
crucial. Normally the perfect framework for each case is chosen in function of
results, fast business and ease to deploy. In the case of image recognition and
classification, the necessary technology has been explained, remaining only the
environment in which to build the program that loads images and returns their
classification.

Four DL frameworks are compared in a table to see in a clear, quick way which
are the important features to take into account before beginning to program a full
CNN such as API level, ease to code, architecture, debugging, support[13]…

Since the four frameworks can perfectly lead to the same objective, it is normal
that some functionalities are shared amongst them, as the case of Keras, which
has an user friendly API, but doesn’t handle low-level functions, therefore,
frameworks with low level API (specifically TensorFlow) have to be installed to
provide Keras with these functionalities (the name of this concept is backend).
With low-level functions we mean mathematical operations such as generalized
Matrix-Matrix multiplication and NN basics such as the element-wise operation
in convolutions.

14 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Table 2.1. Framework comparison

 Keras TensorFlow PyTorch Caffee

API level

High level High & low
level

Low level Low level

Speed

Slow For high
performance

For high
performance

Fast (1ms /
image)

Architecture

Simple Complex Complex Complex (big
networks)

Coding

Single line
code

Reduced size
of model with

high acc.

Complex Complicated
but extensible

Debugging

Not
frequently
needed

Difficult Better
debugging
capabilities

Not
complicated

Support

Small
community

support

Backed by
community

tech
companies

Stronger
community

support

No commercial
support

Datasets

Small High
performance

models

Large
datasets

Small and
large

Popularity

High due to
its simplicity

Highest
popularity

High Low

The main features of these frameworks are exposed in the table and after
considering them all, here is the explanation of why the choice for this project has
been Keras. The main reason is that it is the perfect framework to begin working
with CNNs due to its simple architecture and high level API. This way, pre-trained
architectures can be easily loaded to obtain results in short time to check them.
Another important feature about Keras is the dataset size: Since it uses
TensorFlow as backend, it results to be slow for big sizes, and the dataset of this
project has been built from scratch, reason for which is quite difficult to reach
sizes of tens of thousands (see ImageNet or OpenImage datasets). Each
category trains, validates and tests with 1000 frames per category, but small
datasets can be augmented with a technique called Data Augmentation to
achieve similar results to big sizes, explained in section 2.2.3.

2.2 Building the CNN

This section shows and explains the code used to build the CNNs. The operations
explained in Chapter 1 will appear here with the proper parameters to reach the
objective, the part of code explained here is the basic code that allows to perform
the necessary operations to perform the classification:

 Load the different architectures

 Add our own classifier with our categories

 Load and convert the frames to the proper format

 Train and validate the model

 Test the model with predictions of never-seen data

Keras - Development Tools 15

2.1.2. Loading pre-trained architectures

Fig 2.1 Convolutional base load

This is the part in which the different architectures are loaded in Keras,
conv_base will play the role of all architectures tested in this project: VGG16/19,
Inception V3 and Xception, it is a common approach for computer vision problems
in which datasets are small. By setting weights to ‘imageNet’, we indicate we want
to use the networks’ values obtained from the training with multiple GPUs for a
long time, using ImageNet dataset.

It is also important not to train the whole network, for that, the classifier is removed
(include_top=False) and it is necessary to freeze all layers from the pre-trained
CNN (layer.trainable = False) as shown on (Fig 2.1). The reason to not use the
original classifier from the architecture is to make sure that the representations
learnt are specific to our classes and data, which are not as specific as in the
pre-trained classifier [2].

All the input images are resized to square shape with height and width values =
(224, 224) for all architectures.

2.2.2 Adding classifier on top of architectures

Fig 2.2 Classifier added to convolutional base

We add this classifier on top of the architectures, which converts the format
coming from convolution layers into the proper format to perform the
classification. The Dropout layer is to randomly select and deactivate a number
of neurons (0.5 factor is to deactivate half of the neurons), leaving the rest of
neurons solving the problem. This is one the measures to cope with overfitting,
which means a network lacks capability to generalize. [5]. Note that the last layer
has one neuron per class, with softmax activation for multiple classes, which will
output the probability distribution, selecting the class with the highest probability.

16 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

2.2.3. Generating data to CNN from original input images

From this point, it is necessary to convert the dataset images, stored in their
corresponding folders, into a format that can be fed as input to CNNs. The
functionality in Keras able to do that is the ImageDataGenerator class, which
requires some arguments depending on the use of the data. Note that the
validation and test data will only be converted to the proper format and their pixels
value will be rescaled from the interval [0 - 255] to [0-1]. The training data on the
other hand, will be augmented with extra arguments on the ImageDataGenerator
class to generate additional training data to increase the model’s accuracy with
small quantity of data. Data is augmented according to the parameters provided
to the generator with ranges of zoom, rotations, flips, displacement (see [14])…

This concept is called Data augmentation, which is the second measure to cope
with overfitting, by introducing modified frames that seem different from the
original frames.

Fig 2.3 Converting frames to CNN format

2.2.4. Compiling and training the model

With all this preparation, it is the moment to configure an optimizer, a Loss
function to minimize and the metrics to measure. Different optimizers have been
used in this project are explained in section 2.3. Once the optimizer and the loss
function have been compiled, the training and validation process (model.fit) can
begin. The duration of this process depends on the number of epochs, it must be
high enough to monitor accuracy after convergence.

Keras - Development Tools 17

All models have been trained for a long enough period where the models
converge and, thus, a bird view of the global behaviour can be taken.

Fig 2.4 Configure optimizer and train the model

2.2.5. Generating predictions

After obtaining the results from the training and validation process, the next step
is to evaluate the model with never-seen data. Using a validation set allows to
tune the model by changing input arguments, number of layers, number of
epochs, etc… for the cases in which the results are not good enough, but to have
a complete evaluation of the model it is important to distinguish if it performs well
both in seen as in never-seen data.

The best way to show the evaluation of the system is placing each prediction in
a confusion matrix [15]. These matrixes will be shown in Chapter 4, but basically,
each column represents a category, and the rows represent the predicted
categories. This tool allows knowing which categories confuse the system
because it shows the number of mismatches and in which category is classified.
The ideal confusion matrix is diagonal with the number of elements of each
category, because it means that the predicted categories coincide with true
categories. (In this case, a diagonal matrix with the value 1000).

Fig 2.5 Evaluating the model with never-seen data

2.1. Loss function and learning algorithms

As mentioned in Chapter 1, to perform automatic classification the system must
learn to classify correctly through the training process, reducing the Loss score
provided by the Loss function, which basically compares the network’s prediction
with the true value and outputs a Loss score. This function has to be minimized
in order to achieve maximum accuracy, which is the Optimizer’s task.

18 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

To accomplish this task, the Optimizer manages the Loss score and the filters’
weights, which are updated depending on that score, the lower the score, the
softer the updates in the weights. The Optimizer looks for the values for which
the gradient of the Loss function is zero (as close as possible), but on the basis
that all Optimizers have the same goal, there are different types of Optimizers
with different ways to find the values that minimize the Loss Function. An
important parameter for the Optimizers is the Learning Rate (LR), which is
decisive to reach convergence: If LR is too low, reaching convergence can take
forever, if it is too high, the algorithm will never converge, for that reason it is
important to adapt the LR while searching the minima. The most basic optimizer
is Gradient Descent (GD), but achieving the proper values is not feasible when
handling millions of parameters, so a faster version, Stochastic Gradient Descent
(SGD) is introduced as basis of the Optimizers used in this project:

2.3.1. Loss Function

First of all, we need to check the problem to face, in this case it is a multiclass
classification problem, so the corresponding Loss Function is [5]:
 𝐽(𝑦) =∑ 𝑦𝑑 · 𝑙𝑛𝑦′ + (1 − 𝑦𝑑) · 𝑙𝑛 (1 − 𝑦′) 𝑀𝑖=1 , (𝑦𝑑 is the true target) (2,1)

 𝑦′ = 𝑆(𝑊𝑇 · 𝑋) (𝑦′ Is the predicted value) (2,2)
 𝐖𝒌+𝟏 = 𝐖𝒌 − µ∇𝐰𝐽(𝑦) Is the expression for weight learning (2,3)

As can be observed on these equations, the changes that can lead the Loss
Function J(𝑦) to its minimum value, will depend on how good or bad are the

predictions obtained (𝑦′), and the predictions’ quality depend at the same time on
the weights learnt through the Backpropagation mechanism, that will be
constantly updated during the training process. To sum up, the Loss Function
values depend exclusively on the weights.

2.3.2. Learning algorithm (SGD)

Similar to GD, the only input value for this optimizer is the LR, taking big steps
when the predicted value is far from the true target (high LR) and small steps
when the predictions are close to the true target (low LR), the difference is that
redundant samples form clusters (minibatches) to implement the mathematical
calculations with the gradients (see [16]). This feature allows the Optimizer to
work in just that subset of data, instead of all the information, which results faster
because the number of steps are reduced in a factor corresponding to the number
of minibatches or clusters (faster than GD). SGD does not compute the exact
derivative of the Loss Function, it is an estimation for each batch, therefore, the
gradients ‘oscillate’ instead of moving uniformly, causing that not all steps to the
minima are in the right direction. Moreover, working on minibatches provide more
stable estimates of the parameters in fewer steps.

Keras - Development Tools 19

2.4. Optimizers

The optimizers perform mathematical operations to reach the minima as fast as
possible, despite they use different ways to find the minima, the objective is the
same. The different optimizers [17] used in this project are described below:

2.4.1. SGD with Momentum

Instead of taking the direction on the maximum gradient, the strategy of this
method, with momentum, is moving average of the gradients and the value from
previous gradients. With this technique, the optimizer tends to oscillate, and the
way it deals with these oscillations is averaging the estimated gradients (weighed
averages), that would be closer to the original function, accelerating them in the
right direction. The way to the minima is described by the formula:
 𝑚𝑡 = 𝛽𝑚𝑡−1 + (1 − 𝛽) 𝑔𝑡 (2,4)

Fig 2.6 SGD with Momentum

2.4.2. RMSprop

Similar to SGD, the main parameter is the LR, but RMSprop looks for a fast way
to the minima, dumping oscillations not routed in the right direction. The method
is to penalize the updates of those parameters that cause the Loss function to
suffer wide oscillations, with the objective not to adapt quickly to such changes
for the weights’ values. The advantage of the updates that are correctly routed to
the minima is that they do not suffer any penalty and therefore, there will not be
big oscillations in the way to the local minima. 𝑣𝑡 = 𝜌𝑣𝑡−1 + (1 − 𝜌) 𝑔𝑡2 (2,4)

This formula indicates how the gradient are treated: The square of the average

gradient is computed, multiplied by (1 − 𝜌) and added the previous exponential
average (𝑣𝑡−1) of the gradients to obtain the result. The reason to do it in this
way, is to weigh the more recent gradients respect the previous.

20 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

RMSprop can also deal with large datasets thanks to the use of minibatches,
averaging the gradients for each weight, and taking all the steps with the same
magnitude. The magnitude of the steps can be regularized dividing the gradient
by the square root of the mean gradient, reason for which the Optimizer’s name
is RMSprop, the LR is also divided for a weight that is the average of the
magnitudes of the recent gradients that had that weight.

2.4.3. ADAM (Adaptive Moment estimation)

ADAM is an adaptive LR optimization algorithm, computing each LR for different
parameters, like RMSprop, it uses squared gradients to scale the LR and
computes them individually for each parameter and similar to SGD with
momentum, it moves average over the gradients.

ADAM uses estimations of the first and second moment (expectations of the

gradients’ values, 𝑔𝑡):
 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (2,5)

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡2 (2,6)

However, developing some iterations in these formulas and assuming that the
expectations of the gradients come from the same distribution, it can be checked
easily that there is an inherent bias that must be corrected according to the
expression below: �̂�𝑡 = 𝑚𝑡1−𝛽1 (2,7)

 �̂�𝑡 = 𝑣𝑡1−𝛽2 (2,8)

As these equations show, this optimizer has more hyperparameters than the
previous ones, the recommended values are:

 𝛽1= 0.9

 𝛽2 = 0.999 𝛽1 and 𝛽2 are used to average the first and the second moment to scale the LR

for each parameter, being 𝜂 the initial LR. There is also an additional parameter

(ϵ) to ensure no division by zero in the weight update:

 𝑤𝑡 = 𝑤𝑡−1 − 𝜂 �̂�𝑡 √�̂�𝑡+ϵ (2,9)

With recommended value ϵ = 10-8 .

Keras - Development Tools 21

2.5. Used CNN architectures

Different CNN architectures have been tested to check which of them provides
the maximum accuracy to perform the classification of the newscast frames.
These architectures belong to networks that have competed in ILSVRC, obtaining
very good results in terms of classification. At the beginning, their first approach
was achieving maximum depth in these architectures, but experience revealed
that insistence on deep networks didn’t always lead to better results. For this
reason, approaches with changes on convolution operation and feed-forwarding
outputs were successful as explained below.

2.5.1. VGG Net

Presented in ILSVRC 2014, this architecture can optionally use 16 or 19
convolutional layers with 3x3 filters. It becomes progressively simplified in terms
of width, using 2x2 MaxPooling filters with stride 2, increasing the total number of
filters in the upper layers. Concatenating 3x3 convolution layers, the reception
field is increased, and the 3x3 size reduces the total number of parameters.
Another important feature of this architecture is the use of ReLU activation on
each convolution layer, it makes the decision function more discriminatory,
achieving a more accurate classification[5].

VGG Net has become a reference architecture and has contributed to a better
understanding on the NNs. As 3x3 convolutional layers are added, each feature
depends on a 3x3 region from the original image, in the second 3x3 layer, each
output element will depend on a 5x5 region from the original image, on a 7x7
region on the third layer and so on… This way, after each MaxPooling operation,
each output will depend on a 14x14 region.

VGG16 number of parameters is 138 million, a large number for a configuration
of 16 layers, however, its conceptual simplicity makes this network widely used
on multiple applications since it is implemented in the majority of frameworks as
pre-trained network on ImageNet. The architecture is shown in (Fig 2.7).

Fig 2.7 VGG Net architecture

22 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

2.5.2. GoogLeNet Inception module

GoogLeNet’s architecture brought a significant contribution to image
classification, thanks to the use of the inception modules, an element that
simplified the layers design of the neural networks [5]. The inception modules
allow the use of simple structures, concatenated in series or parallel, combining
different sizes of convolution filters, considering even 1x1 size to not overgrow
the number of parameters and difficult the network training.

These blocks combine all the features of the immediately preceding layer,
reducing the number of elements and simplifying the number of parameters of
the successive convolutional blocks, as shown in (Fig 2.8).

Fig 2.8 Inception module

The 3x3 and 5x5 convolution operations on (Fig 2.8) are only permitted if previous
simplifications have been done with the 1x1 filter. The reason of this constrain is
to simplify the learning process, increasing the architecture’s depth and
maintaining its complexity in acceptable levels despite the depth increase, which
leads to better results. However, the learning process in this architecture is
complex because the errors are backpropagated through numerous layers, which
supposes a slowdown. For this reason, GoogLeNet included a couple of parallel
replicated outputs in the central part of the architecture, with the idea of moving
errors to the first layers and therefore, enhance the weight adaptation to ease the
global learning of the network. A figure of the basic architecture is shown in (Fig
2.9)

Fig 2.9 Inception architecture

Keras - Development Tools 23

This concept evolved subsequently in more sophisticated models with higher
flexibility on its basic inception module, which consists on increasing the number
of convolution filters and simultaneously reducing the number of parameters.
With a NxN filter is decomposed into a Nx1 filter and subsequently a 1xN filter,
with the same number of elements but with a minor number of parameters. The
depth of the network can be increased maintaining its complexity in this way.

2.5.3. XCEPTION

This model is similar to Inception but with some computational improvements: the
inception modules (eXtreme inception) perform depthwise convolutions, in which
a 3x3 filter is decomposed into two filters: a 3x3 spatial filter that is applied to all
channels equally and a 1x1 filter, in depth, that is applied to the channels
dimension in each layer. The depthwise convolution reduces considerably the
number of parameters respect a real 3D convolution, with a different order,
performing first the 1x1 convolution and next the 2D convolutions, and between
these convolutions, a non-linear element (ReLU) is added. This strategy is shown
in (Fig 2.10), being the architecture similar to Inception. [18]

Fig 2.10 Xception depthwise convolution strategy

Building the Dataset 25

CHAPTER 3. BUILDING THE DATASET

This chapter explains how the data set has been built, from videos’ acquisition to
tagged frames with their corresponding category, ready as network’s input. In the
middle of the building process there has been a proper management and manual
classification to prepare the network to reach the ability to classify the frames with
maximum accuracy.
This data is the fuel that keeps the network training and it has to be properly
analysed to ensure that the data we supply to the network is the right to learn
what we want the network to learn, otherwise, errors in classification would
suppose sharing common features between categories, complicating the learning
process. Another mistake to avoid is sharing identical frames between training
and validation: The training results would be great, but the test results would be
worse.
The network has to classify correctly never seen data, or in other words, it has to
be able to generalize correctly. Specific criteria has been applied during the
manual classification to contribute improving its generalization ability.

3.1. Obtaining videos

To build the whole data set, it has been necessary to obtain as many videos as
possible of TV news programs. This multimedia content is not at hand and easy
to obtain despite videos are broadcasted all over the world on TV and uploaded
on the program’s website.
The main methods to obtain the videos for this project are:

3.1.1. From deferred programs: Video on Demand

In the case of national TV channels, the videos are available on the channels’
website, but the download option is not always available, so the solution to obtain
these videos has been to install an add-on for browsers that allows downloading
videos and different elements in a website: DownloadHelper.

When DownloadHelper detects a streaming source in a web, it displays a menu
with multiple options (Resolution – Bitrate):

 Video to download, if a web hosts more than one video, it will be detected
as multi streaming source and video names will appear on menu.

 Video Resolution – Video Bitrate.

 Video format: In some cases, there is more than one format available to
download.

As can be seen marked in red in figure below, the convention to download the
videos for this project have been selected with (resolution – bitrate) = (1280x720
– 1.9 Mbps).

26 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Fig 3.1 DownloadHelper menu

3.1.2. Live streaming: Personal Video Recorder (PVR)

To obtain videos from Live streaming programs, a satellite decoder is a perfect
tool to record news via USB port: Freesat V8 Media Super (GTMedia).

Fig 3.2 Decoder used to record TV news

The way to obtain videos with this device is much simpler than using web browser
add-ons: Just inserting an USB dongle in the decoder’s USB port and press
‘record’ button on the remote control. Default record time is two hours, long
enough to get frames from all categories. At the end of the record, a transport
stream file (.ts) of size (1920x1080) is stored on a folder created for that purpose:
PVR (Personal Video Recorder).

Building the Dataset 27

3.1.3. Videos’ properties

Since the obtained videos are different depending on the acquisition method, the
differences between them are explained below, but it can be mentioned in
advance that it will not be a problem because the network’s output will be the
same regardless the method used to obtain the video. This small table contains
properties of all obtained video data in this project:

Table 3.1. Video properties

TOOL SIZE CODEC CONTAINER

DownloadHelper 1280x720 H.264 MPEG-4 (part 10)

Personal Video
Recorder (PVR)

1920x1080 H.262 MPEG-2 (part 2)

3.1.3.1. MPEG Transport Stream (TS)

It is also a digital multimedia container format to store programs of coded data in
a set of sub-streams (video, audio, data) according to ITU-T Rec. H.262 | ISO/IEC
13818-2 and ISO/IEC 13818-3.

Transport stream encapsulates Packetized Elementary Streams (PES), providing
error correction and synchronization pattern to ensure data integrity in case of
errors in the channel. This coding method is ideal to use on lossy environments
and its main use is for broadcasting systems such as DVB, ATSC and IPTV and
as mentioned before, satellite TV.

The codec format used for MPEG-2 part 2 is H.262, which has some mechanisms
to compress stream in order to fit in the bandwidth of available TV channels and
to reduce overload. There are three ways to code frames:

 I-frames (intra-coded frames): Skips spatial redundancy and takes
advantage of the inability of the human eye to detect changes.

 P-frames (predictive-coded frames): This type of frames base
compression on previous frames using them as reference.

 B-frames (bidirectional predictive-coded frames): Similar to P-frames,
this type uses both previous and subsequent reference frames,
achieving a higher compression than P-frames.

Not all the frames are the same type, an example of a group (also called Group
of Pictures – GOP) can be this[20]:

…IBBPBBPBBPBBPBBI…

Note that around 15th frame (the standard is flexible) there has to be an I-frame.
Not identically but in general, both CODECs use this frame classification to
achieve high compression ratio. The TS packets have a constant length of 188
bytes, 4 of them used as header in order to control synchronism, cypher, and
errors.

28 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

3.1.3.2. MPEG-4

A standard method that defines compression of audio and visual digital data. The
extension .mp4 file corresponds to the MPEG-4 part 14 (also called MP4), which
consists on a digital multimedia container format used commonly to store video,
audio and other data such as subtitles. It also codes the frames the same way as
in MPEG-Transport Stream.

The data stream containing video (MP4/H.264) offers:

 High compatibility on all operative systems and browsers.

 Higher efficiency when coding than its original version (MPEG-4 part 2)

 Good image quality even if bit rate used to code is low.

 High robustness versus errors in transmission, which makes it a very
good option for streaming.

 More suitability when broadcasting.

 Possibility to interact with scene generated at the receiver.

Its only drawback is the high complexity to code and decode, which requires a
fast CPU/GPU.

3.1.3.3. MPEG-2 and MPEG-4 comparison

Differences between MPEG-4 (part 10) and MPEG-2 (part 2):

 MPEG-4 has a higher image quality with the same bit rate.

 MPEG-4 compression rate is 30-50% more effective.

 MPEG-4 requires less bandwidth than MPEG-2.

 MPEG is more oriented to broadcast multimedia content.

3.2. From videos to frames – FFMPEG

To extract the frames from the videos, a very useful tool is at hand: FFMPEG
(Fast Forward Moving Pictures Experts Group). FFMPEG is an open-source
software for the multimedia handling that has a wide range of functions on video
treatment, actually it is a very popular application used by a vast majority of video
treatment applications, it is capable to convert to different video formats, handle
audio, merge frames to create a new video…

In this project, the use of FFMPEG has been useful to convert the downloaded
videos to frames, but FFMPEG can use many types of element as input, from
regular files to website streams, it is capable to convert arbitrary simple rates
while resizing streaming videos[21]. The main advantage of using FFMPEG is it
has a broad support:

 Image formats

 Video and Audio CODECs

 Video and Audio containers

Building the Dataset 29

This support is possible thanks to its libavformat and the libavcodec libraries for
media formats that contain muxers and demuxers for audio/video containers. The
libavfilter library is also useful for management matters.

The elements compatible with FFMPEG needed to build the data set with frames
extracted from videos are:

 CODEC H.264/AVC/MPEG-4 AVC/MPEG-4 part 10 (encoders: libx264,
libx264rgb, compatible for de/coding and pixel format).

 CODEC MPEG-2 Video (compatible for de/coding and pixel format).

 CODEC PNG format support to save frames.

The most important feature of FFMPEG for this project is its capability to
recognise a vast number of CODECs and formats to recognise the input (MPEG-
2/4 videos) and to get the desired output (PNG frames).

3.2.1 FFMPEG syntax

The FFMPEG program reads the content of the specified input with –i option, the
options used in FFMPEG for this project have been these:

The resulting command that converts a video into frames has this structure:

> ffmpeg -i [video_name.extension] [frame_name.extension]

As example:

> ffmpeg -i RTVE-i1.mp4 RTVE-i1-%d.png (%d is to have numbered frames)

This command slices a video into frames one by one, and according to the
standard frame rate in European countries, each second contains 25 frames, but
it results in many redundant frames, so the solution proposed is obtaining 1 frame
per second instead of 25 per second:

> ffmpeg -i [video_name.extension] –vf fps=1 [frame_name.extension]

-vf is an option to indicate the use of a video filter, the option of the video filter
selected for this project is to set frames per second from 25 (default frame rate
on MPEG-2/4) to 1.

As example:

> ffmpeg -i RTVE-i1.mp4 –vf fps=1 RTVE-i1-%d.png

This way, FFMPEG will extract less frames from videos, no extra-storage will be
required to keep redundant frames and the manual classification will be easier.

3.2.2. Naming frames

Naming downloaded videos is necessary to identify channel and program, when
a video is downloaded, the convention to identify channel and program is:

30 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Channel_name-i[number of video].extension

An example to see it clearly can be:

TV3-i6.avi

The number next to i keeps no relation with the days of the month, it is just an
index to enumerate the videos. In the same day, two or three TV news program
can be emitted in the same channel (at morning, evening, night).

To have more variety in frames, for a given channel, a good option is to download
and separate morning, evening, night and weekend newscast from different days.
The choice in this project has been this:

 Download all morning newscasts from a fixed month.

 Download all evening newscasts from the next month.

 Download all the night newscasts from the next month after evening
newscast.

 Download the equivalent number of newscasts of the weekend edition.

A way to separate them in this project has been to distribute the newscasts
between training folder, and the validation folder as indicated further in this
document. This criterion is to ensure that Intro_New category does not contain
almost identical frames: the presenters will be different this way.

The convention to name the frames is:

Channel_name-i[number of video]-[frame_index].extension

Again, an example is provided: A3-i4-148.png

3.3. Frames’ classification

After obtaining all the frames from a video, the next step is to classify them; the
method to classify the frames has been this:

 Check all the frames

 In case a frame belongs to one of the categories, move it to the folder
corresponding to that category.

 Continue checking frames until the last one.

The main goal of this project is to distinguish studio frames from non-studio
frames, and to achieve that, the proposed categories to classify are these:

Building the Dataset 31

● Graph_Intro: Corresponds to graphic frames, digitally created by computer,
not from any camera. This category belongs to studio because the displayed
info comes from data obtained by the TV program. For this reason, it is a
studio category.

● Intro_New: This category refers to presenters’ explanation before a reporter

explains the new; it can introduce as well a set of graphics. This is clearly a
studio category.

● Reporter: Frame where a reporter gathers all possible info about the event
and provides a status-report about the place. It can be the beginning of the
non-studio category, or can, as well can indicate the end of non-studio.

● Rep_Interview: This kind of frame shows a reporter interviewing a person
about the event that made the journalists come to that place. This category
cannot be studio.

● Rep_New: Reporter explaining new with camera support. This category
normally comes next after Reporter category to provide additional info with
cameras to television viewers. This is a non-studio category.

● Video_New: New development, the core of the non-studio category, the raw
image of the camera showing the mentioned event happening. It normally
contains vehicles, buildings, monuments, distant crowd, landscapes…

The reason to choose these categories is to make the network identify which
features belong to studio and which features do not. Examples of these frames
can be found on Annex A3.

3.3.1. Data management

To make our network capable to identify each frame it is necessary first to collect
enough samples of each category. The network must do the training part first; it
means to make the model classify the training samples with no prior knowledge.
At the beginning, the model will classify frames incorrectly, but it will keep learning
though errors, until it learns patterns and detect elements that guide it during the
convolution process.

Once the training has been completed, it is necessary then to measure the
model’s accuracy and loss (this stage is called validation, a way to see the
training’s results). The data from validation is a fragment of the training data,
which means that the data is similar but not identical to the model and it is not
data from which it has learnt. Validation data is important in order to tune our
network’s configuration (selecting the number of layers, the number of epochs,
the batch size, and it is a way to see at first sight if the network suffers underfitting
or overfitting. Another interesting validation technique is the K-fold cross
validation, which consists on splitting the training set into k groups use one of
them as a validation set. Do the training process for the rest of the groups and

32 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

validate with the extracted group, then repeat this operation for all groups and the
resulting loss accuracy is the average of the resulting k trainings.

After having obtained system’s accuracy and loss, the next step is to make the
model classify never-seen data to have an objective result, this is the Test part.

3.3.1.1. Data proportions

All models in ML/DL must satisfy a proportion [5] of data in order to obtain the
desired results (accuracy as close as possible to 100% and almost null loss). The
proportion of data that has provided the best results until now has been this:

Fig 3.3 Data proportions for Training, Validation and Test

In previous Deep Learning problems, the order of magnitude of the training
samples is tens of thousands (40.000-60.000 frames) having validation and test
the proportional part as shown on the figure (Fig 3.3).

In the case of this project, the number of frames for each category has been 1000
for training, 1000 for validation and 1000 for test. Previously the proportion has
not been accomplished, but Keras has functionalities that can boost accuracy
with small data sets, the functionality applied in this project is Data Augmentation,
achieving accuracy around [85-90]% depending on the network architecture
used. This functionality is an approach that creates more training data from
existing samples by generating random transformations such as rotation, zoom,
horizontal flip…

With these transformations, the trick is that the frame is similar but not identical.
Therefore, the network will not consider it as a redundant element during the
training part, feature that allows the model to cope with overfitting and helps
increasing its generalization ability.

3.3.1.2. Dataset and channels’ structure

The way to load data in Keras is to place the frames in their corresponding
category, the data set for this project consists in a folder named ‘Data set’ which
contains three folders, ‘1-Training’, ‘2-Validation’, ‘3-Test’. Each of these folders
contains one folder per category, which in this case, if we take as example the
folder ‘1-Training’, it contains 6 folders with the names of the categories of this
project, as shown in (Fig 3.4)

Building the Dataset 33

Fig 3.4 Folders’ structure in Dataset

A folder with the channel’s name that contains as many folders as downloaded
videos, following the previous convention commented in FFMPEG naming, the
folder with the name of the channel contains various folders: ‘i1’, ‘i2’…’iN’. Not all
the channels have the same number of TV news programs because there are
channels that provide more useful frames than others do with the same amount
of frames.

After obtaining some folders with frames from FFMPEG, the next recommended
task is to analyse these folders immediately and not generate new folders until
the appropriate frames are on their corresponding folders.

3.3.1.3. Distribution of TV channels in Training, Validation and Test

The distribution of the frames in the Traning, Validation and Test folders has been
done according to this convention: To train the network with national newscasts
and check its performance by testing frames from international TV channels like
BBC, CNN, CNBC…

Table 3.2. National newscast edition for training and validation

TRAINING VALIDATION

Morning, evening, night Weekend

Table 3.3. International newscast edition for training and validation

TRAINING VALIDATION

Morning Evening

The reason for this distribution is to provide as maximum variety as possible in
national channels, with a limited number of presenters, studios and reporters, and
for the case of international TV channels, which are endless, the diversity will
reach its maximum with just a sample of one studio, one presenter, one
reporter… per channel. Since the international channels are outnumbered, the
list of all channels is on the Annex A2.

34 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

CHAPTER 4. TRAINING AND RESULTS

This chapter shows the results after having fed the dataset to each architecture,
the results shown are the training loss and accuracy along with validation loss
and accuracy of all the trainings, and finally, the prediction accuracy.

 Training loss is the error on the training set of data.

 Validation loss refers to errors in the validation data classification.

 Training accuracy is the ratio between successful classifications and total
number of frames during the training process.

 Validation accuracy is the ratio between successful classifications and
total number of frames during the validation process.

 Prediction accuracy is the ratio between successful classifications and
total number of frames during the prediction process.

The measure that determines if a result is good or bad after the classifications is
the prediction accuracy, which is considered an objective and unbiased measure,
the validation accuracy, in the other hand, is a small part that comes from the
training set, reason for which that measure cannot be absolutely considered as
never-seen data. The numerical results are displayed in these tables (30th epoch),
obtained after finishing the training for 30 epochs, saving the model and begin
training again with a lower LR to obtain better, but stationary results. The
accuracy graphs and the confusion matrixes of all architectures can be found on
Annex A4.

4.1. Results for architecture VGG16

Table 4.1. Results for VGG16

 Train Loss Train Acc Val. Loss Val. Acc Pred. Acc

SGD with M 0.1795 0.9400 0.2703 0.9070 0.86

RMSprop 0.0264 0.9920 0.3624 0.9190 0.87

ADAM 0.0085 0.9995 0.5621 0.9210 0.87

VGG16 is the architecture that leads to the best results obtained in this project,
reaching the maximum prediction accuracy. Despite SGD prediction accuracy is
slightly lower, the validation graph shows a small overfitting affection (validation
curve is not distant from training curve, which is not the case of RMSprop and
ADAM, where overfitting in both cases begins in epoch 6), and thus, has a better
generalization capability. This result is accord with the Occam’s razor principle.

4.2. Results for architecture VGG19

Table 4.2. Results for VGG19

 Train Loss Train Acc Val. Loss Val. Acc Pred. Acc

SGD with M 0.1504 0.9605 0.2735 0.9010 0.86

RMSprop 0.0232 0.9925 0.5029 0.9110 0.86

ADAM 0.0045 0.9980 0.4003 0.9150 0.86

Training and Resulta 35

The VGG19 results do not differ much from VGG16 architecture. Again, SGD
optimizer is slower reaching overfitting, and in the case of in RMSprop, the
training and validation curve don’t split until epoch 10 and with ADAM, the
validation accuracy curve (stationary in 0.99) is not far off the training accuracy
curve (stationary in 0.91). RMS prop and ADAM converge fast, but not to the best
solution.

4.3. Results for Inception V3

Table 4.3. Results for Inception V3

 Train
Loss

Train Acc Val. Loss Val. Acc Pred. Acc

SGD with M 0.4001 0.8585 1.6072 0.6210 0.56

RMSprop 0.5319 0.8150 1.7329 0.5940 0.53

ADAM 0.1697 0.9400 2.0595 0.6600 0.59

The results with Inception architecture begin to worsen, prediction accuracy
decreases from 0.90 to values lower than 0.60 and the validation accuracy suffers
a similar decrease. Despite many LRs have been tested to improve the results of
the table, the validation accuracy remains stationary regardless the number of
epochs in all architectures. A reason for this behaviour is the convergence on
solutions that are good for training, but for this architecture, the validation results
are poor and far from solution if compared to VGGs.

4.4. Results for Xception

Table 4.4. Results for Xception

 Train
Loss

Train Acc Val. Loss Val. Acc Pred. Acc

SGD with M 0.1904 0.9460 0.9841 0.7060 0.62

RMSprop 0.2743 0.9045 1.1564 0.7070 0.61

ADAM 0.2260 0.9260 1.3683 0.7500 0.65

The results obtained in Xception, however, are numerically a bit better than the
Inception results, but the graphs show a clear overfitting in which is impossible to
obtain better validation results with the small quantity of frames obtained. For this
architecture, validation curve never reaches the training curve, providing poor
results for the predictions.

The reason that concludes this behaviour in all the architectures is the small
quantity of frames in the dataset. Due to this small quantity, all the architectures
suffer overfitting, in the case of RMSprop and ADAM convergence is reached
fast, but the solutions obtained are very good for training and bad for validation,
keeping this trend during all epochs. SGD, in the other hand, reaches
convergence slower than RMSprop and ADAM, reason for which obtains better
results: overfitting arrives later for this optimizer.

36 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Some of the best results are shown here as example:

Fig 4.1 VGG16 SGD

Fig 4.2 VGG19 SGD

Training and Resulta 37

Some bad results examples:

Fig 4.3 Xception RMSprop

Fig 4.4 Inception V3 ADAM

38 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

CONCLUSIONS

The work in this project has studied and documented the basics in Deep
Learning, a subset of Machine Learning popular in the field of image
classification. The steps followed to obtain the classifications that distinguish the
frames between the studio and non-studio categories have been these:

 Document the basic operations in CNNs.

 Compare the different DL frameworks and install the most suitable.

 Implement the CNNs with the necessary operations shown in Chapter 1.

 Build the dataset, by obtaining videos and extracting the frames.

 Load the architectures, train the networks with different optimizers and
techniques to obtain the results and compare them.

With the obtained results and after all the research to do this project, the reached
conclusions are these:

 The interest and research in DL is increasing, with the appearance of new
classification datasets, to solve different problems such as clothes, sports,
supermarket product classification…

 Thanks to the loaded architectures it is possible achieve very good results
in shallow architectures.

 The deepest networks result non-effective in small datasets.

 The generalization capability is higher with shallow architectures,
according to Occam’s razor principle, which states that the simplest
explanation is normally the right one.

 Data augmentation parameters in the training frames must generate
frames that have no additional features respect the validation set and the
test, for example, the validation set will rarely contain a rotated frame in a
newscast.

 Depending on the problem, Data Augmentation can boost accuracy to
95% with small datasets, not here due to small quantity and restricted
augmentation.

The Future lines of development are these:

 The first improvement has an easy but long implementation, consists on
installing as many DL frameworks as possible and check the performance
with image classification, taking into account DL is not exclusively
associated to computer vision. Along with this implementation, building a
bigger dataset with more frames would be interesting to compare
performances obtained in this project for further research. The results
would be better in the deepest architectures with a bigger dataset.

 The work in this project classifies the different type of scenes that appear
on the newscasts. In subsequent versions of the created system in this
project, it would be interesting to identify the presence of the sign language
that appears on some newscasts. A first approach can be done by creating

Annexes 39

additional categories, which would consist on the previous categories with
the presence of language sign, this means that all categories would go
from Graph_Intro and Graph_Intro (language sign) to Video_New and
Video_New (Language sign). The reason to use this structure is to not only
detect the language sign, but to detect the category in which appears the
language sign. It wouldn’t suppose much additional difficulty comparing to
the creation of the dataset explained in Chapter 3 because most of the
channels dispose explicitly of videos with language sign.

 The last approach that could be useful from this system can be finding
scenes in movies instead of rewinding backwards or forward in multimedia
content. The way to achieve this functionality is repeating the work done
in this project and creating the necessary categories and therefore,
building the required dataset. This concept by itself is extremely wide, for
this reason, the suggested approach is to do this work in different films
genre, being this way apparently more feasible to reach results.

Two aspects to consider as part of the economic impacts in this thesis, first of all
the equipment used to train the models require remarkable GPUs to obtain results
in a reasonable time, which means that the progress on image classification
programs is based on the use of high performance equipment, normally quite
expensive. It is also important to consider that the results in this project have been
obtained thanks to the possibility of transferring the training results to the
frameworks.

On second place, a feature that has been mentioned along this thesis: the model
training. It takes quite long, and it is highly recommended not to do the training
part with energy optimization option enabled because entering sleep mode will
most likely end in repeating model training with energy optimization option
disabled, which takes us to the second economic consideration: the price for the
energy consumption for long periods of time. This consideration is referred mostly
to the equipment used in the ILSVRC, but despite not being negligible, the
environmental impact of this project is not comparable to high-performance
computers that are training models for long periods to improve their accuracy.

The last consideration has not only economic considerations but environmental:
the electric energy consumption for long periods contribute to CO2 emissions due
to necessary training of dedicated equipment with no energy saving feature.

The technology used in this project is able to perform facial recognition, but it has
been sought not to do so, in order to avoid manipulation from third parties. As
shown in the code on Chapter 2, the main objective has been only to recognise
scenes to distinguish those frames that belong to the categories explained in this
project.

Unless consent is given, not respecting the right to privacy is an offence that may
entail legal measures by those affected, as exposed on article 197.7 of the
Spanish criminal code and therefore, not resulting an interest point for this project.

40 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

ACRONYMS

 ADAM Adaptive Moment Estimation
 AI Artificial Intelligence
 CPU Central Processing Unit
 CUDA Compute Unified Device Architecture
 CNN Convolutional Neural Network
 DL Deep Learning
 FC Fully Connected
 FFMPEG Fast Forward Motion Picture Experts Group
 GD Gradient Descent
 GPU Graphics Processing Unit
 ILSVRC ImageNet Large Scale Visual Recognition Challenge
 LR Learning Rate
 ML Machine Learning
 MNIST Modified National Institute of Standards and Technology
 NN Neural Network
 ReLU Rectified Linear Unit
 RMSprop Root Mean Square propagation
 SGD Stochastic Gradient Descent

VGG Visual Geometry Group

Annexes 41

REFERENCES

[1] How Occam’s Razor works, date accessed: 06/03/2020, from
https://science.howstuffworks.com/innovation/scientific-experiments/occams-
razor.htm

[2] Chollet, F. Deep Learning With Python, New York, NY, USA: Manning
Publications Co, 2017

[3] Albawi, S; Mohammed. T; Al-Zawi. S” Proceedings of 2017 International
Conference on Engineering and Technology”, ICET, Pp. 1-6. (2018)

[4] Patel, Krut, Convolutional Neural Networks — A Beginner’s Guide –
Towards Data Science, date accessed: 10/01/2020,
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-
learning-62e116fcf29a?gi=c1cf86979d5

[5] Tarrés, F. Applied Image Processing, Neural Networks and Deep Learning
[PDF], UPC Escola d'Enginyeria de Telecomunicació i Aeroespacial de
Castelldefels. Barcelona, obtained from https://atenea.upc.edu

[6] J. Ricco, What is max pooling in convolutional neural networks?
https://www.quora.com, date accessed: 15/12/2019, from
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks

[7] Qué es overfitting y underfitting y cómo solucionarlo | Aprende Machine
Learning, date accessed: 04/12/2019, from
https://www.aprendemachinelearning.com/que-es-overfitting-y-underfitting-y-
como-solucionarlo/

[8] What are Max Pooling, Average Pooling, Global Max Pooling and Global
Average Pooling? date accessed: 18/03/2020, from
https://www.machinecurve.com/index.php/2020/01/30/what-are-max-pooling-
average-pooling-global-max-pooling-and-global-average-pooling/

[9] 7 Types of Neural Network Activation Functions: How to Choose?, date
accessed: 11/03/2020, from https://missinglink.ai/guides/neural-network-
concepts/7-types-neural-network-activation-functions-right/

[10] GPU (Graphics Processing Unit) Definition, date accessed: 20/03/2020,
https://techterms.com/definition/gpu

[11] What is CUDA? How is it linked to NVIDIA? What does CUDA have to do
with GPU? – Quora, date accessed: 23/02/2020, from: www.quora.com/What-
is-CUDA-How-is-it-linked-to-NVIDIA-What-does-CUDA-have-to-do-with-GPU

[12] ImageNet Large Scale Visual Recognition Challenge (ILSVRC), date
accessed: 04/02/2020 http://image-net.org/challenges/LSVRC/2012/index

https://science.howstuffworks.com/innovation/scientific-experiments/occams-razor.htm
https://science.howstuffworks.com/innovation/scientific-experiments/occams-razor.htm
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a?gi=c1cf86979d5
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a?gi=c1cf86979d5
https://atenea.upc.edu/
https://www.quora.com/
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
https://www.aprendemachinelearning.com/que-es-overfitting-y-underfitting-y-como-solucionarlo/
https://www.aprendemachinelearning.com/que-es-overfitting-y-underfitting-y-como-solucionarlo/
https://www.machinecurve.com/index.php/2020/01/30/what-are-max-pooling-average-pooling-global-max-pooling-and-global-average-pooling/
https://www.machinecurve.com/index.php/2020/01/30/what-are-max-pooling-average-pooling-global-max-pooling-and-global-average-pooling/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://techterms.com/definition/gpu
https://www.quora.com/What-is-CUDA-How-is-it-linked-to-NVIDIA-What-does-CUDA-have-to-do-with-GPU
https://www.quora.com/What-is-CUDA-How-is-it-linked-to-NVIDIA-What-does-CUDA-have-to-do-with-GPU
http://image-net.org/challenges/LSVRC/2012/index

42 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

[13] Keras vs TensorFlow vs PyTorch | Deep Learning Frameworks | Edureka,
date accessed: 04/04/2020, from www.edureka.co/blog/keras-vs-tensorflow-vs-
pytorch/

[14] How to Configure Image Data Augmentation in Keras, date accessed:
18/12/2019, from machinelearningmastery.com/how-to-configure-image-data-
augmentation-when-training-deep-learning-neural-networks/

[15] A simple example: Confusion Matrix with Keras flow_from_directory.py ·
GitHub, date accessed: 22/12/2019, from
gist.github.com/RyanAkilos/3808c17f79e77c4117de35aa68447045

[16] Ruder S, “An overview of gradient descent optimization algorithms”, ArXiv
id: 1609.04747, (2016)

[17] Optimizers Explained - Adam, Momentum and Stochastic Gradient
Descent, date accessed: 22/12/2019, from
https://mlfromscratch.com/optimizers-explained/#/

[18] Chollet, F, “Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition”, CVPR 2017, ArXiV id: 1610.02357, Pp. 1800-1807 (2017)

[19] He, K; Zhang, X; Ren, S; “Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition”, ArXiV id:
1512.03385, Pp. 770-778, (2016).

[20] Tarrés, F.”Televisión digital” Sistemas audiovisuales I. Televisión analógica
y digital, Pp. 273-380, (2004)

[21] Korbel, F. “FFMPEG fundamentals” FFmpeg Basics, Pp. 15-29, (2012)

https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/
https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://gist.github.com/RyanAkilos/3808c17f79e77c4117de35aa68447045
https://mlfromscratch.com/optimizers-explained/#/

Annexes 43

Annexes

A.1 Hardware specs used in this project

Fig. A1.1 Used equipment datasheet

This is the computer used to train the networks, the most important features for
this project are these:

 CPU Core i5, 4C (2.30 – 4.00) GHz

 GPU NVIDIA GeForce GTX 1050 – 4GB

 RAM memory: 8GB

With this equipment, the average times to get the results are:

 Training/validation: 1 hour 2 minutes and 47 seconds

 Predictions: 1 minute and 58 seconds

44 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

 A2.1 Training and validation Channels

Table A2.1 Channels to build the training and validation set

RTVE C|NET TLC

A3 GESSELSCHAFT KGET 17

LA6 GBC CGTN

TV3 TVGI EC

CUATRO GOL TV TGR

T5 BEIN SPORT CORSE

8TV ERT COURT TV

BETEVE EFEKTO TV ED

BDN TEG ESAN EKF

TELEB INTERECONOMIA ITV

L’H TELEWEBION NEWS NOW

CyL ()24 RUV

CMM MGC ANN

ESASTURIASTV LA2 JNE

NAVARRA TV LVZ+ KAFTAN TV

RTVC dD ONE KC

ANDORRA TV TV MELILLA ABC NEWS

TAGESSCHAU EL TRECE LALIGA

I1 (ITALY) TG 4 LCI

I2(ITALY) NWZ NEWS TF1

I7(ITALY) OMNI NEWS TV HEMM

FRANCE24 PORTO CANAL MEXICO TV

TVGA ORBE TV CANAL 9

ABC 7 OTP NOVA TN

KGET 7 NV TV PERU

AFRICANEWS POLCU TV RPP

POWERLUNCH POLAND TV STV

TELETICA ECHO 24 9 NEWS

TN7 NTC TELEDOCE

SUNRISE RAINEWS 24 TMC

SUN 7 RMADRID TV TRT

RTP RSSING TVC

TVI24 1TV (RUSSIA) TV URUGUAY

BADIA STONIA TV VOA

CAPITAL SVT1 (SWEDEN) ETV

UNO TELESUR EXTREMADURA TV

7 (MIAMI) TERAZ TV YLE

EXTRATV TG 2000 BFM

9 (AUSTRALIA) TN 21 TG1

SGTN 1 (TUNEZ) YLE

SOGOU TVP BFM

C1 (PRAHA) TV UG EXTREMADURA TV

DMC PRESS TV VITEC

NILE TV I24 TV CEUTA

ETV A TV

Annexes 45

A2.2 Test Channels

Table A2.2 Channels to build the test set

TeleMadrid

IB3

CNN

BBC

RT

CBS

2DF

ARAGON TV

ARIRANG

BDMADRID

BLOOMBERG

CANAL SUR

CNBC

CUBAVISION

FOX NEWS

NEWSROOM

TVN

NHK

TV10

SKYNEWS

TV5 MONDE

TV RECORD
SD

46 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

A3. Example frames for each category

Fig A3.1 Graph_Intro frame

Fig A3.2 Intro_New frame

I
Fig A3.3 Rep_Interview frame

Annexes 47

Fig A3.4 Reporter frame

Fig A3.5 Rep_New frame

Fig A3.6 Video_New frame

48 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

A4. Results from all architectures

Fig A4.1 VGG16 results – SGD

Fig A4.2 VGG16 results – RMSprop

Annexes 49

Fig A4.3 VGG16 results – ADAM

Fig A4.4 VGG19 results – SGD

50 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Fig A4.5 VGG19 results – RMSprop

Fig A4.6 VGG19 results – ADAM

Annexes 51

Fig A4.7 Inception V3 results – SGD

Fig A4.8 Inception V3 results – RMSprop

52 Convolutional Neural Networks for classifying studio/non-studio frames in TV news programs

Fig A4.9 Inception V3 results – ADAM

Fig A4.10 Xception results – SGD

Annexes 53

Fig A4.11 Xception results – RMSprop

Fig A4.12 Xception results – ADAM

