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Abstract. In this work we propose a learning system to learn on-line an action policy coded in rules using 
natural human instructions about cause-effect relations in currently observed situations. The instructions 
only on currently observed situations avoid complicated descriptions of long-run action sequences and 
complete world dynamics. Human interaction is only required if the system fails to obtain the expected 
results when applying a rule, or fails to resolve the task with the knowledge acquired so far.  
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Introduction 
In this work we are facing the problem of making a robot learns to perform tasks in the 
real world, a problem that have been pursued for many years with different degrees of 
success. A robot capable of acting in the world should perform a good action decision in 
accordance to its goals. This decision could be performed using planning techniques [1] 
that find optimal sequence to the goal using the model of the world, or by learning a 
function that directly maps situation to actions, usually known as a policy function [2], 
avoiding the necessity of a permanent sequence finding. Our work proposes a hybrid 
approach that learns an action policy through instructed sequences to the goal using a 
special coding of the model of the world based on cause-effect relations. 
There are two learning paradigms involved in learning a policy: a behavioural learning 
paradigm used by the agent to learn which action to perform in each experienced 
situation, and a representational learning paradigm that generates the structure where 
the policy is coded. A couple of well known behavioural learning paradigms are the 
supervised learning paradigm, where a teacher explicitly instructs the robot about the 
action to take, and the Reinforcement Learning paradigm (RL) [2] where the robots is 
implicitly guided by a reward function associated to the actions preformed. On the other 
hand, there are many representational learning paradigm applied in policy 
representation like induction trees [3], Feature Based [4], Rule Based [3],[5],[6], Neural 
Networks [3].  
In this contribution we combine supervised learning with a policy representation based 
on rules. A rule based representation permits an explicit declaration of the abstract 
meaning of the perceptions of the agent making easier the interaction teacher-agent 
needed in supervised learning, and a better understanding of the results. In particular, 
from the possible rule based representations, the one used in this work is an ordered set 
of rules of the type of Decision Lists [7] that permits a more compact knowledge 
representation and a better generalization [8]. 
One of the motivations of this work was the development of a method for fast policy 
learning using supervised learning. We consider that there are many tasks where an 
explicit instruction leads to faster learning convergence and lesser memory requirements 
than in RL. One of the reasons is that the convergence of RL is only assured by 
repeatedly experiencing the same (representative) situations and by an exhaustive 
exploration of the state space. In the method develop in this work the policy is learned 
rapidly by guiding the agent through the space of the searched policy, avoiding the 
tedious exploration needed in RL. The policy is derived by merging situations that 
require the same sequences of cause-effects.  
 

Policy and Sequences 
In order to show how the policy is coded for supervised learning we revise briefly the 
background of an agent acting in the environment. The agent follows a sequence of 
situations guided by the coded policy so far. The transition from one situation to the 
other depends on the action taken and on the probability of transition from the current 
situations to all the other situations. From the transitions perspective, the policy could 
be considered as a function that permits to follow a sequence of transitions to the goal. 
In this sequence the transitions that take place could be summarized as a succession of 
changes that transforms the current situation into a goal situation. Therefore, from a 
representational point of view, a policy could be also considered as a mapping from 
situations to sequences of changes. It should permit to select the proper sequence among 



all the possible sequences, or equally, to select the proper change among all the feasible 
changes that could take place in a situation.  
For each situation, the policy coding should involve the conditions that permit the 
action selection that leads to the needed change in the sequence. But the desired changes 
will only take place if the conditions that afford those changes are involved in the 
situation. Therefore, the policy should contemplate both conditions. The former 
preconditions will be denoted as task-preconditions and serve to select the change from 
all the possible changes, and the later ones as action-preconditions, that permit the 
selected change to occur. If one of those preconditions is wrongly considered then the 
coded policy leads to a bad sequence.  

Aliasing and Completeness 
If the conditions coded in the policy are not correct, some situations merged together in 
a rule, hence requiring the same sequence, would lead to different changes producing 
what is known as aliasing. In the case of aliasing we will denote that the agent has an 
incomplete representation with respect to the desired outcome. In order to detect the 
aliasing the agent needs to evaluate every obtained change and compares it with the 
desire change that should take place in the sequence. We denote the desire change as the 
expected outcome (eo) and will be estimated during the learning with the help of the 
instructor. The agent improves the eo estimation while learning and every observed 
outcome is evaluated by checking the consistency with respect to it.  
In this work we assume that all the perceptions of the agent fulfil the Markov property 
[2] with respect to the changes. Therefore, there will be no aliasing if all the perceptions 
are considered for the task and action-preconditions. Nevertheless, we could extend our 
previous statements to non Markov perceptions by considering also past perceptions as 
part of the current situation (see [9] for an illustration). 

Motivations 
One of the arguments that sustain the method developed in this work relies on the fact 
that a particular change could take place in many different sequences. Usually, the 
learning approaches attach to the policy coding the expected outcome to evaluate the 
completeness of the representation with respect to the desired outcomes. This implies 
that the rate of convergence of the expected outcome estimators depends on the 
frequency experiencing of situations with the same task-preconditions. Nevertheless, 
many situations that require different task-preconditions may involve the same action-
preconditions as the needed change is the same despite the sequence is different. 
Separating the coding of action-preconditions from the policy allows a rapidly 
convergence of the eo because the experiencing rate of action-preconditions is much 
higher than the experiencing rate of the task-preconditions. 
Another motivation for the development of the presented method arises from the 
analysis of the learning behaviour of the children in their early stages. The children 
explore the world by experimenting with objects and their bodies performing different 
actions like introducing objects into containers or narrow places, throwing objects, 
touching, pushing, hiding, etc. Doing this they learn how to perform individual actions 
and how the world reacts to them, i.e. the cause-effect behaviour of the world. Once the 
cause-effects are learned it is much easier to teach them how to perform a task by 
indicating the corresponding sequence of cause-effects. This is because it is not 
necessary to teach them how to perform each individual action and produce each 
individual changes of the sequence from scratch. These observations are sustained by 
some enunciations of the theory of Piaget's cognitive development [10] who claims that 



the children gradually acquire knowledge of the cause-effects relations trough circular 
reactions where actions and processes are repeatedly executed and sequenced to reach 
goals. 

Learning Action and Task-Preconditions 
As mentioned before, in order to code the policy, both action and task-preconditions 
should be correctly considered to produce the desired changes in the sequence. There 
are different ways of finding the proper action and task-preconditions. The method 
proposed in this work lets the agent learns action-preconditions by experiencing the 
world using the help of a teacher and the task preconditions are derived from sequences 
of action-preconditions in accordance to a task. The agent codes the action-
preconditions in a structure called cause-effect couples (cec) that involves the action-
preconditions and the expected outcome needed to evaluate completeness. The sequence 
of cec’s is used to produce the coding of the policy that consists in a set of rules that 
merge situations that require the same sequence. The sequence is uniquely coded in 
rules by linking the cec’s using the action-preconditions to generate the task-
preconditions. Then, the task-preconditions “keep track” of the detectors that will be 
needed for future changes affordance. 
To assure continuity in the agent behaviour the experiencing and learning of cec and 
rules are spread along a task dependent performance. The selection of cec is dictated by 
the coded rules so far and supervised by the teacher. The teacher instructions serve to 
update the existing cec’s and to generate those cec’s needed in the sequence and not 
known by the agent.  

Advantages of using cec 
Coding and evaluating the policy using the cec’s has many advantages. As mentioned, 
the speed of convergence of the eo is high and the amount of information needed for the 
policy learning is reduced compared to the conventional policy learning methods. On 
the other hand, as we are using supervised learning, action-preconditions are much 
easier to instruct than task-preconditions that require a precise knowledge about which 
preconditions should change in the whole run of the task execution. Another important 
advantage is that the cec’s are independent of the task performed depending only on 
individual actions. Therefore, we can use them to build different set of rules for 
different tasks by simply specifying different sequences. Therefore, the experience 
acquired during the learning of a task could be used to rapidly learn a policy for another 
task making this approach very suitable for multitask learning. 

Problem Formulation 
We now introduce the theoretical formulations of the concepts described before and 
how they are implemented in the learned method. 
We assume that the agent has a set of N sensors that measure some characteristics of the 
environment. The value of the senor i is called an observation oi. Each of these sensors 
is internally represented by the agent as a detector di that could take different values dij 
called conditions depending on the observation oi. The function that maps observations 
to conditions is called the perception function. 
A world state so is formed by the set of observations oi , i = 1..N. We call a prior world 
state so prior to the so composed by sensor observations before the action selection and a 
posterior world state so post to the so composed by sensor observations after the action 
execution.  



An internal agent state s, from now on a state, is constituted by a set of conditions dij, 
i=1..N, s={d1j, d2k,…,dNl}.  
Finally, we assume that at each moment the agent is capable of performing a well 
defined action ai corresponding to the set of all possible actions A.  

Example Application. Pushing Boxes. 
In order to illustrate the method developed we select a simple application where a 
wheeled robot is embedded in a simple world with white background that contains black 
squared boxes, all of the same size. The goal of the agent is to clear the path in front of 
its trajectory. It is important to note that this application was proposed only with 
illustration purposes but is not complex enough to elucidate all of the difficulties that 
the learning method could face in a real world application. 
The application involves six visual sensors configured as a grid taken form an image of 
the immediate front of the robot as shown in Figure 1 so={o1,o2,o3,o4,o5,o6}. The 
observation of each sensor consists in the mean grey scale of the pixels inside the 
corresponding cell in the grid. The boxes lie on the path of the robot in different 
positions.  
The perception function transforms each world state so into a state s={d1,d2,d3,d4,d5}. 
Each detector di could take value 0 when the observation is considered to be a white (or 
an empty space) or 1 when the observation is a black (or an occupied space). Figure 1 
also shows an example of these states for a particular situation.  
The goal states are represented as Sg={?, 0, ?, ?, ?}, where the sign “?” specifies that the 
detector could take any of its possible values. 
The actions available for the robot are enumerated.  
 

 
Figure 1. Example Application 

Perception Function 
The robot should be able to map a given value sensed from the environment to a 
predefined condition. This mapping from sensed values oi prior to conditions dij could be 
hand coded as previous knowledge, or, as it is done in this work, could be learned by 
the agent while interacting with the environment.  
The idea is that the teacher is more capable of giving a meaning for a sensed value (the 
“name” of the condition) than the specific range of the sensed values where this 



meaning should take place. For instance, suppose we have a cup with certain amount of 
sugar inside. The precise range of fullness and emptiness is difficult to be specified by 
the teacher but the meanings of fullness and emptiness are easier to provide.  
Besides, usually there could be different interpretations for one sensed value as 
considered in fuzzy logic. In our case we consider probabilities for all the conditions 
given an observed value and the one with highest probability is considered for the 
meaning of the observation (see figure 2). 
It is assumed that each condition has a normal probability distribution over the observed 
values where the mean and variance are estimated using the sampled mean and variance 
fed with the interpretations given by the instructor.  
Giving a formal background, for every condition dij of detector di we associate three 
statistics values: An estimation mij of the mean value of observations oi prior when 
condition dij is interpreted; an estimation varij of the variance of observations oi prior 
when dij is interpreted; and nij the number of times condition dij is the meaning of the 
observations oi prior. The statistic values related to detector dij are updated using a 
weighted average method in the following way, 
 

nij = nij + 1 

β = 1/nij 

mij = (1- β) mij + β oi 
prior 

varij = (1- β) varij + β (mij - oi 
prior)2 

 
 

 
Figure 2. Example of a situation experienced by the robot and how the perception function maps the observation o2 
into a value for the detector d2. In this case the probability for the condition d2=1 is higher than the condition d2=0 

given the observed value o2=90. 
 

Cause-effect Description 
We represent a cec using a tuple that consists in a subset Pa of state conditions that will 
describe the action-preconditions, an action ai from the set of actions A, and an 
estimation of the expected outcome eo produced by action ai in those states where Pa 
are present. 
 

cec → <Pa={dij,…,dml}, ai , eo> 
 



Expected Outcome 
The expected outcome eo is coded using a probabilistic approach commonly used in 
learning approaches for stochastic environments.  
As mentioned above, the changes are sufficient to evaluate the followed sequence; 
hence, evaluating only the changed condition is enough for the outcome evaluation.  
Nevertheless, there are some points that should be considered to code the eo. One of 
them is related to which of the changes are really causally produced and not due to other 
contingency factors. In the approach this is overcome by making use of the fact that the 
conditions that will (causally) change are included in the conditions that afford that 
change. As the conditions in Pa are completely instructed then those conditions are also 
instructed. In the approach develop so far we consider all the observed outcomes of the 
sensors related to the conditions in Pa, despite some of them may not change but afford 
other conditions changes.  
Another point to tackle is to establish how large should be a change to be considered as 
a change. Usually the outcomes thresholds are predefined by the designer. But, as we 
are considering complete instructions to produce desired changes, the observed 
outcomes after the instructions are indeed consistent with the desired outcomes and the 
thresholds could be derived from the expected outcomes estimations. A problem could 
arise when the estimators are updated when no instruction is given because the observed 
outcome could be inconsistent with the desire one and the updating could distort the eo. 
To avoid this problem the updating of the eo is only produced after an instruction is 
given or after verifying that the observed outcome is indeed consistent with the eo 
before the updating. 
Another important issue is how to code the eo. To perform a theoretically correct 
analysis of the outcomes we should consider a multivariate probability distribution that 
involves all the observed values for the different sensors analyzed. This multivariate 
probability distribution is very complicated to deal with. Instead we will consider a 
single variable probability distribution for each evaluated sensor. If at least one 
observation is not consistent with the expected outcome then the changes produced by 
the action are considered not to belong to the sequence. In this case we say that the 
agent get a surprise. Figure 3 illustrates a situation where the observed change is 
consistent with the expected one and a situation where a surprise takes place. 
We now formally define the expected outcome eo as a set of confidence intervals Ii, one 
for each oi post where i indicates the index of the condition that will change. The 
confidence intervals are built using a sampled mean mi and variance vari of the observed 
values oi post, the number of observations ni that fed the statistics, and the sampled 
distribution t in the following way,  
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n
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where 1

2/
−intα  is the value of the t distribution with p=α/2 and n-1 degrees of freedom.  

The statistics for the confidence intervals are fed by the observations obtained after the 
cec occurrence (instructed or dictated by a rule), 
 

ni = ni + 1 

β = 1/ni 

mi = (1- β) mi + β oi 
post 



vari = (1- β) vari + β (mi - oi 
post)2 

 
 
 
 

 
 

 
Figure 3. Surprise examples. 

Agent-Teacher Interaction 
The agent interacts with the environment guided by the rules coded so far and 
supervised by the teacher. When the agent fails to obtain the expected outcome or has 
little knowledge about the changes that should take place in the experienced situation, it 
asks for instruction. We assume that the teacher has complete knowledge of the policy 
to perform and the conditions that afford each desired change in the sequence. 
We now analyze briefly the cases where the agent receives instruction. For some 
situations experienced by the agent the cec’s that should be used to evaluate the desire 
change could have been experienced only a few times, so it is the followed sequence. 
This low confidence leads the agent to ask for instruction about which cec should take 
place to make sure that the proper sequence is followed. If the instructed cec 
corresponds to a different sequence then the agent generate the cec and update the 
policy generating new rules. Conversely, is the instructed cec belongs to the already 
coded sequence then the agent only updates the cec statistics. 



Another circumstance that needs instruction is when the agent has enough confidence in 
the estimators of the eo but fails to obtain the expected changes. This permits a robust 
management of the false surprises because the teacher will instruct the same inferred 
cec and no rules will be generated due to the sequence checking (see flow diagram 
below). 

Instructing cec’s 
After analyzing when an instruction of a cec is needed we will explain how this 
instruction could be done. One of the possibilities, not used in this work, is that the 
teacher instructs the agent only about the action to perform without specifying the 
action-preconditions Pa that avoids the aliasing. The agent should find those conditions 
that afford the changes using the conditions of the experienced states. Letting the agent 
to find the proper conditions that solve the aliasing is a very complicated issue and 
many constructivist techniques could be tried to tackle this problem [3]. Another option 
is that the teacher instructs the agent about the conditions that the agent should “pay 
attention to” in order to obtain the desired changes. If this instruction is incomplete then 
we fall in the same case as before, the agent should complete the action-preconditions 
using a constructivist technique.  
In the approach developed so far we let the agent receives instruction from a teacher 
that indicates which action to perform and the complete conditions the agent should pay 
attention to afford the observed changes.  
Future works will consider how to find the action-preconditions with less instruction 
while coding the policy. 
 

Policy Representation 
Before explaining how the rules are generated we will explain the rule representation 
used in this work. There are many different rule based representations, in this work we 
will use the one described in [8], a rule based policy representation that belongs to the 
type of Decision Lists [7]. Here we make a brief explanation of the representation. For a 
more detailed description see [8].  
As in the case of many rule representations, each rule is a function that maps all the 
states in a region Xr of the state space to a real value r: Xr→ℜ. The description of the 
regions Xr is done using subsets of state conditions X={dij,...,dkl}, k≤N, where N is the 
number of conditions in s. Each X describes a subspace of the state space. Figure 4 
shows three subspaces for a simple discrete function of two variables and three regions 
description marked in grey.  



 

            

        0 4 5  

        2 2 2 Xi={d12} 

        0 6 5  

 d21 d22 d23         

d11 0 4 5     0 4 5  

d12 2 2 2     2 2 2 Xk={d21} 

d13 0 6 5     0 6 5  

            

        0 4 5 Xh={d11, d22} 

        2 2 2  

        0 6 5  
 

Figure 4. Subspaces description. 
 
One of the most distinguished features of the used representation is the way the regions 
Xr are described allowing a more compact representation of the knowledge. Each Xr is 
described using an ordered list of subspaces Xi where the index i denotes the position in 
the list. Each Xi in the list has a rule associated ri. For a rule ri associated to subspace Xi, 
the region Xri represented by the rule is given by: 
 

Xri = Xi – (Xi-1 ∪… ∪X1) 
 
being X1 the first subspace in the list. For instance, figure 5 illustrates one possible Xr  
for the exampled discrete function in figure 1. In this case the rule maps the region Xr to 
the inferred value 0, r(Xr)=0. 
 

           

0 4 5  0 4 5  0 4 5 

2 2 2  2 2 2  2 2 2 

0 6 5  0 6 5  0 6 5 

X1={d21}  X2={d12}  Xr=X1-X2 
 

Figure 5. Rule region example. 
 
Finally, table 1 shows three possible rule representations of the exampled function to 
elucidate how a decision list could lead to a more compact description. Table 1A shows 
a conventional rule representation where the subspace X associated to a rule is indeed 
the rule space Xr. Table 1B shows one possible rule representations using decision lists. 
Note how the amount of information needed for the representation decrease with respect 
to 1A. Table 1C reveals how this representation could lead to an even smaller set of 



ordered subspaces by decreasing the precision requirements for the performed function 
approximation. In this case an approximation error up to 1 is allowed. 
 

Table 1. Examples of a rule representation for the discrete function in Figure XX. 

A- Not ordered description δ=0 B- Ordered with δ=0 C- Ordered with δ=1 

r Xr Points r X Points r X Points 

r1(x)=0 {d11, d21}  r1(x)=2 {d12}  r1(x)=2 {d12}  

r2(x)=4 {d11, d22}  r2(x)=0 {d21}  r2(x)=0 {d21}  

r3(x)=5 {d11, d23}  r3(x)=4 {d11, d21}  r3(x)=5 {Ø}  

r4(x)=2 {d12}  r4(x)=5 {d23}     

r5(x)=0 {d13, d21}  r5(x)=6 {d22}     

r6(x)=6 {d13, d22}        

r7(x)=5 {d13, d23}        
 
The main concern of the representation learning methods is to find the least information 
needed to have an accurate enough approximation of the represented function. In the 
case of the methods that use decision lists this concern is focused in the way these rules 
are generated and ordered. It is clear that for applications where the number of possible 
conditions is large, the number of possible rules and ordering increase exponentially and 
finding the optimal set of rules is a very tough task. The method propose in this work 
generates and arrange the rules efficiently using the cec’s.  
Having introduced the rule representation used we now define a rule r in the context of 
this work as a set of conditions PT called task-preconditions that describes the rule 
domain Xr and an action ai. Each rule is labelled with the index of the associated cec, 
 

ricec → < PT={dmj, dkl,…,dml}, ai > 

Rule Generation 
To illustrate how the rule generation takes place we split the explanation into two 
different processes. The first one consists in how a conventional rule representation of 
the policy (not a DL) could be generated from a sequence of cec’s, and the second one 
is about how the rules already generated could be arranged in a DL leading to a more 
compact and intuitive representation. Finally, we show how both methods are combined 
in one procedure.  
Firstly, we assume that a complete sequence of cec’s to the goal from a given situation 
is already instructed and learned. With this sequence of cec’s the rules are generated 
using the Pa of the involved cec’s. In order to show how the rules are generated first 
note that each rule should be applied in those situations where the whole sequence 
should follow. With this in mind note that the occurrence of the immediate cec in the 
sequence is assured after checking the existence of the Pa of the cec in the state, and the 
feasibility of the sequence is guaranteed by checking the existence of all the conditions 
Pa needed for future changes not contemplated in the Pa of the immediate cec. In order 
to generate the rules that permit the checking of the previous conditions (that in 



conjunction constitutes the PT’s coded in the rules) they are generated by back-
propagating all the conditions departing from the last instructed cec and generating a 
rule for each visited cec by accumulating the Pa’s. Figure 6 shows an example of how 
this is done for a particular sequence in the Pushing Boxes (PB) application. 
 

 
 

Figure 6. Rule generation of a not ordered set of rules. 
 
The rules obtained in figure 6  could be represented in a DL in such a way that the 
amount of information needed is decreased while producing a more intuitive 
representation of the sequence since the order permits following the sequence of cec’s 
as a cascade execution of rules, eliminating “restrictions” that prevent former changes in 
the sequence to occur. Figure 7 illustrates how this is performed in the previous 
example. 
 

 
Figure 7. Conversion from not ordered to ordered set of rules. 

 
As it is observed in figure 7 the last rule of the DL covers the entire state space. In 
general, if we code the policy using a DL the inference not only is done in the regions 
where the instructed sequences take place but also in the rest of the state space where 
the DL permits to generate hypothesis about the value to infer depending on the 
subspaces Xi considered for each rule. Nevertheless, this does not imply an inference 
distortion in the Xr, the inference properties in those regions remains the same.   



Finally, we present a method that combines the previously explained procedures 
generating rules from cec’s and representing them in a DL at the same time. 
Now we will generate the subspaces Xi instead of Xr. The subspaces Xi are generated 
from bottom to top departing from the goal state. A subspace related to a cec is 
generated considering all the conditions needed to afford the immediate and future 
changes and avoiding all the conditions in the sequence that have already changed (from 
the current cec to the first in the sequence). Note that the ones that have changed before 
the current cec are the eliminated restrictions that permit the sequence to take place. A 
cascade of restriction elimination is produced with the DL while decreasing the amount 
of info needed. Figure 8 illustrates how this is performed in the example considered 
before. 
 
 

 
 

Figure 8. Rule generation ordered set of rules. 
 
We have explained how to generate rules given the whole sequence of cec’s. In general 
it is not necessary to have explicitly specified the whole sequence of cec’s to generate 
rules during the policy learning. This is because many sequences have steps in common 
when approaching to the goal. Thus, it is sufficient to produce rules until a good 
sequence is reached and then continue with the already coded rules to the goal. The 
cec’s are then instructed and placed in order but only when there is a “gap” in the 
sequence, until a good rule is applied. Then, the new rules are generated using the 
instructed cec’s and linked to sequence by back-propagating the conditions of the first 
good rule in the following sequence and forward-propagating  the conditions that have 
changed in the new instructed cec’s decreasing even more the amount of information 
needed for the policy description. This process is illustrated in figure 9 using the same 
sequence presented before making the agent experiences a situation with no good 
sequence coding. 
 



 
Figure 9. Rule generation using one instructed cec and already existing rules. 

Learning Method Delineation 
In this section we compile all the procedures explained before in a general learning 
method, which flow diagram is presented in figure 10.  



 
Figure 10. General flow diagram of the method. 

 

Initialization 
As the policy should indicate which action to perform in any state of the state space, the 
agent begins the learning process with a rule that assumes all the states as a goal state 
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and indicating the agent to perform no action (NA). The rule is evaluated by a cec that 
codes indeed the goal states, leading to surprises in all the states that require some 
actions to reach the goal. Therefore, the set of rules will initially contain one rule and so 
it is the set of cec’s, 
 

R = { r0 → <{?,?,?,?,?,?}, NA, ic0 > } 
  

C = {c0 → < {?,0,?,?,?,?}, NA, eo = {I2}>} 
 
For the perception function, the mean values mij associated to each condition dij are set 
equally spaced in the entire range of the sensor oi. The variances varij are initialized to a 
high value and the nij to 1.  

Sense Prior 
Get the sensed value oi for each detector di and form the soprior . 

Perception 
Map each sensed value oi prior into a condition dij using the perception function and form 
the state s={d1j, d2k,…,dNl}, where N is the number of detectors and sensors. 

Rule Inference 
Select the upper subspace Xi that involves the state s and extract the rule rw associated to 
this subspace, in conjunction with its cecw. 

Confidence Evaluation 
IF the number of samples ni in the statistics stored in the eo of the cecw is under a critic 
number nc then it is considered that there in no enough confidence in the followed 
sequence and in the estimators to evaluate the observed outcome and the agent needs 
instruction. 

Instruction 
The agent receives instruction about the action to perform ai and the conditions dij that 
afford the desired changes. 

Sense Posterior 
Get the sensed value oi and form the sopost 

cec=cecw 
In order to check if the proper sequence is taking place when there is little confidence 
about the inferred cecw and its estimations of the eo, the agent checks the instructed cec 
that indeed belong to the desire sequence, against the inferred cecw. 

cec exists 
The existence of the instructed cec in the data base of cec’s (the permanent one, not the 
temporal ordered list which is different) is verified. If it does not exist then it is 
generated and appended to the temporal ordered list of instructed cec’s. 



Surprise Evaluation 
Evaluate the consistency between the observed outcome sopost and the eo of cecw. If 
there is an inconsistency then the agent has a surprise and asks for instruction. 

Generate cec 
Using the instructions given by the teacher about Pa and a form a new cec, 
 

cec → < Pa, a, eo> 
 

where the eo contains the statistics (mean, variance and number of samples) to form the 
confidence interval Ii for each of the sensor values oi after performing the action a. This 
statistics are initialized in the same way as in the Initialization step (see above). 

Append Generated cec 
Append the new generated cec to the temporal ordered list of instructed cec’s that will 
be used to generate the rules (see section Rule Generation above). If there is no list, then 
it is generated using the instructed cec as the only element. 

Generate Rules 
The rule generation take place when a proper sequence is find, i.e., when there is no 
surprise after performing an action or when the instructed cec coincides with the 
inferred cec.  
If there is no cec’s in the temporal ordered list of instructed cec’s then no rule is 
generated, otherwise the rule generation take place as explained in the section Rule 
Generation and then the ordered list of cec’s is cleared up. 

Update 
The update process takes place in two structures: 

a) Update Perception Function. For every condition dij of the cec update the 
statistics of the perception function using soprior.  

b) Update cec eo. Using sopost update the statistics of the eo estimators. 

Conclusions 

Complete vs Incomplete Instruction 
With the assumed complete instruction of the Pa’s, if we opt to generate a conventional 
rule representation instead of an ordered list, the surprise could only take place when 
there is no rule applicable, otherwise the desired changes will always occur because all 
the conditions to afford it are instructed (in some cases there could be a surprise indeed 
despite the completeness of the instruction when there is a contingency that prevent the 
desired changes to occur. However these cases are solved in the same way as 
incomplete instruction explained below). Nevertheless, if we code the policy using a 
decision list the inference not only is done in the regions where the instructed sequences 
take place but also in the rest of the state space where the DL permits to generate 
hypothesis about the value to infer depending on the subspaces Xi considered for each 
rule (see figure 7 as an example). These hypotheses could be wrong and then a surprise 
is possible despite of the complete instruction, actually the case considered in the 
presented method.  



On the other hand, the case of a teacher only capable of giving incomplete instructions 
is more probable in complex applications where the conditions responsible for the 
changes are not well known by the teacher and the causal changes are more difficult to 
identify. In this case the cec’s should be generated and restructured constantly using 
some constructive learning approach until the conditions that afford the causal changes 
are correctly recognized. Thus, when incomplete instruction with a DL is used, the 
surprise could be originated by even a bad hypothesis or a bad sequence resulted from 
the incomplete instruction.  
Another point to analyze is that the rules generated with incomplete cec’s are also 
incomplete and every cec updating should involve the updating of the rules related to it.  
Finally, another case to take into account is when despite the hypothesis produced by a 
decision list is wrong the observed changes is consistent with the eo. This happens when 
the sequence is incorrect but the cec inferred could indeed occur. Despite that this is 
possible it is not likely to occur because of the sequence checking when the confidence 
in the estimations is low. This permits a sequence correction in almost all the rules in 
the list. Nevertheless, to assure a complete convergence a sequence checking should be 
performed after a no surprise is obtained. This could be done explicitly by the teacher or 
implicitly by, for instance, attaching to each rule an estimation of the steps to the goal 
from that point in the sequence and performing an analysis similar to the cumulative 
reward of reinforcement learning; if the observed steps to the sequence are not 
consistent with the estimated step, then the sequence is wrong and the agent should be 
instructed.  

Cognition and Learning: The OAC Concept 
Most of the learning to act approaches are based in human learning and cognition 
capabilities. Despite these approaches present many differences among them, they all 
establish a direct relation between perceptions of the agent, coded mainly as states, and 
actions.  In contrast to the amount of approaches developed, a few attempts were done 
to create a common framework that permits to consistently relate the learning to act 
approaches with the human cognition capabilities for learning and acting. One of these 
attempts is the concept of object-action complexes (OACs) [11] that has been evaluated 
and developed by the European PACO+ consortium [12]. Briefly, the OAC concept 
claims that the world contains undistinguished “things” meaningless for the agent that 
become meaningful “objects” through actions and tasks, where the objects are described 
by the properties relevant for the fulfilment of the final desired outcome through the 
action.  
We believe that from all the possible approaches that perform a state-action linkage in 
learning to act, the explicit coding of the world conditions and actions through rules and 
cause-effects presented above is one of the most suitable for a first insight in the study 
and refinement of the OAC concept. One of the reason is that the elements of these 
structures could be directly associated with the main elements of the OACs concept 
formulated so far. Another reason is that they permit a direct association with the human 
cognition capabilities through the explicit declaration of the abstract meaning of the 
conditions of the world, and hence a better understanding and a faster evaluation of the 
results.  
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