
"Learning Rules from
Cause-Effects Explanations"

RRI I

Institut de Robòtica i Informàtica Industrial

Alejandro Agostini
Enric Celaya
Carme Torras
Florentin Wörgötter

May 2008

IRI-DT 0408

Technical Report

Learning Rules from Cause-Effects Explanations

A. Agostini, E. Celaya, C. Torras, F. Wörgötter

Abstract. In this work we propose a learning system to learn on-line an action policy coded in rules using
natural human instructions about cause-effect relations in currently observed situations. The instructions
only on currently observed situations avoid complicated descriptions of long-run action sequences and
complete world dynamics. Human interaction is only required if the system fails to obtain the expected
results when applying a rule, or fails to resolve the task with the knowledge acquired so far.

Index
Introduction .. 2

Policy and Sequences ... 2
Aliasing and Completeness .. 3
Motivations... 3
Learning Action and Task-Preconditions ... 4
Advantages of using cec ... 4

Problem Formulation.. 4
Example Application. Pushing Boxes. ... 5

Perception Function.. 5
Cause-effect Description .. 6

Expected Outcome.. 7
Agent-Teacher Interaction.. 8

Instructing cec’s.. 9
Policy Representation... 9
Rule Generation.. 11
Learning Method Delineation... 14
Conclusions .. 17

Complete vs Incomplete Instruction... 17
Cognition and Learning: The OAC Concept.. 18

References .. 18

Introduction
In this work we are facing the problem of making a robot learns to perform tasks in the
real world, a problem that have been pursued for many years with different degrees of
success. A robot capable of acting in the world should perform a good action decision in
accordance to its goals. This decision could be performed using planning techniques [1]
that find optimal sequence to the goal using the model of the world, or by learning a
function that directly maps situation to actions, usually known as a policy function [2],
avoiding the necessity of a permanent sequence finding. Our work proposes a hybrid
approach that learns an action policy through instructed sequences to the goal using a
special coding of the model of the world based on cause-effect relations.
There are two learning paradigms involved in learning a policy: a behavioural learning
paradigm used by the agent to learn which action to perform in each experienced
situation, and a representational learning paradigm that generates the structure where
the policy is coded. A couple of well known behavioural learning paradigms are the
supervised learning paradigm, where a teacher explicitly instructs the robot about the
action to take, and the Reinforcement Learning paradigm (RL) [2] where the robots is
implicitly guided by a reward function associated to the actions preformed. On the other
hand, there are many representational learning paradigm applied in policy
representation like induction trees [3], Feature Based [4], Rule Based [3],[5],[6], Neural
Networks [3].
In this contribution we combine supervised learning with a policy representation based
on rules. A rule based representation permits an explicit declaration of the abstract
meaning of the perceptions of the agent making easier the interaction teacher-agent
needed in supervised learning, and a better understanding of the results. In particular,
from the possible rule based representations, the one used in this work is an ordered set
of rules of the type of Decision Lists [7] that permits a more compact knowledge
representation and a better generalization [8].
One of the motivations of this work was the development of a method for fast policy
learning using supervised learning. We consider that there are many tasks where an
explicit instruction leads to faster learning convergence and lesser memory requirements
than in RL. One of the reasons is that the convergence of RL is only assured by
repeatedly experiencing the same (representative) situations and by an exhaustive
exploration of the state space. In the method develop in this work the policy is learned
rapidly by guiding the agent through the space of the searched policy, avoiding the
tedious exploration needed in RL. The policy is derived by merging situations that
require the same sequences of cause-effects.

Policy and Sequences
In order to show how the policy is coded for supervised learning we revise briefly the
background of an agent acting in the environment. The agent follows a sequence of
situations guided by the coded policy so far. The transition from one situation to the
other depends on the action taken and on the probability of transition from the current
situations to all the other situations. From the transitions perspective, the policy could
be considered as a function that permits to follow a sequence of transitions to the goal.
In this sequence the transitions that take place could be summarized as a succession of
changes that transforms the current situation into a goal situation. Therefore, from a
representational point of view, a policy could be also considered as a mapping from
situations to sequences of changes. It should permit to select the proper sequence among

all the possible sequences, or equally, to select the proper change among all the feasible
changes that could take place in a situation.
For each situation, the policy coding should involve the conditions that permit the
action selection that leads to the needed change in the sequence. But the desired changes
will only take place if the conditions that afford those changes are involved in the
situation. Therefore, the policy should contemplate both conditions. The former
preconditions will be denoted as task-preconditions and serve to select the change from
all the possible changes, and the later ones as action-preconditions, that permit the
selected change to occur. If one of those preconditions is wrongly considered then the
coded policy leads to a bad sequence.

Aliasing and Completeness
If the conditions coded in the policy are not correct, some situations merged together in
a rule, hence requiring the same sequence, would lead to different changes producing
what is known as aliasing. In the case of aliasing we will denote that the agent has an
incomplete representation with respect to the desired outcome. In order to detect the
aliasing the agent needs to evaluate every obtained change and compares it with the
desire change that should take place in the sequence. We denote the desire change as the
expected outcome (eo) and will be estimated during the learning with the help of the
instructor. The agent improves the eo estimation while learning and every observed
outcome is evaluated by checking the consistency with respect to it.
In this work we assume that all the perceptions of the agent fulfil the Markov property
[2] with respect to the changes. Therefore, there will be no aliasing if all the perceptions
are considered for the task and action-preconditions. Nevertheless, we could extend our
previous statements to non Markov perceptions by considering also past perceptions as
part of the current situation (see [9] for an illustration).

Motivations
One of the arguments that sustain the method developed in this work relies on the fact
that a particular change could take place in many different sequences. Usually, the
learning approaches attach to the policy coding the expected outcome to evaluate the
completeness of the representation with respect to the desired outcomes. This implies
that the rate of convergence of the expected outcome estimators depends on the
frequency experiencing of situations with the same task-preconditions. Nevertheless,
many situations that require different task-preconditions may involve the same action-
preconditions as the needed change is the same despite the sequence is different.
Separating the coding of action-preconditions from the policy allows a rapidly
convergence of the eo because the experiencing rate of action-preconditions is much
higher than the experiencing rate of the task-preconditions.
Another motivation for the development of the presented method arises from the
analysis of the learning behaviour of the children in their early stages. The children
explore the world by experimenting with objects and their bodies performing different
actions like introducing objects into containers or narrow places, throwing objects,
touching, pushing, hiding, etc. Doing this they learn how to perform individual actions
and how the world reacts to them, i.e. the cause-effect behaviour of the world. Once the
cause-effects are learned it is much easier to teach them how to perform a task by
indicating the corresponding sequence of cause-effects. This is because it is not
necessary to teach them how to perform each individual action and produce each
individual changes of the sequence from scratch. These observations are sustained by
some enunciations of the theory of Piaget's cognitive development [10] who claims that

the children gradually acquire knowledge of the cause-effects relations trough circular
reactions where actions and processes are repeatedly executed and sequenced to reach
goals.

Learning Action and Task-Preconditions
As mentioned before, in order to code the policy, both action and task-preconditions
should be correctly considered to produce the desired changes in the sequence. There
are different ways of finding the proper action and task-preconditions. The method
proposed in this work lets the agent learns action-preconditions by experiencing the
world using the help of a teacher and the task preconditions are derived from sequences
of action-preconditions in accordance to a task. The agent codes the action-
preconditions in a structure called cause-effect couples (cec) that involves the action-
preconditions and the expected outcome needed to evaluate completeness. The sequence
of cec’s is used to produce the coding of the policy that consists in a set of rules that
merge situations that require the same sequence. The sequence is uniquely coded in
rules by linking the cec’s using the action-preconditions to generate the task-
preconditions. Then, the task-preconditions “keep track” of the detectors that will be
needed for future changes affordance.
To assure continuity in the agent behaviour the experiencing and learning of cec and
rules are spread along a task dependent performance. The selection of cec is dictated by
the coded rules so far and supervised by the teacher. The teacher instructions serve to
update the existing cec’s and to generate those cec’s needed in the sequence and not
known by the agent.

Advantages of using cec
Coding and evaluating the policy using the cec’s has many advantages. As mentioned,
the speed of convergence of the eo is high and the amount of information needed for the
policy learning is reduced compared to the conventional policy learning methods. On
the other hand, as we are using supervised learning, action-preconditions are much
easier to instruct than task-preconditions that require a precise knowledge about which
preconditions should change in the whole run of the task execution. Another important
advantage is that the cec’s are independent of the task performed depending only on
individual actions. Therefore, we can use them to build different set of rules for
different tasks by simply specifying different sequences. Therefore, the experience
acquired during the learning of a task could be used to rapidly learn a policy for another
task making this approach very suitable for multitask learning.

Problem Formulation
We now introduce the theoretical formulations of the concepts described before and
how they are implemented in the learned method.
We assume that the agent has a set of N sensors that measure some characteristics of the
environment. The value of the senor i is called an observation oi. Each of these sensors
is internally represented by the agent as a detector di that could take different values dij
called conditions depending on the observation oi. The function that maps observations
to conditions is called the perception function.
A world state so is formed by the set of observations oi , i = 1..N. We call a prior world
state so prior to the so composed by sensor observations before the action selection and a
posterior world state so post to the so composed by sensor observations after the action
execution.

An internal agent state s, from now on a state, is constituted by a set of conditions dij,
i=1..N, s={d1j, d2k,…,dNl}.
Finally, we assume that at each moment the agent is capable of performing a well
defined action ai corresponding to the set of all possible actions A.

Example Application. Pushing Boxes.
In order to illustrate the method developed we select a simple application where a
wheeled robot is embedded in a simple world with white background that contains black
squared boxes, all of the same size. The goal of the agent is to clear the path in front of
its trajectory. It is important to note that this application was proposed only with
illustration purposes but is not complex enough to elucidate all of the difficulties that
the learning method could face in a real world application.
The application involves six visual sensors configured as a grid taken form an image of
the immediate front of the robot as shown in Figure 1 so={o1,o2,o3,o4,o5,o6}. The
observation of each sensor consists in the mean grey scale of the pixels inside the
corresponding cell in the grid. The boxes lie on the path of the robot in different
positions.
The perception function transforms each world state so into a state s={d1,d2,d3,d4,d5}.
Each detector di could take value 0 when the observation is considered to be a white (or
an empty space) or 1 when the observation is a black (or an occupied space). Figure 1
also shows an example of these states for a particular situation.
The goal states are represented as Sg={?, 0, ?, ?, ?}, where the sign “?” specifies that the
detector could take any of its possible values.
The actions available for the robot are enumerated.

Figure 1. Example Application

Perception Function
The robot should be able to map a given value sensed from the environment to a
predefined condition. This mapping from sensed values oi prior to conditions dij could be
hand coded as previous knowledge, or, as it is done in this work, could be learned by
the agent while interacting with the environment.
The idea is that the teacher is more capable of giving a meaning for a sensed value (the
“name” of the condition) than the specific range of the sensed values where this

meaning should take place. For instance, suppose we have a cup with certain amount of
sugar inside. The precise range of fullness and emptiness is difficult to be specified by
the teacher but the meanings of fullness and emptiness are easier to provide.
Besides, usually there could be different interpretations for one sensed value as
considered in fuzzy logic. In our case we consider probabilities for all the conditions
given an observed value and the one with highest probability is considered for the
meaning of the observation (see figure 2).
It is assumed that each condition has a normal probability distribution over the observed
values where the mean and variance are estimated using the sampled mean and variance
fed with the interpretations given by the instructor.
Giving a formal background, for every condition dij of detector di we associate three
statistics values: An estimation mij of the mean value of observations oi prior when
condition dij is interpreted; an estimation varij of the variance of observations oi prior
when dij is interpreted; and nij the number of times condition dij is the meaning of the
observations oi prior. The statistic values related to detector dij are updated using a
weighted average method in the following way,

nij = nij + 1

β = 1/nij

mij = (1- β) mij + β oi
prior

varij = (1- β) varij + β (mij - oi
prior)2

Figure 2. Example of a situation experienced by the robot and how the perception function maps the observation o2
into a value for the detector d2. In this case the probability for the condition d2=1 is higher than the condition d2=0

given the observed value o2=90.

Cause-effect Description
We represent a cec using a tuple that consists in a subset Pa of state conditions that will
describe the action-preconditions, an action ai from the set of actions A, and an
estimation of the expected outcome eo produced by action ai in those states where Pa
are present.

cec → <Pa={dij,…,dml}, ai , eo>

Expected Outcome
The expected outcome eo is coded using a probabilistic approach commonly used in
learning approaches for stochastic environments.
As mentioned above, the changes are sufficient to evaluate the followed sequence;
hence, evaluating only the changed condition is enough for the outcome evaluation.
Nevertheless, there are some points that should be considered to code the eo. One of
them is related to which of the changes are really causally produced and not due to other
contingency factors. In the approach this is overcome by making use of the fact that the
conditions that will (causally) change are included in the conditions that afford that
change. As the conditions in Pa are completely instructed then those conditions are also
instructed. In the approach develop so far we consider all the observed outcomes of the
sensors related to the conditions in Pa, despite some of them may not change but afford
other conditions changes.
Another point to tackle is to establish how large should be a change to be considered as
a change. Usually the outcomes thresholds are predefined by the designer. But, as we
are considering complete instructions to produce desired changes, the observed
outcomes after the instructions are indeed consistent with the desired outcomes and the
thresholds could be derived from the expected outcomes estimations. A problem could
arise when the estimators are updated when no instruction is given because the observed
outcome could be inconsistent with the desire one and the updating could distort the eo.
To avoid this problem the updating of the eo is only produced after an instruction is
given or after verifying that the observed outcome is indeed consistent with the eo
before the updating.
Another important issue is how to code the eo. To perform a theoretically correct
analysis of the outcomes we should consider a multivariate probability distribution that
involves all the observed values for the different sensors analyzed. This multivariate
probability distribution is very complicated to deal with. Instead we will consider a
single variable probability distribution for each evaluated sensor. If at least one
observation is not consistent with the expected outcome then the changes produced by
the action are considered not to belong to the sequence. In this case we say that the
agent get a surprise. Figure 3 illustrates a situation where the observed change is
consistent with the expected one and a situation where a surprise takes place.
We now formally define the expected outcome eo as a set of confidence intervals Ii, one
for each oi post where i indicates the index of the condition that will change. The
confidence intervals are built using a sampled mean mi and variance vari of the observed
values oi post, the number of observations ni that fed the statistics, and the sampled
distribution t in the following way,

[]i
n

ii
n

ii
ii tmtmI var,var 1

2/
1

2/
−− +−= αα = [Ii

min, Ii
max]

where 1

2/
−intα is the value of the t distribution with p=α/2 and n-1 degrees of freedom.

The statistics for the confidence intervals are fed by the observations obtained after the
cec occurrence (instructed or dictated by a rule),

ni = ni + 1

β = 1/ni

mi = (1- β) mi + β oi
post

vari = (1- β) vari + β (mi - oi
post)2

Figure 3. Surprise examples.

Agent-Teacher Interaction
The agent interacts with the environment guided by the rules coded so far and
supervised by the teacher. When the agent fails to obtain the expected outcome or has
little knowledge about the changes that should take place in the experienced situation, it
asks for instruction. We assume that the teacher has complete knowledge of the policy
to perform and the conditions that afford each desired change in the sequence.
We now analyze briefly the cases where the agent receives instruction. For some
situations experienced by the agent the cec’s that should be used to evaluate the desire
change could have been experienced only a few times, so it is the followed sequence.
This low confidence leads the agent to ask for instruction about which cec should take
place to make sure that the proper sequence is followed. If the instructed cec
corresponds to a different sequence then the agent generate the cec and update the
policy generating new rules. Conversely, is the instructed cec belongs to the already
coded sequence then the agent only updates the cec statistics.

Another circumstance that needs instruction is when the agent has enough confidence in
the estimators of the eo but fails to obtain the expected changes. This permits a robust
management of the false surprises because the teacher will instruct the same inferred
cec and no rules will be generated due to the sequence checking (see flow diagram
below).

Instructing cec’s
After analyzing when an instruction of a cec is needed we will explain how this
instruction could be done. One of the possibilities, not used in this work, is that the
teacher instructs the agent only about the action to perform without specifying the
action-preconditions Pa that avoids the aliasing. The agent should find those conditions
that afford the changes using the conditions of the experienced states. Letting the agent
to find the proper conditions that solve the aliasing is a very complicated issue and
many constructivist techniques could be tried to tackle this problem [3]. Another option
is that the teacher instructs the agent about the conditions that the agent should “pay
attention to” in order to obtain the desired changes. If this instruction is incomplete then
we fall in the same case as before, the agent should complete the action-preconditions
using a constructivist technique.
In the approach developed so far we let the agent receives instruction from a teacher
that indicates which action to perform and the complete conditions the agent should pay
attention to afford the observed changes.
Future works will consider how to find the action-preconditions with less instruction
while coding the policy.

Policy Representation
Before explaining how the rules are generated we will explain the rule representation
used in this work. There are many different rule based representations, in this work we
will use the one described in [8], a rule based policy representation that belongs to the
type of Decision Lists [7]. Here we make a brief explanation of the representation. For a
more detailed description see [8].
As in the case of many rule representations, each rule is a function that maps all the
states in a region Xr of the state space to a real value r: Xr→ℜ. The description of the
regions Xr is done using subsets of state conditions X={dij,...,dkl}, k≤N, where N is the
number of conditions in s. Each X describes a subspace of the state space. Figure 4
shows three subspaces for a simple discrete function of two variables and three regions
description marked in grey.

 0 4 5

 2 2 2 Xi={d12}

 0 6 5

 d21 d22 d23

d11 0 4 5 0 4 5

d12 2 2 2 2 2 2 Xk={d21}

d13 0 6 5 0 6 5

 0 4 5 Xh={d11, d22}

 2 2 2

 0 6 5

Figure 4. Subspaces description.

One of the most distinguished features of the used representation is the way the regions
Xr are described allowing a more compact representation of the knowledge. Each Xr is
described using an ordered list of subspaces Xi where the index i denotes the position in
the list. Each Xi in the list has a rule associated ri. For a rule ri associated to subspace Xi,
the region Xri represented by the rule is given by:

Xri = Xi – (Xi-1 ∪… ∪X1)

being X1 the first subspace in the list. For instance, figure 5 illustrates one possible Xr
for the exampled discrete function in figure 1. In this case the rule maps the region Xr to
the inferred value 0, r(Xr)=0.

0 4 5 0 4 5 0 4 5

2 2 2 2 2 2 2 2 2

0 6 5 0 6 5 0 6 5

X1={d21} X2={d12} Xr=X1-X2

Figure 5. Rule region example.

Finally, table 1 shows three possible rule representations of the exampled function to
elucidate how a decision list could lead to a more compact description. Table 1A shows
a conventional rule representation where the subspace X associated to a rule is indeed
the rule space Xr. Table 1B shows one possible rule representations using decision lists.
Note how the amount of information needed for the representation decrease with respect
to 1A. Table 1C reveals how this representation could lead to an even smaller set of

ordered subspaces by decreasing the precision requirements for the performed function
approximation. In this case an approximation error up to 1 is allowed.

Table 1. Examples of a rule representation for the discrete function in Figure XX.

A- Not ordered description δ=0 B- Ordered with δ=0 C- Ordered with δ=1

r Xr Points r X Points r X Points

r1(x)=0 {d11, d21} r1(x)=2 {d12} r1(x)=2 {d12}

r2(x)=4 {d11, d22} r2(x)=0 {d21} r2(x)=0 {d21}

r3(x)=5 {d11, d23} r3(x)=4 {d11, d21} r3(x)=5 {Ø}

r4(x)=2 {d12} r4(x)=5 {d23}

r5(x)=0 {d13, d21} r5(x)=6 {d22}

r6(x)=6 {d13, d22}

r7(x)=5 {d13, d23}

The main concern of the representation learning methods is to find the least information
needed to have an accurate enough approximation of the represented function. In the
case of the methods that use decision lists this concern is focused in the way these rules
are generated and ordered. It is clear that for applications where the number of possible
conditions is large, the number of possible rules and ordering increase exponentially and
finding the optimal set of rules is a very tough task. The method propose in this work
generates and arrange the rules efficiently using the cec’s.
Having introduced the rule representation used we now define a rule r in the context of
this work as a set of conditions PT called task-preconditions that describes the rule
domain Xr and an action ai. Each rule is labelled with the index of the associated cec,

ricec → < PT={dmj, dkl,…,dml}, ai >

Rule Generation
To illustrate how the rule generation takes place we split the explanation into two
different processes. The first one consists in how a conventional rule representation of
the policy (not a DL) could be generated from a sequence of cec’s, and the second one
is about how the rules already generated could be arranged in a DL leading to a more
compact and intuitive representation. Finally, we show how both methods are combined
in one procedure.
Firstly, we assume that a complete sequence of cec’s to the goal from a given situation
is already instructed and learned. With this sequence of cec’s the rules are generated
using the Pa of the involved cec’s. In order to show how the rules are generated first
note that each rule should be applied in those situations where the whole sequence
should follow. With this in mind note that the occurrence of the immediate cec in the
sequence is assured after checking the existence of the Pa of the cec in the state, and the
feasibility of the sequence is guaranteed by checking the existence of all the conditions
Pa needed for future changes not contemplated in the Pa of the immediate cec. In order
to generate the rules that permit the checking of the previous conditions (that in

conjunction constitutes the PT’s coded in the rules) they are generated by back-
propagating all the conditions departing from the last instructed cec and generating a
rule for each visited cec by accumulating the Pa’s. Figure 6 shows an example of how
this is done for a particular sequence in the Pushing Boxes (PB) application.

Figure 6. Rule generation of a not ordered set of rules.

The rules obtained in figure 6 could be represented in a DL in such a way that the
amount of information needed is decreased while producing a more intuitive
representation of the sequence since the order permits following the sequence of cec’s
as a cascade execution of rules, eliminating “restrictions” that prevent former changes in
the sequence to occur. Figure 7 illustrates how this is performed in the previous
example.

Figure 7. Conversion from not ordered to ordered set of rules.

As it is observed in figure 7 the last rule of the DL covers the entire state space. In
general, if we code the policy using a DL the inference not only is done in the regions
where the instructed sequences take place but also in the rest of the state space where
the DL permits to generate hypothesis about the value to infer depending on the
subspaces Xi considered for each rule. Nevertheless, this does not imply an inference
distortion in the Xr, the inference properties in those regions remains the same.

Finally, we present a method that combines the previously explained procedures
generating rules from cec’s and representing them in a DL at the same time.
Now we will generate the subspaces Xi instead of Xr. The subspaces Xi are generated
from bottom to top departing from the goal state. A subspace related to a cec is
generated considering all the conditions needed to afford the immediate and future
changes and avoiding all the conditions in the sequence that have already changed (from
the current cec to the first in the sequence). Note that the ones that have changed before
the current cec are the eliminated restrictions that permit the sequence to take place. A
cascade of restriction elimination is produced with the DL while decreasing the amount
of info needed. Figure 8 illustrates how this is performed in the example considered
before.

Figure 8. Rule generation ordered set of rules.

We have explained how to generate rules given the whole sequence of cec’s. In general
it is not necessary to have explicitly specified the whole sequence of cec’s to generate
rules during the policy learning. This is because many sequences have steps in common
when approaching to the goal. Thus, it is sufficient to produce rules until a good
sequence is reached and then continue with the already coded rules to the goal. The
cec’s are then instructed and placed in order but only when there is a “gap” in the
sequence, until a good rule is applied. Then, the new rules are generated using the
instructed cec’s and linked to sequence by back-propagating the conditions of the first
good rule in the following sequence and forward-propagating the conditions that have
changed in the new instructed cec’s decreasing even more the amount of information
needed for the policy description. This process is illustrated in figure 9 using the same
sequence presented before making the agent experiences a situation with no good
sequence coding.

Figure 9. Rule generation using one instructed cec and already existing rules.

Learning Method Delineation
In this section we compile all the procedures explained before in a general learning
method, which flow diagram is presented in figure 10.

Figure 10. General flow diagram of the method.

Initialization
As the policy should indicate which action to perform in any state of the state space, the
agent begins the learning process with a rule that assumes all the states as a goal state

Sense prior

Enough
Conf.

Instruction

cec
exists

Sense post

Exe a

cec =
cecw

Generate
cec

Surpri
se

Rule Inference
rw, cecw

yes

Perception

Generate
Rules

Append to
cec’s seq

Clear cec’s
seq

Update cec and perception function

Exe a

Sense post

yes

yes
yes

Initialization

and indicating the agent to perform no action (NA). The rule is evaluated by a cec that
codes indeed the goal states, leading to surprises in all the states that require some
actions to reach the goal. Therefore, the set of rules will initially contain one rule and so
it is the set of cec’s,

R = { r0 → <{?,?,?,?,?,?}, NA, ic0 > }

C = {c0 → < {?,0,?,?,?,?}, NA, eo = {I2}>}

For the perception function, the mean values mij associated to each condition dij are set
equally spaced in the entire range of the sensor oi. The variances varij are initialized to a
high value and the nij to 1.

Sense Prior
Get the sensed value oi for each detector di and form the soprior .

Perception
Map each sensed value oi prior into a condition dij using the perception function and form
the state s={d1j, d2k,…,dNl}, where N is the number of detectors and sensors.

Rule Inference
Select the upper subspace Xi that involves the state s and extract the rule rw associated to
this subspace, in conjunction with its cecw.

Confidence Evaluation
IF the number of samples ni in the statistics stored in the eo of the cecw is under a critic
number nc then it is considered that there in no enough confidence in the followed
sequence and in the estimators to evaluate the observed outcome and the agent needs
instruction.

Instruction
The agent receives instruction about the action to perform ai and the conditions dij that
afford the desired changes.

Sense Posterior
Get the sensed value oi and form the sopost

cec=cecw
In order to check if the proper sequence is taking place when there is little confidence
about the inferred cecw and its estimations of the eo, the agent checks the instructed cec
that indeed belong to the desire sequence, against the inferred cecw.

cec exists
The existence of the instructed cec in the data base of cec’s (the permanent one, not the
temporal ordered list which is different) is verified. If it does not exist then it is
generated and appended to the temporal ordered list of instructed cec’s.

Surprise Evaluation
Evaluate the consistency between the observed outcome sopost and the eo of cecw. If
there is an inconsistency then the agent has a surprise and asks for instruction.

Generate cec
Using the instructions given by the teacher about Pa and a form a new cec,

cec → < Pa, a, eo>

where the eo contains the statistics (mean, variance and number of samples) to form the
confidence interval Ii for each of the sensor values oi after performing the action a. This
statistics are initialized in the same way as in the Initialization step (see above).

Append Generated cec
Append the new generated cec to the temporal ordered list of instructed cec’s that will
be used to generate the rules (see section Rule Generation above). If there is no list, then
it is generated using the instructed cec as the only element.

Generate Rules
The rule generation take place when a proper sequence is find, i.e., when there is no
surprise after performing an action or when the instructed cec coincides with the
inferred cec.
If there is no cec’s in the temporal ordered list of instructed cec’s then no rule is
generated, otherwise the rule generation take place as explained in the section Rule
Generation and then the ordered list of cec’s is cleared up.

Update
The update process takes place in two structures:

a) Update Perception Function. For every condition dij of the cec update the
statistics of the perception function using soprior.

b) Update cec eo. Using sopost update the statistics of the eo estimators.

Conclusions

Complete vs Incomplete Instruction
With the assumed complete instruction of the Pa’s, if we opt to generate a conventional
rule representation instead of an ordered list, the surprise could only take place when
there is no rule applicable, otherwise the desired changes will always occur because all
the conditions to afford it are instructed (in some cases there could be a surprise indeed
despite the completeness of the instruction when there is a contingency that prevent the
desired changes to occur. However these cases are solved in the same way as
incomplete instruction explained below). Nevertheless, if we code the policy using a
decision list the inference not only is done in the regions where the instructed sequences
take place but also in the rest of the state space where the DL permits to generate
hypothesis about the value to infer depending on the subspaces Xi considered for each
rule (see figure 7 as an example). These hypotheses could be wrong and then a surprise
is possible despite of the complete instruction, actually the case considered in the
presented method.

On the other hand, the case of a teacher only capable of giving incomplete instructions
is more probable in complex applications where the conditions responsible for the
changes are not well known by the teacher and the causal changes are more difficult to
identify. In this case the cec’s should be generated and restructured constantly using
some constructive learning approach until the conditions that afford the causal changes
are correctly recognized. Thus, when incomplete instruction with a DL is used, the
surprise could be originated by even a bad hypothesis or a bad sequence resulted from
the incomplete instruction.
Another point to analyze is that the rules generated with incomplete cec’s are also
incomplete and every cec updating should involve the updating of the rules related to it.
Finally, another case to take into account is when despite the hypothesis produced by a
decision list is wrong the observed changes is consistent with the eo. This happens when
the sequence is incorrect but the cec inferred could indeed occur. Despite that this is
possible it is not likely to occur because of the sequence checking when the confidence
in the estimations is low. This permits a sequence correction in almost all the rules in
the list. Nevertheless, to assure a complete convergence a sequence checking should be
performed after a no surprise is obtained. This could be done explicitly by the teacher or
implicitly by, for instance, attaching to each rule an estimation of the steps to the goal
from that point in the sequence and performing an analysis similar to the cumulative
reward of reinforcement learning; if the observed steps to the sequence are not
consistent with the estimated step, then the sequence is wrong and the agent should be
instructed.

Cognition and Learning: The OAC Concept
Most of the learning to act approaches are based in human learning and cognition
capabilities. Despite these approaches present many differences among them, they all
establish a direct relation between perceptions of the agent, coded mainly as states, and
actions. In contrast to the amount of approaches developed, a few attempts were done
to create a common framework that permits to consistently relate the learning to act
approaches with the human cognition capabilities for learning and acting. One of these
attempts is the concept of object-action complexes (OACs) [11] that has been evaluated
and developed by the European PACO+ consortium [12]. Briefly, the OAC concept
claims that the world contains undistinguished “things” meaningless for the agent that
become meaningful “objects” through actions and tasks, where the objects are described
by the properties relevant for the fulfilment of the final desired outcome through the
action.
We believe that from all the possible approaches that perform a state-action linkage in
learning to act, the explicit coding of the world conditions and actions through rules and
cause-effects presented above is one of the most suitable for a first insight in the study
and refinement of the OAC concept. One of the reason is that the elements of these
structures could be directly associated with the main elements of the OACs concept
formulated so far. Another reason is that they permit a direct association with the human
cognition capabilities through the explicit declaration of the abstract meaning of the
conditions of the world, and hence a better understanding and a faster evaluation of the
results.

References
[1] La Valle, S. Planning Algorithms. Cambridge University Press. 2006.

[2] Sutton, R. and Barto, A. Reinforcement Learning. An Introduction. MIT Press,
1998.

[3] Mitchell, T. Machine Learning. McGraw Hill. 1997.

[4] Liu, H. and Motoda, H. Feature Selection for Knowledge Discovery and Data
Mining. Boston: Kluwer Academic, 1998.

[5] Wojtusiak, J., Michalski, R. S., Kaufman, K. and Pietrzykowski, J., The AQ21
Natural Induction Program for Pattern Discovery: Initial Version and its Novel
Features. In Proceedings of the 18th IEEE International Conference on Tools with
Artificial Intelligence, Washington D.C., November 13-15, 2006.

[6] Clark, P. and Niblett, T. The CN2 Induction Algorithm. Machine Learning Journal.
3(4):261-283. 1989.

[7] Rivest, R. Learning Decision Lists. Machine Learning, 2(3):229-246. 1987.

[8] Agostini A., Celaya E. Generalization in Reinforcement Learning with a Task-
Related World Description using Rules. Technical Report IRI-DT 2006/01. Institut
de Robòtica i Informàtica Industrial. UPC-CSIC. (Barcelona, Spain), June 2006.

[9] McCallum A. Reinforcement Learning with Selective Perception and Hidden State.
Phd. thesis, Department of Computer Science, University of Rochester, Rochester,
NY, 1995.

[10] Piaget, J. The origins of intelligence in children. New York: International
Universities Press. 1952.

[11] C. Geib, K. Mourao, R. Petrick, N. Pugeault, M. Steedman, N. Krüger and F.
Wörgötter. “Object Action Complexes as an Interface for Planning and Robot
Control”, presented at IEEE RAS Int Conf. Humanoid Robot, Genova, Italy, 2006.

[12] http://www.paco-plus.org

	Portada_TR_04_2008
	991--Learning-Rules-from-Cause-Effects-Explanations.pdf

