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Abstract. The OpenMP specification lacks a shared memory concurrency mech-
anism that is composable. None of the OpenMP concurrency mechanisms, such
as OMP critical, locks, or atomics support composition. In this paper, we moti-
vate the need for transactional memory (TM) in OpenMP chiefly to support com-
position of realistic programs. However, we also consider whether TM is easier
to program than locks; the use-case for TM; and whether a software-only TM
can outperform traditional locking through a survey of recent publications. This
paper advances upon previous proposals of OpenMP TM by introducing a new
construct specifically to handle irrevocable actions, which is also composable. It
also proposes a pure atomic transaction construct as well as the concept of trans-
action safety. Further, we examine how our proposed construct integrates with
current OpenMP constructs.

1 Introduction

Locks and atomics have serious weaknesses when constructing larger programs out of
smaller pieces; they are often described as not being composable. Because locks and
atomics are so difficult to compose, they do not support modular programming well
[1]. As multithreaded programs increase in size and complexity, more advanced ab-
stractions will be needed to mitigate the programming complexity that naturally arises
from frequent use of synchronization in large-scale software systems. We present trans-
actional memory (TM) for OpenMP and show that TM provides stricter correctness
guarantees than other OpenMP concurrency techniques and may be easier to use.

2 Limitations of Current Concurrency Techniques

OpenMP V4.0, the latest release [2], currently includes four synchronization mecha-
nisms: locks, barriers, atomics and critical sections [3]. These mechanisms synchronize
objects in shared memory but are unnecessarily limit performance or can be challenging
to use properly. TM provides greater flexibility and ease of use and in the case of tem-
plate programming, or callback-style programming, TM offers correctness that none of
the other constructs can offer.

Mutual exclusion as implemented as critical sections is perhaps the most common
form of concurrency control for shared memory parallel programming. In general, mu-
tual exclusion ensures program correctness by limiting access to shared memory vari-
ables to one thread at a time. Mutual exclusion achieves this restriction by using mutu-
ally exclusive locks, also known as OpenMP locks or critical sections. For a thread to
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access a shared memory variable, it must first acquire the lock that protects the shared
memory variable. When a thread has completed its access to the shared memory vari-
able, it releases the lock. On the surface, the concept of mutual exclusion is straightfor-
ward and easy to apply. However, the majority of the parallel programming community
agrees that mutual exclusion quickly becomes unwieldy if used in large-scale software.
Furthermore, many experts believe it is notoriously challenging to write both correct
and efficient large-scale multithreaded software using mutual exclusion [4].

A less frequent form of synchronizing access to shared memory variables is to use
non-blocking atomic primitives which is how most OpenMP barriers or atomics are im-
plemented, such as compare-and-swap (CAS) or load-linked store-conditional (LL/SC),
or more recently, C++ and OpenMP atomic types to write non-blocking algorithms. Al-
though these approaches can often yield substantial concurrency, their non-trivial use
is often limited to only expert parallel programmers as correctly building even simple
data structures, such as a queue, using these kinds of synchronization primitives can be
challenging [4].

Another possible speculative technique, known as lock elision, has been proposed
where locks are elided, that is, not acquired, in cases where conflicts in the data they
protect are absent. Lock elision may reduce unnecessary synchronization, thereby in-
creasing concurrent throughput. However, while lock elision can result in notable per-
formance gains over lock-based systems that do not use lock elision, it still requires that
programmers write correct and complete locking schemes for their multithreaded soft-
ware. Therefore, lock elision does not significantly reduce, nor is it intended to reduce,
the challenge of writing multithreaded software.

3 Motivation for Transactional Memory in OpenMP

Synchronizations supported by OpenMP are OpenMP critical sections, barrier, mutexes
or locks, and atomics as described in our previous papers [5], [6]. Locks and atomics
are basic abstractions used to access and mutate shared state, as defined by the Three
Pillars of Concurrency [!]. From this view, these abstractions aim to avoid data races
and synchronize objects in shared memory. Unfortunately, locks and atomics are noto-
riously difficult to use [7]. Simple coarse-grain locking strategies, where all program
data are protected using one or few locks, lead to unnecessary serialization of program
execution and loss of performance. Sophisticated fine-grain locking or use of atomics
result in complex association between data and synchronization that protects access
to that data. A failure to correctly maintain these associations throughout the program
leads to concurrency errors, such as data races and deadlocks. Moreover, synchroniza-
tion strategies designed to work well on one platform often perform poorly on a plat-
form with a different number of hardware threads or a different cost for synchronization
primitives.

When a thread calls two functions in a sequence, without protecting such calls with
some form of synchronization, other threads may be able to interleave instructions be-
tween the two calls. When this occurs, other threads can perceive each call as a distinct
action, even if each function appears to execute atomically on its own. To prevent this
behavior, one usually wraps the entire sequence with a lock. As a result, when we com-



bine function calls into a larger program, we often end up with nested lock acquisitions:
a function acquires a lock while one of its callers holds another one. Unfortunately,
when multiple threads acquire more than one lock at a time, the program may dead-
lock if the threads do not follow a consistent locking order across all threads. The usual
advice is to acquire locks only in a predetermined order, but there appears to be no
practical way to enforce such an ordering in a large software system. Edward Lee [8]
presents a simple practical example of this kind of problem (the observer pattern) in
a Java context, but it applies equally well to C++. Implementing this simple pattern
with locks turns out to be nearly impossible. In spite of Lees technical report title (i.e.,
The Problem With Threads), the problem he describes actually lies with locks rather
than threads, as a concurrent transaction-based solution is not significantly harder than
a sequential one.

Functions that use atomics to perform shared memory operations are also not com-
posable, but in a different sense: atomics provide no easy mechanism for combining
the small atomic actions into larger atomic actions. The atomic operations are not in-
tended to compose into bigger atomic operations. Parallel programming inherently en-
tails increased complexity in developing programs, in reasoning about programs, and
in reproducing bugs. By using a transaction—rather than one or more locks—to syn-
chronize a section of code, the programmer is not required to specify which metadata
(i.e., which named variable) is used to synchronize data. In addition to simplifying the
resulting software, this approach alleviates the need of a fixed order of execution, which
is required by locks to avoid deadlock. This results in simpler designs that are easier to
write, reason about, and maintain. Furthermore, it enables specialized synchronization
support for different platforms, which can be improved over time, without requiring
changes to the application code.

To address these concerns, we propose that OpenMP be extended to include trans-
actional language constructs, or for short, transactional memory (TM). Our proposal
and its integration into OpenMP are described in detail in Section 4 below. Some of the
key benefits of TM, compared to locks, can be found in our paper that convinced the
C++ Standadard committee [9] to start a New Feature Proposal.

Extending OpenMP to include TM will improve the modularity of concurrent li-
braries, make OpenMP easier to teach and learn, and supply a programming model for
architectures based on IBM’s current Blue Gene/Q and Power8, and Intel’s Haswell
RTM. This is especially important as OpenMP moves further into commercial applica-
tions as well as remaining relevant in scientific workloads.

3.1 Survey of Prior Work supporting TM use cases, usability and performance
in real world applications

A number of recent publications report experiences gathered in the effort of paralleliz-
ing realistic applications using transactional memory, usually driving conclusions about
the programmability/performance trade-off. Usually they are based on the use of soft-
ware implementations of transactional memory, with varying results in terms of per-
formance. Examples of such efforts include Delaunay triangulation [10], minimum
spanning forest of sparse graphs [I!] Lee routing algorithm [12], multiplayer game
servers such as QuakeTM [13] and Atomic Quake [!14] (based on a lock-based version



of Quake [15]) and SynQuake [!16]; or benchmarks (STMBench7 [17], STAMP [18]
and RMS-TM [19], all of them composed of a number of applications representative
of a variety of application domains.

Several of these studies show an initial answer to the question of performance. Is
Software Transactional Memory (STM) faster then locks in a real world application,
and not just toy laboratory benchmarks? SynQuake [16] used a form of Quake, a game
server reimplemented using pure Software TM (STM) from locks to examine the per-
formance and scalability difference of TM without hardware support. Parallelization
of multi-player game code for the purposes of scaling the game server is inherently
difficult. Game code is typically complex, and can include use of spatial data struc-
tures for collision detection, as well as other dynamic artifacts that require conservative
synchronization. The nature of the code may thus induce substantial contention due to
false sharing, as well as true sharing between threads, in a parallel lock-based game
implementation [!5]. Each Quake player action usually includes dynamically evolving
sub-actions; a person may move while shifting items in their backpack, throwing an ob-
ject at a distance, grabbing a nearby object, and/or shooting, which together constitute
a single player action. Since the terrain within the potentially affected area may contain
mutable objects, all sub-actions need to be processed together as an atomic, consistent
unit for the purposes of collision detection with other player actions.

Thus, conservatively acquiring all locks at the beginning of the the action induces
unnecessary conflicts, by locking more objects than necessary, and unnecessarily long
conflict duration by holding these locks for longer periods than needed. Fine-grain
locking of the action sequence is not even possible as it leads to no atomicity of the
action, and leads to problems with deadlocks and inconsistent views. In contrast, using
Transactional Memory support by implementing player actions (i.e split actions into
subactions), and track accesses to shared and private data using conflict detection and
resolution, the atomicity and consistency of the whole player action is automatically
provided by the underlying transactional support. They showed that STM support re-
sults in reduced false sharing overall, in terms of both number of conflicts and duration
of conflicts. The transaction simply commits if there is no conflict with another player,
or rolls back if conflict occurs. The result was that STM was about 33 percent faster
than locks for a 4-8 thread medium contention case and STM scales better in all cases
of low, medium and high contention.

On usability, other studies have been conducted trying to quantify the claim that
concurrent programming with transactional memory is easier than using other alterna-
tives such as locks by the Rossbach and Pankratius studies [20], [21]. In Rossbach
[20] where they asked students to program in three different ways: coarse grained-
locks, fine-grained locks and TM. There was firm evidence that fine-grained locking
tasks were more likely to contain errors than coarse-grained or TM. The most com-
mon errors were acquiring a lock and never releasing them. Students found that TM
was still harder to program (because of a lack of TM documentation at that time) than
coarse-grained locks but easier than fine-grained locks. In Pankratius [21], they created
separate teams working on locks and on TM to work on a search application. The aver-
age Lines of Code (LOC) were the same across all teams, but the TM teams had fewer
LOC with parallel constructs than the lock teams. They found that TM allowed teams



to think more sequentially and spent less time as the locks teams on writing parallel
code before moving on to performance testing. Yet one of the TM team had the first
working parallel version, even though they subjectively believed they advanced slowly.
By project deadline, all the lock teams while completing the functionality, had perfor-
mance problems with one lock team not finishing. One of the TM teams was deemd to
have the best performance, while another TM team’s code did not work at all despite
a member on that team having commercial programming experience. TM still requires
good programmer and is not a panacea to parallel programming difficulties. But it does
hold promise as being easier to use than fine-grained locks in very large and complex
parallel programming tasks.

Two proposals were presented almost at the same time [22], [6] with the aim of
adding transactional memory support within the OpenMP programming interface. The
topic has reborn with a more recent proposal [3], presenting results using hardware
transactional memory, which can significantly reduce the complexity of shared mem-
ory programming while retaining efficiency. This work extended a previous work [5]
that already demonstrated that even with the relatively high overheads of software im-
plementations, transactions could outperform OpenMP critical sections.

While examining use cases, Gottschlich and Boehm [23] asserted that TM is actu-
ally necessary for functional correctness for generic programming in C++ because the
layering and composition of library software means that there is no way for the client
of a template which also use locks to know what locks are being held by the caller.
They debunked the popular belief that enforced locking ordering can avoid deadlock
and show that this is essentially impossible with C++ template programming. This is a
form of callback-style programming that exists in C and Fortran and takes the question
of whether TM is useful beyond merely performance and scalability, but firmly moves
it to that it is needed for correctness of today’s programming paradigms.

The paper then takes this one step further by showing what makes generic pro-
gramming different from prior examples is that many or most of the function calls and
operator invocations depend on type parameters, and are thus effectively callbacks. That
might include the C++ assignments operator, and the constructor. It also includes the
syntactically invisible destructor, and even possibly the syntactically invisible construc-
tion and destruction of expression temporaries. These constructors and destructors are
likely to acquire locks if, for example, the constructor takes possession of resources
from a shared free list that are returned by the destructor. In order to enforce a lock
ordering, the author of any generic function acquiring locks (or that could possibly be
called while holding a lock) would have to reason about the locks that could potentially
be acquired by any of these operators, which appears thoroughly intractable.

Their conclusion is either to forbid locks in templates and callbacks, or allow TM
to re-enable generic or callback style programming.

In 2008, IBM, Intel and Sun (later acquired by Oracle) started joint teleconference
discussions every other week to design such a common language [24]. HP, Redhat
and other members from academia later joined the initial group. In 2009, version 1.0
of this language was released and was followed by version 1.1 in 2011 which added
support for exceptions for C++. The reason C++ was chosen as the language to bolt on
TM was because it has the most complex language features, in terms of polymorphism,



exceptions, and memory model. In 2012, this proposal was brought to C++ Standard
which after examining many of the use cases, usability and performance claims, felt
it was justified to prepare for adoption of this high-level language, by starting work
immediately. C++ Standard formed Study Group 5 (SGS5) [25] lead by one of the co-
authors to develop a proposal. In 2014, after two more years of collaboration to better
fit TM into the C++ language with contribution from the creator of C++, it is nearing
completion with Standard wording not far behind.

This proposal takes from the SG5 proposal [26] which is only for C++, merges with
the BSC OpenMP proposal [6], while using the experience from IBM’s BG/Q HTM
design [27] and adapts it to existing OpenMP Language to offer an initial design for
TM in OpenMP for the future that works on C, C++ , and Fortran. It is appropriate as
the basis for an OpenMP Working Group (WG), since all the SG5 members are also
OpenMP members. This WG would further develop this proposal with the goal of an
OpenMP Technical Report to gain more implementation experience and user feedback.

4 A proposal for an OpenMP Transactional Memory Technical
Report

We introduce two kinds of blocks to exploit transactional memory: synchronized blocks
in Section 4.2 and atomic blocks called OMP transaction (as a keyword placeholder) in
Section 4.1. Synchronized blocks behave as if all synchronized blocks were protected
by a single global recursive mutex. Atomic blocks (also called atomic transactions, or
just transactions) appear to execute atomically and not concurrently with any synchro-
nized block (unless the atomic block is executed within the synchronized block).

Some operations are prohibited within atomic blocks because it may be impossible,
difficult, or expensive to support executing them in atomic blocks; such operations are
called transaction-unsafe. An atomic block also specifies how to handle an exception
thrown but not caught within the atomic block.

Some noteworthy points about synchronized and atomic blocks:

Data races Operations executed within synchronized or atomic blocks do not form
data races with each other. However, they may form data races with operations not
executed within any synchronized or atomic block. As usual, programs with data
races have undefined semantics.

Exceptions When an exception is thrown but not caught within an atomic block, the
effects of operations executed within the block may take effect or be discarded, or
terminate may be called. This behavior is specified by an additional keyword in the
atomic block statement, as described in Section 4.1. An atomic block whose effects
are discarded is said to be canceled. An atomic block that completes without its
effects being discarded, and without calling terminate, is said to be committed.

Transaction-safety As mentioned above, transaction-unsafe operations are prohibited
within an atomic block. As a practical matter, some code is considered transaction-
unsafe because we do not know effective ways to execute it atomically without
special hardware support. This restriction applies not only to code in the body of
an atomic block, but also to code in the body of functions called (directly or indi-
rectly) within the atomic block. To support static checking of this restriction, we



introduce pragmas to declare that a function or function pointer is transaction-safe,
and augment the type of a function or function pointer to specify whether it is
transaction-safe. We also introduce a pragma to explicitly declare that a function is
not transaction-safe.

To reduce the burden of declaring functions transaction-safe, a function is assumed
to be transaction-safe if its definition does not contain any transaction-unsafe code
and it is not explicitly declared transaction-unsafe. Furthermore, unless declared
otherwise, a non-virtual function whose definition is unavailable is assumed to
be transaction-safe. (This assumption does not apply to virtual functions because
the callee is not generally known statically to the caller.) These assumptions are
checked at link time.

4.1 Atomic Blocks

This is a pure form of a transaction and is based on combining the C++ SG5 [28]
proposal and BSC’s OpenMP TM extension proposal [6].
An atomic block can be written in one of the following forms:

#pragma omp transaction [clause[[,] clause]...] { body }

The clause following transaction can specify the atomic block’s exception specifier. It
specifies the behavior when an exception escapes the transaction or an OpenMP cancel
atomic occurs within the TM region:

— noexcept: This is undefined behavior and is not allowed; no side effects of the
transaction can be observed.

— commitonesc: The transaction is committed and the exception is thrown.

— cancelonesc: If the exception is transaction-safe (defined below), the transaction is
canceled and the exception is thrown. Otherwise, it is undefined behavior. In either
case, no side effects of the transaction can be observed.

Code within the body of a transaction must be transaction-safe (i.e. it must not be
transaction-unsafe). Code is transaction-unsafe if:

— it contains an initialization of, assignment to, or a read from a volatile object;

— it1is a transaction-unsafe asm declaration (the definition of a transaction-unsafe asm
declaration is implementation-defined); or

— it contains a call to a transaction-unsafe function, or through a function pointer that
is not transaction-safe

While we have pragma syntax to allow declaring and defining functions for transaction
safety, we will not show it here due to space constraints.

Synchronization via locks and atomic objects is not allowed within atomic blocks
(operations on these objects are calls to transaction-unsafe functions in the current pro-
posal, but may be relaxed in future revision of the TR).

Jumping into the body of an atomic block using goto or switch is prohibited.
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The body of an atomic block appears to take effect atomically: no other thread sees
any intermediate state of an atomic block, nor does the thread executing an atomic block
see the effects of any operation of other threads interleaved between the steps within the
atomic block.

The evaluation of any atomic block synchronizes with every evaluation of any
atomic or synchronized block by another thread, so that the evaluations of non-nested
atomic and synchronized blocks across all threads are totally ordered by the synchronizes-
with relation. Thus, a memory access within an atomic block does not race with any
other memory access in an atomic or synchronized block. However, a memory ac-
cess within an atomic block may race with conflicting memory accesses not within
any atomic or synchronized block. The exact rules for defining data races are defined
by the memory model [26].

As usual, programs with data races have undefined semantics.

Although it has no observable effects, a canceled atomic block may still participate
in data races.

This proposal provides “closed nesting” semantics for nested atomic blocks.

Use of atomic blocks Atomic blocks are intended in part to replace many uses of
mutexes for synchronizing memory access, simplifying the code and avoiding many
problems introduced by mutexes (e.g., deadlock). We expect that some implementa-
tions of atomic blocks will exploit hardware and software transactional memory mech-
anisms to improve performance relative to mutex-based synchronization. Nonetheless,
programmers should still endeavor to reduce the size of atomic blocks and the con-
flicts among atomic blocks and with synchronized blocks: poor performance is likely if
atomic blocks are too large or concurrent conflicting executions of atomic and synchro-
nized blocks are common. Example

The following code illustrates with a bank account example the atomicity of atomic.
blocks.

class Account {
int bal;
public:
Account(int initbal) { bal = initbal; };

void deposit(int x) {
#pragma omp transaction noexcept {
this.bal += x;

}
}

void withdraw (int x) {
deposit(—x);

int balance() { return bal; }

void transfer (Account al, a2; int x;) {

20 #pragma omp transaction noexcept {

21
22
23

2}

25

al . withdraw (x);
a2.deposit(x);

}

26 Account al (0), a2(100);
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28 Thread 1 Thread 2
20— e
30

3t transfer(al, a2, 50); #pragma omp transaction noexcept {
32 rl = al.balance() + a2.balance();
33

34 assert(rl == 100);

The assert cannot fire, because the transfer happens atomically and the two calls to
balance happen atomically.

Example demonstrating need for transaction_cancelonesc Here, we extend the above
example slightly so that transactions are logged by a function that may throw an excep-
tion, for example due to allocation failure.

1 void deposit(int x) {

2 #pragma omp transaction cancelonesc {
log-deposit(x); // might throw
this .bal += x;

}

8 void withdraw (int x) {
9 deposit(—x);

3
4
5
6
P

10}

11

12 void transfer(account al, a2; int x;) {
13 try {

14 #pragma omp transaction cancelonesc {
15 al.withdraw (x);

16 a2.deposit(x);

17 } catch (...) {

18 printf ("Transfer_failed");

19

20

21 }

If the call from t ransfer () to a2.deposit () throws an exception, we should not
simply commit the transaction, because the withdrawal has happened but the deposit has
not. Canceling the transaction provides an easy way to recover to a good state, without
violating the invariant the transaction in transfer () is intended to preserve. In this
simple example, an error message is printed indicating that the transfer did not happen.

Default behavior The default for atomic transactions without any of the three clauses
(noexcept, commitonesc, cancelonesc) is as if the user wrote cancelonesc. This offers
a pure transaction that rolls back. The other two optional clauses (noexcept and com-
mitonesc) do not rollback and therefore offer no invariance protection. But they do still
offer advanced synchronization ability. However, they are still limited in that they can-
not have any transaction unsafe actions. We show in the next section how to handle
transactions with transaction unsafe actions.

4.2 Synchronized Blocks

The synchronized blocks variant is a simple replacement for locks that is composable
and offers only a synchronization ability with no invariance protection. Furthermore,



synchronized blocks can become irrevocable in the presence of unsafe actions and that
distinguishes it from an atomic transaction.
A synchronized block has the following form:

#pragam omp synchronized { body }

The evaluation of any synchronized block synchronizes with every evaluation of any
synchronized block (whether it is an evaluation of the same block or a different one)
by another thread, so that the evaluations of non-nested synchronized blocks across all
threads are totally ordered by the synchronizes-with relation as defined by C++ and
Java memory model. That is, the semantics of a synchronized block is equivalent to
having a single global recursive mutex that is acquired before executing the body and
released after the body is executed (unless the synchronized block is nested within
another synchronized block). Thus, an operation within a synchronized block never
forms a data race with any other operation within a synchronized block (the same block
or a different one).

Entering and exiting a nested synchronized block (i.e., a synchronized block within
another synchronized block) has no effect.

Jumping into the body of a synchronized block using goto or switch is prohibited.

Use of synchronized blocks Synchronized blocks are intended in part to address some
of the difficulties with using mutexes for synchronizing memory access by raising the
level of abstraction and providing greater implementation flexibility [23] With synchro-
nized blocks, a programmer need not associate locks with memory locations, nor obey
a locking discipline to avoid deadlock: Deadlock cannot occur if synchronized blocks
are the only synchronization mechanism used in a program.

Although synchronized blocks can be implemented using a single global mutex, we
expect that some implementations of synchronized blocks will exploit recent hardware
and software mechanisms for transactional memory to improve performance relative
to mutex-based synchronization. For example, threads may use speculation and con-
flict detection to evaluate synchronized blocks concurrently, discarding speculative out-
comes if conflict is detected. Programmers should still endeavor to reduce the size of
synchronized blocks and the conflicts between synchronized blocks: poor performance
is likely if synchronized blocks are too large or concurrent conflicting evaluations of
synchronized blocks are common. In addition, certain operations, such as I/O, cannot be
executed speculatively, so their use within synchronized blocks may hurt performance.
Example

The following example illustrates synchronized blocks and non-races between ac-
cesses within transactions (including synchronized blocks). Suppose we add the follow-
ing method to the Account class shown in Section 4.1.

1void print_balances_and_total (account al, a2) {

2>  #pragma omp synchronized {

3 printf ("First _account_balance:_%1d", al.balance ());
4 printf ("Second_account, balance: _%1d", a2.balance ());
5 printf("Total:_%1d", al.balance() + a2.balance());
6}

7}




Observations:

— This program is data-race-free: all concurrent accesses are within transactions.

— The synchronized block cannot be replaced with an atomic block, as I/O is not
transaction-safe (due to calls to print £, which is a transaction-unsafe function).

— Balances will be consistent and total will equal sum of balances displayed.

— If we eliminate the synchronized block from this example (so the calls to balance ()
in
print balances_and_total () are notin transactions), then this program is racy.

4.3 Nesting of OpenMP parallel regions and Transaction Blocks

In the common case of a TM region nested inside an OpenMP parallel region, the outer
OpenMP region is run in parallel and the TM region is run speculatively. In the opposite
case where an OpenMP parallel region is nested inside a TM region, there are several
choices which needs to be debated within the community.

Currently on IBM’s Blue Gene/Q system [27], an OpenMP region running in par-
allel inside the speculative TM region causes the TM region to be stopped. The stopped
transaction is then rolled back and run nonspeculatively. The inner OpenMP region
is run nonspeculatively by multiple threads. This is considered to be quite restrictive
and heavy weight. An alternative is where the transaction could be executed as if the
OpenMP portion was serialized. This could have complication with hardware and if the
user create a race condition inside the transaction, it would be caveat emptor.

Another choice is that the parallel region inside the TM region can be executed
with one thread. This solution will often be better than restarting the transaction and
running it non-speculatively. There will be complication if the OpenMP region do some
undesirable action such as checking for the number of threads being more than one. But
these are details that can be worked out in committee.

4.4 Interaction between OpenMP worksharing/tasking constructs and
Transaction Blocks

We also intend to introduce interaction of TM with existing OpenMP constructs. These
are now called composite constructs as they enable additional semantics. Starting with
the workshare constructs, we propose the following where each iteration of the loop
constitutes an atomic transaction with the usual clauses available.

| #pragma omp for transaction
2 for ( ; ; )
s{ ...}

Similar for an OpenMP section construct where each section is an atomic transaction.

| #pragma omp sections transaction
2 #pragma omp section

4 #pragma omp section

s{ ...}
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We also plan to support TM with OpenMP tasks. Tasks are defined as deferrable
units of work that can be executed by any thread in the thread team associated to the
active parallel region. Task can create new tasks and can also be nested inside work-
sharing constructs. In this scenario, data access ordering and synchronization based on
locks will be even more difficult to express, so transactions appear as an easy way to ex-
press intent and leave the mechanisms to the TM implementation. For tasks we propose
tagging a task as a transaction, using the same clause specified above.

#pragma omp task transaction

We will also need consideration of the interaction with cancellation constructs.
These are details to be explored in future proposals and in committee.

4.5 Memory Model and Race Free Semantics

Transactions impose ordering constraints on the execution of the program. In this re-
gard, they act as synchronization operations similar to the synchronization mechanisms
defined in the C++11 standard (i.e., locks and C++11 atomic variables). The C++11
standard defines the rules that determine what values can be seen by the reads in a
multi-threaded program. Transactions affect these rules by introducing additional or-
dering constraints between operations of different threads.

An execution of a program consists of the execution of all of its threads. The opera-
tions of each thread are ordered by the sequenced before relationship that is consistent
with each threads single threaded semantics. The C++11 library defines a number of op-
erations that are specifically identified as synchronization operations. Synchronization
operations include operations on locks and certain atomic operations (that is, opera-
tions on C++11 atomic variables). In addition, there are memory_order_relaxed atomic
operations that are not synchronization operations. Certain synchronization operations
synchronize with other synchronization operations performed by another thread. (For
example, a lock release synchronizes with the next lock acquire on the same lock.)

The sequenced before and synchronizes with relationships contribute to the happens
before

1. If an operation A is sequenced before an operation B then A happens before B.

2. If an operation A synchronizes with an operation B then A happens before B.

3. If there exists an operation B such that an operation A happens before B and B
happens before

Two operations conflict if one of them modifies a memory location and the other one
accesses or modifies the same memory location. The execution of a program contains
a data race if it contains two conflicting operations in different threads, at least one of
which is not an atomic operation, and neither happens before the other. Any such data
race results in undefined behavior. A program is race-free if none of its executions con-
tain a data race. In a race-free program each read from a non-atomic memory location
sees the value written by the last write ordered before it by the happens-before relation-
ship. It follows that a race-free program that uses no atomic operations with memory



ordering other than the default memory_order_seq_cst behaves according to one of its
sequentially consistent executions.

Outermost transactions (that is, transactions that are not dynamically nested within
other transactions) appear to execute sequentially in some total global order that con-
tributes to the synchronizes with relationship. Conceptually, every outermost transac-
tion is associated with StartTransaction and EndTransaction operations, which mark the
beginning and end of the transaction. A StartTransaction operation is sequenced before
all other operations of its transaction. All operations of a transaction are sequenced be-
fore its EndTransaction operation. Given a transaction T, any operation that is not part
of T and is sequenced before some operation of T is sequenced before Ts StartTransac-
tion operation. Given a transaction T, Ts EndTransaction operation is sequenced before
any operation A that is not part of T and has an

There exists a total order over all StartTransaction and EndTransaction operations
called the executed by different threads do not interleave. In other words, transactional
synchronization order is such that a StartTransaction operation executed by one thread
does not occur in between a matching pair of StartTransaction and EndTransaction
operations executed by another thread.

The transactional synchronization order contributes to the synchronizes with rela-
tionship defined in the C++11 standard. In particular, each EndTransaction operation
synchronizes with the next StartTransaction operation in the transactional synchroniza-
tion order executed by a different thread.

The definition of the synchronizes with relation affects all other parts of the mem-
ory model, including the definition of the happens before relationship, visibility rules
that specify what values can be seen by the reads, and the definition of data race free-
dom. Consequently, including transactions in the synchronizes with relation is the only
change to the memory model that is necessary to account for transaction statements.
With this extension, the C++11 memory model fully describes the behavior of programs
with transaction statements.

The C++11 memory model has consequences for compiler optimizations.Sequentially
valid source-to-source compiler transformations that transform only code between syn-
chronization operations (which include StartTransaction and EndTransaction opera-
tions), and which do not introduce data races, remain valid. Source-to-source compiler
transformations that introduce data races (e.g., hoisting load operations outside of a
transaction) may be invalid depending on a particular implementation of this specifica-
tion.

5 Future OpenMP Recommendation

We propose an OpenMP Transactional Memory Technical Report (TR), to enable early
implementation experience and obtain feedbacks from the community. Transactional
Memory forms a key cornerstone of tools for synchronization that enables compos-
ability whereas critical sections, mutexes, locks, atomics, even lock elision cannot. It
enables functional correctness in C and Fortran call back programming style and C++
generic programming. Recent surveys have some data point showing it is easier to use
than fine-grained locks, and some real-world tests have shown even an STM imple-



mentation can scale and perform better than fine-grained locks. As such, it enables and
simplifies support for large scale programs that contain complex locking semantics.

As part of the OpenMP Technical Report process which was introduced in 2012 to
give OpenMP more agility to publish early directions, it is non-normative (i.e. not part
of the ratified OpenMP specification). If it is deemed that it is useful, and sufficient user
feedback supports its ratification, then that will be determined in future.

Furthermore, this proposal is agnostic to hardware. OpenMP cannot legislate re-
quirement for TM hardware. This proposal can be entirely implemented in software,
hardware, some hybrid or adaptive form of TM.

Our next goal is to provide an implementation using BSC’s Mercurium OpenMP
compiler [6] or GNU compiler to demonstrate the concept and confirm the performance
capability and suitability for generic programming and callback-style programming.
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