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Abstract 
Automatic Meter Reading (AMR) systems are being deployed in many cities to obtain insight into 
the status and the behavior of District Metering Area (DMA) with more granularity. Until now, the 
water consumption readings of the population were taken one per month or one each two-months. 
In contrast, AMR systems provide hourly readings for households and more frequent readings for 
big consumers. On the one hand, this paper aims at predicting water demand and detect suspicious 
behaviors – e.g. a leak, a smart meter break down or even a fraud – by extracting water 
consumption patterns. On the other hand, the main contribution of this paper, a software 
framework, based on Big Data techniques, is presented to tackle the barriers of traditional data 
storage and data analysis since the volume of AMR data collected by Water Utilities is enormous 
and it is continuously growing because this technology is expanding 
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1. INTRODUCTION 
Water distribution networks aim at providing final clients with water from different sources. In 
order to manage efficiently these large complex networks, a big quantity of parameters must be 
measured (e.g. flows, pressures, demands, reservoirs’ levels, etc.) throughout the whole network. 
 
These networks must fulfill the water demand of citizens and industries. Therefore, demand forecast 
is an important and essential tool to anticipate and develop plans as to decide the best way of 
satisfying this demand based on different criteria, e.g. water source, tariff, energy consumption, etc. 
 
Several research works propose methods for predicting demands and classifying them based on 
different approaches, including statistical models and machine learning models (e.g. Solanas et al. 
(2010, 2012); Aksela et al., 2011; McKenna et al., 2014). 
 
When it comes to managing the network efficiently and preventing severe problems such as 
flooding, leakages or intrusions, the uncertainty in large-scale critical systems such as water 
networks poses a big risk. For instance, the World Bank has estimated the total cost of Non-
Revenue Water (NRW) to utilities worldwide at US$14 billion per year. 
 
For these reasons, among others, Automatic Meter Reading (AMR) systems are being deployed in 
many cities to get a real-time insight into the status and the behavior of District Metering Area 
(DMA). Until now, the water consumption readings of the population were taken one per month or 
one each two-months. In contrast, new smart meters provide hourly readings for households and 
more frequent readings for big consumers. 
 



The number of parameters being measured (some of them with high frequencies), is becoming a big 
deal for traditional data warehouses. In contrast, Big Data provides new ways to process large 
quantities of data in parallel and in reasonable time. Thus, it allows extracting values, causes or 
events from the historical data that might have been overlooked. So far, historical data from 
SCADA systems is gathered in increasingly large databases due to the growing number of sensors. 
But, when new information does not lead to more insight, keeping historical data without clear 
purposes is just a waste of space and money. 
 
The contributions of this work are twofold. On the one hand, we develop a Big Data technologies 
based framework (Hadoop1 and Spark2) that provides an unsupervised classification of the demand 
patterns from smart meters data. Thus, Water Utilities can forecast the demand of a particular client, 
a group, or the DMA as a whole. 
 
On the other hand, this framework features outlier detection (an outlier being related to a 
breakdown in a smart meter, a leakage or an unsuited smart meter). Thus, the NRW of Water 
Utilities will decrease. In addition, new fee systems based on the consumer’s behavior could be 
implemented.  
 
This framework has been implemented as a software application using Spark, a large-scale data 
processing engine. This Big Data engine is running over a reliable, scalable, distributed computing 
cluster of processing nodes, based on Hadoop. Hence, this architecture allows scaling up to 
thousands of processing nodes without modifying any software implementation. 
 
 
2. METHODS 
The methodology, depicted in Figure 1, is based on four general steps which are detailed below.  
 

 
Figure 1. Steps to extract consumption patterns. 

Preprocessing 
Although each smart meter collects hourly data, in practice the interval is not exactly an hour: one 
observed demand is registered at 10:46 and the next one at 11:49. And these readings are not 
aligned to sharp o’clock hours (i.e. 10:00, 11:00, etc.). Moreover, some readings are missing mainly 
due to communication problems, among others. In this work, we have assumed the data collected is 
valid. The problem of data validation/reconstruction has already been addressed in (Garcia et al., 
2014) 
 
In this preprocessing stage a linear interpolation is applied to regularize the sampling interval and to 
align the sampling time to o’clock hours. Future work will consider better interpolation methods, 
but when only a few samples are missing a linear interpolation is enough. 
 
Given a vector of observed demands of length 𝑁, 𝒙 = (𝑥!, 𝑥!,… , 𝑥!), first we apply a linear 
interpolation method obtaining 𝒙 = (𝑥!, 𝑥!,… , 𝑥!) with a regular sampling time. 
                                                
1 Hadoop provides, among other features, the MapReduce paradigm (Dean et al., 2008). 
2 Spark is a large-scale data processing engine (Matei et al., 2010). 
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Given the hourly demand vector 𝒙, we obtain the hourly consumption vector 𝒛 applying the 
differences 𝑧! = (𝑥!!! − 𝑥!)/𝑇 where 𝑇 is the sampling time. 
 
Filtering 
This stage filters useful information and discards the useless one to be passed to the next stages. As 
mentioned before, a few missing observations can be estimated by a linear interpolation. We have 
set a maximum missing data threshold per week of 10%. Hence, only weeks with at least a 90% of 
data are processed by the following stages, otherwise they are discarded. 
 
Once applied the previous filter, the following statistical indicators are estimated over the hourly 
consumption vectors 𝒛: maximum, minimum, mean and variance. These indicators are used to 
discard smart meters which are always reading a constant consumption equal to zero, probably 
placed in empty houses. In addition, smart meters with negative readings are discarded, because 
backflow should not happen in the final points of DMAs.  
 
Feature space 
Different techniques for representing and reducing the dimensionality of time series has been 
proposed in the literature (Lin, J. et al., 2012), e.g. the Gaussian Mixture Models (McKenna et al., 
2014) for representing water demands. In this paper, a feature vector 𝝎𝒊 = 𝜔!!,𝜔!!,… ,𝜔!!"#  of 
length 168 (which is the number of hours of a week) represents the weekly pattern for a given smart 
meter i (see Figure 2 below) where each component 𝑘 is given by 
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𝑧!! ! !!
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where 𝑀! is the number of observations that satisfies ℎ 𝑗 = 𝑘 and ℎ 𝑗  returns the hour of the 
week of the datum’s timestamp 𝑗. 

 
Unsupervised Clustering 
The dataset used in this paper is composed by a set of smart meters and the associated observed 
demands. No additional information is available. Hence, as e.g. neither who the consumer is, nor 
the smart meter’s diameter or activity are known. 

Figure 2. Weekly pattern demand (from Monday to Sunday) of sensor 6. 



The unsupervised clustering method applied in this framework is the k-means (Hartigan et al., 
1979). This algorithm aims at partitioning n observations into k clusters in which each observation 
belongs to the cluster with the nearest mean, serving as a prototype of the cluster.  
 
Therefore, the unknown parameter k must be estimated previously. As we will see in the application 
detailed in Section 4, a plot of the within groups sum of squares by number of clusters helps to 
determine the appropriate number of clusters. 
 
 
3. FRAMEWORK 
The volume of raw data generated by DMAs with AMR zones handled by Water Utilities' data 
centers is too big to be analyzed (e.g. R, Matlab, etc.) and stored (e.g. Oracle, MySQL, etc.) by 
means of traditional technologies. Even if with ad hoc and expensive solutions could handle the 
growth (increasing number of smart meters deployed each year) at the beginning, it would be 
unsustainable in the short-term. Thus, we propose a framework based on Big Data technologies to 
achieve a robust horizontal scalability independent of the data volume. Furthermore, all the 
technologies applied are open source in order to reduce the investment in expensive licenses. 
 
The proposed Big Data framework, depicted in Figure 3, is compound by three modules (in 
columns). The Storage system is supported by Hadoop with the Hadoop Distributed File System 
(HDFS), where the raw data is collected. The Processing module applies the methodology detailed 
before and is based on a large-scale data processing engine called Spark. The Preprocessing and 
Feature space stages are implemented based on built-in Spark functions, but the linear interpolator 
is provided by Breeze. The Unsupervised clustering module, the k-means algorithm, is provided by 
MLlib, a scalable machine learning library on top of Spark. Finally, the results obtained from the 
Processing stage are saved in a distributed database called Cassandra. 
 

 
Figure 3. Big Data framework. 

 
Figure 4. Big Data architecture. 
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Two clusters form the hardware architecture: one is used for the storage and processing stage and 
another one for saving the results and interacting with the user. This architecture is depicted in 
Figure 4 above. 
 
 
4. APPLICATION 
We present some results based on the Alicante city DMA (Spain). Alicante is a coastal city with a 
population of around 300 thousand people. The dataset used in this work is the hourly sampling 
observational readings from 51,117 smart meters of a one-year period (from July 2013 to July 
2014). This dataset has 317,705,562 observed readings that corresponds to a size of 14 Gigabytes.  
 
Figure 5 shows the mean (the left one) and the maximum (the right one) histograms, binned by 5 
liters per hour. The right plot shows a big peak at the first bin [0-5] l/h. They are probably smart 
meters installed in empty houses or off-line water distribution pipes, or they could even be fraud 
(bypassing the smart meter). 

 
Figure 5. Mean and maximum statistics binned by 5[l/h]. 

 
The statistics filters listed in Table 1 above are applied discarding 6,914 smart meters. After 
applying this filter, weekly patterns are extracted following the methodology described previously 
(see Figure 2). 
 

Table 1. Statistics filters applied. 

Filter Formula Smart meters 

Total consumption must be positive Total>=0 78 

Minimum hourly consumption must be 
positive 

Minimum>=0 2,476 

Maximum hourly consumption must be 
positive and other than zero 

Maximum>0 4,360 

Smart meters discarded  6,914 



Due to the limitation of space for this paper and the difficulty to visualize thousands of results, we 
have considered 100 smart meters for illustrative purposes, shown in Figure 6, out of 51,117. 
 

 
 

 
 
As it has been pointed out, the k-means algorithm requires the number of clusters input parameter. 
Hence, the within groups sum of squares is obtained (see Figure 7 below). Notice that after 
considering nine clusters the sum begins to be stable.  
 
 

 
 

 
 
The clusters obtained are shown in Figure 8. On the one hand, clusters 2, 3, 4, 5 and 6 have several 
members which allow a Water Utility to: forecast the demand of a client or the DMA, improve a 
leak detection model or detect a pattern change different to the pattern expected to the activity 
declared in the contract. 
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Figure 6. Sample of weekly average demands. 

Figure 7. Within groups sum of squares by number of clusters. 



  
Figure 8. Weekly demand patterns classified (each cluster center is represented by a thick black line). The 
horizontal axis represents the time index (in hours) and the vertical axis represents the average consumption (in 
liters). 

On the other hand, clusters 1, 7, 8 and 9 shows outliers (they have only one member) which must be 
analyzed with more detail. Cluster 1 is an irregular consumption pattern with several peaks between 
100 to 200 l/h that could be generated by some irrigation or washing system. Therefore the Water 
Utility could change the type of fee assigned or could verify if the real activity of the client is not 
the one declared by the client in the contract (fraud). The pattern of cluster 7 shows a pattern with a 
regular daily shape but with an average consumption clearly higher in relation to the rest of clusters, 
thus the Water Utility can change the type of fee assigned or even give advice to this client in order 
to achieve a responsible water consumption. Cluster 9 shows the water demand pattern with the 
least number of consecutive low consumptions hours (valleys), probably due to a leak. 
 
 
5. CONCLUSIONS 
This paper presents a methodology to classify demand patterns based on AMR data. Weekly 
patterns extracted are classified using the k-means algorithm. The framework implemented, based 
on the methodology using Big Data techniques, is totally independent of the data volume and 
scalable to be adaptive to any expansion of AMR deployments in new zones. Finally, the proposed 
framework has been applied to the Alicante DMA, using a year-period dataset from 51,117 smart 
meters, thus obtaining a set of clusters. The results obtained show clusters compound by several 
water demand patterns that allow a Water Utility to forecast the water demand of a client or the 
DMA, and therefore to manage the network efficiently. The results obtained also show some 
clusters compound only by individual smart meters with different behavior that could be explained 
by other variables (not available for this work) such as consumer’s activity, but could be generated 
by a breakdown in the meter, a leak or fraud.  
 
As future research, this DMA pattern classification approach will be improved in order to be used 
for nodal estimation aimed at client demand monitoring or leak location. Moreover, the problem of 
placing new AMR in other DMAs will be addressed using as a starting point the results obtained 
using the DMA demand pattern classification approach presented here. 
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