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Abstract

Robotic handling of textile objects in household environments is an emerging
application that has recently received considerable attention thanks to the
development of domestic robots. Most current approaches follow a multiple
re-grasp strategy for this purpose, in which clothes are sequentially grasped
from different points until one of them yields a desired configuration.

In this work we propose a vision-based method, built on the Bag of Visual
Words approach, that combines appearance and 3D information to detect
parts suitable for grasping in clothes, even when they are highly wrinkled.

We also contribute a new, annotated, garment part dataset that can
be used for benchmarking classification, part detection, and segmentation
algorithms. The dataset is used to evaluate our approach and several state-of-
the-art 3D descriptors for the task of garment part detection. Results indicate
that appearance is a reliable source of information, but that augmenting it
with 3D information can help the method perform better with new clothing
items.

Keywords: Computer Vision, Pattern Recognition, Machine Learning,
Garment part detection, Classification, Bag-of-Visual-Words

1. Introduction

Handling highly flexible objects, such as clothes, is a robotic application
that is attracting increasing attention. It is a challenging task since the high-
dimensional configuration space of a textile object makes it very difficult to
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determine its state and, consequently, plan the appropriate actions to bring
it into a desired configuration. Also, the success of manipulation actions
becomes very unpredictable.

In this work, we propose to use machine learning to detect clothing parts
as a first step towards informed grasping of garments. Our approach is based
on the well-known Bag of Visual Words (BoVW) (Csurka et al., 2004) method
from computer vision. BoVW seems better suited to cope with the challenges
of detecting parts in flexible objects since it does not impose a geometry as
template matching or pictorial structure methods do (Parkhi et al., 2011).
Our objective is to assess if such technique can be used to recognize clothing
parts and with what accuracy. Moreover we seek to demonstrate the intuition
that adding 3D information should improve the results compared to only
appearance information.

The first contribution is an evaluation of our proposed approach for dif-
ferent garment part detection and classification tasks, combining SIFT with
four state-of-the-art 3D descriptors. In order to evaluate the method we
have collected and manually annotated a large dataset of RGB-D scans of
clothing items. The publication of such dataset constitutes the second con-
tribution of this work, and promotes further comparison and benchmarking.
The dataset is intended for research on detecting garment parts under severe
deformations, not on classifying garment types with very different appear-
ance, i.e. there are tens of images of only two t-shirts under a broad range of
deformations instead of lots of different t-shirts.

This work is an expanded version of (Ramisa et al., 2012). The original
approach is modified to be faster at test time, and is evaluated much more
thoroughly: the main dataset used for evaluation is greatly extended, and
additional garment parts are tested with several shape descriptors. Further-
more, a second, independent, dataset is included in the evaluation.

2. Related Work

In this section we will briefly review related work in the three areas ad-
dressed by this paper: 3D shape descriptors, current approaches to garment
perception and manipulation and, finally, existing datasets for the evaluation
of methods related to the perception of garments.

3D descriptors. The recent availability of consumer level 3D imaging devices
based on Structured Light (SL), such as the Kinect, has boosted research on
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3D perception, which is experiencing a surge of new descriptors and tech-
niques, as image-based perception experienced a decade ago. 3D perception
plays a significant role in robotics, being one of the most pressing bottlenecks
for the wide spread of robotic solutions to everyday problems. Economic and
reliable 3D sensors offer a wealth of new opportunities to develop useful
robotic applications for domestic environments.

Garments may have very different color combinations, designs and im-
prints, but may also have only one color. Furthermore, their appearance can
change a lot due to severe deformations. Consequently, classical appearance
descriptors might have a poor performance, and thus the 3D information
provided by RGB-D cameras should apparently provide a key advantage.
Additionally, the ability to supply registered color and depth allows to de-
sign new descriptors based on depth and color together.

Appearance-based descriptors, such as SIFT (Lowe, 2004) have been used
for more than a decade, and throughout this time, they have been carefully
engineered to produce the highest quality possible results. Unfortunately,
this is not yet true for 3D descriptors, which have, until recently, attracted
little attention from the computer vision and robotics communities, mainly
because of the scarcity, drawbacks and cost of previous 3D imaging devices.

Early work on 3D descriptors focused on areas such as CAD model re-
trieval, where no perception from the environment was involved, and models
were always complete (Tangelder and Veltkamp, 2004). Conversely, works in
other areas such as Simultaneous Localization and Mapping (SLAM) used
expensive 3D sensors like LIDARs to acquire point clouds from the environ-
ment, but most of the focus was on multiple scan registration to construct
large maps, not until recently feature extraction from LIDAR data has at-
tracted significant attention of the research community (Himmelsbach et al.,
2009; Li and Olson, 2010). In general, previous efforts in 3D descriptor re-
search have mainly concentrated on the case of rigid objects (Lai et al., 2011;
Janoch et al., 2011) or, at most, articulated objects (Shotton et al., 2011).
To our knowledge, this is the first work evaluating different 3D descriptors
for garment part recognition.

Garment perception and manipulation. Although there exist a wide literature
on the perception of deformable cloths using only RGB information (Moreno-
Noguer, 2009; Sanchez, 2011; Moreno-Noguer and Fua, 2011), most of these
approaches are computationally expensive, and not ready to be used in real
garment manipulation settings. For this purpose, robotics applications re-

3



sort to the use of RGB-D sensors. Several recent works have addressed
this task with limited, although encouraging, results. Maitin-Shepard et al.
(2010) present a system that can fold one by one all elements on a pile of
washed towels. Vision is used to detect the corners of the towel that a PR2
robot is holding, and it is re-grasped until a desired state has been reached.
From this known state the towel is folded in an open-loop procedure. Later,
Cusumano-Towner et al. (2011) describe an improved, end-to-end, laundry
handling system. A garment is picked up, identified, and brought into a de-
sired configuration. In order to carry out the task, a series of re-grasps are
executed by the robot, and a Hidden Markov Model and a clothing simulator
are used to identify the item and its pose, as well as to plan how to bring it
into the desired state. An interactive vision system is proposed by Willimon
et al. (2011) that iteratively identifies all items in a basket of clothes using
four basic visual features and the 1-Nearest Neighbor classifier. Wang et al.
(2011) propose a system for the manipulation of socks with a PR2 robot
that uses state-of-the-art computer vision techniques. Willimon et al. (2013)
present a system to determine the type of clothing items laying on a flat
surface using a variety of low-level appearance and depth features, as well as
mid-level layers such as attributes (e.g. stripped, v-neck, front zipper) of the
garments. These works show a trend towards the usage of more sophisticated
perception techniques in robotic clothing handling applications, as well as a
pervasive use of 3D information.

Garment datasets. Because of its complexity, perception of garments is a
field that has just recently been undertaken by the research community, and
consequently there is a lack of well established benchmarks for its multiple
tasks and applications.

One such task that has received some attention, partly because of its
significance in surveillance applications, is identifying the garments worn by
people in pictures or videos, but there the focus is on detecting the pose of
the people and on the appearance of clothes when being worn, as opposed to
being centered on the garments themselves, and on the large space of states
they can adopt. Datasets in this category include Yamaguchi et al. (2012)
Fashionista dataset and, closer to our problem as it focuses on the clothes
themselves, the dataset proposed by Hidayati et al. (2012). Unfortunately
these datasets do not include depth information or garment part annotations.

There are also some datasets more focused on robotic applications, as the
ones proposed by Yamazaki and Inaba (2013) and by Mariolis and Malassi-
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Feature extraction and quantization Pooling of visual words

Figure 1: Steps of the BoVW vector construction. First descriptors are extracted from
the appearance or depth image and, next, quantized into visual words using a vocabulary
previously learned and pooled in a histogram of visual word counts. This procedure can
use the whole image, or be restricted to a region of interest.

otis (2013), that deal with classifying (possibly wrinkled or folded) garments
laying on a flat surface, using only appearance information. None of them
includes depth data or garment part annotations either.

Doumanoglou et al. (2014) propose a dataset of six clothes hanging from
a gripper. It includes depth information, but no annotation of parts. Besides,
the way in which the garments are presented to the camera, makes it very
difficult that the parts we are interested in are visible in the image.

Other datasets (Aragon-Camarasa et al., 2013; Willimon et al., 2013)
present the clothes laying on a flat surface and do include depth data,
but are focused on tasks like stereo depth estimation, classification or fold-
ing/flattening of clothes, so no part annotations are included.

Finally, more related to ours is the very recent CTU Color and Depth
Image Dataset of Spread Garments (Wagner et al., 2013), that includes ap-
pearance and depth data, as well as annotations that, despite not being
designed for our tasks, are amenable to it. We conducted some additional
experiments on this dataset to further evaluate the proposed method.

3. Garment Part Detection Method

As said in the introduction, the long-term goal of this research is to
perform informed graspings, which can be useful for an end-to-end clothing
handling system like the one of Cusumano-Towner et al. (2011), for example
to shorten the series of re-grasps necessary to verify that the clothing is in
a desired configuration. We attempt to use state-of-the-art computer vision
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Figure 2: Schema of the method proposed. Steps b and c correspond to the first layer of
the approach as described in the text. Step d corresponds to the second layer, and step
e to the third. In the image of step d, reddish color of the bounding box indicates more
confidence in the detection.

techniques to detect the relevant grasping points from the very beginning,
while the object is still laying on the table/surface. For this we propose a
vision and depth based detection method, consisting of a coarse-to-fine ar-
chitecture based on the well-known “Bag of Visual Words” (BoVW) (Csurka
et al., 2004) image representation, widely used in the computer vision litera-
ture, and a sliding window approach. A schema of the proposed method can
be seen in Fig. 2. Here, we are not performing robotic grasping experiments,
hence we are not using the grasping point selection step proposed by Ramisa
et al. (2012). At this stage, and as done in related work, we are not consid-
ering the problem of background subtraction as a significant body of work is
already addressing it (e.g. Felzenszwalb and Huttenlocher (2004), Yang et al.
(2012), Rashedi and Nezamabadi-pour (2013), Grady (2006)). We assume a
segmentation method able to precisely select the garment is available.

3.1. Appearance and depth local features

Our detection method is based on appearance and depth information,
obtained from the Kinect image. Both types of features are quantized using
visual vocabularies learned with K-Means from a large training database of
descriptors. A BoVW descriptor can be then constructed by accumulating
in a histogram all the visual words present in a local neighborhood defined
by a bounding box (see Fig. 1). Combinations of two descriptors are then
formed by concatenating the two BoVW vectors.
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In order to obtain the appearance information, we use the well-known
Scale Invariant Feature Transform (SIFT). This descriptor divides a local
patch around the interest point in 16 sub-regions, and computes a 8-bin his-
togram of the orientations of the gradient for each sub-region, weighted by
its corresponding magnitude and a Gaussian applied at the center of the
patch. In order to reduce the aliasing in the orientation, trilinear inter-
polation is used to distribute gradient samples across adjacent bins of the
histograms. Next, the histograms are concatenated, yielding a 128 dimen-
sional descriptor. To reduce the influence of non-affine illumination changes,
the normalized descriptor is thresholded at 0.2 and re-normalized.

Regarding the depth information, we evaluate several recently proposed
3D descriptors: the Geodesic-Depth Histogram (GDH), the Fast Point Fea-
ture Histogram (FPFH) (Rusu et al., 2009), the Heat Kernel Signature
(HKS) (Sun et al., 2009) and the Fast Integral Normal 3D (FINDDD) descrip-
tor (Ramisa et al., 2013). A short description of the four depth descriptors
follows.
GDH: The Geodesic-Depth Histogram captures the joint distribution of
geodesic distances and depths within the patch. It is an adaptation to depth
information of the Geodesic-Intensity Histogram, originally introduced by
Ling and Jacobs (2005) for describing deformable image patches.

Let us consider a patch P in the image, centered on a point of interest p,
that in our case corresponds to every point of a grid that densely covers the
image. Each point pi ∈ P has an associated depth value di obtained from
the Kinect camera. Then the histogram for p is computed as follows:

• The histogram is initialized by splitting the joint space of geodesic
distance and depth into a discrete number of intervals.

• For each pi ∈ P , the geodesic distance gi is computed with respect to
p, using the Fast Marching algorithm (Sethian, 1996).

• Then the bins of the histogram are filled with each pair (di, gi) of depth
and geodesic distance values.

The descriptor of p is finally built by concatenating the value of all the bins
in the histogram.

FPFH: The Fast Point Feature Histogram descriptor (Rusu et al., 2009) (a
simplification of the Point Feature Histogram descriptor (Rusu et al., 2008))
is designed to characterize the local geometry around a point in a point cloud.
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Given a point pq for which we want to compute the descriptor, for each of its
k-Nearest Neighbors, a local coordinate frame < u, v, w > between the query
point and its neighbor pt is determined, and three geometrical relations are
computed:

α = v · nt (1)

φ = u ·
(pt − pq)

d
(2)

θ = arctan(w · nt, u · nt) (3)

where d is the Euclidean distance between the points pq and pt, and nq and
nt are the normals at the two points in the local coordinate frame.

Then, a similar descriptor is computed for each of the k neighbors, in
their own k-neighborhood, and a weighted sum of the simplified descriptors
is performed to incorporate all the information in the final FPFH descriptor.

HKS: The Heat Kernel Signature (Sun et al., 2009) is a shape descriptor
based on the heat diffusion equation applied to a shape modeled as a Rie-
mannian manifold, that has been shown to give good results in non-rigid
3D shape recognition. Later, the descriptor has been made scale-invariant
by using its Fourier Transform and a logarithmic sampling (Bronstein and
Kokkinos, 2010). It has also been shown to work well using photometric
information (Moreno-Noguer, 2011).

Put in simple terms, this descriptor models the evolution of the tempera-
ture of the nodes in a mesh after an input of a unit of heat has been applied
at a given point. It is motivated by the fact that isometric deformations of
the shape that do not change its topology will not change the way the heat
is diffused.

To reduce the computational cost, and since we want the descriptor to
be local, we first segment a local region centered at the point of interest, and
compute the HKS in the segmented mesh. Finally, following Bronstein and
Kokkinos (2010), a logarithmic sampling in the time scale and fast Fourier
transform of the heat signature are applied in order to obtain a scale invariant
representation.

FINDDD: The Fast Integral Normal 3D descriptor (Ramisa et al., 2013)
represents the distribution of orientations of the 3D normals in a region
around a point of interest in a structured point cloud (e.g. a Kinect scan).
Thanks to using integral images, the FINDDD descriptor can be computed
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densely over a point cloud up to two orders of magnitude faster than FPFH.
Spatial subdivisions are incorporated to better represent the area around the
point.

The computation of the FINDDD descriptor is done as follows: the 3D
normal is computed for every point in the cloud. Then, at each position of
a grid defined over the point cloud (as it is structured, it can be seen as
an image or 2D matrix), a descriptor is computed by constructing normal
orientation histograms for each sub-region inside the local region.

Instead of using bins defined as angles in spherical coordinates, they are
distributed regularly across the entire semi-sphere in Cartesian coordinates.
This avoids the singularity at the north pole and the uneven area assigned
to each bin caused by the angular representation.

3.2. Detection probability map

With BoVW descriptors constructed from positive and negative train-
ing bounding boxes, a logistic regression model is trained using LIBLIN-
EAR (Fan et al., 2008) to obtain the posterior probability of the garment
part being present in a given bounding box. The probability of a bounding
box containing the part of interest (class C+) given a BoVW descriptor x

can be computed as:

p(C+|x) =
1

1 + ew
T x

(4)

where w are the parameters of the model, learned minimizing the following
expression:

min
w

(

1

2
wTw + C

N
∑

i=1

log(1 + e−yiw
T ti)

)

(5)

where C is the regularization parameter (adjusted by cross-validation), ti
stands for the ith training example and yi is its corresponding label.

Positive samples are the annotated bounding boxes in the training set,
and negatives are random bounding boxes, sampled from the clothing area,
that do not have more than 50% overlap with the annotated bounding box
according to the Jaccard index:

IJaccard =
area(Bn ∩ Bgt)

area(Bn ∪ Bgt)
(6)

where Bn is the generated negative bounding box and the Bgt is the ground
truth one.
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In the first layer of the architecture (corresponding to steps b and c of
Fig. 2) the logistic regression model is used in a sliding window approach
covering the whole image, with different sizes and shapes of bounding boxes
drawn from the distribution of those annotated in the training set. In order
to accelerate the computation of the sliding window classifier scores, we use
the Efficient Histogram-based Sliding Window-Dense approach from Wei and
Tao (2010). Next, similarly as it is done in (Aldavert et al., 2010), the
probabilities of all windows are combined in a probability map of the presence
of the garment part. Local peaks of this probability map are then selected
and passed to the second layer of the architecture.

3.3. Detection refinement

A linear method like logistic regression has the advantage of being fast
to apply at test time, but its performance is sometimes limited. A type of
classifier with more capacity, and specifically designed for histograms, is the
Support Vector Machine with the χ2 extended Gaussian kernel (Zhang et al.,
2006):

χ2(x, t) = exp(−γ
∑

j

(xj − tj)
2

xj + tj
) (7)

where γ is the inverse of the average of the χ2 distance between the elements
on the training set.

To refine the results of the logistic regressor, in the second layer (corre-
sponding to step d in Fig. 2), for each selected candidate point, we cast a
set of windows of different shapes and offsets with respect to the original
point. Next, the score assigned by a χ2 extended Gaussian kernel SVM is
used to rank these new windows (we use Platt’s probabilistic outputs al-
gorithm (Platt, 1999; Lin et al., 2007) to convert the scores back to prob-
abilities), and only the highest ranked window for each candidate point is
accepted. In practice we are conducting a local search around the most
probable locations of the part with a more expensive but reliable classifier.
The parameters of the χ2 extended Gaussian kernel SVM are also tuned
by cross-validation, but other methods, for example that of Lázaro-Gredilla
et al. (2012), could be used.

3.4. Image-level prior

In order to increase the precision of the detector, we evaluate the impact
of incorporating an Image-Level Prior (ILP) (Shotton et al., 2008), which
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Figure 3: The Image-Level Prior consists on a probability for each garment part (classes)
for the complete image. Classes with a probability below a threshold, represented by a
dashed red line, are not searched for, saving computation time and avoiding false positives.

provides the probability that a given image contains the class of interest. The
ILP is also based on a Bag of Visual Words method, but it uses information
from the whole image (filtered with the segmentation mask) to learn a logistic
regression classifier, which then gives the probability for the presence of the
part of interest. If the probability is too low, the detector for that particular
class is not applied to the image (see Fig. 3 for an example).

4. Clothing Part Dataset

In order to test how the different 3D descriptors work for highly flexible
objects, we created a dataset of registered images and point clouds, acquired
with a Kinect structured-light camera. Each scan shows one or various ev-
eryday clothing items laying on a table with parts, such as collar or sleeves,
annotated by hand with polygons.

The dataset comprises 776 scenes of textile items belonging to six garment
types: polo, jeans, t-shirt, dress, shirt and sweater. For each scene the dataset
includes: color image, point cloud, segmentation mask, and annotations. For
each garment, one or two parts of the object have been manually annotated,
with each class having between approx. 100 and 225 such annotations in
the whole dataset. In Table 1 the different types of garments and annotated
parts are described. This dataset is the extension of the one used in (Ramisa
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Figure 4: Setup used to acquire the dataset. Garments lay on the table in different
positions and deformations. RGB-D images are acquired using a Kinect camera looking
downwards on a WAM robot cell.

et al., 2012), and we have made it publicly available for download1.
The data was acquired in a laboratory setting. The garments were laying

on a gray table taking about one third of the picture, and a Kinect camera
was set up above at approximately seventy centimeters with a zenithal view
(see Fig. 4). We used the default camera calibration matrices provided by
the manufacturer.

The RGB-D images acquired with the camera have 640x480 pixels, and
are provided in PNG format (image part), and in PCD v.7 plain text file
format (depth part). Some examples, with overlaid annotations, can be seen
in Fig. 5.

The primary illumination source consists of fluorescents, that provide a
pure white light. Images include one or more garments. Because of the size
and flexibility of the clothing objects, they can be partially out of frame,
and occlusions may occur. Not all interest parts are always visible for every
clothing item due to folds or occlusions. All classes are represented by at
least two distinct object instances.

1http://www.iri.upc.edu/groups/perception/clothing_dataset/
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(a) Polo: collar and sleeves (b) Jeans: hips and hemline (c) T-shirt: collar and
sleeves

(d) Sweater: hood and
sleeves

(e) Shirt: collar and sleeves (f) Dress: collar

Figure 5: Garment classes present in the dataset. For each of the six classes, a panel with
four images is displayed: overlaid annotations (top), the original image (bottom left),
the segmentation mask (bottom center) and a representation of the depth information
provided by the Kinect camera (bottom right).

Segmentation mask. For each image, a binary segmentation mask is provided.
The mask is a 8-bit gray-level PNG image, with white pixels (value 255)
belonging to the main garment, and black pixels (value 0) to the background.
The segmentation masks have been generated via a combination of color and
depth segmentation, and manually repaired in case of error of the automatic
segmentation.

Annotation methodology. the ground truth data comes in the form of poly-
gons tightly enclosing the clothing part. Since the method tested in this work
uses bounding boxes, a rectangle tightly enclosing the annotated polygon is
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1 Shirt collar Around collar. Annotation goes down to approximately
the first button in the frontal opening.

2 Shirt sleeves What is annotated are the cuffs. Annotation adjusted
to boundaries of the cuff (leaving some small extra space
to ensure all relevant area is inside).

3 T-shirt collar Annotation drawn from the border to the slightly be-
low the hemline of the collar (approximately double the
space between the border and the hemline).

4 T-shirt sleeves Similar criteria to those for the T-shirt collar. An-
notations are drawn around the hemline of the sleeve
(leaving approximately double space in the inner part).

5 Jeans hips Jeans hips are annotated completely covering the belt
loop (and a tiny bit more). If present, the pocket hole
and the zip hemlines are included too.

6 Jeans pants
hemline

The area between the bottom of the pant and slightly
above the hemline (approximately two thirds of space
between the bottom of the pant and the hemline).

7 Polo collar Around collar. Annotated down to approximately the
first button in the frontal opening.

8 Polo sleeves Same criteria as for T-shirt sleeves.
9 Sweater hood Annotation starts at the beginning of the hood (no much

extra space). If lace goes outside of the “hood area”, it is
ignored. Hood is annotated even if seen from the back.

10 Sweater sleeves Same criteria as for Shirt sleeves.
11 Dress collar The top part of the dress, including the holes for the

arms.

Table 1: Criteria used during the annotation process.
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determined for each clothing part. The criteria used to determine what con-
stitutes the clothing part can be seen in Table 1. The annotations are stored
in a self-explanatory plain text ground truth file.

5. Experimental Results

The objective of this work is to evaluate to what extent can a Bag of
Visual Words based detection approach be used in the context of garment
part detection for robot manipulation. With this objective, we have evaluated
the part detection method described in Section 3 on the proposed dataset,
using different combinations of descriptors.

Here is an overview of the experiments performed: first, we discuss the
performance of the baseline method with the different descriptor combina-
tions in Section 5.2. Then, in Section 5.3, we evaluate the performance of
the image-level prior classifiers, and its effects on the precision of the pro-
posed method. Next, in Section 5.4, we also evaluate the proposed method
in the CTU Spread Garments Dataset. Finally, in Section 5.5, we review the
computational cost of the proposed method and of the different appearance
and depth descriptors.

5.1. Experimental Setup

In this section we describe the technical details of the methods and the
settings used in the experiments.

Subsets. In order to assess how sensitive is the method to the degree of
wrinkledness of the objects, we constructed two (partly overlapping) subsets:
a baseline subset we called Complete, and the Easy subset where only mostly
unoccluded and unwrinkled images of the parts are considered. In both
subsets, approximately 30% of the examples of each class (between 15 and
65, depending on the class and the subset) are used for testing and the rest
for training (between 40 and 155). Object instances are mixed in the training
and testing sets (i.e. images of two shirts in the dataset can be found both in
the training and testing sets). Both subsets consists only of images showing
a single garment.
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Performance measures. In our experiments, a part detection is considered
a true positive if the center2 of the detection bounding box falls within the
ground truth area. To measure the performance, we use recall at k (R@K),
which tells us how likely is the method to correctly detect the part if present
in the image looking only at the k highest scored detections. This measure is
relevant for robotic manipulation, since typically the robot arm will only be
able to consider a few options in its planning, and the state of the garment
will change after interaction. We also evaluate the results with the Average
Precision (AP), commonly used in computer vision competitions, such as the
Pascal Visual Object Classes Challenge3. The Average Precision corresponds
to the area under the precision-recall curve, which shows the precision ob-
tained at every different level of recall (i.e. how many false positives were
encountered before finding each one of the positives in the test set). The AP
allows to express the performance of a method with a single number, los-
ing, however, particular information on its behavior at different recall levels.
The mean Average Precision (mAP) is the mean of the AP scores obtained
across all classes. All results presented are the average of ten repetitions of
the full training procedure, with fixed training and test sets to make results
comparable.

Number of visual words. The optimal number of visual words in the dic-
tionary is a parameter highly dependent on the environment in which the
detector will work. Each visual word should ideally be activated with the
image of a particular physical element while masking the internal variabil-
ity of the element type. Automatically determining the correct size for a
vocabulary is an active research topic, and sophisticated dictionary learning
techniques have been proposed to address this problem (Winn et al., 2005;
Fulkerson et al., 2008; Mairal et al., 2008). After evaluating with a small
number of vocabulary sizes in a subset of the data, we found that 128 visual
words is a good choice for our experiments, as it had a competitive perfor-
mance with all descriptors. This number may seem significantly smaller than
the one typically used in object recognition benchmarks, but it has to be no-
ticed that the “visual world” encountered in this dataset is much smaller than
that of, for example, the Pascal VOC dataset, and hence a smaller number

2a substitute for a grasping point whose actual computation is outside the scope of this
paper.

3http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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of visual words may suffice to describe it. Nevertheless, using an appropriate
dictionary learning technique could improve the results, and is left for future
work.

Descriptor and detector parameters. Default descriptor parameters were used
when possible, and sampling was done densely every 6 pixels for all descrip-
tors (including SIFT), as it is a good trade-off between computational power
and descriptor density. Based on a small-scale cross-validation study, we de-
termined the following parameters for the depth descriptors: we set the patch
size for HKS to 60× 60 pixels, and keep the first 60 frequencies as the final
descriptor; we disabled the illumination coefficients for the GDH, and set 8
bins for geodesic distance and 11 for depth, resulting in a 88-dimensional
vector. For the FINDDD descriptor, the bin centers are generated taking
the vertexes of the triangles obtained using a sphere tessellation algorithm
applied only to the north hemisphere, which in our case yielded 13 and 41
vertexes at the two lowest tessellation resolution levels and, based on em-
pirical results, we selected the former as it adapted better to the level of
noise of the Kinect sensor. The patch size for FINDDD is 43 pixels, and the
number of spatial subdivisions is 16. FPFH has been used with the default
parameters.

Regarding the parameters of the detection method, we adjusted the size
and shape of the sliding windows based on those of the ground truth an-
notations of the training set. Classifiers parameters were determined using
cross-validation on the training set.

5.2. Results for the detection of garment parts

The results of applying the descriptors to the Complete subset show a
large variability between classes, which is nevertheless very consistent for all
descriptors (Fig. 6.a). Classes that correspond to large, distinctive and less
deformable parts of the garments, like the shirt or polo collar, or the jeans
hips, had a much better performance, notably with the SIFT appearance de-
scriptor. On the other hand, classes corresponding to smaller, less distinctive
parts led to a bad performance for both appearance and shape descriptors
alike. It is also noteworthy the improvement in performance attained by the
3D descriptors in some of the classes, like the dress collar. Regarding the
combination of SIFT and a 3D descriptor (Fig. 6.b), the performance is sim-
ilar or better to the standalone descriptors, except for some classes like the
dress collar, where the SIFT descriptor has a detrimental effect.
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Figure 6: Recall at k for each garment part category when using the different descriptors.
The recall levels are stacked together (using different patterns) in a column of each de-
scriptor (using colors) and garment part type. Plots correspond to (a) Single descriptors
and (b) combinations of SIFT and a shape descriptor.
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Figure 7: Relative improvement of recall at one between the Complete subset and the
easy subset. Results improve but not significantly, suggesting that the problem remains
difficult.

Table 2: Average variation in recall at one in the Easy subset with respect to the Complete
subset. Descriptor names with the + symbol denote combinations with SIFT.

SIFT GDH FPFH FINDDD HKS GDH+ FPFH+ FINDDD+ HKS+

E 6.8 -0.3 10.3 6.4 3.5 2.8 9.9 8.5 6.1

Regarding the easy subset, the relative improvement in recall at one w.r.t
the Complete subset is presented in Fig. 7. Overall, the results improve a bit,
but there are some cases where the contrary occurs, thus it seems that the
problem remains difficult, and the difference on performance may be more
related to the particular train/test splits. The average improvement is 6%,
which suggests that the proposed method has capacity to handle complex
scenes. Table 2 displays the average differences across the classes for each
descriptor combination. Jeans and shirts are the garment types that show
more improvement with the reduced complexity and. It is also noticeable
that single descriptors have a more erratic behavior (notably GDH) than
combinations, which are able to obtain more leverage from the easier dataset.
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Figure 8: Average Precision classification performance of the image level prior classifiers.

5.3. Precision of the detector

The previous results reflected how likely the method is to correctly select
the relevant part if it is present in the image; however, for robots working in
an unstructured environment, it is also important to take into consideration
precision4. As previously said, in order to take into account both precision
and recall, we have used the Average Precision (AP) measure obtained when
running the method in each image of the test set, even those that did not
contain the part of interest.

In order to reduce the number of false positives, we evaluate the use of an
Image Level Prior (ILP) to discard images not likely to contain the part of
interest. A logistic regression classifier is trained for each part, and its score
is used to select which images are searched for the part of interest and which
are discarded.

Classification results. Fig. 8 shows the average precision of the classifiers used
as ILP for each class individually in the Complete subset. The combinations

4Precision = TP

TP+FP
, where TP are the true positives and FP the false positives.

Recall = TP

TP+FN
, where FN are the false negatives.
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Table 3: Classification results of the Image Level Prior classifiers. C stands for Complete, E
for Easy subsets; mAP stands for mean Average Precision, and mACC for mean Accuracy.

C E
mAP mACC mAP mACC

SIFT 65.8 80.1 55.5 78.4
GDH 60.3 78.5 47.4 78.4
FPFH 55.0 76.3 43.6 76.4
FINDDD 45.8 73.4 38.6 73.0
HKS 35.9 64.3 31.7 63.7
GDH+SIFT 82.4 89.2 70.5 88.3

FPFH+SIFT 75.3 85.8 61.4 82.5
FINDDD+SIFT 73.6 82.4 60.5 81.5
HKS+SIFT 73.2 83.1 60.4 81.2

of appearance and depth descriptors achieve consistently about 20 percent-
age points more than the descriptors alone for this task. Table 3 shows the
mean AP and mean accuracy results for each subset and descriptor combi-
nation. As can be seen, GDH+SIFT attains the highest score across both
datasets and evaluation measures, followed by FPFH+SIFT. These perfor-
mances seem good enough to reliably select which classes to search in an
image without significantly affecting the recall.

Detection results with ILP. Table 4 shows the mean detection AP (mAP)
across all classes obtained with and without the ILP, on the two considered
subsets. Using the ILP the precision of the results improves on average, al-
though in some cases they degrade as correct detections are discarded when
the ILP fails. The best mAP is consistently obtained by the combination
of FPFH and SIFT across all subsets. These results also show that, al-
though not manifestly increasing recall, the addition of 3D descriptors helps
increase the precision of the method. Fig. 11 shows qualitative examples of
the method performance.

Since the proposed method seems unsuitable in its current form for some
of the clothing parts in the dataset (judging from the results in Table 4),
we also compute the aggregated results focusing on the classes that offer a
performance acceptable for its direct usage in robotic manipulation experi-
ments (i.e. shirt collar, jeans hips and polo collar). These results are shown
in Table 5. As can be seen, combining SIFT with the depth based descrip-
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Table 4: Mean Average Precision of the proposed method with and without the image
level prior. C stands for Complete and E for Easy subsets.

Mean Average Precision
C C+ILP E E+ILP

SIFT 17.3 18.7 22.8 22.9
GDH 6.8 7.7 4.0 5.4
FPFH 6.3 7.8 10.7 11.9
FINDDD 5.8 6.4 6.5 7.2
HKS 2.8 3.7 2.9 3.9
GDH+SIFT 18.7 20.4 20.5 22.5
FPFH+SIFT 21.9 24.0 29.2 28.3
FINDDD+SIFT 20.1 20.5 23.5 24.7
HKS+SIFT 15.1 15.7 20.5 20.8

Table 5: Mean average precision of the proposed method only considering the classes shirt
collar, jeans hips and polo collar.

Mean Average Precision
C C+ILP E E+ILP

SIFT 48.7 48.3 66.0 58.2
GDH 12.4 12.6 6.8 8.7
FPFH 10.8 12.0 19.7 16.9
FINDDD 12.2 11.5 8.2 9.5
HKS 7.7 8.9 8.6 9.7
GDH+SIFT 52.3 53.4 55.2 57.5
FPFH+SIFT 53.6 52.1 68.9 60.7
FINDDD+SIFT 49.3 47.1 57.3 58.0
HKS+SIFT 43.4 41.3 62.8 58.1
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(a) (b)

Figure 9: Example images and annotations of the CTU Spread Garments Dataset. Best
viewed in color.

tors often improves the results, suggesting that depth information helps the
method generalize better. In terms of recall at one, average results over 70%
are consistently obtained for these classes.

5.4. Detection results in the CTU Spread Garments Dataset

In order to further test our method we selected the CTU Color and Depth
Image Dataset of Spread Garments (Wagner et al., 2013), since it includes
appearance and depth data, as well as annotations5. Fig. 9 shows two exam-
ple images of this dataset with the corresponding annotations.

We have selected all the available images with associated depth data
depicting a collar (which includes shirts, polo shirts and coats), and a sim-
ilar number of images with trousers (more abundant in the dataset). This
amounted to six hundred images, from which we separated one third for test-
ing and the rest for training. For each image, several fixed annotated points
that yield a rough outline of the garment are provided. From these points
we have automatically derived bounding box annotations compatible with
our method, as well as segmentation masks, not very accurate sometimes,
but sufficient for our experiments. Table 6 shows the results obtained in this
dataset. As can be seen, results for the evaluated classes are similar to those
obtained in our proposed dataset. Performance of combinations is, in gen-
eral, better than descriptors alone (also for SIFT), and the combination of

5http://clopema.felk.cvut.cz/color_and_depth_dataset.html
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Figure 10: Recall at k for the Collar and Pant hips categories in the CTU Spread Garments
dataset when using the different descriptors. Same layout as in Fig. 6.

FPFH and SIFT attains the best results, with the combination of FINDDD
and SIFT following closely.

5.5. Computational cost

In terms of computational cost, we compare the wall-clock time of the
different descriptors, taking into account the implementation differences. The
experiments have been performed on a 3.33GHz Linux machine.

SIFT6, FPFH and FINDDD7 are implemented in C++, and therefore
their computation times are directly comparable. SIFT and FINDDD ob-
tained times around 1 second per RGB-D scan, the former being slightly
faster, and FPFH took around 322 seconds. For the GDH and the HKS, we
use respectively a modification of the original GIH code8 and an in-house
implementation. In both cases, the implementations are in Matlab, with the
most time-consuming parts written in C. Consequently, the time taken for
these descriptors is not directly comparable to that of the descriptors imple-
mented in C++. However, we make some observations on its performance
that lead us to think that they would still be slower if completely imple-
mented in C++: The wall-clock time for a RGB-D scan using the GDH was
6826 seconds, and 77% of this time was spent computing the geodesic curves,

6We used the C++ implementation from the VLFeat library http://www.vlfeat.org/
7FPFH and FINDDD are implemented in C++ using PCL www.pointclouds.org
8http://www.dabi.temple.edu/~hbling/code_data.htm
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Table 6: Mean average precision with and without ILP, of the proposed method in the
CTU Spread Garments dataset considering the classes collar and pants hips. See text
for details on how the training and testing sets are constructed.

Collar Pants hips
CTU CTU+ILP CTU CTU+ILP

SIFT 50.6 55.4 49.4 52.4
GDH 30.5 29.9 42.8 38.7
FPFH 41.0 36.9 46.8 42.6
FINDDD 35.2 33.8 32.2 26.3
HKS 14.2 11.8 27.0 20.7
GDH+SIFT 51.5 52.1 53.4 52.9
FPFH+SIFT 56.3 57.4 59.1 59.2

FINDDD+SIFT 53.8 56.3 50.9 52.1
HKS+SIFT 44.2 48.7 42.3 43.8

using the low-level contourc Matlab routine, and the HKS took 20703 sec-
onds on average, and 40% of the time was spent finding the eigenvalues of
the Laplacian using the eigs Matlab routine.

Regarding the computational cost of the complete method, it typically
takes around one or two seconds per image using a single core (excluding
descriptor computation) using the efficient sliding window approach of Wei
and Tao (2010).

6. Conclusion

In this work, we have introduced a benchmark for the problem of percep-
tion of clothes for manipulation purposes, and we performed a comparative
evaluation of four 3D descriptors, alone and combined with the SIFT appear-
ance descriptor.

In general, results show that single-shot detection of clothing parts is a
difficult task, but that it is possible to attain a reasonable performance for
certain characteristic garment parts, like jeans hips or shirt and polo collars.

From the evaluated 3D descriptors, FPFH obtained an overall higher
performance in terms of Average Precision and Recall at one. However,
the computational cost of this descriptor makes FINDDD –which attained
comparable results, specially when combined with SIFT– an interesting al-
ternative for near real time applications.
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Figure 11: Example of detection results, after applying the χ2 RBF Support Vector Ma-
chine, and probability maps, generated with the logistic regression classifier, for each part
in the dataset. The green bounding boxes correspond to the annotated ground truth, and
predicted detections are shown as a bounding box with color from red to black according
to its score normalized by the maximum score of the detections in the image. The results
correspond to the combination of SIFT and FPFH.
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When compared with the SIFT appearance descriptor, the performance
of the 3D descriptors in terms of recall is slightly lower; however, the combi-
nation of the 3D descriptors with SIFT maintained or slightly improved the
recall, and had a positive effect in the AP, suggesting that this 3D information
would help generalize better to previously unseen clothes.

In order to increase the precision, we evaluated an Image Level Prior
(ILP) to directly discard images not likely to contain the part of interest.
The results show an overall improvement in AP, but in some cases classifi-
cation errors cause a decrease in recall, which in turn impacts the AP score.
Regarding the classification performance, the combination of a 3D descriptor
and SIFT significantly outperforms any of the descriptors alone.

Another contribution of this work is a novel dataset of RGB-D scans
of garments laying on a flat surface. Specific parts of the garments have
been manually annotated with polygons; and a segmentation mask, which
selects the textile object, is provided for each scan. The dataset is aimed at
evaluating part detection, classification and segmentation methods for textile
objects under severe deformations. To our knowledge, this is the first dataset
of this kind, and we hope it encourages progress in perception methods for
highly deformable textile objects.

One common characteristic of the 3D descriptors evaluated in this work
is their high sparsity. A dimensionality reduction technique (like Principal
Component Analysis, with the assumption that the data is normally dis-
tributed) could help decorrelate the components and remove the noise.

Finally, we would like to leave the core dataset presented open to exten-
sions, e.g. incorporating more instances of the different garments to allow for
a better testing of the generalization properties of the descriptors.
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