
Abstract—This paper proposes a new design and
implementation of a control plane for Optical Burst Switched
networks. The design is based on the principles of generality,
transparency, portability and efficiency. In this way, the
control plane is designed to be easily reused in any type of
network node, low-level Data Plane or high-level Wavelength
Reservation Scheme. Making efforts to address these issues, we
implement a general-purpose, flexible and feasible OBS
network testbed using field programmable gate arrays
(FPGA).

I. INTRODUCTION
HE rapid growth of Internet traffic requires high
transmission rates between network nodes, specially in

core networks. These rates fall beyond conventional
electronic router’s capabilities. The exploitation of huge
bandwidth in optical fiber cost effectively is essential for the
development of the next-generation optical Internet.

Current WDM networks operate over point-to-point links,
being required an optical-to-electrical-to-optical (O/E/O)
data conversion at every step. The future designs are
focused on optical networks where the user data travel
entirely in the optical domain without any O/E and E/O
conversion. Three main optical network solutions have been
proposed as Gauger et al. presents in [1]: Wavelength-
Routed Networks (WRNs), Optical Burst Switched
Networks (OBSNs), and Optical Packet Switched Networks
(OPSNs). Due to the lack of a practical pure-optical packet
switching solution for an optical Internet, OBS has been
proposed as the best feasible alternative.

OBSNs have some advantages in comparison to the other
two technologies [2] [3]. On one side, it efficiently uses
statistical multiplexing in the optical layer to overcome the
wavelength switching inefficiency of WRNs. On the other
side, it is more feasible to be implemented than OPSs since
requirements of the last one demand for very high switching
rates, all optical processing, and faster optical memory
technologies that, in fact, are not commercially available
yet. Optical approaches are under development to address
the problem of switching capacity in the data network but
commercial solutions are not expected within a few next
years.

 Another advantage of OBS, and maybe the most
important one, is that the switching time requirements are
much more relaxed, since the length of a burst generally is
much longer than the length of a packet. Currently, optical
switches of higher performance provide a switching time
between 25 ns to 1 ms and a switching rate of about 10000
operations per second depending on their switching

technology. OBS’s switching requirements can easily fall
between those values.

In optical burst switching (OBS), data is transported in
various-size units, which are called bursts. This is the basic
data block that is transferred, and it can be defined as a
collection of data packets that are assembled into a bigger
unit. These packets can share any of these features: they can
have the same network egress address, or have common
attributes, like QoS requirements.

Nodes in an OBS network can either be edge nodes or
core nodes. Edge nodes are responsible for assembling input
packet within burst. It is a task of these nodes to determine
the way of assembling these bursts.

Core nodes are responsible for receiving, processing and
forwarding the control packets and reserving the optical
resources, specifically, those designated to carry out the
switching on the optical cross-connect matrix (OCX) at a
concrete time between input and output data ports.

OBS differentiates two planes, as it is shown in Fig. 1:
the data plane and the control plane. The all-optical (OOO)
data plane is responsible for the transportation of the bursts
as optical signals; meanwhile the opto-electronic (OEO)
control plane is responsible for the signaling, routing,
network management and other network control functions.
The data plane is entirely optics; this means that bursts are
just switched in the optical domain. On the other way,
control plane requires the processing of the control packets
at nodes, and so, an O/E/O conversion is required. A control
packet is transmitted ahead of the burst in order to configure
the switches along the burst’s path. An OBS node does not
wait for confirmation that an end-to-end connection has
been set up, instead it starts transmitting a data burst after an
offset time, following the transmission of the control packet.

This strong separation between data and control planes
offers a better network manageability and flexibility. For
this, an innovative way of implementing this technology
could be on providing the best performance at each plane.

The main objective of the data plane is to execute the
assembling/disassembling of bursts based on the packet’s

An Optical Burst Switching Control Plane
Architecture and its Implementation

J. Triay, J. Rubio and C. Cervelló-Pastor
Dep. Enginyeria Telemàtica, Universitat Politècnica de Catalunya

 E-mail: joan.triay@upc.edu, jesus.rubio@entel.upc.edu , cristina@entel.upc.edu

T

Fig. 1. Separated data and control planes on an OBS network.

attributes as fast as possible.
On the other hand, the objective of the control plane is to

carry out the reservation of the optical resources demanded
by the control packet.

Due to the one-pass reservation strategy and statistical
multiplexing, burst loss can occur. In the case of contention,
efficient resolution strategies in OBS core nodes are
essential. These schemes achieve a low burst blocking
probability as required in transport networks.

This paper focuses on the definition and design of the
control plane’s features and architecture providing a way for
implementing them on real hardware. Currently, there is no
standard definition of how this implementation should be
done. What is more, there is not any standard protocol of the
control plane’s operation, for example, the control packet’s
structure and the control message types remain
unstandardized. However, several wavelength reservation
schemes have been proposed and research on this field
continues.

The paper is organized as follows. In Section II control
plane design and architecture model are presented, along
with the description of the high level operation of the
control plane. We also propose a format of the control
packets. In Section III, we present some highlights of the
technologies that are currently used at the implementation
phase. Finally, Sections IV and V are focused on future
research and efforts, and the conclusions related to the
present work.

II. CONTROL PLANE DESIGN AND ARCHITECTURE
This section describes the operation protocol of the

control plane, and the proposed design and architecture to
implement it. As the design will be implemented into a real
testbed, some considerations about it should be met. These
can be summarized on:
• Generality. The control plane must provide a

common framework where different reserve
protocols could be implemented on the top.

• Transparency. Control plane must be independent of
the data plane implementation. The same control
plane should be easily adapted whatever the data
plane is.

• Portability. The control plane implementation must
be designed for being easily portable to any kind of
network node. For example, the same control plane
implementation could be used on a node that is
acting only as an edge or core router, or a node that
has both capabilities.

• Efficiency. The last principle focuses on providing
the more efficient way of processing control packets,
and as a result, to allow the reservation and switching
of data bursts as fast as possible.

An example of network topology and possible proof-of-

concept implementation is shown on Fig. 2. Three OBS
nodes compose this network: two nodes act as edge, and the
last operates both as edge and core. The three nodes share
the same OXC and each one can be origin or destination of
user data.

A. High Level Protocol Operation
As previously pointed, generality is a constraint in the

design. A common framework must be provided in which
different and concrete reserve schemes can be used.

To support this principle a common high level scheme
must be implemented. This scheme operates as follows:
Considering a flow of bursts between two different
endpoints, A and B, for each of these flow a SETUP
message will be sent on the control path to the first node,
demanding channel resources. The transmission of the burst
will be delayed a period of time known as offset. During this
time, the CPU of the current node must process the message
and calculate the ingress and egress ports on which the burst
will be received and transmitted, and the exact time and
duration of the optical cross-connected matrix switching.
Moreover, the control process will regenerate the SETUP
message according to the burst attributes. This message is
then delivered to the next node through the correct control
channel.

It is worth standing out the importance of correctly
assigning the switching times of allocating and releasing of
resources. Two types of resource release can be noted:
implicit, if the node does not need any explicit message or
notification (see Fig. 3); or explicit, if a RELEASE message
is received from the previous OBS node according to the
protocol definition (see Fig. 4). The burst will be deleted if
the OBS node has not enough resources to switch it.

B. Wavelength Reservation Schemes
This subsection describes different wavelength

reservation schemes for OBS. Based on the setup and
release mechanisms, Baldine et al. [4] describe four types of
wavelength reservation schemes.

i) Explicit setup and explicit release. In this scheme, the
control packet contains the offset of the burst, but not the
duration of it. The reservation of resources starts
immediately after the switch receives the setup message,
and ends when the release message is received. Just-In-Time
(JIT) proposed by Wei and McFarland [5] is an example of
this scheme.

ii) Explicit setup and an estimated release. In this case,
the setup message contains both the offset and the duration
of the burst. Each wavelength has an associated deadline
indicating the resource will become free. The reservation
starts after the switch receives the setup message and ends
when the burst is switched and transmitted, a time that is

Fig. 2. Data and control plane interactions

calculated using the duration field. An example of this
scheme type is the Horizon scheme proposed by Turner [6].

iii) Estimated setup and an explicit release. In this
scheme, the setup control message contains only the offset
of the burst. The reservation starts at the beginning of the
burst. This time is calculated using the previous offset
information. The release of resources is executed once the
release message arrives.

iv) Estimated setup and an estimated release. The setup
message of this scheme has the offset and the duration of
the burst. Reservation and releasing of resources are
calculated using previous data. Qiao and Yoo proposed an
example of this scheme, the Just-Enough-Time (JET)
scheme [2].

The JIT protocol is significantly simpler than either JET
or Horizon, since it does not involve complex scheduling or
void filling algorithms. Therefore, JIT is amenable to
hardware implementations. The difference between JET and
JIT resides on the idea of how JET intends to estimate when
the data burst will be received, and therefore it won’t
reserve resources until that instant. This can increase the
efficiency and performance of the network in terms of
channel utilization, but it can arouse burst looses if the
instant is not well calculated. On the other hand, JIT
reserves the resources on the instant at which the setup
control packet is receive. This method decreases the
performance of the network, but it improves the burst losses
rate and its implementation is more feasible.

Over the last years, research in OBS networks has
progressed to prototypes and proof-of-concepts
demonstrations. For example, the JITPAC hardware [7],
which was developed by MCNC-RDI, implements the JIT
signaling protocol and in [8] the authors present the design
and implementation of the JET protocol.

In this work, we propose to implement OBS nodes
operating under diverse wavelength reservation schemes in
order to obtain low latency and high bandwidth utilization,
combined with contention resolution protocols.

C. OBS Control Packet Format
To support a common framework for the wavelength

reservation schemes and their high-level operation, it is
necessary to define the format of the control packets. This

common format will allow defining easier methods to
generate and to process each and every kind of possible
control message.

Fig. 5 shows the proposal for control message format
specifying its fields and the length. Following, the meaning
of each field is described:
• NDA (2 bytes): It is the Node Destination Address.

For instance, the egress OBS node’s address. It is a
2-byte length field, resulting 65.536 possible
addresses. This number is sufficient for deploying an
operator’s optical transport network. Moreover, the
proposed addressing is not hierarchical (there are not
different classes of addresses), but reserve 0x0000
and 0xFFFF for operational purposes.

• NSA (2 bytes): The Node Source Address specifies
the address of the ingress OBS node. It has the same
length of the previous NDA field.

• IDBURST (2 bytes): It is the ID of the burst. Its
length, 2 bytes, provides 65.536 possible IDs. This
ID is generated by the ingress OBS node. The set of
the previous three fields (NDA + NSA + IDBURST)
identifies uniquely a burst in the network. Once the
OBS node reaches the end of IDs, it should restart its
ID counter to 0, and so on.

• TYPE (1 byte): This field specifies the type of
control packet. A 1-byte length field gives us up to
256 types of messages. As previously introduced in
the figure, some messages can be defined, for
instance: SETUP, ACK, NACK and RELEASE
messages.

• QOS (1 byte): The QoS field provides information
about any QoS requirement that should be met when

Fig. 4. Example of explicit setup and explicit release signaling.

Fig. 5. Fields and length of the control packet.

Fig. 3. Example of explicit setup signaling.

the burst is being processed. For example, this field
could be filled with any QoS profile for adapting the
content resolution of bursts at the core routers or
when disassembling the burst into packets, if for
instance, the packets need a special treatment or de-
queuing method.

• PDUCTRL (0-16 bytes): This field varies its contents
depending on the type of control packet specified by
the TYPE field. For example, the format of a SETUP
PDU could be as follows: 4 bytes to specify the
OFFSET of the burst, 4 more bytes to inform of the
burst length in bytes, and finally 2 bytes to specify on
which wavelength (CHANNEL) the burst will be
received.

Some of the previous fields can be modified at each node
hop. For example, depending on the wavelength reservation
scheme that is being used, the offset can be recalculated or
not. The input and output wavelengths at core routers could
change, and so, the value of CHANNEL field should have a
value according to the output wavelength to be used.

The proposed addressing format follows a routing
perspective. This means, that at each network hop, the NDA
is checked, and the next hop on the path is determined from
the routing tables. Moreover, this gives to the nodes the
possibility of acknowledging to the ingress OBS node (it
just has to check the NSA of the control packet) if any of
the bursts are lost because there were not enough resources
for switching it.

D. OBS Control Path Design
According to the principles of design specified in the

section II, the control plane and its associated control path
should be transparent to lower data planes, and so, it must
remain as much independent as possible to the concrete data
path implementation.

To succeed in performing a fast and efficient treatment of
the bursts, most of the elements involved in the design must
be implemented directly into hardware, and so, software
should only be executed on very specific tasks. Taking this
into mind, it is necessary specifying which operations are
suitable to be processed by the Control Path Software
(CPS). Depending on the kind of router, edge or core, the
node must execute different operations. On one hand, an
edge node has the following capabilities:

• Assembling and disassembling of bursts depending
on the egress destination address or other
attributes.

• Transmission and reception of bursts at a certain
time over a specified wavelength.

• Creation of control packets depending on the type
of traffic to be transmitted.

• Reception and processing of control packets
transmitted by other nodes.

On the other hand, a core switch should be capable to
perform:

• Reception and processing of control packets.
• Modification of the control packet, if required, and

transmission to the next OBS node on the path to
the egress node.

• Reservation and release of resources in the OXC
according to the information contained in the
received control packets.

From above operation, the Control Path Software must be
only responsible of creating and processing the contents of
the control packet depending on the upper reservation
schemes that could be used, or other capabilities, as specific
QoS processing. It won’t carry out any operation needed to
support storing or releasing of packets into/from memory.
Fig. 6 shows our control plane architecture, in which the
Control Path clearly differentiates to the Data Path and the
OCX, but it is not totally isolated. The CPU which runs the
Control Path Software, can interact with both through their
respective interfaces, the Data Path Interface (DPI) and the
OCX Path Interface (OCXPI).

The DPI is responsible for querying the CPS for signaling
a new Data Path when one or some bursts are ready to be
transmitted as a set of data packet are assembled into a
burst/bursts. This task identifies an edge node capability,
and so, the core nodes do not interact to the DPI.
Analogously, the OCXPI is responsible of translating the
CPU queries of switching to the OCX. In contrast to the
previous interface, the OCXPI must always interact with the
CPU whatever type of node is being implemented.

As a part of the control plane, we also need to receive,
process and transmit the control packets. To alleviate the
CPS, some pre-process of the control packets is entirely run
from hardware. This comprises the Gigabit Packet
Controller (GPC) and the embedded memory. The GPC is
responsible for assembling control messages into low-level
frames in order to be transmitted over any kind of link layer
protocol, for instance, a Gigabit Ethernet interface; or de-
assembling these link layer frames, extracting the control
message and storing it in the embedded memory, from
which the CPU and its CPS can process it.

E. Control Path Software and Use Case Examples
Control Path Software (CPS) is responsible for

calculating the offset and duration of the bursts. Once this
information is ready and recorded, it must be able of
constructing the control PDU if a new control packet is
going to be transmitted to the next OBS node. Fig. 7 and
Fig. 8 show some use cases that the CPS has to carry out.

Fig. 7 exposes the case in which a new burst is ready to
be transmitted. The CPS receives the query of signaling a
path for transmitting the last burst. Before its transmission,
it is necessary to perform a setup and wavelength
reservation along the light path. In this way, CPS and its

Fig. 6. High level architecture of the control plane.

higher contention and reserve algorithms calculate the
required amount of delay time (offset) depending on the
available resources. If transmission is possible, the Control
packet is finally assembled and transmitted to the next OBS
node. Depending on higher level protocols or QoS profiling,
if there are not enough resources, the burst can remain in
memory and the CPS can reinitialize the operation of
reservation later.

Fig. 8 presents an example of control packet
reception/forwarding. In this case, the offset must be
checked in order not to reserve resources if the burst is
going to be received wrongly. If there is enough offset in
which carrying out the control packet processing and
reservation of resources, the reception/forwarding of a
control packet is possible. If not, this control packet should
be discarded, and depending on the reservation protocol,
some kind of control message should be transmitted back to
the previous OBS node notifying about this error.

In the next step, CPS filters if the control packet’s
destination address is the current node. In this case, the node
only needs to reserve optical resources for reception, and so,
forwarding of control packet will not occur. When
forwarding is required, the program must check the
availability of optical resources to switch the burst. If there
are not available resources an explicit notification method
should take the responsibility of sending back an error
message. In the case of availability of resources, the offset
will be recalculated subtracting the processing time. Finally,
the control packet is transmitted to the next OBS node on
the egress path.

III. IMPLEMENTATION TECHNOLOGIES

A. FPGA: A suitable hardware solution
FPGA is a technology that allows programming and

reusing of hardware. These devices are a compromise
between general purpose processors used in software
implementations and Application Specific Integrated
Circuits (ASIC). FPGA can be reprogrammed as control
plane protocols evolve. Moreover, new FPGA provide high
speed serial interfaces, from 1 Gb/s to 10 Gb/s. These

interfaces allow the implementation of proprietary protocols
and variations of standards. Therefore, this technology
becomes the most appropriate to develop the control plane,
in which a process of design, implementation and testing is
required.

Another interesting capability of the current generation of
FPGA is that they can assemble one or more RISC CPUs.
This kind of CPUs are characterized by their capacity and
processing power for running any type of software, which
for instance could manage any wavelength reservation
scheme for an OBS network.

Currently we are working with a Xilinx’s Virtex II Pro
FPGA [9] [10]. This FPGA model contains all the
characteristics specified previously. Specifically, this
chipset has RocketIO Multi-Gigabit Transceiver [11]
interfaces that allow serial transmissions with rates among
622 Mb/s up to 3.125 Gb/s. It also contains 2 IBM’s
PowerPC 405 [12] CPUs of 32 bits that have a maximum
clock frequency of 400 MHz and give a maximum capacity
of 600+ DMIPS. This is enough calculation power for the
purposes on the implementation of the CPS.

The development kit is Avnet’s badge PCI board (Xilinx
Virtex-II Pro Development Kit, see Fig. 9) that has the
following components:

• Xilinx Virtex-II Pro XC2VP30 that contains

Fig. 9. Avnet’s Virtex-II Pro Development Kit.

Fig. 8. Control Packet reception/forwarding algorithm.

Fig. 7. Control Packet creation algorithm.

30.000 logical cells to implement the Control Path
hardware.

• 2 SFP Modules for GigabitEthernet.
• 10/100/1000 GigabitEthernet physical interfaces.
• 32 MBytes of SDRAM memory.
• 128 MBytes of DDR SDRAM memory.
• Four 140-pin general purpose I/O expansion

connectors (AvBus).
This kit will provide in future research sufficient

capabilities to connect a Data Path by means of their
extension connectors.

B. Link and Physical Layers
One of the decisions to adopt is which physical level

protocol should be used to communicate the control plane
between nodes. This protocol should provide simplicity in
its implementation, as well as efficiency in transmission. A
minimum speed of transmission of 1 Gb/s is also required.

The protocol that endows with these requirements is
GigabitEthernet, because it has a great efficiency and it is
easy to implement. Therefore the control messages defined
in section II.C will be encapsulated in a GigabitEthernet
frame.

C. Control Plane’s Implementation
Next, the control plane proposal implementation

explained in previous sections will be explained,
specifically, how a GPC, Control Packet Interface, DPI and
OXCPI modules work.

The processing of control packets is formed by two
blocks: a Gigabit Packet Controller (GPC) and a Control
Packet Interface (CPI). The GPC module is directly
connected to GigabitEthernet MAC which offers Gigabit
encapsulation to control messages. This block takes charge
on de-framing the information of the OBS control protocol
and writing these data in the embedded memory of the
PPC405 CPU. When this process ends, the GPC generates
an interruption to the processor. Then the microprocessor
would request the GPC for where the control message
information is stored. The GPC answers the CPU with a
pointer which indicates the memory address of the control
messages and the size and type of the message that has been
recently received.

Analogously, in the case the CPS needs to deliver a
control packet, it would advise the GPC the pointer where
control data has been stored, size of this message and the
OBS node’s destination address. With this information GPC
will create a new GigabitEthernet frame filling its data field
with the control packet. GPC communicates with the
PPC405 by means of the CPI. At the same time, the CPI is a
module that is connected to the processor by means of the
DCR bus.

This way of implementation is a recommendation of
Xilinx in an Application Note [13] where they indicate that
this is the best method to obtain a greater performance on
packet processing. Xilinx compared this processing to other
architectures on a later document [14].

This IBM’s DCR bus (CoreConnect Architecture [15]) is
composed by a bus of data, which is responsible for
writings, and another bus that processes the readings of 32-

bit width words. It also uses three signals of control (READ,
WRITE, ACK) [16]. The speed of data transferring of this
bus is of surroundings 1 Gb/s. The PPC405 gains access to
DCR bus data by means of a reading instruction and a
writing instruction. In these instructions it has to indicate the
address to which data are written or from they are read. The
word’s width is 10 bits and it is completely independent
from the memory system organization. Therefore an interval
of addresses should be reserved to enable this operation
between CPS and GPC.

 The DPI and OXCI modules carry out the same functions
of the CPI, that is to say, some addresses of the BUS DCR
of the PPC405 are reserved and its mission is decoding
these addresses in order to enable writings and readings
to/from the DataPath’s and OCX’s registries.

IV. FUTURE RESEARCH
Currently we are at the implementation phase of the

Control Plane and one important goal for the immediate
future is to analyze the results. An interesting point is that
we not only work on simulations but we are implementing a
real testbed, and so, results are expected to be more accurate
to any future commercial OBS device.

In this testbed we implement our proposed control plane
algorithms. These proposed algorithms have been
previously simulated.

Despite we have focused on providing a transparent
control plane for OBSNs, in order to correctly evaluate this
plane we will also evaluate how it can be integrated with a
data plane. This is necessary not only for checking the
correct control plane behavior, but also for providing to the
data plane accurate, fast and efficient optical paths.

V. CONCLUSION
In this paper we have given an overview of the OBS

networks and presented architecture of the control plane that
is currently being implemented. Due to the lack of protocol
standards related to OBS, main efforts are designated to
design, implement and test a control protocol for optical
burst switching. Some problems to tackle are the
synchronization between nodes in the control plane or the
optimization of processing time in the CPS. This
architecture focuses on providing a common framework on
which to implement any kind of wavelength reservation
scheme, and so, giving an interesting platform to researchers
where future developments of OBS could be carried on.

ACKNOWLEDGMENT
This work is founded by the Spanish Ministerio de

Ciencia y Tecnología (MCYT) and FEDER within the
framework of the TIC2003-09042-C03-02 project, the
i2CAT Foundation and the EURO-NGI project.

REFERENCES
[1] C. Gauger et al., “Service Differentiation in Optical Burst Switching

Networks”, ITG Fachtagung Photonische Netze, 2001, pp. 124-32.
[2] C. Qiao and M. Yoo, “Optical Burst Switching (OBS) – A New

Paradigm for an Optical Internet”, J. High Speed Nets, vol. 8, no. 1,
Jan. 1999, pp. 69-84.

[3] Fei Xue, S.J.B. Yoo, H. Yokoyama, and Y. Horiuchi, “Performance
comparison of optical burst and circuit switched networks”, Optical
Fiber Communication Conference, 2005. Technical Digest.
OFC/NFOEC, Volume 3, March 2005, pp 3.

[4] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson.
“JumpStart: A just-in-time signaling architecture for WDM burst-
switched networks”, IEEE Communications, 40(2), pp. 82-89,
Februrary 2002.

[5] J. Y. Wei and R. I. McFarland, “Just-in-time signaling for WDM
optical burst switching networks”, Journal of Lightwave Technology,
18(12), pp. 2019-2037, December 2000.

[6] J. S. Turner, “Terabit burst switching”, Journal of High Speed
Networks, 8(1): pp. 3-16, January 1999.

[7] I. Baldine, M. Cassada, A. Bragg, G. Karmous-Edwards and D.
Stevenson, “Just-in-time optical burst switching implementation in the
ATDnet all-optical networking testbed” in Proc. GLOBECOM’03,
vol. 5, pp. 2777-2781, San Francisco, CA, Dec. 2003.

[8] Y. Sun, T. Hashiguchi, V. Q. Minh, X. Wang, H. Morikawa and T.
Aoyama. “Design and Implementation of an Optical Burst-Switched
Network Testbed’’, IEEE Optical Communications, vol. 3, No. 4, pp.
S48-S55, Nov. 2005.

[9] Xilinx Inc., Virtex-II Pro Product Brochure. [Online document],
[visited April 2006], Available HTTP:

 http://www.xilinx.com/products/virtex2p/v2p_brochure.pdf.
[10] Xilinx Inc., Table Virtex II Pro Family Device/Package Combinations

and available RocketIO and RocketIO X. [Online document], [visited
April 2006], Available HTTP:
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex
_ii_pro_fpgas/product_table.htm.

[11] Xilinx Inc., RocketIO Multi-Gigabit Transceiver, [Online document],
[visited April 2006], Available HTTP:
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex
_ii_pro_fpgas/capabilities/rocket_io_mgt.htm.

[12] Xilinx Inc., PowerPC 405 Processor, [Online Document], [Visited
April 2006], Available HTTP:
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex
_ii_pro_fgpas/capabilities/powerpc.htm.

[13] Xilinx Inc., XAPP669 – PPC405 PPE Reference System Using Virtex-
II Pro RocketIO Transceiver, [Online document], [Visited April
2006], Available HTTP:
http://direct.xilinx.com/bvdocs/appnotes/xapp669.pdf.

[14] Xilinx Inc., XAPP664 – PLB vs. OCM Comparison Using the Packet
Processor Software, [Online document], [Visited April 2006],
Available HTTP:
http://direct.xilinx.com/bvdocs/appnotes/xapp664.pdf.

[15] Xilinx Inc., Core Connect Architecture – Device Control Register Bus
(DCR), [Online Document], [Visited April 2006], Available HTTP:
http://www.xilinx.com/ipcenter/processor_central/coreconnect/coreco
nnect_dcr.htm.

[16] Xilinx Inc., PowerPC 405 Processor Block Reference Guide,
Chapter2. Section “External DCR Bus Interface”, pp. 102-110,
[Online Document], [Visited April 2006], Available HTTP:
http://www.xilinx.com/ise/embedded/ppp405block_ref_guide.pdf.

