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Abstract 

In recent years, the use of self-compacting concrete (SCC) has been increasing. Although 

methods for designing the mixture proportions usually derive from experience with 

conventional concretes, some specific procedures still are not universally accepted. The 

design and characterization of SCC influences not only the mix components (paste volume 

and nature, binder amount and type, granular skeleton, etc.) but also the testing methods 

used to validate the self-compactability (usually in terms of fluidity, viscosity and resistance 

to segregation). This paper studies the influence on SCC mechanical properties based on 

the consideration of two types of granular skeleton, discontinuous and continuous, for 

different strength levels (35 and 60 MPa). For the both strength levels studied, the mix with 

continuous granular skeleton exhibited slightly higher segregation resistance and 

mechanical properties than did mixes with discontinuous granular skeleton. 

 

 

Keywords: self-compacting concrete, granular skeleton distribution, workability, 

compressive strength, modulus of elasticity, tensile strength, bond strength 

 

Cover Letter



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Experimental study about the effects of granular skeleton distribution on the 

mechanical properties of self-compacting concrete (SCC) 

Ana C.P. Santos
a
, Jose A. Ortiz-Lozano

b*
, Noe Villegas

a
, Antonio Aguado

c
 

 

a
 Institute of Technology, Territory and Infrastructure, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, 

Paraná, Brazil 

b
 Department of Construction and Structures, Autonomous University of Aguascalientes, Aguascalientes, Mexico 

c
 Department of Construction Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain 

 
 
* Corresponding author: 
Prof. Dr. Jose A. Ortiz-Lozano 
Department of Construction and Structures 
Autonomous University of Aguascalientes  
Av. Universidad, 940 (module 108)  
Ciudad Universitaria, C.P. 20131 
Aguascalientes, Mexico  
Tel. + (52) 449 910-84-56, + (52) 449 111-67-77, Fax. + (52) 449 910-84-51 
e-mail: jose.ortiz.lozano@gmail.com 

 

Abstract 

In recent years, the use of self-compacting concrete (SCC) has been increasing. Although 
methods for designing the mixture proportions usually derive from experience with 
conventional concretes, some specific procedures still are not universally accepted. The 
design and characterization of SCC influences not only the mix components (paste volume 
and nature, binder amount and type, granular skeleton, etc.) but also the testing methods 
used to validate the self-compactability (usually in terms of fluidity, viscosity and resistance 
to segregation). This paper studies the influence on SCC mechanical properties based on 
the consideration of two types of granular skeleton, discontinuous and continuous, for 
different strength levels (35 and 60 MPa). For the both strength levels studied, the mix with 
continuous granular skeleton exhibited slightly higher segregation resistance and 
mechanical properties than did mixes with discontinuous granular skeleton. 
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1. Introduction 

Materials used in self-compacting concrete (SCC) are the same as those used in ordinary 

concrete. In this type of concrete, both regularity and control have special significance 

because the properties of SCC are more sensitive to small variations compared with 

conventional concrete [1].  
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Some differences come from the procedures used for proportioning SCC, which initially 

were based on techniques derived from pumpable concretes and concretes with high 

workability, but more recently SCC has acquired specific features [2–5]. This topic was 

covered scientifically in several PhD Dissertations around the world in the past decade 

including [6–12]. 

Apart from other factors related to constituents of SCC (high fine particles content, source 

of aggregates, among others), the structure of granular skeleton of concrete is a main 

parameter assuring an adequate flow of fresh concrete without compaction. 

Even though there are several works that address SCC proportioning, few of them link mix 

proportioning and the casting system; this approach is associated with shotcrete mixture 

design [13], for example. However, in this case, there is a lack of a general methodology 

for mix proportioning; therefore, it is normal to design concrete by means of granulometric 

curves [14]. 

A reference of interest in this area is the work of [15], which discusses the casting of 

panels (5 m high, 1 m long and 0.20-m thickness) with the same mix proportion as SCC 

based on the Japanese Method [2], and using different casting systems (poured by bucket 

and by pumping). The authors demonstrate the existence of a greater segregation for 

concrete by pouring compared with pumping by bucket. Consequently, a more pronounced 

loss of strength between different heights of panel executed by pumping was also evident. 

This is justified mainly due to the energy supplied to the concrete mass during pumping. 

In the mix proportioning of conventional concrete, criteria usually used for the design of 

granular skeleton is for maximum compactness, with some independence regarding 

casting system; this is justified by the fact that compaction will rearrange concrete granular 

skeleton structure to maximum compactness. This does not happen in the case of SCC, 

where there is not a forced reorganization of granular skeleton [16]. 

Different approaches lead to two types of granular skeleton. First, there are those with a 

continuous distribution (Figure 1a), a high content of fine particles, a medium contribution 

of intermediate aggregate and lower proportion of coarse aggregate. Second, there are 

those with a discontinuous distribution (Figure 1b), a high content of fine aggregates, a 

small contribution of intermediate aggregate and medium proportion of coarse aggregate. 

Actually, the transportation and casting method of SCC influences the proportions of 

aggregates; if done by pumping, it is necessary to increase the amount of sand to facilitate 

transportation, reducing for this reason the percentage of coarse aggregate (discontinuous 

distribution). 

Figure 1. Representation of the two types of granular skeleton. 
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However, it can be assumed that self-compactability is obtained by means of a slip of the 

coarse aggregate over intermediate aggregates and then again over the finest aggregates, 

and finally on cement; the admixture and the water produce the lubrication of these 

interfaces. This leads to a continuous concrete proportioning such that the percentage of 

aggregate decreases as its particle size increases, as shown in Figure 1 [17]. 

Such approaches become more relevant for granular skeleton consisting of three fractions 

(sand, fine gravel, gravel), compared to being only configured for two fractions (sand, fine 

gravel). Regarding the fine material, the binders (cement, microsilica and fly ash), filler and 

the proportion supplied by the sand, which passes through a 0.063 mm sieve are 

considered. Fine particles have an important role in the workability of the mixture, and the 

proposed range by [18] is very broad. In general, if concrete contains large quantities of 

fine particles, its fluidity decreases and, on the other hand, if concrete contains a small 

amount of fine particles, there is enough mortar to properly cover the aggregate. 

Thus, the quantity of fine particles affects fluidity, cohesion and water retention, which may 

lead to segregation and bleeding of concrete. For this reason, it is very important to 

determine properly the amount of fines to be used for manufacturing HAC. An initial value, 

which is a result of various studies, can be approximately 550 kg/m³ ± 5% [17], depending 

on the type of fine aggregates and the required mechanical strength. Large quantities of 

fine particles enhance self-compactability properties to a threshold quantity, which 

depends on the properties of fine aggregates used. Furthermore, self-compactability 

decreases, producing bleeding, segregation, and other results outside established ranges. 

The main property of fine particles that affects the behavior of SCC is the specific surface 

[19]. These authors have correlated the amount of fine particles with specific surface in 

optimum concretes, obtaining values of the order of 550 kg/m³, depending on the specific 

surface (a value of approximately 2000 cm²/g); to reduce this amount, it is necessary to 

use a material with a higher modulus of fineness. 

From analysis of the state of the art, we conclude that, despite the large amount of SCC 

research performed in recent years, there are areas with numerous gaps and inaccuracies 

in which progress is possible. For example, many existing mix design methods do not 

consider casting system. Likewise, we have observed an imbalance between studies of 

the constituent materials of SCC and its structural performance. 

The main objective of this paper is to analyze the influence of casting method on the 

properties of self-compacting concrete in both fresh and hardened states. This is done in 

an indirect way, based on consideration of two types of granular skeleton structure 

(continuous and discontinuous), which are primarily associated with two typical casting 

systems (direct pouring and pumping). To this end, we have developed an experimental 

series analyzing SCC with different granular structures and with two types of concretes 

(high and medium mechanical strength) because SCC has usually been associated with 

high strength values [20]. 
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2. Material and methods 

In this experimental series, different mechanical properties of SCC were characterized in 

terms of age (3, 7, 28, 90 and 365 days). This section describes and analyzes the results 

differentiating the values obtained for each type of granular skeleton studied. 

2.1. SCC mix proportions and materials used  

To perform a comparative study between the two types of granular skeleton, it was 

decided to minimize the number of variables to examine a fixed amount of cement, varying 

only the granular skeleton. As mentioned above, continuous distribution mixtures (C) are 

associated with casting through direct discharge (bucket), while discontinuous distribution 

mixtures (D) are associated with pumpable concrete. For each of the two types of granular 

skeleton (C and D), two levels of strength (35 MPa and 60 MPa) were studied. This allows 

covering a broad spectrum of possible applications, for example in situ or prefabricated 

concrete elements. The aggregates used are of limestone origin, obtained by a crushing 

process. The proportions of the concrete mixture designs are given in Table 1.  

Table 1 – Concrete mixture design proportions. 

 

The mixing process was as follows. 1) Pour the aggregates and cement, and dry mix for a 

few seconds, 2) Pour the water (leaving 2 L out for reserve), 3) Mix for 1 min, 4) Pour the 

viscosity-modifying admixture with a little water, 5) Mix for 1 min, 6) Pour the 

superplasticizer with the remaining water and 7) Mix for 4 min. 

For each mixture design, 20 concrete batches of 150 L each were fabricated; for each 

batch, the slump flow test was carried out according to [21] for control purposes. Five 

batches of each mixture were made consecutively by the same operators to reduce any 

type of variation. 

2.2. Characterization of SCC in a fresh state 

To characterize SCC in a fresh state, the following tests were performed according to UNE 

Standards: slump flow [21], J-ring [22], L-box [23], density [24] and occluded air [25]. 

2.3. Characterization of SCC in a hardened state 

To characterize of SCC in a hardened state, the following tests were performed, according 

to UNE Standards: compressive strength, modulus of elasticity, tensile strength and bond 

strength (see Table 2). An IBERTEST MHE series and an INSTRON 8500 (Servo–

hydraulic testing system with a stiff frame and under closed–loop control) were used to 

perform the bond strength test. 

Table 2 – Characterizations test for SCC in hardened state. 
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The Barcelona Test [26–28] consists of applying a concentrated load to both faces of a 

cylindrical sample (150 mm diameter and 150 mm height) through two punches of 37.5 

mm in diameter. The load application is controlled through the piston displacement at a 

constant rate of 0.5 mm/min; for concretes without fibers, the test ends when the concrete 

fails or presents fracture. 

The indirect tensile strength „ft‟ is obtained from the maximum breaking load „P‟, the mid-

height of the sample „h‟ (75 mm) and the radius „a‟ of the loading plate (18.75 mm), by 

means of the struts and ties model (equation 1). 

ah

P
ft




9
  (1) 

For the characterization of the bond strength between the reinforcing bars and SCC 

through the beam test [29], a corrugated steel reinforcing bar or 10 mm in diameter was 

used. To register the displacement of the bar on its ends LVDT sensors of ± 5 mm were 

used. 

 

 

3. Results and discussion 

3.1. Results of SCC in a fresh state 

3.1.1.  Slump flow test 

Slump flow tests were performed for all mixtures, and its value was used as a self-

compactability reference parameter. Table 3 shows the results of the slump flow test; the 

values marked were discarded because of the Dixon test. 

Table 3 – Slump flow test results. 

 

Note that the continuous distribution skeleton (C) show higher diameters in the slump flow 

test, reflecting greater easiness of flow, which may be because the continuous granular 

skeleton has a greater amount of paste (cement and sand) coating the coarse particles, 

allowing them to flow more easily. On the other hand, the discontinuous distribution 

skeleton (D) show a lower amount of paste and a greater amount of coarse aggregate. 

This causes an interlock effect among the particles and, ultimately, causes them to have a 

smaller diameter in the slump flow test. 

In the C35 and C60 series, it was necessary to reduce the water content to adjust the 

slump flow values; therefore, the water content presented in Table 1 is different from the 

theoretical value of 182 l/m3. In the C35 series, the slump flow diameter resulted in 785 

mm with 180 l/m3 of water, which is a much larger value in relation to the established 

range of 600 to 700 mm; therefore, it was decided to reduce the water content for the next 

concrete batches. 
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3.1.2.  J-ring slump flow test 

Table 4 shows the results of slump flow with J-ring (Japanese ring). This test was 

performed only in some of the batches, usually in the first one. In general, the SCC flowed 

homogeneously between the ring bars without any blocking effect, as shown in Figures 2 

and 3. 

Figure 2 – Slump flow with J-ring, 30 MPa SCC: a) C-30 and b) D-30. 

 

Figure 3 – Slump flow with J-ring, 60 MPa SCC: a) C-60 and b) D-60. 

 

Table 4 – Slump flow with J-ring test results. 

 

For the low strength SCC series (35 MPa), the continuous distribution design (C-35) 

showed a better passing ability than did the discontinuous distribution design (D-35). For 

the high strength SCC series (60 MPa), SCC passing ability performance was the same 

for both concretes (C and D), although the continuous distribution design (C-60) had a 

smaller diameter of slump flow. 

On the other hand, for the continuous distribution skeletons (C-30 and C-60), some stripes 

were observed in the concrete behind each bar, indicating the way the concrete “closes” 

itself (see Figures 2a and 3a). This suggests that in this type of mix design, aggregates do 

not return to fill the space behind the bar of the ring, where there is an accumulation of 

paste. This behavior is not observed in the discontinuous distribution skeleton concretes 

(D). Based on the foregoing, we may conclude that the continuous granular skeleton need 

a greater distance after an obstacle (bar of the ring) than does the discontinuous one (50 

mm approximately) to reseal homogeneously. 

3.1.3. L-box test 

The objective of the L-box test is to assess the passing ability of SCC among the bars. 

This test was performed for only one batch, usually the first one. The results are presented 

in Table 5 both for the three measures considered (H1, H2 and H3) and for the time 

elapsed for the concrete to empty the column. According to [23], the H3/H1 ratio must be 

computed, but because there is not any interval of acceptable values in this standard, we 

used the criteria given in [18] consisting of considering an H3/H1 ratio equal or greater to 

0.75. 

Table 5 – L-box test results. 

Note that the continuous distribution skeletons (C30 and C60) have a higher flow (less 

than H1 and H2 or higher than H3) than discontinuous distribution concretes (D30 and 

D60) and take less time to pass; this may be the result of the higher content of paste, 

which was reported previously. 
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On the other hand, any of the series fulfills the requirement H3/H1≥ 0.75. This fact may 

indicate that this value is very high for the L-box text and could dispute the validity of same 

and eventually modify it because the tested SCC presented very good performance 

regarding self-compactability without segregation and flowed well among the bars.  

Importantly, note that discontinuous distribution design concretes (D) have a higher 

content of 12-20 gravel; this makes it more difficult for SCC to pass among the bars, 

mainly in the most critical areas with closer spacing. 

3.1.4. Density and occluded air 

The density and occluded air were assessed in fresh concrete in the first batches for the 

C-60, D-35 and D-60 and in the second batch for the C-35 design because the slump flow 

for this mixture was very high and was discharged. The results are presented in Table 6. 

Table 6 – Density and occluded air results. 

 

Note that the density is homogeneous for all of the series. The values on the order of 2.3 

g/cm³ for these concretes are because they have a greater amount of paste than a 

conventional concrete, whose density is on the order of 2.4 g/cm³. Regarding entrapped 

air, the results are low values in all of the cases, showing the relationship that the greater 

the fluidity of concrete, the greater the slump flow extension and the less the entrapped air 

content.  

3.2. Results of SCC in a hardened state 

3.2.1.  Compressive strength 

Table 7 shows the results of concrete compressive strength tests, both mean values and 

coefficients of variation (in brackets); the values correspond to a set of six samples for 

each series and age. 

Table 7 – SCC compressive strength. 

 

Continuous distribution design concretes show higher compressive strengths compared to 

discontinuous distribution designs, this being most significant at early ages (3 and 7 days, 

where differences can be up to 10%). Nevertheless, this difference decreases over time, 

with both types having very similar values of compressive strength at 365 days. This 

behavior was the same for both SCC (35 and 60 MPa). 

3.2.2. Modulus of elasticity 

Table 8 presents values of modulus of elasticity of concrete for different ages, both mean 

values and coefficients of variation (in brackets); the values correspond to a set of three 

samples for each series and age. 

Table 8 – Modulus of elasticity of SCC. 
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Note that continuous distribution design concretes show values of modulus of elasticity 

slightly higher than the discontinuous ones for all of the ages and strengths. Discontinuous 

granular skeleton has 45 kg/m3 more coarse aggregate than the continuous one. Due to 

the effect of coarse aggregate on the stiffness of concrete, one would anticipate a greater 

modulus of elasticity in concretes with discontinuous granular skeleton. This could be 

because the packing of the continuous granular skeleton provides a stiffer structure with 

higher modulus of elasticity. On the other hand, a comparative analysis was performed 

between the experimental values and the ones obtained through the analytical equations 

given in some construction codes [30–34]. Table 9 shows equations in which the 

coefficients were manipulated as a function of the system of units.   

Table 9 – Analytical equations for modulus of elasticity (MPa). 

Based on the analytical equations, the modulus of elasticity was calculated for each age 

and for each series and plotted together with those obtained experimentally; these graphs 

are shown in Figures 4a, 4b, 4c and 4d. 

Figure 4 – Modulus of elasticity, experimental and analytical. 

 

Note that EHE-08 and EC-2 equations are those that best fit the experimental data. On the 

other hand, NBR-6118 as well as ACI-318 relate the modulus of elasticity to the square 

root of compressive strength, leading to an increment of the modulus with age higher than 

obtained experimentally. Regarding the influence of granular skeleton on the stiffness of 

SCC, this factor has no significant effect on the evolution of modulus of elasticity with time. 

3.2.3.  Tensile strength 

The indirect tensile strength of SCC was characterized with three experimental tests: 

flexure tensile [35], the Brazilian test [36] and the Barcelona test [26]. The results are 

presented in Table 10, including the mean values and the coefficient of variation (in 

brackets) for each age, taking five samples for the Barcelona test and two samples for 

both the Brazilian and the flexure tensile tests. 

Table 10 – Indirect tensile strength Ft of SCC. 

 

In the previous table, granular skeleton has no significant effect on the tensile strength of 

SCC, although in all cases the continuous distribution skeleton has shown slightly higher 

strength values. In addition, the Barcelona test results show an important increment of 

strength at ages beyond 28 days in all of the series. 

In this regard, a greater amount of paste, which is associated with a higher amount of 

material with greater finesse, leads to slower hydration of the cement and thus, a greater 

gain in strength over time. 
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Additionally, the trend of indirect tensile strength is different between the Barcelona test 

and the Brazilian test because in the Barcelona test, an increase in tensile strength is 

observed with age. In contrast, the highest gain of tensile strength in the Brazilian test 

occurs up to 28 days and shows no important increase in strength after that age. 

The above discussion may be related to the fact that in the Barcelona test, cement paste 

has a greater contribution and eventually a propitious gain resistance. However, in the 

Brazilian test, the granular skeleton has greater significance and, therefore, tensile 

strength does not increase over time. 

Note also that the difference in tensile strength between the 35 MPa and 60 MPa series is 

not very significant, being of the same order of magnitude as the influence of the granular 

skeleton. Therefore, if we consider the two variables at the same time, the values of tensile 

strength of the C-30 and D-60 series are very similar, especially in the Brazilian test. 

Furthermore, in the case of characterization by means of the flexural-tensile test, it is 

observed that the continuous granular skeleton mixture C-35 has a slightly higher tensile 

strength than the discontinuous skeleton D-35, as has been shown in other tests. 

Furthermore, we also note that the D-30, D-60 and C-35 series all show a similar behavior 

with an increase in strength by 25% between 7 and 28 days. 

Finally, the result obtained for the C-60 series is lower than for the C-35 series. This is not 

expected “a priori” because both series have the same granular skeleton distribution, and 

cement paste should resist a higher flexural-tensile strength for a greater compressive 

strength.  

The samples intended for the flexural-tensile strength test of the C-60 series belonged to 

the fourth batch, which showed a reduced value in the slump flow test. This reduction 

probably occurred due to an error in the dosage amounts of aggregates, confirming that 

the slump flow test is a good control parameter for the acceptance of SCC. 

3.2.4.  Bond strength 

In the adherence test performed according to standard [29], two parameters are obtained: 

the adherence stress (σadherence) and the bond strength (σbond). Adherence stress is 

calculated by averaging stress values resulting from vertical displacements of 0.01, 0.1 

and 1 mm. Bond strength is maximum stress sustained by the beam for a vertical 

displacement of 3 mm. Table 11 contains the results of adherence stress and bond 

strength, as well as the maximum load applied in the beam (Pbreaking) and the coefficient of 

variation (in brackets). 

Table 11 – Adherence test results: adherence, bond (MPa) and Pbreaking (kN). 
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The results show that granular skeleton has no influence on the results of adherence 

because the same strength series presented similar values. Moreover, in the series of low 

strength (30 MPa), the discontinuous skeleton (D) has achieved a slightly higher 

adherence stress, while in the high-resistance series, the results alternate. In either case, 

the differences are representative. 

These differences may be related to adherence mechanisms present in each case. In low-

strength concretes (35 MPa), the difference between the two granular skeletons (C and D) 

may be associated with mechanical bonding. Therefore, the discontinuous granular 

skeleton, presenting a higher coarse aggregate content, have a higher mechanical 

bonding. 

However, the series of higher strength (60 MPa) can be associated with a greater 

contribution of bond mechanism acting by means of adherence. In this case, the 

continuous granular skeleton has a greater proportion of adherence by bond mechanism 

due to its greater amount of paste (more fines due to the higher content of sand). Likewise, 

regardless of mechanical strength, it exhibits rapid changes in adherence, reaching at 7 

days 95% of the bond strength at 28 days.  

Note that in performing these tests, we observed a brittle fracture adherence mechanism 

because the beam passed quickly from a condition of stability without deformation to an 

excessive deformation with bond rupture, as shown in Figure 5. 

Figure 5 – Adherence test at 3 days (C-35 series). 

 

 

4. Conclusions 

 

 Regarding the ability to flow, continuous distribution mixtures (C) lead to higher 

slump flow values because the continuous granular skeleton has a greater 

amount of paste (cement and sand) covering coarse aggregate particles, 

allowing these to flow more easily. Discontinuous distribution mixtures (D) have 

a smaller amount of paste and a greater amount of coarse aggregate; this 

leads to an increased interlock effect of granular skeleton and, consequently, to 

a smaller diameter in the slump flow test. 

 

 The risk of segregation is less in continuous granular skeleton because smaller 

aggregates form a barrier that prevents the descent of larger particles. In the 

case of discontinuous granular skeleton, lack of intermediate sizes of aggregate 

increases the probability of segregation. 
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 Regarding mechanical properties, the continuous granular skeleton has slightly 

higher values for the same category of concrete (35 MPa and 60 MPa) for 

compressive strength, indirect tensile strength and modulus of elasticity, 

between 2 and 15%; this may reflect a more rigid and more interlocked 

aggregates structure. 

 

 Both types of granular skeletons allow achieving the specified strength. This 

indicates that there is no unique way to design SCC and that the casting 

method can be taken as a criterion, in line with the hypothesis proposed 

initially. Often, technicians in the ready-mix concrete sector prefer a 

discontinuous granular skeleton because of the lower influence of aggregates 

moisture. 

 

 SCC studied showed a significant increase in strength over 28 days, achieving 

a further 30% after one year; this can be explained by the slow hydration of 

cement including a larger amount of material with higher fineness. This growth 

is lower in the case of the evolution of the modulus of elasticity with time, 

yielding an increase of 5% over the first year from the measured value at 28 

days. 

 Concerning bond strength results, granular skeleton apparently has no 

significant influence on this property because the series of similar strength have 

similar values. This may be due to opposing factors caused by different 

bonding mechanisms; on the one hand, the discontinuous skeleton may have 

increased mechanical bonding due to the higher content of coarse aggregate. 

On the other hand, the continuous skeleton may have increased adhesion due 

to the greater amount of paste (more fines due to the higher content of sand). 

The SCC studied showed a rapid evolution of adherence, achieving at 7 days 

95% of bond strength at 28 days. 
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Highlights 

 

 Continuous distribution mixtures (C) are associated with casting through direct discharge 
(bucket), while discontinuous distribution mixtures (D) are associated with pumpable 
concrete.  
 

 Continuous distribution mixtures (C) lead to higher slump flow values because the 
continuous granular skeleton has a greater amount of paste.  
 

 Discontinuous distribution mixtures (D) lead to an increased interlock effect of granular 
skeleton and to a smaller diameter in the slump flow test. 
 

 The risk of segregation is less in continuous granular skeleton (C) because smaller 
aggregates form a barrier that prevents the descent of larger particles.  
 

 The continuous granular skeleton (C) has slightly higher values for compressive strength, 
indirect tensile strength and modulus of elasticity. 
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Materials  
 (kg/m

3
) 

C–35 MPa D–35 MPa C–60 MPa D–60 MPa  

Sand 0–2 mm  115 115 –– –– 

Sand 0–4 mm  876 876 976 926 

Fine gravel 5/12 mm  505 168 505 168 

Gravel 12/20 mm  292 674 292 674 

Water 175 182 176.3 182 

Admixture Melcret® PF–75  2.7 2.88 2.7 2.7 

Admixture Glenium® C303 SCC  8.73 7.41 8.73 8.73 

Cement CEM II A–L 32.5 B–C 380 380 –– –– 

Cement CEM II A–L 42.5 R –– –– 450 450 

Water/Cement ratio 0.479 0.479 0.404 0.404 
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Characterization test Standard 

Samples 

Type (in cm) 
Each 

mixture 
Total 

Compressive 
strength 

3, 7, 28, 90 and 365 days 
UNE 12390–

3 
Cylindrical 15 x 30 25 100 

Modulus of 
elasticity 

3, 7, 28, 90 and 365 days UNE 83316 Cylindrical 15 x 30 15 60 

Tensile strength 
(Flexure tensile) 

7 and 28 days 
UNE 12390–

5 
Prismatic 

15 x 15 x 
60 

6 24 

Tensile strength 
(Brazilian test) 

3, 7, 28, 90 and 365 days 
UNE 12390–

6 
Cylindrical 15 x 30 10 40 

Tensile strength 
(Barcelona test) 

3, 7, 28, 90 and 365 days UNE 83515 Cylindrical 15 x 15 25 100 

Bond strength  
(Beam test) 

3, 7 and 28 days UNE 36740 
Reinforced 

beam  
10 x 18 x 

60 
6 24 

Total 87 348 
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Mixture 

design  

Diameter (mm) Mean 

value 
CV 

1 2 3 4 5 

C-35 785* 680 700 680 685 686 1.2% 

D-35 600 595 625 665 660 630 4.6% 

C-60 690 700 695 500* 615* 695 0.6% 

D-60 620 715 630 705 685 670 5.8% 
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Slump flow (mm) C-35 D-35 C-60 D-60 

Without J-ring 686 630 695 670 

With J-ring (measure 1) 680 560 600 590 

With J-ring (measure 2) 680 565 610 600 

Mean value (J-ring) 680 562.5 605 595 
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Parameter/Mixture C-30 C-60 D-30 D-60 

Time (s) 46 36 55 114 

H1 (mm) 120 120 145 175 

H2 (mm) 80 70 95 95 

H3 (mm) 69 – 55 38 

H2/H1 0.67 0.58 0.66 0.54 

H3/H1 0.58 -- 0.38 0.22 
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Property C-35 D-35 C-60 D-60 

Density (g/cm³) 2.27 2.27 2.30 2.29 

Occluded air (%) 2.6 2.6 2.4 2.9 

Slump flow (mm) 680 600 690 620 
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SCC 
Concrete compressive strength in MPa (C.V.) 

3 days 7 days 28 days 90 days 365 days 

C-35 
28.4 

(10.0%) 

33.6 

(6.4%) 

42.7 

(4.2%) 

51.3 

(4.2%) 

53.7 

(2.4%) 

D-35 
27.9 

(4.5%) 

33.9 

(2.1%) 

40.9 

(5.9%) 

46.8 

(1.7%) 

53.3 

(1.9%) 

C-60 
46.2 

(1.7%) 

48.8 

(9.1%) 

63.5 

(3.8%) 

69.3 

(4.3%) 

80.0 

(2.4%) 

D-60 
41.0 

(8.4%) 

44.9 

(9.6%) 

54.9 

(3.4%) 

65.3 

(3.9%) 

78.9 

(1.6%) 
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SCC 

Modulus of elasticity of concrete in GPa (C.V.) 

3 days 7 days 28 days 90 days 365 days 

C-35 
30.5 32.5 36.0 37.0 37.0 

(2.2%) (1.6%) (0.9%) (2.2%) (1.8%) 

D-35 
29.5 31.5 34.5 35.5 36.5 

(2.6%) (2.2%) (2.0%) (1.3%) (2.6%) 

C-60 
35.5 37.0 39.5 41.5 41.5 

(1.4%) (0.02%) (0.4%) (5.6%) (1.5%) 

D-60 
34.0 36.5 38.0 40.5 41.0 

(2.6%) (3.1%) (1.7%) (3.5%) (1.9%) 
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Code Equation Comments 

CEB–FIP 2010 E�� � 21500 ∙ 
� ∙ �0,1 ∙ f��
�  

fcm: compressive strength of concrete (MPa) obtained from 
cylindrical samples 150 mm diameter and 300 mm 
height. 

αE: factor dependent on the type of aggregate 

ACI 318–05 E�� � 4700 ∙ �f�´
�  

f�´: compressive strength of concrete (MPa) obtained from 
cylindrical samples 150 mm diameter and 300 mm 
height. 

EC 2: 1992–1–1 E�� � 9500 ∙ �f�� � 8
�  fck:  characteristic strength of concrete (MPa) obtained from 

cylindrical samples. NBR 6118 2007 E�� � 5600 ∙ �f��
�  

EHE 2008 E�� � 8500 ∙∝∙ �f��
�  

“α”: factor dependent on the type of aggregate. 
fcm: compressive strength of concrete (MPa) obtained from 

cylindrical samples. 
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Ft (MPa) 
(CV) 

Series 
Age (days) 

3 7 28 90 365 

Barcelona test 
UNE 83515 

C-35 
2.4 2.7 3.3 4.1 4.4 

(9.1%) (7.6%) (7.2%) (3.1%) (3.5%) 

D-35 
2.5 2.8 3.2 3.8 4.3 

(5.9%) (4.6%) (2.9%) (0.8%) (5.5%) 

C-60 
3.4 3.9 3.7 5.0 5.4 

(3.1%) (4.3%) (7.9%) (6.3%) (3.8%) 

D-60 
3.4 3.7 4.2 4.6 5.0 

(8.6%) (4.5%) (8.9%) (6.4%) (7.4%) 

Brazilian test 
UNE 12390–6 

C-35 
2.95 3.85 3.91 4.65 4.58 

(8.6%) (6.3%) (2.6%) (9.3%) (8.9%) 

D-35 
3.12 3.48 3.42 3.85 4.07 

(1.2%) (8.3%) (0.3%) (0%) (1.6%) 

C-60 
3.67 3.69 5.18 5.19 5.19 

(7.3%) (4.3%) (6.2%) (7.4%) (9.7%) 

D-60 
3.39 3.53 4.62 4.68 4.70 

(2.3%) (5.5%) (3.0%) (6.9%) (9.3%) 

Flexure tensile test 
UNE 12390–5 

C-35 
 4.66 5.69   

 (3.9%) (0.2%)   

D-35 
 3.98 4.29   

 (0.5%) (3.1%)   

C-60 
 3.90 4.95   

 (1.9%) (2.7%)   

D-60 
 4.85 6.29   

 (1.7%) (0.9%)   
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Series 

3 days 7 days 28 days 

adherence 

(CV) 
bond 

(CV) 

Pbreaking 

(CV) 
adherence 

(CV) 
bond 

(CV) 

Pbreaking 

(CV) 
adherence 

(CV) 
bond 

(CV) 

Pbreaking 

(CV) 

C-35 
6.2 11.6 41.9 8.1 13.0 47.0 7.3 13.2 47.6 

(13.7%) (23.9%) (23.9%) (8.2%) (4.2%) (4.2%) (5.2%) (15.3%) (15.3%) 

D-35 
6.9 13.0 47.1 8.2 13.7 49.5 8.9 14.3 51.8 

(7.8%) (13.9%) (13.9%) (11.9%) (14.6%) (14.6%) (9.6%) (1.3%) (1.3%) 

C-60 
9.3 14.3 51.7 10.7 16.0 58.0 9.8 16.8 60.9 

(4.3%) (2.3%) (2.3%) (0.0%) (0.0%) (0.0%) (10.8%) (3.0%) (3.0%) 

D-60 
6.1 12.3 44.7 10.8 15.9 57.4 9.7 16.1 58.2 

(7.2%) (3.3%) (3.3%) (11.2%) (17.1%) (17.1%) (0.0%) (0.0%) (0.0%) 
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