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Abstract
GPUs are being increasingly adopted as compute acceler-

ators in many domains, spanning environments from mobile
systems to cloud computing. These systems are usually run-
ning multiple applications, from one or several users. How-
ever GPUs do not provide the support for resource sharing
traditionally expected in these scenarios. Thus, such systems
are unable to provide key multiprogrammed workload require-
ments, such as responsiveness, fairness or quality of service.

In this paper, we propose a set of hardware extensions that
allow GPUs to efficiently support multiprogrammed GPU
workloads. We argue for preemptive multitasking and design
two preemption mechanisms that can be used to implement
GPU scheduling policies. We extend the architecture to al-
low concurrent execution of GPU kernels from different user
processes and implement a scheduling policy that dynami-
cally distributes the GPU cores among concurrently running
kernels, according to their priorities. We extend the NVIDIA
GK110 (Kepler) like GPU architecture with our proposals
and evaluate them on a set of multiprogrammed workloads
with up to eight concurrent processes. Our proposals improve
execution time of high-priority processes by 15.6x, the average
application turnaround time between 1.5x to 2x, and system
fairness up to 3.4x.

1. Introduction
Graphics Processing Units (GPUs) have become fully pro-
grammable massively parallel processors [21, 38, 4] that are
able to efficiently execute both, traditional graphics workloads,
and certain types of general purpose codes [26]. GPUs have
been designed to maximize the performance of a single appli-
cation, and thus assume exclusive access from a single process.
Accesses to the GPU from different applications are serial-
ized. However, as the number of applications ported to GPUs
grows, sharing scenarios are starting to appear. Issues with
GPU sharing, such as priority inversion and no fairness, have
already been noticed by operating systems [30, 17, 18, 27] and
real-time [16, 6] research communities. Moreover, with the
integration of programmable GPUs into mobile SoCs [31, 5]
and consumer CPUs [3, 15], the demand for GPU sharing is
likely to increase. This leads us to believe that support for
fine-grained sharing of GPUs must be implemented.

Today’s GPUs contain execution and data transfer engines
that receive commands from the CPU through command
queues. The execution engine comprises all the GPU cores,

that are treated as a whole. Commands from the same process
targeting different engines can be executed concurrently (e.g.,
a data transfer can be performed in parallel with a GPU kernel
execution). However, when a command is running, it has ex-
clusive access to the engine and cannot be preempted (i.e., the
command runs to completion). Hence, a long-latency GPU
kernel can occupy the execution engine, preventing other ker-
nels from same or different process to progress. This limitation
hinders true multiprogramming in GPUs.

The latest NVIDIA GPU architecture, GK110 (Kepler),
improves the concurrency of commands coming from the
same process by providing several hardware command queues
(often referred to as NVIDIA Hyper-Q [23]). NVIDIA also
provides a software solution [24] that acts as a proxy to allow
several processes to use the GPU as one, at the cost of losing
process isolation. Combining these two features is especially
useful for improving the utilization of GPU engines in legacy
MPI applications. However they do not solve the problem of
sharing the GPU among several applications.

To enable true sharing, GPUs need a hardware mechanism
that can preempt the execution of GPU kernels, rather than
waiting for the program to release the GPU. Such mechanism
would enable system-level scheduling policies that can control
the execution resources, in a similar way the multitasking
operating systems do with the CPUs today. The assumed
reason [1, 27] for the lack of a preemption mechanism in
GPUs is the expected high overhead of saving and restoring
the context of GPU cores (up to 256KB of register file and
48 KB of on-chip scratch-pad memory per GPU core), which
can take up to 44µs in GK110, assuming the peak memory
bandwidth. Compared to the context switch time of less than
1µs on modern CPUs, this might seem to be a prohibitively
high overhead.

In this paper we show how preemptive multitasking is not
only necessary, but also a feasible approach to multiprogram-
ming on GPUs. We design two preemption mechanisms with
different effectiveness and implementation costs. One is simi-
lar to the classic operating system preemption where the ex-
ecution on GPU cores is stopped, and their context is saved
to implement true preemptive multitasking. The other mecha-
nism exploits the semantics of the GPU programming model
and the nature of GPU applications to implement preemp-
tion by stopping the issue of new work to preempted GPU
cores, and draining them from currently running work. We
show that both mechanisms provide improvements in system



responsiveness and fairness at the expense of a small loss in
throughput.

Still, exclusive access to the execution engine limits the
possible sharing to time multiplexing. We propose further
hardware extensions that remove the exclusive access con-
straint and allow the utilization of GPU cores, individually.
These extensions enable different processes to concurrently
execute GPU kernels on different sets of GPU cores. Fur-
thermore, we implement Dynamic Spatial Sharing (DSS), a
hardware scheduling policy that dynamically partitions the
resources (GPU cores) and assigns them to different processes
according to the priorities assigned by the OS.

The three main contributions of the paper are (1) the design
of two preemption mechanisms that allow GPUs to implement
scheduling policies, (2) extensions for concurrent execution of
different processes on GPUs that allow implementing spatial
sharing, and (3) a scheduling policy that dynamically assigns
disjoint sets of GPU cores to different processes. Experimen-
tal evaluation shows that the hardware support for preemptive
multi-tasking introduced in this paper allows scheduler imple-
mentations for multiprogrammed environments that, on aver-
age, improve the performance of high-priority applications up
to 15.6x over the baseline at the cost of 12% of degradation in
throughput. Our DSS scheduling policy improves normalized
turnaround time up to 2x and system fairness up to 3.4x at the
cost of throughput degradation up to 35%.

2. Background and Motivation
In this section we provide the background on GPU architecture
and execution model that are necessary for understanding our
proposals. Our base architecture is modeled after the NVIDIA
GK110 chip, but we keep the discussion generic, to cover
architectures from other vendors, as well as fused CPU-GPU
architectures.

2.1. GPU Program Execution

Typically, GPU applications consist of repetitive bursts of 1)
CPU execution, that perform control, preprocessing or I/O
operations, 2) GPU execution (kernels), that performs com-
putationally demanding tasks, and 3) data transfers between
CPU and GPU, that bring input data to the GPU memory and
return the outputs to the CPU memory. The GPU device driver
is in charge of performing the bookkeeping tasks for the GPU,
as the OS performs for the CPU (e.g., managing the GPU
memory space). GPU kernel invocations (kernel launch in
CUDA terminology), initiation of data transfers, and GPU
memory allocations are typically performed in the CPU code
(referred to as commands in the rest of the paper). Each kernel
launch consists of a number of threads executing the same
code. Threads are grouped in thread blocks that are indepen-
dent of each other, and only threads from the same thread
block can cooperate using barrier synchronization and com-
munication through local memory (shared memory in CUDA
terminology).

Programming models for GPUs provide software work
queues (streams in CUDA terminology) that allow program-
mers to specify the dependences between commands. Com-
mands in different streams are considered independent and
may be executed concurrently by the hardware. Because the
latency of issuing a command to the GPU is significant [17],
commands are sent to the GPU as soon as possible. Each
process that uses a GPU gets its own GPU context, which
contains the page table of the GPU memory and the streams
defined by the programmer.

To overcome the inefficiencies introduced by multiple pro-
cesses sharing the GPU [20], NVIDIA provides a software
solution called Muli-Process Service (MPS) [24]. MPS in-
stantiates a proxy process that receives requests from client
processes (e.g., processes in an MPI application) and executes
them on the GPU. Such a solution has two main limitations:
(1) memory allocated from any of the client processes, is ac-
cessible from any of the other client processes, thus breaking
the memory isolation between processes; (2) it does not allow
to enforce scheduling policies across the client processes. Al-
though MPS provides important performance improvement in
the case of MPI applications, it is not a general solution for
multiprogrammed workloads.

2.2. Base GPU Architecture

The base architecture assumed in this paper is depicted in
Figure 1. The GPU is connected to the rest of the system
through an interconnection network (1). In the case of dis-
crete GPUs, the interconnect is the PCI Express bus and the
GPU has its own physical RAM (2). In the case of fused
CPU/GPU architectures [8], the interconnect is an on-chip
network and GPU and CPU share the same physical RAM
(3). Current generation GPUs, including our baseline, do not
support demand paging (memory swap-out). Thus, in today’s
GPU systems, allocations from all contexts reside in the GPU
physical memory. The GPU has an execution engine (4) with
access to its memory, and a data transfer engine (5) for trans-
ferring the data between CPU memory and GPU memory (in
integrated designs GPUs have DMA engines for bulk memory
transfers, too). All the GPU computation cores (Streaming
Multiprocessors or SMs in CUDA terminology) belong to
the execution engine and are treated as a whole, for kernel
scheduling purposes.

The interface to the CPU implements several hardware
queues (i.e., NVIDIA Hyper-Q) used by the CPU to issue
GPU commands. The GPU device driver maps streams from
the applications on the command queues. A command dis-
patcher (6) inspects the top of the command queues and issues
the commands to the corresponding engine. Data transfer
commands are issued to the data transfer engine via DMA
queues while kernel launch commands are issued to the ex-
ecution engine via the execution queue (7). After issuing a
command, the dispatcher stops inspecting that queue. After
completing a command, the corresponding engine notifies the



Figure 1: Baseline GPU architecture.

command dispatcher so that the queue is re-enabled for inspec-
tion. Thus, commands from different command queues that
target different engines can be concurrently executed. Con-
versely, commands coming from the same command queue are
executed sequentially, following the semantics of the stream
abstraction defined by the programming model. Traditionally,
a single command queue was provided, but newer GPUs from
NVIDIA provide several of them, often referred to as Hy-
perQ [23]. Using several queues increases the opportunities to
overlap independent commands that target different engines.

The GPU also includes a set of global control registers (8)
that hold the GPU context information used by the engines.
These control registers hold process-specific information, such
as the location of the virtual memory structures (e.g., page
table), the GPU kernels registered by the process, or structures
used by the graphics pipeline.

2.3. Base GPU Execution Engine

The base GPU execution engine we assume in this paper is
shaded in Figure 1. The SM driver (9) gets kernel launch
commands from the execution queue (7), and sets up the Ker-
nel Status Registers (10) (KSR) with the control information
such as number of work units to execute, kernel parameters
(number and stack pointer). . . The SM driver uses the contents
of these registers, as well as the global GPU control registers,
to setup the SMs before the execution of a kernel starts. The
execution queue can contain a number of independent kernel
commands coming from the same context, that are scheduled
for execution in a first-come first-serve (FCFS) manner.

A kernel launch command consists of thread blocks that are
independent from each other and, therefore, they are executed
on SMs (11) independently. Each thread block is divided into
fixed-size groups of threads that execute in a lock-step (warps
in CUDA terminology) [21]. A reconvergence stack tracks the
execution of divergent threads in a warp by storing the pro-
gram counter and mask of the threads that took the divergent
branch [11]. SM cycles through warps from all thread blocks
assigned to it and execute (12) the next instruction of a warp
with ready operands.

When a thread block is issued to an SM, it remains resident
in that SM until all of its warps finish execution. An SM
can execute more than one thread block in an interleaved
fashion. Concurrent execution of thread blocks relies on static
hardware partitioning, so the available hardware resources

Figure 2: Execution of soft real-time application with (a) FCFS
(current GPUs), (b) nonpreemptive priority and (c) preemptive
priority schedulers. K1 and K2 are low-priority kernels, while
K3 is high-priority.

(13) (e.g., registers and shared memory) are split among all
the thread blocks in the SM. The resource usage of all the
thread blocks from a kernel is the same and it is known at
kernel launch time. The number of thread blocks that can
run concurrently is thus determined by the first fully used
hardware resource. Static hardware partitioning implies that
only thread blocks from the same kernel can be scheduled to
concurrently run on the same SM.

After the setup of the SM is done, the SM driver issues
thread blocks to each SM until they are fully utilized (i.e.,
run out of hardware resources). Whenever a SM finishes
executing a thread block, the SM driver gets notified and
issues a new thread block from the same kernel to that SM.
This policy combined with static partitioning of hardware
resources means that kernels with enough thread blocks from
one kernel will occupy all the available SMs, forcing the other
kernel commands in the execution queue to stall. As a result,
concurrent execution among kernels is possible only if there
are free resources after issuing all the work from previous
kernels. This back-to-back execution happens when a kernel
does not have enough thread blocks to occupy all SMs or
the scheduled kernel is finishing its execution, and SMs are
becoming free again. Today’s GPUs, however, do not support
concurrent execution of commands from different contexts on
the same engine. That is, only kernels from the same process
can be concurrently executed.

2.4. Arguments for Preemptive Execution

The main goal of this work is to enable fine-grained scheduling
of multiprogrammed workloads running on the GPU. Figure 2
illustrates how scheduling support in current GPUs is not
sufficient when, for example, a soft real-time application is
competing for resources with other applications. The exe-
cution on a modern GPU is shown in Figure 2a, where the
kernel with a deadline (K3) does not get scheduled until all
previously issued kernels (K1 and K2) have finished execut-
ing. A software implementation [16] or a modification to GPU
command scheduler could allow priorities to be assigned to
processes, resulting in the timeline shown in Figure 2b.

A common characteristic of the previous approaches is
that the execution latency of K3 depends on the execution
time of previously launched kernels from other processes.
This is an undesirable behavior from both system’s and user’s



perspective, and limits the effectiveness of the GPU scheduler.
To decouple the scheduling from the latency of kernel running
on the GPU, a preemption mechanism is needed. Figure 2c
illustrates how the latency of the kernel K3 could decrease
even further if kernel K1 can be preempted. Allowing GPUs to
be used for latency sensitive applications is the first motivation
of this paper.

Preemptive execution on GPUs is not only useful to speed
up high-priority tasks, it is required to guarantee forward
progress of applications in multiprogrammed environments.
The persistent threads pattern of GPU computing, for instance,
uses kernels that occupy the GPU and actively wait for work
to be submitted from the CPU [2, 14]. Preventing starvation
when this kind of applications run in the multiprogrammed
system is the second motivation of this paper.

There is a widespread assumption that preemption in GPUs
is not cost-effective due to the large cost of context switch-
ing [1, 27]. Even though it is clear that in some cases it is
necessary [19], it is not clear if benefits can justify the disad-
vantages when preemption is used by fine-grained schedulers.
Comparing benefits and drawbacks of the context saving and
restoring approach to preemption with an alternative approach
where no context is saved or restored on preemption points is
the third motivation of this paper.

3. Support for Multiprogramming in GPUs
Following the standard practice of systems design, we sep-
arate mechanisms from policies that use them. We provide
two generic preemption mechanism and policies that are com-
pletely oblivious to the preemption mechanism used. To sim-
plify the implementation of policies, we abstract the common
hardware in a scheduling framework.

3.1. Concurrent Execution of Processes

To support multiprogramming, the memory hierarchy, the ex-
ecution engine and the SMs all have to be aware of multiple
active contexts. The memory hierarchy of the GPU needs to
support concurrent accesses from different processes, using
different address spaces. Modern GPUs implement two types
of memory hierarchy [28]. In one, the shared levels of the
memory hierarchy are accessed using virtual addresses and the
address translation is performed in the memory controller. The
cache lines and memory segments of such hierarchy have to be
tagged with an address space identifier. The other implementa-
tion uses address translation at the private levels of the memory
hierarchy, and physical memory addresses to access shared
levels of the memory hierarchy. The mechanisms that we de-
scribe here are compatible with both approaches. We assume
that later approach is implemented, hence no modifications
are required to the memory subsystem.

If only one GPU context executes kernels, SMs can easily
get the context information from the global GPU control struc-
tures. We extend the execution engine to include a context
table with information of all active contexts. The context in-

Figure 3: Operation of the SM driver. Dashed objects are pro-
posed extensions.

formation is sent to the SM during the setup, before it starts
receiving thread blocks to execute. The SM is extended with a
GPU context id register, a base page table register and other
context specific information, such as the texture register. The
base page table register is used on a TLB miss to walk the
per-process page table stored in the main memory of the GPU.
This is in contrast to the base GPU architecture where the same
page table was used by all SMs, since they execute kernels
from the same context. Similarly, the GPU context id register
is used when accessing the objects associated with the GPU
context (e.g., kernels) from SM. We extend the context of
the SM, rather than reading this information from the context
table that would otherwise require many read ports to allow
concurrent accesses from SMs.

3.2. Preemptive Kernel Execution

The scheduling policy is always in charge of figuring out when
and which kernels should be scheduled to run. If there are
no idle SMs in the system, it uses the preemption mechanism
to free up some SMs. To provide a generic preemption sup-
port to different policies, we need to be able to preempt the
execution on each SM individually. We provide this support
by extending the SM driver. Figure 3 shows the operation of
the SM driver, with dashed objects showing our extensions.
When there are kernels to execute, the SM driver looks for an
idle SM, performs the setup, and starts issuing thread blocks
until the SM is fully occupied. The SM driver then repeats the
procedure until there are no more idle SMs. When there are
thread blocks left, the baseline SM driver issues a new thread
block every time an SM notifies the driver that it finished
executing a thread block.

We extend this operation and allow the scheduling policy
to preempt the execution on an SM (independent of which
preemption mechanism is used) by labeling it as reserved.



After receiving a notification of finished thread block from
the SM, the SM driver checks if the SM is reserved. If not,
it proceeds with the normal operation (issuing new thread
blocks). If reserved, the driver waits for preemption to be done,
sets up the SM for the kernel that reserved it, and continues
with the normal operation. In Section 3.3 we describe the
hardware extensions used by the SM driver to perform the
bookkeeping of SMs and active kernels.

The first preemption mechanism that we implement, con-
text switch, follows the basic principle of preemption used
by operating system schedulers. The execution contexts of
all the thread blocks running in the preempted SM are saved
to off-chip memory, and these thread blocks are issued again,
later on. Each active kernel has a preallocated memory where
the context of its preempted thread blocks are kept. When a
preempted thread block is issued, its execution context is first
restored so the computation can continue correctly. This con-
text consists of the architectural registers used by each thread
of the thread block, the private partition of the shared memory,
and other state that defines the execution of the thread block
(e.g., the pointer to the reconvergence stack and state of the
barrier unit). Saving and restoring the context is performed
by a microprogrammed trap routine. Each thread saves all of
its registers, while the shared memory of the thread block is
collaboratively saved by its threads. This operation is very
similar to the context save and restore performed on device-
side kernel launch when using the dynamic parallelism feature
of GK110 [25]. Since preemption raises an asynchronous trap,
precise exceptions are needed [32]. The simplest solution is
to drain the pipeline from all the on-flight instruction before
jumping to the trap routine. The main drawback of the con-
text switch mechanism is that during the context save and
restore, thread blocks do not progress, leading to a complete
underutilization of the SM. This underutilization could be
improved by using compiler-microarchitecture co-designed
context minimization techniques, such as iGPU [22].

The second mechanism that we implement, SM draining,
tries to avoid this underutilization by preempting the execution
on a thread block boundary (i.e., when a thread block finishes
execution). Since thread blocks are independent and each one
has its own state, no context has to be saved nor restored this
way. This mechanism deals with the interleaved execution of
multiple thread blocks in an SM by draining the whole SM
when the preemption happens. To perform the preemption by
draining, the SM driver stops issuing any new thread blocks
to the given SM. When all the thread blocks issued to that SM
finish, the execution on that SM is preempted.

The context switch mechanism has a relatively predictable
latency that mainly depends on the amount of data that has
to be moved from the SM (register file and shared memory)
to the off-chip memory. The draining mechanism, on the
other hand, tries to trade the predictable latency for higher
utilization of the SM. Its latency depends on the execution
time of currently running thread blocks, but SMs still get to

Figure 4: Scheduling framework. The rest of the execution
engine (SM Driver and SMs) is shaded.

do some useful work while draining. The draining mechanism
naturally fits the current GPU architectures as it only requires
small modifications to the SM driver. The biggest drawback is
its inability to effectively preempt the execution of applications
with very long running thread blocks or even preempt the
execution of malicious or persistent kernels at all.

3.3. Scheduling Framework

We extract a generic set of functionalities into a scheduling
framework that can be used to implement different schedul-
ing policies. The framework provides the means to track the
state of kernels and SMs and to allow the scheduling policy
to trigger the preemption of any SM. The scheduling policy
plugs into the framework and implements the logic of the con-
crete scheduling algorithm. Both the scheduling framework
and scheduling policies are implement in hardware to avoid
the long latency of issuing commands to the GPU [17]. Both
the context switch and draining preemption mechanisms are
supported by our framework. Scheduling policies performing
prioritization, time multiplexing, spatial sharing or some com-
bination of these can be implemented on top of it. The OS can
tweak the priorities on the flight, but is not directly involved
in the scheduling process. Thus, there is no impact on the OS
noise.

Figure 4 shows the components of the scheduling frame-
work. An example of interaction between the scheduling
policy and the framework is given in Section 3.4. Command
Buffers receive the commands from the command dispatcher
and separate the execution commands from different contexts.
Each command buffer can store one command. The Active
Queue stores the identifiers of the active (running or pre-
empted) kernels. When there are free entires in the active
queue, the scheduling policy can read a command (kernel
launch) from one of the command buffers and allocate an en-
try in the Kernel Status Register Table (KSRT). KSRT is
used to track active kernels and each valid entry is a KSR of
one active kernel, augmented with the identifier of its GPU
context. The active queue is used by the policy to search
for scheduling candidates by indexing the KSRT. The SM



Status Table (SMST) is used to track the SMs. Each entry
in the SMST contains the KSR index of the kernel being ex-
ecuted, the state of the SM (Idle, running or reserved), the
number of running thread blocks, and the KSR index of the
next kernel (when in reserved state). The SMST is accessed
by the SM driver when issuing a thread block to find the KSR
and the state of the SM. When setting up the SM that was
reserved, the SM driver uses the next field of the SMST to
find the kernel that the SM was reserved for. The Preempted
Thread Block Queues (PTBQ) are used to store the handlers
of preempted thread blocks. Each queue is associated with
one KSR and its entries contain the id and stack pointer of a
preempted thread block. Each time the driver is about to issue
a new thread block from a kernel, it checks if there are any
previously preempted thread blocks from that kernel. If there
are, the thread block from the top of the associated PTBQ will
be issued. Otherwise, the next thread block will be issued.
We choose to issue preempted thread blocks first in order to
keep their number limited, thus allowing their handlers to be
stored on-chip, for quick access. Still, we allow all active
thread blocks of a kernel to be preempted, not to limit the type
of sharing that the scheduling policy can implement. Notice
that the draining mechanism does not need PTBQs, as thread
blocks run to completion.

In our implementation we limit the number of active kernels
to the number of SMs, to allow spatial partitioning granularity
of one kernel per SM. This also allows us to keep the PTBQs
on chip, for fast access. Thus SMST, KSRT and the active
queue all have NSMs (the number of SMs) entries. There is
also NSMs PTBQs, each one with NSMs ∗Tmax entries, where
Tmax is the maximum number of active thread blocks in an
SM. This number of active kernels is also adequate for time
multiplexing in large GPUs, but it could be changed (e.g., to
allow time multiplexing in mobile GPUs with one SM), since
the mechanisms and the policy described in Section 3.4 can
also support different ratios of active kernels to SMs. Fixing
the number of active kernels means that when active queue is
full, new kernels submitted to the GPU will not be considered
for scheduling until one of the active kernels finishes.

Hardware overheads of the framework are minor for our
baseline architecture. Command buffers, KSRT, SMST, and
active queue together take less than 0.5KB of on-chip SRAM.
PTBQs take 21KB of on-chip SRAM and are present only if
the context switch mechanism is implemented.

3.4. Dynamic Spatial Sharing Policy

Here we present the Dynamic Spatial Sharing (DSS) policy
that is designed to perform dynamic spatial partitioning of
the execution engine by assigning disjoint sets of SMs to
different kernels. The DSS policy is based on the concept of
tokens that represent the ownership of the resource (SM in
this case). It allows the OS, runtime system or a user to assign
a number of tokens to each kernel that represents their SM
budget. One token is taken from the kernel (by decrementing

its token count) when an SM is assigned to it. When an SM
gets deassigned from the kernel, due to the preemption or
the kernel finishing execution, the token is returned to it. To
prevent the underutilization of resources that would happen
when there are more SMs than tokens are assigned, kernels
are allowed to occupy more SMs, by going to debt (have a
negative token count). The DSS policy is formally given in
Algorithm 1.

Algorithm 1 Partitioning Algorithm
function PARTITIONING_PROCEDURE

repeat
idle_sm← f ind_idle(SMSR.state)
ksr_max← max(KSR.count)
ksr_min← min(KSR.count)
if KSR[ksr_max] = KSR[ksr_min] then

return
end if
if idle_sm then

SMSR[idle_sm].state← running
KSR[ksr_max].count← KSR[ksr_max].count−1

else
SMSR[ksr_min].state← reserved
SMSR[ksr_min].next← ksr_max
KSR[ksr_min].count← KSR[ksr_min].count +1
KSR[ksr_max].count← KSR[ksr_max].count−1

end if
until KSR[ksr_max].count ≤ KSR[ksr_min].count +1

end function

The scheduling algorithm can be invoked by a periodic
timer or by some events occurring in the system. We choose
to execute the algorithm only on the following events: (1) a
kernel is inserted in the active queue (increase in the number of
active kernels) and (2) an SM becomes idle (increase in num-
ber of idle SMs). The logic that implements the policy finds
the kernel with the highest token count (that has thread blocks
to issue), the kernel with the lowest token count, and checks if
there are any Idle SMs in the system. If these two kernels have
the same number of tokens, no repartitioning is performed.
If there are idle SMs, the token count is decremented, and
the kernel is scheduled to execute on that SM. Otherwise,
the policy finds the running kernel with the lowest current
token count and switches the state of one of its assigned SMs
from running to reserved, triggering the kernel preemption on
that SM. It also increments the token count of the preempted
kernel and decrements the token count of the newly assigned
kernel. This procedure is repeated until the difference between
the current token counts of all the active kernels is no bigger
than one (to prevent a livelock) at which point the system gets
into the steady state. We allow the scheduler to change the
kernel for which an SM is reserved during the preemption of
that SM. This optimization helps to cope with dynamic nature
of the system and long latency operations.

The policy uses the contents of the SMST, KSRT and the
active queue to partition the available SMs among the running
kernels. Searching for the kernels with the biggest and smallest
amount of tokens and searching for the idle SM can all happen
in parallel. Since the operation is not on the critical path, we
perform the search serially, by one counter going through the



Benchmark Kernel Num. of Avg. Time Num. Time/TB Sh. M. # Regs TBs Resour. Save Class 1 Class 2& Dataset Launches (µs) TBs (µs) /TB (B) /TB /SM /SM (%) Time (µs)
lbm [short] StreamCollide 100 2905.81 18000 2.42 0 4320 15 83.26 16.20 MEDIUM LONG
histo [default] final 20 70.24 42 5.02 0 19456 3 75.00 14.59 SHORT MEDIUM

prescan 20 20.87 64 1.30 4096 9216 4 52.63 10.24
intermediates 20 77.88 65 4.79 0 8964 4 46.07 8.96
main 20 372.58 84 4.44 24576 16896 1 29.61 5.76

tpacf [small] genhists 1 14615.33 201 72.71 13312 7680 1 14.14 2.75 LONG MEDIUM
spmv [medium] spmvjds 50 42.38 374 1.81 0 928 16 19.08 3.71 SHORT SHORT
mri-q [large] ComputeQ 2 3389.71 1024 26.48 0 5376 8 55.26 10.75 MEDIUM SHORT

ComputePhiMag 1 4.70 4 4.70 0 6144 4 31.58 6.14
sad [large] largersadcalc8 1 8174.21 8040 16.27 0 3328 16 68.42 13.31 LONG LONG

largersadcalc16 1 1529.38 8040 3.04 0 832 16 17.11 3.33
mbsadcalc 1 15446.02 128640 0.84 2224 2135 7 24.20 4.71

sgemm [medium] mysgemmNT 1 3717.18 528 98.56 512 4480 14 82.89 16.13 MEDIUM SHORT
stencil [default] block2Dregtiling 100 2227.30 256 8.70 0 41984 1 53.95 10.50 MEDIUM LONG
cutcp [small] lattice6overlap 11 1520.11 121 37.69 4116 3328 3 16.80 3.27 MEDIUM MEDIUM
mri-gridding binning 1 2021.41 5188 1.56 0 4096 4 21.05 4.10 LONG LONG
[small] scaninter1 9 7.59 29 4.14 665 1173 16 27.54 5.36

scanL1 8 826.12 2084 1.19 4368 9216 3 39.74 7.73
uniformAdd 8 127.30 2084 0.24 16 4096 4 21.07 4.10
reorder 1 2535.30 5188 1.95 0 8192 4 42.11 8.19
splitSort 7 3838.84 2594 4.44 4484 10240 3 43.79 8.52
griddingGPU 1 208398.47 65536 31.80 1536 3648 10 51.81 10.08
splitRearrange 7 1622.93 2594 1.88 4160 5888 3 26.71 5.20
scaninter2 9 8.81 29 4.80 665 1173 16 27.54 5.36

Table 1: Statistics of all the kernels from benchmark applications used in the experimental evaluation.

CPU GPU
Clock: 2.8 GHz Clock: 706 MHz
Cores: 4 Cores: 13 (32 pipelines each)
Threading: 2-way Memory Bandwidth: 208 GB/s
PCIe Bus Registers (per SM): 65536
Clock: 500 MHz Thread Blocks (per SM): 16
Lanes: 32 Threads (per SM): 2048
Burst: 4 KB Shared memory (per SM): 16KB∗/ 32KB / 48KB

Table 2: Simulation parameters used in the experimental eval-
uation. ∗Default configuration of the shared memory

SMST and KRST. This operation takes as many cycles as
SMs (13 in our configuration).

4. Experimental Evaluation

4.1. Methodology

We evaluate our proposals using an in-house trace-driven sim-
ulator, based on the methodology of [9], that models a multi-
core CPU connected to a discrete GPU through a PCIe bus.
The simulator performs a coarse-grained modeling of the CPU,
tracing the execution of our benchmarks on an Intel Core i7
930 chip. CPU traces consist of a starting and ending times-
tamp for each API call to the CUDA runtime library. We
perform an accurate simulation of the PCIe bus and the GPU
using execution traces of each GPU kernel obtained on the
NVIDIA Kepler K20c discrete GPU. The simulator parame-
ters are provided in Table 21. All the benchmark applications
are traced from the first CUDA call to the last CUDA call,
capturing all the memory transfer, kernel execution and CPU
execution phases. This approach provides more realistic exe-
cution workloads, as opposed to running kernels only.

We use ten, out of eleven, benchmarks from the Parboil

1If the default configuration does not allow the kernel to be launched
because it needs more shared memory, the SM will be configured for the first
bigger configuration that satisfies the shared memory requirement

benchmark suite [34] in our evaluation. We do not use the
BFS benchmark in our evaluation since it uses the global
synchronization that our trace-driven infrastructure cannot
model accurately. Table 1 shows the characteristics of the
benchmark applications. For each kernel we show the number
of launches, the execution time of the kernel, the number
of thread blocks, the average execution time of the thread
blocks, the shared memory usage of each thread block, the
number of registers used by each thread block, the maximal
number of concurrent thread blocks in an SM, the amount of
on-chip SRAM (shared memory and register file) resource
utilization of an SM, and the projected context save time when
preempting an SM (assuming only its share of global memory
bandwidth). All the kernels are compiled for the NVIDIA
compute architecture 3.5 (native for the Kepler GK110 chips)
using the NVCC version 5.0 and GCC 4.6.3 for the host code.

We create multiprogrammed workloads by co-scheduling
several benchmark applications chosen randomly. We run
all benchmarks in the workload, replaying them once they
complete until all benchmarks have been executed at least 3
times. Replaying shorter benchmarks provides even workload
for the longer benchmarks. Replaying even the longest bench-
marks provides different workload interleavings. We choose
the input sets of the benchmarks (shown in square brackets in
Table 1) in a way that minimizes the extreme differences in the
execution times of the benchmarks and thus cut back on our
simulation time. Still, there is plenty of variability between
benchmarks. Statistics are gathered only for the completed
executions and then averaged. This methodology is based
on [36] and [37].

All the metrics used in our evaluation are calculated as
suggested by Eyerman et al. [10]. Metrics are calculated
based on the performance (execution time) of applications run
in isolation and run in the multiprogrammed workload.



• Normalized Turnaround Time (NTT) is the measure of ap-
plication slowdown when executed as part of the multipro-
grammed workload, compared to the isolated execution.

• Average Normalized Turnaround Time (ANTT) is calcu-
lated as the arithmetic average of turnaround times of all
applications in a workload, normalized to their isolated
execution.

• System Throughput (STP) is the measure of system’s overall
performance and expresses the amount of work done in a
unit of time.

• Fairness is the measure (number between one and zero)
of equal progress of applications in a multiprogrammed
workload, relative to their isolated execution, and it ranges
between perfect fairness (all the processes experience equal
slowdown over isolated execution) and no fairness at all
(some processes completely starve).

4.2. Effectiveness of the Preemption Mechanisms

To measure the performance of the mechanisms, isolated from
the potential benefits and overheads of the scheduling poli-
cies implemented on top of them, we evaluate the mecha-
nisms by implementing the simple priority queues scheduler.
This scheduler (used in our example in Section 2.4) always
schedules the kernel with the highest priority. We quantify
the benefits of preemptive execution and compare the per-
formance of the two described preemption mechanisms by
comparing the priority queues schedulers that implement pre-
emption (preemptive priority queues-PPQ) and the implemen-
tation of priority queues scheduler with no preemption (NPQ).
The scheduling policy in the data transfer engine is NPQ, in
all cases. We generate random workloads in which one pro-
cess has higher priority than the rest of the processes in the
workload. All the benchmark applications appear the same
number of times as the high-priority process.

We measure the turnaround time of the prioritized applica-
tion and in Figure 5 show the improvement of the application’s
NTT when prioritized over its nonprioritized execution. When
using the nonpreemptive prioritization scheme, turnaround
time improves for workloads with 4 or more processes (from
1.1x to 1.6x on average as the number of processes grows).
The NPQ scheduler allows the high-priority application to
start executing as soon as SMs become available, thus the
high-priority kernel has to wait only for the currently run-
ning kernel to finish. The nonpreemptive scheduler does not
bring any improvement for workloads with only 2 processes
since in this case the scheduler actually never has any choice.
The only potential scenario that improves the turnaround time
over the FCFS is if a kernel from the high-priority process
and a kernel from the low-priority process are both launched
while the execution engine is already running another kernel
of the high-priority process. The newly launched high-priority
kernel has to wait in the command dispatcher until the pre-
viously launched kernel finishes. By the time it reaches the
execution engine, the ready, low-priority kernel will already

LONG MEDIUM SHORT AVERAGE
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 80

1

2

3

4

5

6

7

8

NT
T 

im
pr

ov
em

en
t o

ve
r F

CF
S 

(t
im

es
) 15

.4

34
.2

9.
1

11
.2

63
.7

15
.6

16
.2

NPQ
PPQ Context Switch
PPQ Draining

Figure 5: Turnaround time improvement of the high-priority
process over its nonprioritized execution. Benchmarks in
each group are listed in Table 1 as Class 1.

be scheduled.
Preemptive priority queues (PPQ) scheduler shows a much

higher turnaround time improvement of the high-priority pro-
cess, since the high-priority kernels do not have to wait for
the whole low-priority kernel to finish, just the usually much
shorter preemption latency. Both preemption mechanisms im-
prove turnaround time over the NPQ scheduler, but using the
context switch mechanism the improvements, on average, are
much higher (from 2x to 15.6x as number of processes grows)
than the draining mechanism (from 1.6x to 6x as number of
processes grows). This difference comes from the, on-average,
lower preemption latency of the context switch mechanism.
Only 8 of 24 kernels from our benchmark suite use more than
half of the available storage resources (register file and shared
memory), resulting in a longest projected context save time of
16.2µs (StreamCollide kernel from lbm). On the other hand,
6 kernels have an average thread block execution time longer
than 16.2µs, with the longest one being 98.56µs (mysgemmNT
from sgemm). Since the thread block execution time dictates
the preemption latency when using the draining mechanism,
the latency of preempting is on average smaller when using
context switch.

The PPQ scheduler has variable effectiveness for different
benchmark applications. In Figure 5, benchmarks are grouped
by the average execution time of their kernels (Class 1 in Ta-
ble 1). Both groups and execution times are listed in Table 1.
Three benchmarks, from the LONG group, have at least one
very long kernel (> 10000 µs). They observe the smallest im-
provement in performance (from 1.26x to 1.76x with context
switch and 1.54x with the draining mechanism, as the num-
ber of processes in the workload grows) since their kernels
dominate the execution. The improvements that they achieve
mainly come from the workloads where they are mixed with
other benchmarks from the LONG group. Half of the bench-
marks (five of them), averaged in the MEDIUM group have
at least one medium kernel (between 1000 µs and 3500 µs).
They achieve bigger improvements (from 1.06x to 4.6x with
the context switch and from 1.33x to 4.5x with the draining
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(b) Shared access.

Figure 6: System throughput (STP) when the prioritized kernel
has exclusive and shared access to the execution engine.

mechanism). The remaining two benchmarks, averaged in
the SHORT group have only short kernels (< 350 µs). They
observe very big improvements in turnaround time (from 5.1x
to 63.7x with the context switch and from 2.84x to 16.2x
with the draining mechanism) since the execution times of
their kernels are very short compared to the other benchmarks.
Preemption thus minimizes the waiting time of these kernels
significantly. The benefits of the context switch mechanism
accumulate with every preemption of the kernels with long
running thread blocks, resulting in a big difference in the ef-
fectiveness of the two mechanisms, especially in the SHORT
group. The shorter the kernels are, the more time will they
be launched (because of the replay of benchmarks described
in Section 4.1), increasing the chance of preempting a kernel
with very long thread blocks.

4.3. Overheads of the Preemption Mechanisms

The preemption mechanisms on average improve the
turnaround time of the high-priority process, but they come at
the price of a lower utilization of the execution engine. The
degradation in the STP due to the preemption mechanisms is
quantified in Figure 6. We implement two slightly different
PPQ schemes. The first scheme, shown in Figure 6a grants
the high-priority process an exclusive access to the execution
engine. Even if some resources become available, low-priority
kernels will not be scheduled while high-priority kernels are
still active. On average, PPQ with the context save mechanism
has 1.08x to 1.12x STP overhead over NPQ while PPQ with
the draining mechanism has an STP overhead between 1.09x
and 1.38x. The bigger overhead of the draining mechanism
comes from preemptions of kernels that can execute many
(long) thread blocks concurrently. The more tread blocks per
SM a kernel can run, the bigger is the chance that the variable
execution times of the thread blocks will leave the SM running
underutilized (i.e., running a number of thread blocks lower
than its actual capacity).

The other PPQ scheme that we implement uses the free
resources to schedule low-priority kernels, even in the pres-
ence of high-priority kernels in the execution engine. It is
modeled after current GPUs that try to perform back-to-back

scheduling of the independent kernels (from the same pro-
cess) to improve the STP. Such a technique works with the
simple FCFS policy, but it is counterproductive in the case
of preemptive prioritization, since some applications tend to
asynchronously enqueue many kernel invocations. The back-
to-back execution, described in Section 2.3, allows a low-prior-
ity kernel to start executing as soon as some SMs become free.
These kernels get preempted soon after they start executing
and actually waste resources, instead of saving any. Hence,
this scheme, shown in Figure 6b, results in higher overheads
than the exclusive-access one, from Figure 6a.

4.4. Example Policy: Equal Spatial Sharing

We use the DSS scheduling policy described in Section 3.4
to allow all active kernels to run concurrently. By ensuring
that all the active kernels progress, the policy seeks to pre-
vent the starvation of processes with short kernels and at the
same time fairly partition the resources among all running
kernels. We setup the DSS policy to perform equal sharing
by assigning equal priorities (token count) to all the processes
(tc = bNsm/Npc). Since there is thirteen SMs in our simu-
lated systems, but we evaluate with 2, 4, 6 and 8 process
workloads, not all processes actually get the same number of
SMs. The rest of the SMs that cannot be evenly distributed
(r = Nsm mod Np) are assigned to the r kernels that first reach
the active queue. We use both draining and context switch
mechanisms to evaluate this policy. The scheduling policy in
the data transfer engine is FCFS, in all cases.

We first analyze the effects on the NTT of each benchmark
application in all workloads and show their average improve-
ments in Figure 7a. Benchmarks applications are grouped by
their execution time (Class 2 in Table 1). Short applications
(<5ms), averaged in Figure 7a as SHORT, achieve the biggest
improvement in their turnaround time (2.45x to 4x with the
context switch and 2.2x to 3.7x with the draining mechanism,
as the number of processes in the workload grows), since their
waiting time is lowered by spatially sharing the SMs. Medium
long ones (between 30ms and 115ms), averaged as MEDIUM,
achieve a significant improvement in their turnaround time
(1.3x to 1.7x with the context switch and 1.2x to 1.4x with the
draining mechanism). The improvements in both SHORT and
MEDIUM classes come at the expense of very long (>400ms)
applications, averaged as LONG, that get their turnaround time
degraded (from around 0.9x to 0.55x with both mechanisms).
On average, DSS improves the normalized turnaround time
compared to FCFS with both preemption mechanisms. The
improvement is bigger when using the context switch (from
1.5x to 2x) compared to the draining mechanism (from 1.4x to
1.65x).

Figure 8 shows the ANTT achieved with the FCFS and
DSS policies with both context switch and draining mecha-
nisms for each workload. For workloads with 2 processes,
equal sharing improves the ANTT significantly for about 20%
of the simulated workloads. In the other 80% of workloads,
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Figure 7: Effects of equal sharing on turnaround time, fairness and system throughput. The list of benchmarks in each group of
Figure 7a is given in Table 1 as Class 2.
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Figure 8: Average Normalized Turnaround Time (ANTT) for all the simulated workloads.

there is not much to improve because the interleaved execution
phases of the benchmark applications and application’s ability
to partially tolerate latency by using asynchronous GPU com-
mands keep ANTT low. The percentage of workloads with
improved ANTT grows with the number of processes in the
workload (70% for 4 processes), to almost all workloads (6
and 8 processes) having improved ANTT over the baseline
FCFS scheduler with both preemption mechanisms.

Workloads with 4, 6, and 8 processes also show a clear
cross point, after witch the policy implemented with the drain-
ing mechanism starts showing lower ANTT than the policy
implemented with the context switch mechanism. In all con-
figurations, this point is around half of the workloads that
improve the ANTT over the FCFS. The crossing point appears
because the two preemption mechanisms have different effects
on different kernels. Contrary to the kernels with very long
thread block execution times (discussed in the Setcion 4.2),
some kernels have a context switch time much larger than their
average thread block execution time (all of the kernels from
histo, StreamCollide from lbm, mbsadcalc from sad, reorder
from mri-gridding. . . ). Even though DSS with the context
switch mechanism achieves better average NTT, these results
show that, depending on the workload at hand, the draining
mechanism can also be a viable option for low latency pre-
emption.

With equal sharing of resources, this scheduler also aims
at improving the fairness among the processes. We show
the relative improvement of the fairness of the DSS policy
compared to the baseline FCFS policy in Figure 7b. The FCFS
scheduler does not aim at optimizing the fairness, but does not
cause complete starvation in our experiments because there

are no persistent kernels in our benchmarks. Compared to it,
the DSS policy achieves better fairness with both preemption
mechanisms, thanks to its semi-equal resource allocation. The
improvement is higher when using context switch (from 1.1x
to 3.35x as the number of processes grows) compared to the
draining mechanism (from 1.05x to 2.7x) thanks to the lower
latency of preemption, as discussed in Section 4.2. Like with
the ANTT in Figure 8, fairness is not improved much in the
workloads with 2 processes.

Equally sharing the execution unit on the other hand
achieves lower STP, mainly due to the lower utilization caused
by the execution preemptions. The effects of preempting are
quantified with the STP degradation, illustrated in Figure 7c.
The average STP degradation compared to the FCFS scheduler
is lower when using context switch (1.06x to 1.34x as the num-
ber of processes grows) compared to the draining mechanism
(1.08x to 1.5x). Even though, intuitively, one might expect
the context switch mechanism to achieve the lower STP than
the draining mechanism, this is not the case. Analyzing the
throughput of individual workloads (not shown because of the
space constraint), a crosspoint similar to the one in Figure 8
can be observed. This time, however, the improvements in
STP with the draining mechanism are negligible, while im-
provements with the context switch mechanism are significant.

Comparing the improved average normalized turnaround
time and the system fairness (especially in the case of the con-
text switch mechanism) to the degradation of STP shows that
the preemptive equal sharing policy is a viable option when a
little bit of overall system performance (STP) could be spared
to the user perceived performance (application turnaround
time) or system fairness. We thus believe that the equal shar-



ing policy would be a good candidate for deployment in sin-
gle-user multiprogrammed environments such as desktop or
mobile systems, as well as multi-tenant cloud or server nodes.

5. Related Work
Li et al. [20] introduced a virtualization layer that makes
all the participating processes execute kernels in the same
GPU context, similar to NVIDIA MPS [24]. GERM [7] and
TimeGraph [17] focus on graphics applications and provide
a GPU command schedulers integrated in the device driver.
RGEM [16] is a software runtime library targeted at providing
responsiveness to prioritized CUDA applications by schedul-
ing DMA transfers and kernel invocations. RGEM implements
memory transfers as a series of smaller transfers and thus cre-
ate the potential preemption points, lowering the stall time due
to the competing memory transfers. Gdev [18] is built around
these principles, but integrates the runtime support for GPUs
into the OS. PTask [30] is another approach on making the
OS GPU aware by using a task based data flow programming
model and exposing the task graph to the OS kernel. Since
the GPU execution engine does not expose its internals to
software, none of these systems can control assignment of
SMs to different kernels or implement preemptive scheduling
policies.

Several software techniques have been proposed in the past
to increase the concurrency between different kernels running
in the GPU. Kernel fusion is a technique that statically trans-
forms the code of two kernels into one that is launched with
the appropriate number of thread blocks. Guevara et al. [13]
proposed a runtime system for CUDA which chooses between
running the fused kernel or running the kernels sequentially.
Gregg et al. [12] implemented an OpenCL kernel that occu-
pies the whole GPU and dynamically invokes kernels to be
executed. Alternatively, several techniques underutilize the
GPU by one application, so that concurrent execution could
be achieved. Ravi et al. [29] rely on the molding technique
(changing the dimensions of grid and thread blocks while pre-
serving the correctness of the computation), when possible.
Pai et al. [27] propose a similar technique and associated code
transformation based on iterative wrapping [35] that produces
an elastic kernel. These techniques rely on developer or com-
piler transformation to prepare the programs for concurrent
execution.

Similarly, several software techniques have been proposed
to implement time multiplexing on GPUs. The kernel slicing
technique used in [6, 27, 39] launches the transformed kernel
several times, passing the launch offset so that a slice per-
forms only a part of the original computation. Softshell [33]
programming model relies on developers explicitly declaring
preemption points or preempting on the thread block boundary.
Both kernel slicing and Softshell’s preemption on the thread
block boundary are built on the same principle as our draining
mechanism, but incur extra overheads of doing it in software.

In [1], the authors make a case for spatial sharing of the

GPU execution engine by simulating execution of several ker-
nels from different applications running in parallel. They stati-
cally partition SMs among applications, since the emphasis of
their work is on showing the benefits of spatial multitasking,
rather then proposing the mechanisms to implement it. In
contrast, we provide mechanisms that, among other things,
allow implementing spatial sharing.

6. Conclusions

Current GPUs do not provide the necessary mechanisms for
the OS to manage fine-grained sharing of the GPU resources.
As a result, fairness, responsiveness, and quality of service
of applications using GPUs cannot be controlled. As future
systems continue further integration of CPUs and GPUs in the
same chip, this problem will only increase. In this paper we
introduce hardware extensions to modern GPUs that enable
efficient sharing of GPUs among several applications and the
implementation of flexible scheduling policies for multipro-
grammed workloads. We propose two execution preemption
mechanisms and the DSS scheduling policy that uses these
mechanisms to implement dynamic spatial sharing of the GPU
cores across kernels that belong to different processes. More-
over, DSS can be controlled by the OS to enforce system-wide
scheduling policies. Experimental results show that hardware
preemption mechanisms are necessary to obtain lower and
more deterministic turnaround times for applications while
having lower overheads than what was previously assumed,
thus opening the possibility of the utilization of GPUs to
perform computations in multiprogrammed interactive envi-
ronments. We also show that a dynamic scheduling policy that
assigns different GPU cores to concurrently running kernels
can greatly improve system-wide metrics such as fairness. Fi-
nally, we experimentally show that the wide-spread believe
that context switching in GPUs is probability expensive, does
not hold when targeting multiprogrammed systems.
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