One-dimensional T-preorders

D. Boixader and J. Recasens

Secció Matemàtiques i Informàtica
ETS Arquitectura del Vallès
Universitat Politècnica de Catalunya
Pere Serra 1-15
08190 Sant Cugat del Vallès
Spain
{dionis.boixader,j.recasens}@upc.edu

Abstract. This paper studies T-preorders by using their Representation Theorem that states that every T-preorder on a set X can be generated in a natural way by a family of fuzzy subsets of X. Especial emphasis is made on the study of one-dimensional T-preorders (i.e.: T-preorders that can be generated by only one fuzzy subset). Strong complete T-preorders are characterized.

Keywords. T-preorder, Representation Theorem, generator, dimension, strong complete T-preorder

Introduction

T-preorders were introduced by Zadeh in [8] and are very important fuzzy relations, since they fuzzify the concept of preorder on a set. Although there are many works studying their properties and applications to different fields, starting with [8], [7] [1], authors have not paid much attention to their relationship with the very important Representation Theorem. Roughly speaking the Representation Theorem states that every fuzzy subset μ of a set X generates a T-preorder P_μ on X in a natural way and that every T-preorder can be generated by a family of such special T-preorders.

The Representation Theorem provides us with a method to generate a T-preorder from a family of fuzzy subsets. These fuzzy subsets can measure the degrees in which different features are fulfilled by the elements of a universe X or can be the degrees of compatibility with different prototypes. Reciprocally, from a T-preorder a family (in fact many families) of fuzzy subsets can be obtained providing thus semantics to the relation.

This paper provides some results of T-preorders related to the Representation Theorem. Special attention is paid to one-dimensional T-preorders (i.e.: T-preorders generated by a single fuzzy subset) because they are the bricks out of which T-preorders are built. The fuzzy subsets that generate the same T-preorder are determined (Propositions 2.1, 2.3 and 2.5) and a characterization of one-dimensional T-preorders by the use of Sincov-like functional equations is provided in Propositions 2.12 and 2.13. Also the relation with T-preorders and reciprocal matrices [6] will allow us to find a one-dimensional T-preorder close to a given one as explained in Example 2.17.
A strong complete \(T \)-preorder \(P \) on a set \(X \) is a \(T \)-preorder satisfying that for \(x, y \in X \), either \(P(x, y) = 1 \) or \(P(y, x) = 1 \). These are interesting fuzzy relations used in fuzzy preference structures [4]. It is a direct consequence of Lemma 1.6 that one-dimensional \(T \)-preorders are strong complete, but there are strong complete \(T \)-preorders that are not one-dimensional. In Section 3 strong complete \(T \)-preorders are characterized using the Representation Theorem (Propositions 3.4 and 3.5).

The last section of the paper contains some concluding remarks and an interesting open problem: Which conditions must a couple of fuzzy subsets \(\mu \) and \(\nu \) fulfill in order to exist a \(t \)-norm \(T \) with \(P_\mu = P_\nu \). Also the possibility of defining two dimensions (right and left) is discussed.

A section of preliminaries with the results and definitions needed in the rest of the paper follows.

1. Preliminaries

This section contains the main definitions and properties related mainly to \(T \)-preorders that will be needed in the rest of the paper.

Definition 1.1. [8] Let \(T \) be a \(t \)-norm. A fuzzy \(T \)-preorder on a set \(X \) is a fuzzy relation \(P: X \times X \to [0, 1] \) satisfying for all \(x, y, z \in X \)

- \(P(x, x) = 1 \) (Reflexivity)
- \(T(P(x, y), P(y, z)) \leq P(x, z) \) (\(T \)-transitivity).

Definition 1.2. The inverse or dual \(R^{-1} \) of a fuzzy relation \(R \) on a set \(X \) is the fuzzy relation on \(X \) defined for all \(x, y \in X \) by

\[
R^{-1}(x, y) = R(y, x).
\]

Proposition 1.3. A fuzzy relation \(R \) on a set \(X \) is a \(T \)-preorder on \(X \) if and only if \(R^{-1} \) is a \(T \)-preorder on \(X \).

Definition 1.4. The residuation \(\overrightarrow{T} \) of a \(t \)-norm \(T \) is defined for all \(x, y \in [0, 1] \) by

\[
\overrightarrow{T}(x|y) = \sup\{\alpha \in [0, 1] \text{ such that } T(\alpha, x) \leq y\}.
\]

Example 1.5.

1. If \(T \) is a continuous Archimedean \(t \)-norm with additive generator \(t \), then

\[
\overrightarrow{T}(x|y) = t([-1](t(y) - t(x))) \text{ for all } x, y \in [0, 1].
\]

As special cases,

- If \(T \) is the \(\text{Łukasiewicz} \) \(t \)-norm, then \(\overrightarrow{T}(x|y) = \min(1 - x + y, 0) \) for all \(x, y \in [0, 1] \).
- If \(T \) is the Product \(t \)-norm, then \(\overrightarrow{T}(x|y) = \min(\frac{y}{x}, 1) \) for all \(x, y \in [0, 1] \).

2. If \(T \) is the minimum \(t \)-norm, then \(\overrightarrow{T}(x|y) = \begin{cases} y & \text{if } x > y \\ 1 & \text{otherwise.} \end{cases} \)
Lemma 1.6. Let μ be a fuzzy subset of X. The fuzzy relation P_μ on X defined for all $x, y \in X$ by

$$P_\mu(x, y) = \overrightarrow{T}(\mu(x)|\mu(y))$$

is a T-preorder on X.

Theorem 1.7. Representation Theorem [7]. A fuzzy relation R on a set X is a T-preorder on X if and only if there exists a family $(\mu_i)_{i \in I}$ of fuzzy subsets of X such that for all $x, y \in X$

$$R(x, y) = \inf_{i \in I} R_{\mu_i}(x, y).$$

Definition 1.8. A family $(\mu_i)_{i \in I}$ in Theorem 1.7 is called a generating family of R and an element of a generating family is called a generator of R. The minimum of the cardinalities of such families is called the dimension of R ($\dim R$) and a family with this cardinality a basis of R.

A generating family can be viewed as the degrees of accuracy of the elements of X to a family of prototypes. A family of prototypes with low cardinality, especially a basis, simplifies the computations and gives clarity to the structure of X.

The next proposition states a trivial but important result.

Proposition 1.9. μ is a generator of R if and only if $R_\mu \geq R$.

Definition 1.10. Two continuous t-norms T, T' are isomorphic if and only if there exists a bijective map $\varphi : [0, 1] \to [0, 1]$ such that $\varphi \circ T = T' \circ (\varphi \times \varphi)$.

Isomorphisms φ are continuous and increasing maps.

It is well known that all strict continuous Archimedean t-norms T are isomorphic. In particular, they are isomorphic to the Product t-norm and $T(x, y) = \varphi^{-1}(\varphi(x) \cdot \varphi(y))$.

Also, all non-strict continuous Archimedean t-norms T are isomorphic. In particular, they are isomorphic to the Łukasiewicz t-norm and $T(x, y) = \varphi^{-1}(\max(\varphi(x) + \varphi(y) - 1), 0)$.

Proposition 1.11. If T, T' are two isomorphic t-norms, then their residuations $\overrightarrow{T}, \overrightarrow{T'}$ also are isomorphic (i.e. there exists a bijective map $\varphi : [0, 1] \to [0, 1]$ such that $\varphi \circ \overrightarrow{T} = \overrightarrow{T'} \circ (\varphi \times \varphi)$).

2. One-dimensional T-preorders

Let us recall that according to Definition 1.8 a T-preorder P on X is one dimensional if and only if there exists a fuzzy subset μ of X such that for all $x, y \in X$, $P(x, y) = \overrightarrow{T}(\mu(x)|\mu(y))$.
2.1. Generators of One-dimensional T-preorders

For a one-dimensional T-preorder P it is interesting to find all fuzzy subsets μ that are a basis of P (i.e.: $P = P_\mu$). The two next propositions answer this question for continuous Archimedean t-norms and for the minimum t-norm.

Proposition 2.1. Let T be a continuous Archimedean t-norm, t an additive generator of T and μ, ν fuzzy subsets of X. $P_\mu = P_\nu$ if and only if $\forall x \in X$ the following condition holds:

$$t(\mu(x)) = t(\nu(x)) + k$$

with $k \geq \sup \{-t(\nu(x))|x \in X\}$.

Moreover, if T is non-strict, then $k \leq \inf \{t(0) - t(\nu(x))|x \in X\}$.

Proof.

\Rightarrow) If $\mu(x) \geq \mu(y)$, then

$$P_\mu(x,y) = \overline{T}(\mu(x)|\mu(y)) = t^{-1}(t(\mu(y)) - t(\mu(x)))$$

$$P_\nu(x,y) = t^{-1}(t(\nu(y)) - t(\nu(x)))$$

where t^{-1} is replaced by t^{-1} because all the values in brackets are between 0 and $t(0)$.

If $P_\mu = P_\nu$, then

$$t(\mu(y)) = t(\nu(y)) - t(\nu(x)).$$

Let us fix $y_0 \in X$. Then

$$t(\mu(y_0)) = t(\nu(y_0)) - t(\nu(x)).$$

and

$$t(\mu(x)) = t(\nu(x)) + t(\mu(y_0)) - t(\nu(y_0)) = t(\nu(x)) + k$$

\Leftarrow) Trivial thanks to Example 1.5.1.

Example 2.2. With the previous notations,

- If T is the Łukasiewicz t-norm, then

 $$\mu(x) = \nu(x) + k$$

 with $\inf \{1 - \nu(x)\} \geq k \geq \sup \{-\nu(x)\}$.

- If T is the product t-norm, then

 $$\mu(x) = \frac{\nu(x)}{k}$$

 with $k \geq \sup \{\nu(x)\}$.

\[\square\]
Proposition 2.3. Let T be the minimum t-norm, μ a fuzzy subset of X and x_M an element of X with $\mu(x_M) \geq \mu(x) \forall x \in X$. Let $Y \subset X$ be the set of elements x of X with $\mu(x) = \mu(x_M)$ and $s = \sup \{\mu(x) \text{ such that } x \in X - Y\}$. A fuzzy subset ν of X generates the same T-preorder than μ if and only if

$$\forall x \in X - Y \mu(x) = \nu(x) \text{ and } \nu(y) = t \text{ with } s \leq t \leq 1 \forall y \in Y.$$

Proof. It follows easily from the fact that $P_{\mu}(x, y) = \begin{cases} \mu(y) \text{ if } \mu(x) > \mu(y) \\ 1 \text{ otherwise.} \end{cases}$.

At this point, it seems that the dimension of P and of P^{-1} should coincide, but this is not true in general as we will show in the next example. Nevertheless, for continuous Archimedean t-norms they do coincide in most of the cases as will be proved in Proposition 2.5.

Example 2.4. Consider the one-dimensional min-preorder P of $X = \{x_1, x_2, x_3\}$ generated by the fuzzy subset $\mu = (0.8, 0.7, 0.4)$. Its matrix is

$$\begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & 1 & 1 & 1 \\ x_2 & 0.7 & 1 & 1 \\ x_3 & 0.4 & 0.4 & 1 \end{pmatrix}$$

while the matrix of P^{-1} is

$$\begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & 1 & 0.7 & 0.4 \\ x_2 & 1 & 1 & 0.4 \\ x_3 & 1 & 1 & 1 \end{pmatrix}$$

which clearly is not one-dimensional.

Proposition 2.5. Let T be a continuous Archimedean t-norm, t an additive generator of T, μ a fuzzy subset of X and P_{μ} the T-preorder generated by μ. Then P_{μ}^{-1} is generated by the fuzzy subset ν of X such that $t(\nu(x)) = -t(\mu(x)) + k$.

Proof.

$$P_{\mu}^{-1}(x, y) = P_{\mu}(y, x) = t^{-1}(t(\mu(x)) - t(\mu(y))) = t^{-1}(-t(\mu(y)) + k + t(\mu(x)) - k) = t^{-1}(t(\nu(y)) - t(\nu(x))) = P_{\nu}(x, y).$$

Example 2.6.
• If T is the t-norm of Łukasiewicz, μ a fuzzy subset of X and P the T-preorder on X generated by μ (i.e.: $P = P_\mu$), then P^{-1} is generated by $k - \mu$, with $\sup_{x \in X} \{\mu(x)\} \leq k \leq 1 + \inf_{x \in X} \{\mu(x)\}$.

• If T is the product t-norm, μ a fuzzy subset of X such that $\inf_{x \in X} \{\mu(x)\} > 0$ and P the T-preorder on X generated by μ (i.e.: $P = P_\mu$), then P^{-1} is generated by $k \mu$, with $0 < k \leq \inf_{x \in X} \{\mu(x)\}$.

Hence, the dimensions of a T-preorder P and its inverse P^{-1} coincide when T is the t-norm of Łukasiewicz (and any other continuous non-strict Archimedean t-norm) while for the product t-norm (and any other continuous strict t-norm) coincide when $\inf_{x,y \in X} \{P(x,y)\} \neq 0$.

2.2. Sincov Functional Equation and AHP

Definition 2.7. [3] A mapping $F : X \times X \rightarrow \mathbb{R}$ satisfies the Sincov functional equation if and only if for all $x, y, z \in X$ we have

$$F(x, y) + F(y, z) = F(x, z).$$

The following result characterizes the mappings satisfying Sincov equation.

Proposition 2.8. [3] A mapping $F : X \times X \rightarrow \mathbb{R}$ satisfies the Sincov functional equation if and only if there exists a mapping $g : X \rightarrow \mathbb{R}$ such that

$$F(x, y) = g(y) - g(x)$$

for all $x, y \in X$.

Proposition 2.9. The real line \mathbb{R} with the operation $*$ defined by $x * y = x + y - 1$ for all $x, y \in \mathbb{R}$ is an Abelian group with 1 as the identity element. The opposite of x is $-x + 2$.

Replacing the addition by this operation $*$ we obtain a Sincov-like functional equation:

Proposition 2.10. Let $F : X \times X \rightarrow \mathbb{R}$ be a mapping. F satisfies the functional equation

$$F(x, y) * F(y, z) = F(x, z)$$

if and only if there exists a mapping $g : X \rightarrow \mathbb{R}$ such that

$$F(x, y) = g(y) - g(x) + 1$$

for all $x, y \in X$.

Proof. The mapping $G(x, y) = F(x, y) - 1$ satisfies the Sincov functional equation and so $G(x, y) = g(y) - g(x)$. \qed

Replacing the addition by multiplication we obtain another Sincov-like functional equation:
Proposition 2.11. Let $F : X \times X \to \mathbb{R}^+$ be a mapping. F satisfies the functional equation

$$F(x, y) \cdot F(y, z) = F(x, z)$$ \hspace{1cm} (2)

if and only if there exists a mapping $g : X \to \mathbb{R}^+$ such that

$$F(x, y) = \frac{g(y)}{g(x)}$$

for all $x, y \in X$.

Proof. Simply calculate the logarithm of both hand sides of the functional equation to transform it to Sincov functional equation.

If μ is a fuzzy subset of X, we can consider μ as a mapping from X to \mathbb{R} or to \mathbb{R}^+. This will allow us to characterize one-dimensional T-preorders on X when T is a continuous Archimedean t-norm. For this purpose we will use the isomorphism φ between T and the Łukasiewicz or the Product t-norm.

Proposition 2.12. Let $T(x, y) = \varphi^{-1}(\max(\varphi(x) + \varphi(y) - 1), 0)$ be a non-strict Archimedean t-norm and X a set. $F : X \times X \to \mathbb{R}$ satisfies equation (1) if and only if $\varphi \circ P = \min(\varphi \circ F, 1)$ is a one-dimensional T-preorder on X.

Proposition 2.13. Let $T(x, y) = \varphi^{-1}(\varphi(x) \cdot \varphi(y))$ be a non-strict Archimedean t-norm and X a set. $F : X \times X \to \mathbb{R}^+$ satisfies equation (2) if and only if $\varphi \circ P = \min(\varphi \circ F, 1)$ is a T-preorder on X.

Definition 2.14. [6] An $n \times n$ real matrix A with entries $a_{ij} > 0$, $1 \leq i, j \leq n$, is reciprocal if and only if $a_{ij} = \frac{1}{a_{ji}} \forall i, j = 1, 2, ..., n$. A reciprocal matrix is consistent if and only if $a_{ik} = a_{ij} \cdot a_{jk} \forall i, j = 1, 2, ..., n$.

If the cardinality of X is finite (i.e.: $X = \{x_1, x_2, ..., x_n\}$), then we can associate the matrix $A = (a_{ij})$ with entries $a_{ij} = F(x_i, x_j)$ to every map $F : X \times X \to \mathbb{R}^+$. Then F satisfies equation (2) if and only if A is a reciprocal consistent matrix as defined in [6].

Proposition 2.11 can be rewritten in this context by

Proposition 2.15. [6] An $n \times n$ real matrix A is reciprocal and consistent if and only if there exists a mapping g of X such that

$$a_{ij} = \frac{g(x_i)}{g(x_j)} \forall i, j = 1, 2, ..., n.$$

For a given reciprocal matrix A, Saaty obtains a consistent matrix A' close to A [6]. A' is generated by an eigenvector associated to the greatest eigenvalue of A and fulfills the following properties.

1. If A is already consistent, then $A = A'$.
2. If A is a reciprocal positive matrix, then the sum of its eigenvalues is n.
3. If A is consistent, then there exist a unique eigenvalue $\lambda_{\text{max}} = n$ different from zero.

4. Slight modifications of the entries of A produce slight changes to the entries of A'.

We will use the third property to obtain a one-dimensional T-preorder close to a given one.

Definition 2.16. [6] The consistent matrix $A = (a_{ij})$ associated to a T-preorder $P = (p_{ij})$, $i, j = 1, 2, ..., n$ is defined by

\[a_{ij} = p_{ij} \text{ if } p_{ij} \leq p_{ji} \]

\[a_{ij} = \frac{1}{p_{ji}} \text{ if } p_{ij} > p_{ji}. \]

Then in order to obtain a one dimensional T-preorder P' close to a given one P (T the Product t-norm), the following procedure can be used:

- Calculate the consistent reciprocal matrix A associated to P.
- Find an eigenvector μ of the greatest eigenvalue of A.
- $P' = P_\mu$.

Example 2.17. Let T be the Product t-norm and P the T-preorder on a set X of cardinality 5 given by the following matrix.

\[
P = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0.74 & 1 & 1 & 1 & 1 \\
0.67 & 0.87 & 1 & 1 & 1 \\
0.50 & 0.65 & 0.74 & 1 & 1 \\
0.41 & 0.53 & 0.60 & 0.80 & 1
\end{pmatrix}.
\]

Its associated reciprocal matrix A is

\[
A = \begin{pmatrix}
1 & 1.3514 & 1.4925 & 2.0000 & 2.4390 \\
0.7400 & 1 & 1.1494 & 1.5385 & 1.8888 \\
0.6700 & 0.8700 & 1 & 1.3514 & 1.6667 \\
0.5000 & 0.6500 & 0.7400 & 1 & 1.2500 \\
0.4100 & 0.5300 & 0.6000 & 0.8000 & 1
\end{pmatrix}.
\]

Its greatest eigenvalue is 5.0003 and an eigenvector for 5.0003 is

\[\mu = (1, 0.76, 0.67, 0.50, 0.40). \]

This fuzzy set generates P_μ, which is a one dimensional T-preorder close to P.

\[
P_\mu = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0.76 & 1 & 1 & 1 & 1 \\
0.67 & 0.88 & 1 & 1 & 1 \\
0.50 & 0.66 & 0.74 & 1 & 1 \\
0.40 & 0.53 & 0.60 & 0.81 & 1
\end{pmatrix}.
\]
The results of this section can be easily generalized to continuous strict Archimedean t-norms. If T' is a continuous strict Archimedean t-norm, then it is isomorphic to the Product t-norm T. Let φ be this isomorphism. If P is a T'-preorder, then $\varphi \circ P$ is a T-preorder. We can find P' one-dimensional close to $\varphi \circ P$ as before. Since isomorphisms between continuous t-norms are continuous and preserve dimensions, $\varphi^{-1} \circ P'$ is a one-dimensional T'-preorder close to P.

3. Strong Complete T-preorders

Definition 3.1. [4] A T-preorder P on a set X is a strong complete T-preorder if and only if for all $x, y \in X$,

$$\max(P(x, y), P(y, x)) = 1.$$

Of course every one-dimensional fuzzy T-preorder is a strong complete T-preorder, but there are strong complete T-preorders that are not one-dimensional. In Propositions 3.3 and 3.5 these fuzzy relations will be characterized exploiting the fact that they generate crisp linear orderings.

Lemma 3.2. Let μ be a generator of a strong complete T-preorder P on X. If $P(x, y) = 1$, then $\mu(x) \leq \mu(y)$.

Proof. Trivial, since $T(\mu(x) | \mu(y)) = P(x, y) \geq P(x, y) = 1$. \hfill \square

Proposition 3.3. Let μ, ν be two generators of a strong complete T-preorder P on X. Then for all $x, y \in X$, $\mu(x) \leq \mu(y)$ if and only if $\nu(x) \leq \nu(y)$.

Proof. Given $x, y \in X$, $x \neq y$, let us suppose that $P(x, y) = 1$ (and $P(y, x) < 1$). Then $\mu(x) \leq \mu(y)$ and $\nu(x) \leq \nu(y)$. \hfill \square

Proposition 3.4. Let P be a strong complete T-preorder on a set X. The elements of X can be totally ordered in such a way that if $x \leq y$, then $P(x, y) = 1$.

Proof. Consider the relation \leq on X defined by $x \leq y$ if and only if $\mu(x) \leq \mu(y)$ for any generator μ of P. (If for $x \neq y$, $\mu(x) = \mu(y)$ for any generator, then chose either $x < y$ or $y < x$). \hfill \square

Reciprocally,

Proposition 3.5. If for any couple of generators μ and ν of a T-preorder P on a set X $\mu(x) \leq \mu(y)$ if and only if $\nu(x) \leq \nu(y)$, then P is strong complete.

Proof. Trivial. \hfill \square
4. Concluding Remarks

T-preorders have been studied with the help of its Representation Theorem. The different fuzzy subsets generating the same T-preorder have been characterized and the relation between one-dimensional T-preorders, Sincov-like functional equations and Saaty’s reciprocal matrices has been studied. Also strong complete T-preorders have been characterized.

We end pointing at two directions toward a future work.

- We can look at the results of the Subsection 2.1 from a different point of view: Let us suppose that we obtain two different fuzzy subsets μ and ν of a universe X by two different measurements or by two different experts. It would be interesting to know in which conditions we could assure the existence of a (continuous Archimedean) t-norm for which $P_{\mu} = P_{\nu}$.

- A fuzzy subset μ of a set X generates a T-preorder P_{μ} by $P_{\mu}(x, y) = \overrightarrow{T}(\mu(x)|\mu(y))$, but also another T-preorder $\mu P(x, y) = \overrightarrow{T}(\mu(y)|\mu(x))$ (in fact, the inverse of P_{μ}). In this way we could define two dimensions of a T-preorder according weather we consider it generated by families $(P_{\mu_i})_{i \in I}$ or by families $(\mu_i, P)^{i \in I}$. For instance the min-preorder of Example 2.4 would have right dimension 1 and left dimension 2.

References