COMPORTAMIENTO QUÍMICO DE CENIZAS VOLANTES ACTIVADAS MEDIANTE DRX Y FTIR.

C. A. Rosas ${ }^{1}$, S. P. Arredondo¹, J. M. Gómez², R. Corral¹, J. L. Almaral¹, M. J. Chinchillas¹, O. H. Acuña ${ }^{1}$, A. J. Barreras ${ }^{1}$, C. G. Morales ${ }^{1}$, S. Apodaca ${ }^{1}$, R. Orduño¹.
1. Universidad Autónoma de Sinaloa, Facultad de Ingeniería Mochis, Ciudad Universitaria Fuente de Poseidón y prolongación Ángel Flores S/N Pte. Fracc. Las Fuentes. C.P. 81223. Los Mochis, Ahome, Sinaloa, México.
2. Universidad Politécnica de Cataluña, Ave. Dr. Marañón No. 44-50, C.P. 08028. Barcelona, España.

Abstract

RESUMEN El presente trabajo establece los comportamientos usuales de los materiales geopoliméricos, usando Difracción de Rayos X (DRX) y Espectroscopía de Infrarrojo (FTIR). Los resultados obtenidos muestran que el geopolímero contiene estructura amorfa pero a su vez diferentes fases cristalinas, principalmente zeolitas, las cuales se relacionan directamente con el activador alcalino utilizado, además los enlaces químicos que aparecen en las bandas de FTIR corresponden a moléculas presentes en los compuestos cristalinos que se manifiestan en los resultados de DRX. Por otro lado se afirma que la ceniza volante fue correctamente activada, debido a la presencia del gel de aluminosilicato sódico hidratado (N-A-S-H) indicada en los espectros de FTIR.

Palabras Clave: cenizas volantes, geopolímero DRX, FTIR, NASH.

Abstract

This work establishing the behavior of geopolymeric materials using X-ray diffraction (DRX) and Infrared Spectroscopy (FTIR). The results show that the geopolymer containing amorphous structure but turn different crystalline phases, mainly zeolites, which are directly related to the alkaline activator, also the chemical bonds that appear in the FTIR bands correspond to molecules present in the compounds crystalline manifested in the XRD results. Furthermore is stated that the fly ash was correctly activated due to the presence of sodium aluminosilicate gel (N-A-S-H) indicated in FTIR spectra.

Keywords: Fly ash, geopolymer, DRX, FTIR, N-A-S-H.

INTRODUCCIÓN

Los geopolímeros, son una nueva forma de aglutinante, utilizado en pastas, morteros y concretos compuestos, los cuales son producidos por la reacción de los aluminosilicatos con las soluciones alcalinas [${ }^{1}$].

Los cementos alcalinos, como también son conocidos, se pueden sintetizar mediante la mezcla de ceniza volante (CV) y soluciones fuertemente alcalinas (tales como NaOH o KOH), luego curadas a temperaturas menores a $100^{\circ} \mathrm{C}$. La solución fuertemente alcalina, disuelve rápidamente a la CV para formar unidades tetraédricas de SiO_{4} y AlO_{4} libres. Con el desarrollo de la reacción, los geopolímeros se dividen en unidades tetraédricas de SiO_{4} y AlO_{4}, los cuales están unidos alternativamente para producir tres tipos de productos geopolímeros: poli-sialato [-AIO4--SiO4] (tipo PS), poli-sialato-siloxo [-SiO4-AIO4-SiO4-] (tipo PSS), o poli-sialatedisiloxo [-SiO4-AIO4-SiO4-SiO4-] (tipo PSDS [²]. Durante la geopolimerización, como se mencionó anteriormente una vez que los polvos de aluminosilicatos se mezclan con la solución alcalina se forma una pasta y transforma rápidamente en un geopolímero duro y compacto. Por lo tanto, no hay suficiente tiempo y espacio para que el gel o la pasta puedan crecer en una estructura bien cristalizada [${ }^{3}$].

Por otro lado comparado al cemento pórtland, los geopolímeros requieren menos consumo de energía, tiene menos emisiones de CO_{2}, alta resistencia a compresión inicial, menor contracción, baja permeabilidad, buena resistencia al fuego y a los ácidos, además de ser materiales con excelente durabilidad [${ }^{4}$], Además en lo que respecta al comportamiento de los geopolímeros, diversos autores pronostican un reorganización estructural del componente vítreo como consecuencia del ataque alcalino, lo cual es plasmado en DRX y FTIR, con desplazamientos en las señales de los difractogramas y espectrogramas respectivamente [${ }^{5,6}$]. Para conocer más acerca de las propiedades de estos materiales, es necesario realizar una serie de caracterizaciones por múltiples técnicas. El presente estudio se centra, además de otros parámetros, en la influencia del DRX y FT IR en las propiedades químicas de las pastas de geopolímero mediante disminución del tamaño de partícula (malla \#200) por molienda mecánica.

PROCEDIMIENTO EXPERIMENTAL

Caracterización de los materiales:

Se utilizó una CV procedente de la central carboeléctrica en Nava, Coahuila, México. A la cual se le realizó Fluorescencia de Rayos X (FRX) para determinar los principales componentes químicos (ver tabla 1), Según la norma (ASTM C618) la CV utilizada corresponde a una CV de tipo F. Por otro lado, para aumentar la reactividad de la ceniza volante de origen (CV-N) se le redujo el tamaño de partícula por medio de una molienda manual mediante el uso de un mortero de porcelana, posteriormente se clasificaron mediante el tamiz No. 200 (CV-M).

Tabla 1.- Composición química de CV-N (\%wt.)

CV-N	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	CaO	MgO	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{O}$	SO_{3}	TiO_{2}	LOI *
	56.9	26.24	5.56	4.25	0.72	1.21	0.346	0.71	1.21	2.47

LOI*: Pérdida por ignición
La ceniza volante se activó con solución alcalina de NaOH , con una molaridad de 8 M , la relación solución/ceniza fue de 0.4 , posteriormente se colocaron en moldes de plástico, se desmoldaron a las 24 horas y se colocaron en bolsas herméticas por el método de inmersión [7], posteriormente se mantuvieron con una humedad relativa del 99% y a una temperatura constante de $80^{\circ} \mathrm{C}$ durante 7 y 28 días.

Mediante el equipo de difracción de laser (mastersizer 2000) se obtuvo la distribución del tamaño de partículas (ver figura 1), esto con la finalidad de establecer la diferencia en tamaños de la CV-N y CV-M, en ésta, se puede observar que CV-M, concentra el mayor porcentaje de partículas en el rango de 0 a $45 \mu \mathrm{~m}$ ($\approx 70 \%$ en volumen), Por otra parte, CV-N se constituye por diferentes tamaños de partícula, llegando a contener un 55% en volumen por encima de los $45 \mu \mathrm{~m}$; lo que denota la influencia de la molienda manual y el tamizado, otra diferencia de CV-N con respecto a CV-M es que se observan tamaños de partículas mayores a $1000 \mu \mathrm{~m}$ (5 \%), dichas partículas son consideradas como polidispersas.

Figura 1.- Distribución de tamaños de partículas en CV-N y CV-M
La identificación de fases de las muestras sin activar (ver figura 2), se realizó mediante DRX, con el fin de determinar las fases cristalinas presentes de CV-N y compararlas con las fases presentes en la CV-M y a su vez con las muestras activadas alcalinamente (G). En ésta, es factible identificar los compuestos habituales de una CV con constituyentes amorfos en gran parte del difractograma, es importante recalcar que principalmente
aparecen entre los 17° y 30° de 2θ; mientras que por otra parte, en los comparativas de los difractogramas de CV-N y CV-M se aprecia una elevación pronunciada en los resultados del difractograma de esta última ceniza, localizada entre $\operatorname{los} 5^{\circ}$ y $10^{\circ}=2 \theta\left[{ }^{8}\right]$, atribuida posiblemente al aumento de la amorficidad de las CV-M, producida por la molienda manual.

Figura 2.- DRX de CVN y CV-M (M=Mullita, Q=Cuarzo, H=Hematita)

RESULTADOS

Se obtuvieron pastas de geopolimero, con la finalidad de que en este trabajo se presente un estudio de cómo algunas variables (superficie específica y edad de curado principalmente) afectan al desarrollo químico de las cenizas volantes activadas alcalinamente. Cabe mencionar que además de estas variables, se pueden considerar otros parámetros como temperatura, naturaleza y concentración molar del activador, los cuales serán considerados para trabajos futuros.

DRX

Se obtuvo un difractograma (figura 3) en el cual se muestran los picos caracteristicos de un material geopolimerico base CV sin moler (GN) y CV molida (GM) a los 7 y 28 días de curado.

Figura 3.- DRX de compuestos geopoliméricos (z=zeolitas, f=faujasitas, $\mathrm{c}=$ carbonato de sodio).

La identificación de fases se llevó a cabo en las muestras de origen y en las activadas con hidróxido de sodio con la finalidad de determinar los compuestos cristalinos presentes.

Los difractogramas muestran diversos picos e intensidades, las fases cristalinas presentes son el cuarzo, hematita, mulita, las cuales se mantienen desde el material de origen hasta la geopolimerización. Por otro lado, los nuevos compuestos cristalinos (zeolitas) aparecen principalmente entre $\operatorname{los} 5^{\circ}$ y $20^{\circ}=2 \theta$, las cuales son de tipo "y" y de tipo faujasita, debido al activador sódico utilizado.

Se puede observar un levantamiento en el difractograma entre los 20 y $33^{\circ}=2 \theta$, lo anterior es un comportamiento típico en materiales amorfos [${ }^{9}$].

Figura 3 muestra como la intensidad de los picos aumentan conforme se aumenta el día de curado (de 7 a 28 días). La intensidad de los picos depende de la cristalización de las fases, en otras palabras se puede atribuir a la edad de curado, activador alcalino, molienda manual, temperatura, entre otros (mencionados al comenzar el capítulo).

Figura 4.- Espectros de FTIR de CV-N y muestras geopoliméricas.

En el espectro de infrarrojo de la figura 4, existen diferentes bandas, las cuales son características en los materiales geopoliméricos.

En lo que respecta a CV-N se tiene que su principal banda (marcada con el número 3), se ubica a los $1100 \mathrm{~cm}^{-1}$, la cual se atribuye a enlaces de $\mathrm{Si}-\mathrm{O}$ o Al-O presentes en los materiales amorfos de la ceniza. Un hallazgo importante aparece en las muestras activadas, ya que dicha banda se desplaza hacia números de onda menores, la cual aparece entre 900 y $1000 \mathrm{~cm}^{-1}$, y se atribuye a una tensión asimétrica de $\mathrm{Si}-\mathrm{O}$ ó $\mathrm{Al}-\mathrm{O}$, pero ya no del material amorfo, si no de enlaces que están presentes en el gel N-A-S-H, la magnitud de esta banda se asigna fundamentalmente a la naturaleza amorfa del material, así como al ordenamiento de corto alcance de los tetraedros de Si y Al. Puede observarse una importante transimitancia en dicha banda, esto depende de factores como la edad de curado, grado de reactividad, entre otras [${ }^{10}$].

Se muestran además bandas entre 600 y $650 \mathrm{~cm}^{-1}$ y otras de 790 a $800 \mathrm{~cm}^{-1}$, estas pueden atribuirse a los enlaces que están presentes en la ceniza volante de origen (Si-O y Al-O), principalmente en los compuestos cristalinos como el cuarzo y la mullita. Por otro lado se encuentra dos bandas más, la primera entre 1600 y $1650 \mathrm{~cm}^{-1}$ y la segunda entre 3400 y $3500 \mathrm{~cm}^{-1}$, dichas bandas pueden corresponder según la literatura a enlaces que están presentes en la hidratación del geopolímero, o en otras palabras corresponde a moléculas del agua presente en el material y en el gel N-A-S-H [${ }^{11}$].

Haciendo una comparativa entre los espectros de una CV-N y la que representa un geopolímero podemos destacar que a partir de los 7 días de curado se forma una nueva banda ubicada a los $1400 \mathrm{~cm}^{-1}$, la cual puede representar una banda de vibración de carbonatos y se atribuye a la tensión asimétrica de los enlaces $\mathrm{O}-\mathrm{C}-\mathrm{O}$ de grupos $\mathrm{CO}_{3}{ }^{2-}$
que posiblemente se encuentran en los bicarbonatos de sodio presentes por la interacción del medio externo con el sodio o calcio del activador alcalino.

Figura 5.- Desplazamiento de la banda en FTIR, correspondiente a vibraciones de enlaces Al-O y SI-O presentes en el gel N-A-S-H.

En la figura 5 se observan los cambios en números de onda, atribuídos a las vibraciones de enlaces AI-O y SI-O presentes en el gel N-A-S-H de los geopolímeros [${ }^{[12}$], los cuales, fueron desplazados hacía números de onda menores, con respecto a las cenizas de origen. Los resultados muestran que al avanzar la edad de curado en combinación con la disminución del tamaño de partícula de la ceniza, los números de onda se desplazan hacia valores de onda mayores, esto producido por la mayor incorporación de silicio y aluminio a la cadena larga del gel N-A-S-H y, a su vez, ocasionado por la mayor reactividad de los geopolímeros provenientes de CV M. Los resultados arrojan valores que oscilan entre $1004 \mathrm{~cm}^{-1}$ y $1006 \mathrm{~cm}^{-1}$ para GN a los 7 y 28 días de curado respectivamente y $1005.5 \mathrm{~cm}^{-1}$ y $1012 \mathrm{~cm}^{-1}$ para GM a los mismas edades de curado [${ }^{13}$].

CONCLUSIONES

CV-M obtuvo mayor reactividad que CV-N, esto en términos de desarrollo de fases cristalinas en los geopolímeros, además las muestras activadas a los 28 días de curado fueron las que mejor estructuración cristalina generaron, en comparación con las de 7 días. Las compuestos cristalinos presentes en las muestras de origen se mantienen en las muestras de geopolímero, sumándole la aparición de las nuevas fases, que están conformadas principalmente por agentes zeoliticos (faujasitas y de tipo zeolita tipo "y").

En las muestras de geopolimero ocurre un desplazamiento de bandas en los espectros de FTIR (de los $1100 \mathrm{~cm}^{-1}$ a $1004 \mathrm{~cm}^{-1}$), en relación con las muestras sin activar, lo cual obedece a la formación del gel N-A-S-H y las bandas desplazadas, aumentan en valores de números de onda para las muestras GM en comparación con GN, tanto a los 7 como a los 14 días de curado.

AGRADECIMIENTOS

A la Universidad Autónoma de Sinaloa, al Centro de Investigación de Materiales Avanzados, a la Universidad Politécnica de Cataluña, al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada y a los alumnos colaboradores del servicio social.

REFERENCIAS

1. Davidovits J. Geopolymer: inorganic polymer new materials. J Therm Anal 1991;37:1633-56.
2. Akolekar, D., Chaffee, A., Russell, F.H., 1997. The transformation of kaolin to lowsilica X zeolite. Zeolites 19 (5), 356-365.
3. Komnitsas, K. and D. Zaharaki, Geopolymerisation: a review and prospects for the minerals industry. Minerals Engineering, 2007. 20(14): p. 1261-1277.
4. Bakharev, T., 2005. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35 (4), 658-670.
5. Palomo, A., Alonso, S., Fernández-Jiménez, A., Sobrados, I., Sanz, J.: "Alkaline Activation of Fly Ashes: NMR Study of the Reaction Products", J. Am. Ceram. Soc., 87, (6), pp. 1141-1145 (2004).
6. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer J.S.J. "Geopolymer technology: The current state of the art. J. Materials Science, 42, pp. 2917-2933 (2007). http://dx.doi.org/10.1007/s10853-006-0637-z
7. Luo, X., et al., Systematic study on the basic characteristics of alkali-activated slagfly ash cementitious material system. Construction and Building Materials, 2012. 29: p. 482486.
8. Rattanasak, U. and P. Chindaprasirt, Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 2009. 22(12): p. 1073-1078.
9. Criado, M., Fernández-Jiménez, A., \& Palomo, A., Alkali Activation of Fly Ash. Parte III. Effect of Curing Conditions on Reaction and its Graphical Description/Fuel, 2010. 89: p. 3185-3192.
10.Fernández-Jiménez, A. and A. Palomo, Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous and mesoporous materials, 2005. 86(1): p. 207-214
11.Provis J.L., D.P., van Deventer J.S.J., Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. . Chemistry of Materials., 2005. 17.
10. Rodríguez Martínez, e.d., Efecto de la incorporación de materiales basados en sílice sobre las propiedades de matrices de cemento pórtland y activadas alcalinamente. Tesis doctoral 2012.

Palomo, A., et al., Alkaline activation of fly ashes: NMR study of the reaction products. Journal of the American Ceramic Society, 2004. 87(6): p. 1141-1145.

