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Abstract

This note is concerned with the linear (and linearized) Type III thermoelastodynamic
theory proposed by Green and Naghdi. We here assume that the mass density is positive
and the thermal conductivity tensor is positive definite. However, we do not assume the
positivity of any other tensor. In this situation, we obtain Hölder continuous dependence
results on the supply terms. We also sketch how to prove the continuous dependence on
the initial data.

keywords: Type III thermoelastodynamics, Hölder stability, Continuous dependence on
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1 Introduction

The thermoelastic theory proposed by Green and Naghdi [5–7] has deserved an intense in-
vestigation in the last years. Three sub-theories, where an entropy balance law replaces the
customary entropy inequality, have been proposed. These theories were labelled as Type I, II
and III. The linear version of Type I agrees with the usual classical theory of thermoelasticity.
For Type II, the energy of the system is constant with respect to the time. For this reason
it is also known as “thermoelasticity without energy dissipation”. Type III is the more gen-
eral theory and it contains the other two as limiting cases. We can recall several papers (see
Iesan [8,9]; Iesan and Quintanilla [10]; Lazzari and Nibbi [13]; Leseduarte et al. [14,15]; Liu and
Quintanilla [16, 17]; Liu and Lin [18]; Messaoudi and Soufyane [19]; Puri and Jordan [20]; Qin
et al. [21]; Quintanilla [22–27]; Quintanilla and Racke [28]; Quintanilla and Straughan [29–31];
Yang and Wang [34], among others), where existence, uniqueness, continuous dependence, spa-
tial and time behavior have been studied.

We recall that the linear system for the centrosymmetric Type III thermoelastodyamics
can be written as {

ρüi =
(
aijkhuk,h − aijθ

)
,j

+ ρfi,

cθ̇ = −aiju̇i,j +
(
kijθ,i

)
,j

+
(
bijα,i

)
,j

+ ρr,
(1.1)

where ui is the displacement vector, θ is the temperature, ρ is the mass density, c is the
thermal capacity, (aijkh) is the elasticity tensor, aij is the coupling tensor, kij is the thermal
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conductivity tensor and bij denotes a tensor which is typical for the Types II and III theories.
The constitutive tensors ρ, c, aijkh, aij, bij and kij are smooth functions of the position. They
satisfy the symmetries

aijkh = akhij (1.2)

and
kij = kji, bij = bji. (1.3)

The thermal displacement α is defined by

α(xxx, t) =

∫ t

0

θ(xxx, s) ds+ α0(xxx), (1.4)

and fi and r are the supply terms. To guarantee the well-posedness of the Type III thermoelas-
ticity, we need to assume that the mass density and the heat capacity are positive as well as the
elasticity tensor and the thermal conductivity. Lyapunov stability of the solutions is implied
when bij is also positive definite.

In the case where we do not assume the positivity of the elasticity tensor aijkh, the problem
determined by the system (1.1) with usual initial and boundary conditions becomes ill-posed.
It is worth recalling that this condition can be present in the case of prestressed solids.

It is worth noting several references for this situation. For instance, results concerning
uniqueness and growth of solutions have been obtained at [25, 29] under the condition that
the tensors kij and bij are positive. It is also worth mentioning that the only contribution
concerning the case when aijkh and bij are not definite was obtained recently (see [15]). There,
it was showed the uniqueness of solutions. We here want to show how to obtain the continuous
dependence with respect to the supply terms and initial data under similar restrictions.

In 1960, John [11] showed how to obtain continuous dependence results in the sense of
Hölder. This concept is weaker than the usual definition of the continuous dependence. The
basic idea consists to impose that the solutions belong to a suitable constraint class. Since this
contribution, many investigations have been directed to this kind of results. We may cite the
works of Ames and Payne [1] and Knops and Payne [12] concerning isothermal elastodynamics.
We can also recall that Hölder stability results can be found in different frameworks from the
thermoelasticity (see Cimmelli and dell’Isola [3] and dell’Isola [4]). For the classical thermoe-
lastodynamics, we may recall the contributions of Wilkes [33], Ames and Straughan [2] and
Rionero and Chirita [32]. It is worth recalling and comparing several related results. In [15],
we proposed a uniqueness result under similar assumptions to the ones considered here and
in [24] the author proposed a Hölder stability result by using the logarithmic convexity argu-
ment under the assumption that bij is positive definite. We here obtain a new result proving the
Hölder stability of the solutions when we do not assume that the elasticity tensor neither the bij
tensor are positive definite. It is known that two usual techniques to study ill-posed problems
in thermoelasticity are the logarithmic convexity and the Lagrange identities method. We here
consider the second one. We want to emphasize that since the tensor bij is not positive definite,
it does not seem possible to apply the logarithmic convexity arguments. However, we here are
able to use the Lagrange identities method. In fact, Lagrange identity method allows us to
obtain equality (3.5) that implies the inequality (3.12). This inequality is the starting point to
develop our approach. Therefore, Lagrange identity is the fundamental ingredient to obtain our
results.
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The plain of this note is the following. In the next section we recall the basic assumptions
and the conditions defining the problem. A basic inequality is obtained in Section 3. Hölder’s
continuous dependence with respect to the supply terms is obtained in Section 4. In the last
section we sketch how to extend the argument to prove continuous dependence with respect to
the initial data.

2 Preliminaries

In this section we propose the basic assumptions where we are going to work with. We study
smooth solutions of (1.1) on B × I, where I is a bounded time interval and B is a regular
domain with boundary Γ smooth enough to apply the Divergence Theorem.

In what follows we suppose that the constitutive tensors are bounded about and have the
following properties:

(A1) The mass density ρ and the heat capacity c are positive functions. That is,

ρ(xxx) ≥ ρ0 > 0, c(xxx) ≥ c0 > 0, xxx ∈ B.

(A2) The thermal conductivity tensor kij is positive definite. That is, there exists a positive
constant C such that

kijξiξj ≥ Cξiξi, (2.1)

for every vector (ξi).

The physical meaning of condition (A1) is obvious. Condition (A2) guarantees that the
dissipation of the system is not negative and then, the energy does not increase. It is an
usual assumption in the thermomechanical studies. We also note that from (2.1), the following
inequality

|bijξiξj| ≤ C1kijξiξj (2.2)

is satisfied for every vector (ξi), where C1 is a calculable constant1 which depends on the tensors
kij and bij.

To the field equations we adjoin the boundary conditions

ui(xxx, t) = ūi(xxx, t), α(xxx, t) = ᾱ(xxx, t), xxx ∈ Γ, t ∈ I, (2.3)

together with the initial conditions

ui(xxx, 0) = u0i (xxx), u̇i(xxx, 0) = v0i (xxx), α(xxx, 0) = α0(xxx), α̇(xxx, 0) = θ0(xxx), xxx ∈ B. (2.4)

To study the continuous dependence of the solutions with respect to the supply terms, we denote

by
(
u
(1)
i , α(1)

)
the solution corresponding to the external data

(
f
(1)
i , r(1)

)
and by

(
u
(2)
i , α(2)

)
,

the solution corresponding to the supply terms
(
f
(2)
i , r(2)

)
.

We introduce the notation

ui = u
(2)
i − u

(1)
i , α = α(2) − α(1), Fi = f

(2)
i − f

(1)
i , q = r(2) − r(1). (2.5)

1We note that C1 = b∗/k∗, where b∗ is the maximum of the absolute values of the eigenvalues of the matrix
bij and k∗ is the minimum of the eigenvalues of kij .
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It follows that (ui, α) satisfies the problem determined by the system{
ρüi =

(
aijkhuk,h − aijθ

)
,j

+ ρFi,

cθ̇ = −aiju̇i,j +
(
kijθ,i

)
,j

+
(
bijα,i

)
,j

+ ρq,
(2.6)

with the homogeneous boundary conditions

ui(xxx, t) = α(xxx, t) = 0, xxx ∈ Γ, t ∈ I, (2.7)

and the null initial conditions

ui(xxx, 0) = u̇i(xxx, 0) = α(xxx, 0) = α̇(xxx, 0) = 0, xxx ∈ B. (2.8)

In our studies it will be useful the following inequality∫ t

0

kijα,iα,j ds ≤
4C2

2 t
2

π2

∫ t

0

kijα̇,iα̇,j ds, (2.9)

which is satisfied for every function α such that α(0) = 0 and where C2 is a calculable constant2.

3 A basic inequality

In this section we obtain an inequality satisfied by the solutions of the problem defined by the
system (2.6) with boundary and initial conditions (2.7) and (2.8), respectively. This inequality
will be relevant to obtain our results.

As we assume null Dirichlet boundary conditions and null initial conditions, we obtain that
the energy equality∫

B

(
ρu̇iu̇i + cθ2 + aijkhui,juk,h + bijα,iα,j

)
dv

+ 2

∫ t

0

∫
B

kijθ,iθ,j dv ds− 2

∫ t

0

∫
B

(ρFiu̇i + ρqθ) dv ds = 0

(3.1)

is satisfied for every solution of our problem.
On the other hand, from the equalities

d

ds
[ρu̇i(s)u̇i(2t− s)] = ρüi(s)u̇i(2t− s)− ρu̇i(s)üi(2t− s), (3.2)

d

ds
[cθ(s)θ(2t− s)] = cθ̇(s)θ(2t− s)− cθ(s)θ̇(2t− s) (3.3)

and the null initial and boundary conditions, we obtain∫
B

(
ρu̇iu̇i + bijα,iα,j − aijkhui,juk,h − cθ2

)
dv

=

∫ t

0

∫
B

ρ (Fi(s)u̇i(2t− s)− Fi(2t− s)u̇i(s)) dv ds

−
∫ t

0

∫
B

ρ (q(s)θ(2t− s)− q(2t− s)θ(s)) dv ds.

(3.4)

2We note that C2
2 = k∗/k∗, where k∗ is the maximum of the eigenvalues of the symmetric matrix kij and k∗

is the minimum of the eigenvalues of kij .
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From the equality (3.1) and the relation (3.4), we conclude that∫
B

(ρu̇iu̇i + bijα,iα,j) dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

=

∫ t

0

∫
B

(ρFiu̇i + ρqθ) dv ds+
1

2

∫ t

0

∫
B

(ρFi(s)u̇i(2t− s)− ρFi(2t− s)u̇i(s)) dv ds

+
1

2

∫ t

0

∫
B

(ρq(2t− s)θ(s)− ρq(s)θ(2t− s)) dv ds.

(3.5)

We now consider several estimates:∫ t

0

∫
B

[ρFiu̇i + ρqθ] dv ds ≤
(∫ t

0

∫
B

ρFiFi dv ds

)1/2(∫ t

0

∫
B

ρu̇iu̇i dv ds

)1/2

+

(∫ t

0

∫
B

ρq2 dv ds

)1/2(∫ t

0

∫
B

ρθ2 dv ds

)1/2

≤
(∫ t

0

∫
B

[
ρFiFi + ρq2

]
dv ds

)1/2(∫ t

0

∫
B

[
ρu̇iu̇i + ρθ2

]
dv ds

)1/2

,

(3.6)

where we have used the inequality
√
a
√
b+
√
c
√
d ≤
√
a+ c

√
b+ d. (3.7)

In a similar way, we have that∫ t

0

∫
B

[ρFi(s)u̇i(2t− s)− ρFi(2t− s)u̇i(s)] dv ds

≤
(∫ t

0

∫
B

ρFiFi dv ds

)1/2(∫ 2t

t

∫
B

ρu̇iu̇i dv ds

)1/2

+

(∫ 2t

t

∫
B

ρFiFi dv ds

)1/2(∫ t

0

∫
B

ρu̇iu̇i dv ds

)1/2

≤
(∫ 2t

0

∫
B

ρFiFi dv ds

)1/2(∫ 2t

0

∫
B

ρu̇iu̇i dv ds

)1/2

.

(3.8)

We can also obtain that∫ t

0

∫
B

[ρq(2t− s)θ(s)− ρq(s)θ(2t− s)] dv ds

≤
(∫ 2t

0

∫
B

ρq2 dv ds

)1/2(∫ 2t

0

∫
B

ρθ2 dv ds

)1/2

.

(3.9)

Therefore, we see that∫
B

(ρu̇iu̇i + bijα,iα,j) dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

≤ 3

2

(∫ 2t

0

∫
B

[
ρFiFi + ρq2

]
dv ds

)1/2(∫ 2t

0

∫
B

[
ρu̇iu̇i + ρθ2

]
dv ds

)1/2

.

(3.10)
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Let us assume that

sup
t∈[0,T ]

∫
B

(
ρu̇iu̇i + ρθ2

)
dv ≤ N2

1 (3.11)

and that t ≤ T/2. We obtain that the inequality∫
B

(ρu̇iu̇i + bijα,iα,j) dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

≤ 3

2
T 1/2N1

[∫ T

0

∫
B

(
ρFiFi + ρq2

)
dv ds

]1/2 (3.12)

is satisfied for every t ≤ T/2. Estimate (3.12) is fundamental in our approach. However, as we
do not assume that bij is a positive definite matrix, we do not have a positive quadratic form
on the left side of the estimate. Thus, we will need to manipulate this term to work with a
positive quadratic form. This will be the main aim of the next sections.

4 The main result

The aim of this section is to obtain an estimate for the solutions of the problem determined by
(2.6), (2.7) and (2.8). From the inequality (3.12) and the use of the Poincaré type inequality
(2.9) we will be able to get such kind of estimate.

We are going to decompose the interval [0, T/2] in a finite sequence of subintervals I0, I1,

I2, . . . , Im such that [0, T/2] ⊂
m⋃
j=0

Ij and such that each intersection Ii ∩ Ii+1 has a unique

element, denoted by {ti}, for i = 1, . . . ,m− 1. Then, we will obtain that∫
B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv ds ≤ En, (4.1)

whenever t ∈ In ∩ [0, T/2] where the estimate En is defined by the recurrence

E0 =
3

2
T 1/2N1

[∫ t

0

∫
B

(
ρFiFi + ρq2

)
dv ds

]1/2
(4.2)

and

En+1 =
16C1C2T

π
En +

3

2
T 1/2N1

[∫ t

0

∫
B

(
ρFiFi + ρq2

)
dv ds

]1/2
. (4.3)

Our first step is to obtain that∫
B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv ds ≤ E0, (4.4)

whenever t ∈ I0 =
[
0, π

16C1C2

]
.
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From (2.2), the arithmetic-geometric mean inequality and (2.9), we know that∫
B

bijα,iα,j dv +

∫ t

0

∫
B

kijθ,iθj dv ds

≥ −C1

∫
B

kijα,iα,j dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

=− 2C1

∫ t

0

∫
B

kijα,iθ,j dv ds+

∫ t

0

∫
B

kijθ,iθ,j dv ds

≥ −2C1

(∫ t

0

∫
B

kijα,iα,j dv ds

)1/2(∫ t

0

∫
B

kijθ,iθ,jdv ds

)1/2

+

∫ t

0

∫
B

kijθ,iθ,j dv ds

≥
(

1− 4C1C2t

π

)∫ t

0

∫
B

kijθ,iθ,jdv ds.

(4.5)

If we assume that t <
π

16C1C2

, we see that

∫
B

bijα,iα,j dv +

∫ t

0

∫
B

kijθ,iθ,jdv ds ≥
1

2

∫ t

0

∫
B

kijθ,iθ,jdv ds. (4.6)

Thus, in view of the estimate (3.12), we obtain the inequality (4.4).
Let us assume that we have obtained an estimate of the type∫

B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv ds ≤ En, (4.7)

for
nπ

16C1C2

< t <
(n+ 1)π

16C1C2

<
T

2
, and we want to get a similar bound for

(n+ 1)π

16C1C2

< t < min

{
(n+ 2)π

16C1C2

,
T

2

}
.

The analysis starts by considering the relations∫
B

ρu̇iu̇i dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

=

∫
B

ρu̇iu̇i dv +

∫
B

bijα,iα,j dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds−
∫
B

bijα,iα,j dv

≤ 3

2
T 1/2N1

[∫ T

0

∫
B

(
ρFiFi + ρq2

)
dv ds

]1/2
+ C1

∫
B

kijα,iα,j dv.

(4.8)

Here we have applied the estimates (2.2) and (3.12). We note that

C1

∫
B

kijα,iα,j dv ≤2C1

∫
B

kij (α,i(t)− α,i(tn+1)) (α,j(t)− α,j(tn+1)) dv

+ 2C1

∫
B

kijα,i(tn+1)α,j(tn+1)dv,

(4.9)
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where tn+1 =
(n+ 1)π

16C1C2

. We have that

C1

∫
B

kijα,iα,j dv

≤4C1

∫ t

tn+1

∫
B

kij (α,i(s)− α,i(tn+1)) θ,j dv ds+ 4C1

∫ tn+1

0

∫
B

kijα,iθ,j dv ds

≤4C1

(∫ t

tn+1

∫
B

kij (α,i(s)− α,i(tn+1)) (α,j(s)− α,j(tn+1)) dv ds

)1/2(∫ t

tn+1

∫
B

kijθ,iθ,j dv ds

)1/2

+ 4C1

(∫ tn+1

0

∫
B

kijα,iα,j dv ds

)1/2(∫ tn+1

0

∫
B

kijθ,iθ,j dv ds

)1/2

≤8C1C2(t− tn+1)

π

∫ t

tn+1

∫
B

kijθ,iθ,j dv ds+
8C1C2tn+1

π

∫ tn+1

0

∫
B

kijθ,iθ,j dv ds.

(4.10)

From (4.8) and (4.9), it follows that∫
B

ρu̇iu̇i dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

≤3

2
T 1/2N1

[∫ T

0

∫
B

(
ρFiFi + ρq2

)
dv ds

]1/2
+

8C1C2(t− tn+1)

π

∫ t

0

∫
B

kijθ,iθ,j dv ds+
16C1C2tn+1

π
En.

(4.11)

If we assume that t− tn+1 <
π

16C1C2

, we obtain the desired estimate (4.1)–(4.3). We note that

from the recurrence (4.3), we have

Em ≤
16C1C2T

π

[
16C1C2T

π
Em−2 + E0

]
+ E0

≤ · · · ≤
(

16C1C2T

π

)m
E0 +

(
16C1C2T

π

)m−1
E0 + · · ·+ E0.

(4.12)

Hence,

Em ≤

[
m∑
k=0

(
16C1C2T

π

)k]
E0. (4.13)

Thus, we can conclude that the estimate∫
B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv

≤ 3

2
T 1/2N1

[
m∑
k=0

(
16C1C2T

π

)k](∫ T

0

∫
B

(
ρFiFi + ρq2

)
dv ds

)1/2 (4.14)

is satisfied whenever m is the first natural number such that m >
8C1C2T

π
. Therefore, we have

proved the following result.
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Theorem 4.1 Let
(
u
(1)
i , α(1)

)
and

(
u
(2)
i , α(2)

)
be the solutions of the system (1.1) correspond-

ing to the supply terms
(
f
(1)
i , r(1)

)
and

(
f
(2)
i , r(2)

)
, respectively. Then, the difference denoted

by (2.5) satisfies the estimate∫
B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv

≤ 3

2
T 1/2N1


1−

(
16C1C2T

π

)m+1

1− 16C1C2T

π


(∫ T

0

∫
B

(
ρFiFi + ρq2

)
dv ds

)1/2

,

(4.15)

where m is the first natural number such that m > 8C1C2T/π.

5 Continuous dependence on initial data

The analysis proposed in Section 4 can be adapted to study the stability with respect to

the initial data. Let us assume that we have two solutions
(
u
(1)
i , α(1)

)
and

(
u
(2)
i , α(2)

)
to the

homogeneous version (fi = 0, r = 0) of the system (1.1) with the same boundary conditions, but
with different initial conditions. Using the notation proposed previously, we denote by (ui, α) the
solution of the homogeneous version of the system (2.6) with homogeneous boundary conditions
(2.7) and the initial conditions

ui(xxx, 0) = u
(2)
i (xxx, 0)− u(1)i (xxx, 0) = u∗i (xxx),

u̇i(xxx, 0) = u̇
(2)
i (xxx, 0)− u̇(1)i (xxx, 0) = v∗i (xxx),

α(xxx, 0) = α(2)(xxx, 0)− α(1)(xxx, 0) = α∗(xxx),

α̇(xxx, 0) = α̇(2)(xxx, 0)− α̇(1)(xxx, 0) = θ∗(xxx).

(5.1)

In this case, the energy equation gives

E(t) =

∫
B

(
ρu̇iu̇i + cθ2 + aijklui,juk,l + bijα,iα,j

)
dv + 2

∫ t

0

∫
B

kijθ,iθ,j dv ds = E(0), (5.2)

where

E(0) =

∫
B

(
ρv∗i v

∗
i + c (θ∗)2 + aijklu

∗
i,ju
∗
k,l + bijα

∗
,iα
∗
,j

)
dv. (5.3)

As we consider the homogeneous system, the Lagrange identities argument implies that∫
B

(
ρu̇iu̇i + bijα,iα,j − aijklui,juk,l − cθ2

)
dv

=

∫
B

(
ρv∗i u̇i(2t) + bijα

∗
,iα,j(2t)− aijklu∗i,juk,l(2t)− cθ∗θ(2t)

)
dv.

(5.4)

From (5.2) and (5.4), we obtain that∫
B

(ρu̇iu̇i + bijα,iα,j) dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

=
E(0)

2
+

1

2

∫
B

(
ρv∗i u̇i(2t) + bijα

∗
,iα,j(2t)− aijklu∗i,juk,l(2t)− cθ∗θ(2t)

)
dv.

(5.5)
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We have that ∣∣∣∣∫
B

ρv∗i u̇i(2t) dv

∣∣∣∣ ≤ (∫
B

ρv∗i v
∗
i dv

)1/2(∫
B

ρu̇i(2t)u̇i(2t) dv

)1/2

(5.6)

∣∣∣∣∫
B

cθ∗θ(2t) dv

∣∣∣∣ ≤ (∫
B

c (θ∗)2 dv

)1/2(∫
B

cθ2(2t) dv

)1/2

(5.7)∣∣∣∣∫
B

bijα
∗
,iα,j(2t) dv

∣∣∣∣ ≤ C3

(∫
B

α∗,iα
∗
,i dv

)1/2(∫
B

α,j(2t)α,j(2t) dv

)1/2

(5.8)∣∣∣∣∫
B

aijkhu
∗
i,juk,h(2t) dv

∣∣∣∣ ≤ C4

(∫
B

u∗i,ju
∗
i,j dv

)1/2(∫
B

uk,h(2t)uk,h(2t) dv

)1/2

. (5.9)

Here, C3 and C4 are two calculable positive constants depending on bij and aijkh, respectively.
If we assume that

sup
t∈[0,T ]

∫
B

(
ρu̇iu̇i + C4ui,jui,j + C3α,iα,i + cθ2

)
dv < N2

2 (5.10)

and we take T ≥ 2t, we see that∫
B

(ρu̇iu̇i + bijα,iα,j) dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds ≤
E(0)

2
+

1

2
N2TI

∗, (5.11)

where

I∗ =

[∫
B

(
ρv∗i v

∗
i + C3α

∗
,iα
∗
,i + C4u

∗
i,ju
∗
i,j + c|θ∗|2

)
dv

]1/2
. (5.12)

Estimate (5.11) plays a similar role to the estimate (3.12) in the corresponding case.
We note that∫

B

bijα,iα,j dv ≤ C1

∫
B

kijα,iα,j dv ≤ 2C1

∫
B

kij
(
α,i − α∗,i

) (
α,j − α∗,j

)
dv + 2C1

∫
B

kijα
∗
,iα
∗
,j dv

≤ 4C1

∫ t

0

∫
B

kij
(
α,j − α∗,j

)
θ,j dv ds+ 2C1

∫
B

kijα
∗
,iα
∗
,j dv

≤ 8C1C2t

π

∫ t

0

∫
B

kijθ,iθ,j dv ds+ 2C1

∫
B

kijα
∗
,iα
∗
,j dv.

(5.13)

We can determine a recurrence similar to (4.2) and (4.3). We define Hn by means of the
recurrence

H0 =
E(0)

2
+ 2C1

∫
B

kijα
∗
,iα
∗
,j dv +

1

2
N2TI

∗ (5.14)

and

Hn+1 =
E(0)

2
+

1

2
N2TI

∗ +
16C1C2T

π
Hn. (5.15)

If we consider the estimate (5.13) and we choose t1 =
π

16C1C2

, we see that the estimate∫
B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv ds ≤ H0 (5.16)
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is satisfied whenever 0 < t < t1 < T/2.
Let us assume that the estimate∫

B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv ds ≤ Hn (5.17)

holds whenever
nπ

16C1C2

< t ≤ (n+ 1)π

16C1C2

<
T

2
. We want to obtain a similar estimate in the

interval
(n+ 1)π

16C1C2

< t < min

{
(n+ 2)π

16C1C2

,
T

2

}
.

As in (4.8), it turns out∫
B

ρu̇iu̇i dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

≤E(0)

2
+

1

2
N2TI

∗ + 2C1

∫
B

kij (α,i(t)− α,i(tn+1)) (α,j(t)− α,j(tn+1)) dv

+ 2C1

∫
B

kijα,i(tn+1)α,j(tn+1)dv.

(5.18)

Moreover,∫
B

kij (α,i(t)− α,i(tn+1)) (α,j(t)− α,j(tn+1)) dv

= 2

∫ t

tn+1

∫
B

kij (α,i(s)− α,i(tn+1)) θ,j(s) dv ds

≤ 2

(∫ t

tn+1

∫
B

kij (α,i(s)− α,i(tn+1)) (α,j(s)− α,j(tn+1)) dv ds

)1/2(∫ t

tn+1

∫
B

kijθ,iθ,j dv ds

)1/2

≤ 4C2(tn − tn+1)

π

∫ t

0

∫
B

kijθ,iθ,j dv ds

(5.19)

and ∫
B

kijα,i(tn+1)α,j(tn+1) dv ≤
2C2tn+1

π

∫
B

kijθ,i(tn+1)θ,j(tn+1) ds ≤
4C2tn+1

π
Hn. (5.20)

From (5.18)-(5.20), it follows that∫
B

ρu̇iu̇i dv +

∫ t

0

∫
B

kijθ,iθ,j dv ds

≤ E(0)

2
+

1

2
N2TI

∗ +
8C1C2(tn − tn+1)

π

∫ t

0

∫
B

kijθ,iθ,j dv ds+
16C1C2tn+1

π
Hn.

(5.21)

So, we get that∫
B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv ds ≤
E(0)

2
+

1

2
N2TI

∗ +
16C1C2T

π
Hn, (5.22)
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which is the desired estimate. In a similar way to the argument proposed at the end of Section
4, we can obtain the estimate∫

B

ρu̇iu̇i dv +
1

2

∫ t

0

∫
B

kijθ,iθ,j dv ds

≤


1−

(
16C1C2T

π

)m+1

1− 16C1C2T

π


(
E(0)

2
+ 2C1

∫
B

kijα
∗
,iα
∗
,j dv +

1

2
N2TI

∗
)
,

(5.23)

where m is the first natural number such that m >
8C1C2T

π
. Thus, we conclude the Hölder

stability with respect to the initial data.
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