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1 Introduction

Consistent tangent matrices [1] are an essential ingredient for the efficient so-
lution via implicit methods of complex problems in nonlinear computational
mechanics. The expression of the consistent tangent matrix for a wide variety
of material models can be found in the literature. Consistent means consistent
with the numerical time-integration scheme used to solve the local problems
(i.e. the time-integration of the constitutive equation at the Gauss-point level),
which is typically the backward Euler or the midpoint rule. Consistent tangent
matrices are needed to solve the so-called global problem (i.e. the elastoplas-
tic boundary value problem) with quadratic convergence, via a full Newton-
Raphson linearization. The local counterpart is also needed to integrate the
local problem and obtain quadratic convergence.

For complex models (for instance, with a highly nonlinear coupling between
hardening/softening parameters), the convergence of these local problems can
be a major issue, and pose severe restrictions to the time increment. This
situation is also found with relatively simple models (i.e., perfect plasticity
models) at Gauss points with stress states in zones of high curvature of the
yield function. In both cases the plastic corrector often has difficulties in re-
turning back to the yield surface[2].

A possible approach would be to use smaller time-steps. However, this amounts
to letting the most restrictive Gauss point control the global problem. Various
alternative strategies can be found in the literature. For instance, better initial
approximations for the local nonlinear problem can be obtained by defining
specific auxiliary predictor surfaces [2], or line-search schemes can be used to
enlarge the convergence region of the Newton-Raphson method [3]. This two
strategies have been applied successfully to several plasticity models. However
they cannot be regarded as the ultimate solution, especially for problems where
complex models are involved.

Another approach, also successfully applied in various situations, is substep-
ping [4,5]. The time-step is subdivided into a number of substeps (which can be
different for each Gauss point), and a single-step integration rule is employed
within each one. If an explicit rule (forward Euler) is chosen, no iterations are
needed at the local level. In fact, substepping is sometimes used in combination
with explicit time-marching schemes for dynamic problems, to meet the sta-
bility constrains without resorting to very small time-steps. If an implicit rule
(backward Euler or midpoint rule) is preferred, then the corresponding single-
step nonlinear problems have to be solved. This can be done, for instance, by
means of the standard Newton-Raphson method, eventually combined with
any acceleration technique such as auxiliary predictor surfaces or line-search.
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If an implicit time-marching scheme is used for the boundary value problem,
global iterations are needed, whatever the choice of the integration rule at the
local level (even if an explicit rule is used at the local level, the global prob-
lem is implicit). To achieve quadratic convergence with the Newton-Raphson
method, the local problem must be consistently linearized.

The major contribution of this paper is the expression of the consistent tangent
matrix in the framework of substepping schemes. The proposed expression is
general: It can be used for any subdivision of the step into (uniform or non-
uniform) substeps, and for any single-step integration scheme within each
substep. It is also simple: the expression of the consistent tangent moduli has
the same structure of the corresponding scheme without substepping.

From a practical viewpoint, the proposed expression allows to use substep-
ping, thus circumventing the use of very small load increments, and attain
quadratic convergence at global level. The substeps at each Gauss point are
automatically chosen by monitoring the convergence of the local problem. In
many applications, the demand for substepping is concentrated in a reduced
number of Gauss points, while substepping is not activated in the rest of the
domain. As a consequence, the computational cost of substepping is marginal
in comparison with the cost of global equilibrium iterations. These aspects
are illustrated by means of some numerical examples regarding the Rounded
Hyperbolic Mohr-Coulomb model [6].

The most involved step in obtaining consistent tangent matrices (either with
or without substepping) is computing the derivatives of the constitutive equa-
tion with respect to stresses and internal variables. These derivatives are also
needed to solve the local problems via the Newton-Raphson method.

For simple models, analytical derivatives are readily available, and this leads
to compact, explicit expressions of the consistent tangent matrix. In more
complicated models, analytical differentiation is rather more cumbersome. For
this reason, a different approach is proposed: derivatives are approximated by
means of classical difference schemes. The approximated derivatives are then
used to solve the local problems and to compute the consistent tangent ma-
trix. As shown in References [7] and [8], this approach is both robust and
computationally efficient. Quadratic convergence is maintained, provided that
adequate difference schemes and stepsizes (i.e. the perturbation of the differ-
ence scheme) are chosen.

Going beyond References [7] and [8], where only the single-step backward Euler
rule is considered, this paper shows that substepping and numerical differen-
tiation can be combined to obtain the consistent tangent matrix leading to
quadratic convergence in complex situations, where 1) analytical derivatives
of the constitutive equation are not available and 2) the use of single-step
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integration rules would demand prohibitively small time-steps. This point is
illustrated in some examples with the MRS-Lade model [8,9,10].

2 Problem statement

2.1 Preliminaries

Many elastoplastic models for small strains can be put in the general form [11]

εεε =εεεe + εεεp

σσσ =Eεεεe

ε̇εεp =λ̇m(σσσ,κκκ)

κ̇κκ =λ̇h(σσσ,κκκ) ,

(1)

where εεε, εεεe and εεεp are the total, elastic and plastic strain tensors respectively, σσσ
is the Cauchy stress tensor,E is the elastic stiffness tensor,m is the flow vector,
κκκ is the set of internal variables and h are the plastic moduli. The plastic
multiplier λ̇ is determined with the aid of the loading-unloading criterion,
that can be expressed in Kuhn-Tucker form as [12]

F (σσσ,κκκ) ≤ 0 λ̇ ≥ 0 F (σσσ,κκκ)λ̇ = 0 , (2)

where F (σσσ,κκκ) is the yield function that defines the admissible stress states.

2.2 Single-step numerical time-integration

Time-integration of equation (1) with the backward Euler scheme yields the
following nonlinear local problem [11,12]:

n+1σσσ + λEm( n+1σσσ, n+1κκκ) = nσσσ + E∆εεε
n+1κκκ − λh( n+1σσσ, n+1κκκ) = nκκκ

F ( n+1σσσ, n+1κκκ) =0 .

(3)

In equation (3), the state at time nt (i.e., quantities nσσσ and nκκκ) and the
increment of total strains from time nt to time n+1t, ∆εεε, are known. The
unknowns of this local problem are the stresses n+1σσσ and the internal variables
n+1κκκ at time n+1t, and the incremental plastic multiplier λ.

To solve this nonlinear local problem with the Newton-Raphson method, the
Jacobian of the residual is needed. Using standard vector notation in compu-
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tational mechanics [13], the Jacobian at n+1t can be written as

n+1J =




(
Inσ + λE∂m

∂σσσ

)
λE∂m

∂κκκ
Em

−λ∂h
∂σσσ

(
Inκ − λ∂h

∂κκκ

)
−h

nT ξξξT 0




t= n+1t

, (4)

where n and ξξξ are the derivatives of F (σσσ,κκκ) with respect to σσσ and κκκ respec-
tively, the superscript T denotes transpose, nσ is the dimension of the stress
vector, nκ is the number of internal variables and I∗ is the identity matrix of
order ∗.

In order to solve the local problem, an initial approximation for the unknowns
is also needed. The standard choice is the elastic trial state, which is

n+1σσσ0 = nσσσ + E∆εεε , n+1κ0 = nκ and λ0 = 0 . (5)

Moreover, to solve the global problem with quadratic convergence it is neces-
sary to use the consistent tangent matrix [1,14]. To compute this matrix, the
consistent tangent moduli dn+1σσσ/dn+1εεε at each Gauss point are needed. They
are obtained by linearizing equation (3). This linearization can be represented
in a compact form as [15]

PT
(

n+1J
)−1

PE , (6)

where PT = (Inσ,0nσ,nκ+1) is the projection matrix on stress space; note that
0nσ,nκ+1 is a null rectangular matrix with nσ rows and nκ + 1 columns.

2.3 Substepping technique

In some cases, especially with complex material models and when large strain
increments are imposed, the local problem with the standard initial approxi-
mation, equation (5), does not converge. This can be solved using an auxiliary
predictor surface in order to find a better initial approximation [2]. However, a
specific auxiliary predictor surface must be devised for each material model. A
different approach is followed here: an adaptive substepping technique, which
is activated when the local problem requires more than a prescribed number
of iterations. With this technique, the regions of non-convergence of the local
problem are avoided.

The constitutive law is integrated from nt to n+1t in m substeps. This means
that it is integrated first from nt to n+ 1

m t, then from n+ 1
m t to n+ 2

m t, and up
to the last substep, from n+m−1

m t to n+1t. The integration of the constitutive
law is driven by the total strain increment. Thus, the total strain increment
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from nt to n+1t, ∆εεε, is divided in m parts (not necessarily equal), one for each
substep. The following division is considered:

∆εεε = ∆εεε1 + ∆εεε2 + · · ·+ ∆εεεm =
m∑

k=1

∆εεεk =
m∑

k=1

αk∆εεε . (7)

Each substep is integrated with a single-step scheme. Except in trivial cases,
each substep is a nonlinear problem. Obviously, these problems have the same
structure of the local problem if the constitutive law is integrated directly
from nt to n+1t with the same single-step scheme. Here the backward Euler
scheme is used. Nevertheless, appendix A shows the consistent tangent moduli
for substepping with the generalized midpoint rule.

The nonlinear problem corresponding to a generic substep k integrated with
the backward Euler method can be expressed as

f( n+ k
mσσσ, n+ k

mκκκ, λk) =




Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1

01,nσ 01,nκ 0







n+ k−1
m σσσ

n+ k−1
m κκκ

λk−1


 +




E

0nκ,1

0


∆εεεk (8)

with f defined as

f( n+ k
mσσσ, n+ k

mκκκ, λk) =




n+ k
mσσσ + λkEm( n+ k

mσσσ, n+ k
mκκκ)

n+ k
mκκκ − λkh(

n+ k
mσσσ, n+ k

mκκκ)

F ( n+ k
mσσσ, n+ k

mκκκ)


 . (9)

Equations (8) and (9) represent the extension of equation (3) to the case of
substepping. They are valid for any substep (k ∈ {1, . . . ,m}) within the time-

step. For a given instant n+ i
m t, the stresses and the internal variables are

n+ i
mσσσ and n+ i

mκκκ respectively, whereas the incremental plastic multiplier of
the substep i (from time n+ i−1

m t to n+ i
m t) is λi. In equation (8) everything is

known at i = k − 1, and must be computed for i = k, except for ∆εεεk which is
the prescribed total strain increment of substep k.

Note that, in fact, λk−1 is not involved in equation (8). It has been included in
order to simplify the development of the consistent tangent matrix in section
3.

3 The consistent tangent matrix for the substepping technique

To compute the consistent tangent matrix for the substepping technique, the
corresponding consistent tangent moduli d n+1σσσ/d n+1εεε at each Gauss point
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are needed. They are obtained by linearizing recursively the m systems of
equations solved to integrate the constitutive equation with substepping, i.e.
equation (8) for k = 1, . . . ,m. In order to linearize these m systems of equa-
tions, it is necessary to highlight the dependence of n+1σσσ on ∆εεε.

The stresses n+1σσσ are defined implicitly, together with n+1κκκ, as functions of
n+m−1

m σσσ, n+m−1
m κκκ and ∆εεεm. The dependence of ∆εεεm on ∆εεε is simple, ∆εεεm =

αm∆εεε. But the stresses n+m−1
m σσσ and the internal variables n+m−1

m κκκ are defined
as functions of n+m−2

m σσσ, n+m−2
m κκκ and ∆εεεm−1. In fact, the dependence of stresses

and internal variables at n+ k
m t, with k = m, . . . , 1, on the state at n+ k−1

m t and
∆εεεk has always the same structure. The process finishes at k = 1, because
n+ 1

mσσσ and n+ 1
mκκκ only depend on ∆εεε1 = α1∆εεε. Note that nσσσ and nκκκ are inputs

of the integration from nt to n+1t.

3.1 The consistent tangent moduli

The m systems of equations are linearized: first a generic substep k, with
k = m, . . . , 2, is shown, then the first substep (k = 1) is presented. A different
treatment is required for the first substep because it only depends on ∆εεε1.
Finally, the expression of the consistent tangent moduli is presented.

Both sides of equation (8) are linearized with respect to ∆εεε,

df

d( n+ k
mσσσ, n+ k

mκκκ, λk)

d( n+ k
mσσσ, n+ k

mκκκ, λk)

d∆εεε
=


 Inσ+nκ 0nσ+nκ,1

01,nσ+nκ 0


 d( n+ k−1

m σσσ, n+ k−1
m κκκ, λk−1)

d∆εεε
+




E

0nκ,nσ

01,nσ




d∆εεεk

d∆εεε
(10)

where

df

d( n+ k
mσσσ, n+ k

mκκκ, λk)
= n+ k

mJ =




(
Inσ + λE∂m

∂σσσ

)
λE∂m

∂κκκ
Em

−λ∂h
∂σσσ

(
Inκ − λ∂h

∂κκκ

)
−h

nT ξξξT 0




t= n+ k
m t

(11)

and
d∆εεεk

d∆εεε
= αk Inσ . (12)
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Note that the first matrix in the RHS of equation (10) is simply a compact
expression of a matrix already encountered in equation (8).

Assuming that det( n+ k
mJ) 	= 0, equation (10) is transformed into

d( n+ k
mσσσ, n+ k

mκκκ, λk)

d∆εεε
=

(
n+ k

mJ
)−1


 Inσ+nκ 0nσ+nκ,1

01,nσ+nκ 0






d( n+ k−1

m σσσ, n+ k−1
m κκκ, λk−1)

d∆εεε
+ αk




E

0nκ,nσ

01,nσ





 , (13)

which can be rewritten as

d( n+ k
mσσσ, n+ k

mκκκ, λk)

d∆εεε
= n+ k

mA


αk PE+

d( n+ k−1
m σσσ, n+ k−1

m κκκ, λk−1)

d∆εεε


 (14)

using PT = (Inσ,0nσ,nκ+1) and

n+ k
mA =

(
n+ k

mJ
)−1


 Inσ+nκ 0nσ+nκ,1

01,nσ+nκ 0


 . (15)

Equation (14) is valid for k = m, . . . , 2. For k = 1, the first substep, equation
(8) is linearized as follows:

d( n+ 1
mσσσ, n+ 1

mκκκ, λ1)

d∆εεε
= α1

(
n+ 1

mJ
)−1




E

0nκ,nσ

01,nσ


 = α1

n+ 1
mAPE . (16)

The final expression is obtained after substitution of equation (16) into equa-
tion (14) particularized at k = 2, and a recursive use of (14) from k = 3 up
to k = m. Finally,

d( n+1σσσ, n+1κκκ, λm)

d∆εεε
= n+1A

(
αmPE+ n+m−1

m A
(
αm−1PE+ · · ·

· · ·
(
α2PE+ α1

n+ 1
mAPE

)
· · ·

))
︸ ︷︷ ︸

m−1

. (17)

The consistent tangent moduli are in the leading principal minor of order nσ
of the LHS of equation (17). They are obtained by means of the projection
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matrix P, and have the compact expression

d n+1σσσ

d∆εεε
= PT


 m∑

i=1


αi

i∏
j=m

n+ j
mA





PE . (18)

Equation (18) has the same structure of equation (6). The summation in
brackets of equation (18) plays the same role that the inverse of the Jacobian
of equation (6). In fact, equation (18) is identical to equation (6) if only one
substep is considered, m = 1.

Note that the computation of the consistent tangent moduli involves matrix
inversions, even in the case of single-step integration rules with no substep-
ping, equation (6). It must be remarked, however, that small matrices are
considered, so numerical inversion poses no difficulties. The order of the Jaco-
bian matrices to be inverted is only nσ + nκ + 1, see equations (4) and (11),
and it can be further reduced. A computationally efficient expression of the
consistent tangent moduli, with smaller matrices and a recursive structure, is
presented in appendix B.

4 Examples

In this section, two global problems are solved using the consistent tangent
matrix for substepping presented in section 3. Quadratic convergence is at-
tained.

The first example is the simulation of a rigid footing with the Rounded Hy-
perbolic Mohr-Coulomb model. When solving this problem with single-step
integration rules, the Gauss points located under the corner of the footing
restrict the load increment to a forbidding small value. When substepping
is used, on the contrary, the load increment no longer depends on local de-
mands. As a consequence, larger load increments can be used. Until now, the
use of substepping was incompatible with quadratic convergence at the global
level. However, thanks to the consistent tangent matrix presented in section
3, quadratic convergence results are presented in subsection 4.1.

The second example is the simulation of a triaxial test with the MRS-Lade
model. In this example substepping is combined with numerical differentia-
tion. For the MRS-Lade model, not all the derivatives needed to compute
the Jacobian of the residual, equation (4), have a readily available analytical
expression. Because of this, and following References [7] and [8], numerical
differentiation is used to approximate the Jacobian. In these references, nu-
merical differentiation is combined with the backward Euler integration rule
and quadratic convergence is obtained at local and global level. In subsection
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4.2, numerical differentiation is combined with substepping and quadratic re-
sults are also obtained.

4.1 Simulation of a rigid footing with the Rounded Hyperbolic Mohr-Coulomb
model

In this subsection a rigid footing is analysed with the Rounded Hyperbolic
Mohr-Coulomb model [6] and substepping. The consistent tangent matrix de-
veloped in section 3 is employed to achieve quadratic convergence at the global
level.

The model is presented in Reference [6]. The flow potential–yield surface is
divided into two regions: one corresponding to the Hyperbolic Mohr-Coulomb
zone that smoothes the apex of the classical Mohr-Coulomb model on the
hydrostatic axis, and the other corresponding to the rounding zones, that
smoothes the corners present on the deviatoric plane. The traces of the flow
potential–yield surface on the meridian and the deviatoric planes are presented
in Figure 1. The dimensionless material parameters are a cohesion of 1, a
friction angle of 30◦, a Young modulus of 3000 and a Poisson coefficient of 0.3.
Associated plasticity is considered.

Figure 1. Main features of the Rounded Hyperbolic Mohr-Coulomb yield surface:
trace on the deviatoric and meridian plane
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Figure 2. Rounded Hyperbolic Mohr-Coulomb model. Number of iterations of the
local problem for trial stresses in the deviatoric plane (θ–J2) at various levels of
confinement (I1/3)

First, the convergence of the local problem is analysed. Figure 2 depicts the
number of iterations for convergence (up to a tolerance of 10−12) with the
standard initial approximation, equation (5). Note that the Newton-Raphson
method does not converge in 10 iterations in some regions of the stress space.
This is due to the high curvature of the yield function close to the apex
(I1/3 ≥ 0) combined with the non-differentiability of the flow vector at |θ| =
25◦. In order to avoid these regions of non-convergence of the local problem,
the adaptive substepping scheme is activated at the Gauss points that require
more than 6 iterations at the local level for convergence (to a tolerance of
10−12).

Due to symmetry, only one half of domain is considered for the global problem,
see Figure 3. The soil mass is modelled as a square of 20 units of length (u.l.),
twenty times the footing half-width. It has been checked that this domain
is large enough to preclude any undesired influence of the boundary on the
results. An unstructured mesh of 1784 quadrilateral eight-noded elements is
used. A vertical displacement of the footing of 0.1 u.l. is prescribed in 100,
200, 400 and 800 uniform increments.

The relationship between force and vertical displacement is depicted in Fig-
ure 4. The computed limit dimensionless force is 30.71, 2% above the exact
Prandtl collapse dimensionless force of 30.14. Figure 5 shows the distribution
of equivalent plastic strain for different values of the load level (i.e. fraction
of the total prescribed displacement). Note that the failure mechanism is well
captured. Very similar results are obtained for the four problems, with 100,
200, 400 and 800 load increments (l.i.).

The substepping has been activated just under the right corner of the footing.
This agrees with the fact that the non-convergence regions of the local problem

11



Figure 3. Rigid footing problem. Computational domain and mesh
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Figure 4. Rigid footing problem. Dimensionless force versus vertical displacement

are close to the rounded apex. Figure 6 shows the evolution of the number
of Gauss points with substepping activated, the sum of substeps over all the
domain and the maximum number of substeps for all the Gauss points, for
the problem solved with 100, 200, 400 and 800 l.i. The number of Gauss
points with substepping activated is not very different in the four problems
(it is reduced by a factor of less than 2 when the number of load increments
increases by a factor of 8). On the other hand, the total number of substeps
and the maximum number of substeps are in inverse proportion to the number
of steps; if the number of load increments is doubled, the maximum number
of substeps is divided by two. This indicates that a very large number of steps
would be needed to solve the problem without substepping (extrapolating the
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Figure 5. Rigid footing problem. Equivalent plastic strain for different load levels

results of Figure 6, the number of uniform l.i. would be greater than 50 000).

The convergence results for several load levels and for the four problems (with
100, 200, 400 and 800 l.i.) are shown in Figure 7. All the results are quadratic.
As expected, the number of iterations per load increment decreases as the
number of load increments increases. In fact, the problem with 100 l.i. requires
up to 11 Newton-Raphson iterations at the increments previous to the plateau
in the load–displacement curve. This indicates that larger increments should
not be used in this part of the problem.
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maximum number of substeps for all the Gauss points (bottom)
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Figure 7. Rigid footing problem. Convergence results for different load levels

It has been checked that the influence of the substepping criterion is marginal.
If the threshold for activating the substepping is set at 12 iterations (instead
of 6), the same results are found (except for the sum of substeps over the
domain, which is a little lower).

The computational cost of the four load discretizations is compared in Table
1 (relative CPU time) and in Figure 8 (accumulated iterations). The compu-
tational cost increases with the number of load increments. Within the range
presented in Table 1, twice the number of load increments implies a com-
putational cost 1.6 times greater. The case with no substepping (i.e. 50 000
uniform increments) is also shown in Figure 8. Note that the computational
cost is much higher: the number of accumulated iterations exceeds 10 000 af-
ter only one-eighth of the analysis. This clearly illustrates the computational
efficiency of the substepping scheme with consistent tangent matrix.
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Load increments 100 200 400 800

Relative CPU time 100% 160% 263% 432%
Table 1
Rigid footing problem. Relationship between number of global load increments and
relative CPU time

0

2000

4000

6000

8000

10000

0,00 0,25 0,50 0,75 1,00
Load level

A
cc

u
m

u
la

te
d

 it
er

at
io

n
s

100 load incr.
200 load incr.
400 load incr.
800 load incr.
Without Subs.

Figure 8. Rigid footing problem. Relationship between accumulated iterations and
load level

4.2 Triaxial test with the MRS-Lade model

In this subsection a triaxial test with end-platen friction is analysed with the
MRS-Lade model [8,9,10] and substepping. The MRS-Lade model is used to
simulate the behaviour of granular materials under both low and high confine-
ment stresses [16,17]. It features 1) a two-surface yield function, comprising
a smooth cone surface and a smooth cap surface, 2) hardening and softening
variables that depend on dissipated plastic work, and 3) a non-associated flow
rule in the meridian plane of the cone region. Several slight modifications to
the original formulation of the model have been devised [10,17,18]. In this pa-
per the modification presented in Reference [10] is used. It consists on a new
definition of the flow vector for the cone region that avoids the corner problem
or the flip-over of previous formulations.

The traces of the yield surface on the meridian plane and on the deviatoric
plane are depicted in Figure 9, and the hardening/softening function ηcon(κcon)
of the cone in Figure 10. The value of ηcon is directly related with the friction
angle (slope of the cone in the meridian plane) and κcon is the cone internal
variable, which depends on the plastic work. The softening at Gauss point
level starts for κcon = 1.
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Figure 10. MRS-Lade model. Hardening/softening function of the cone

The MRS-Lade model exhibits a high coupling between the flow vector and
the plastic moduli. This coupling makes the analytical computation of the
derivatives a very cumbersome task. However, using any of the numerical
differentiation techniques presented in Reference [8], all the derivatives are
computed in a simple and efficient way.

Going beyond References [7] and [8], substepping and numerical differentia-
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tion are combined here. Like in the first example, the adaptive substepping
technique is activated at the Gauss points where the local problem requires
more than 6 iterations for convergence (up to a tolerance of 10−12). As shown
in Reference [8], quadratic convergence at the local level is obtained in all
the stress–internal variable space, even with large total strain increments and
no substepping. Substepping is used for this problem to ensure proper time-
integration of the constitutive law and a reduction of the computational cost,
not to avoid non-convergence regions as in section 4.1.

A structured mesh of 1350 (30 × 45) quadrilateral eight-noded elements has
been used. Due to double symmetry only the upper right quarter of the sam-
ple is modelled. The end-platen friction is imposed by restraining the radial
displacement of the sample top during loading. The same material parameters
used by Macari et al. [17] to simulate the triaxial test at local level of a Sacra-
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Figure 11. Triaxial test problem. Force versus relative vertical displacement
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Figure 12. Triaxial test problem. Distribution of the cone internal variable for dif-
ferent values of the relative vertical displacement
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Figure 13. Triaxial test problem. Distribution of the number of substeps required
for different values of the relative vertical displacement. Problem solved with (a) 20
l.i., and (b) with 50 l.i.

mento River sand are used in this example. Since the MRS-Lade model is not
regularized and includes non-associated plasticity and softening, the problem
can localize. However, the low degree of softening of the material parameters
used and the axisymmetric nature of the test prevent localization [19]. The
results do not depend significantly on the space or time discretization. The
problem has been solved with 10, 20, 50 and 100 load increments. The curves
of force versus relative vertical displacement (i.e. vertical displacement over
initial height) for 10 and 100 l.i. are depicted in Figure 11. The results are al-
most identical for all load discretizations (the relative error of the force at the
end of the simulation computed with 10 l.i. is less than 0.6%). Figure 12 shows
the evolution of the distribution of the cone internal variable. As expected,
the material response is clearly non-homogeneous. Note that a wide region at
the top of the sample does not enter in the softening regime (κcon < 1), even
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for large vertical displacements, while in the center of the sample (lower left
corner of the computational domain) softening starts before the global limit
force is reached.

Figure 13 shows the distribution of the number of substeps required at various
load levels. Figure 14 shows the evolution of the number of Gauss points with
substepping activated, the sum of substeps over the domain and the maximum
number of substeps for the four problems (with 10, 20, 50 and 100 l.i.). In the
problems with 10 and 20 l.i., substepping is activated from the beginning of
the analysis and almost everywhere in the domain. At the end of the test,
part of the domain changes from plastic loading to elastic unloading. In that
region the substepping is deactivated. This results in a decrease in the number
of Gauss points with substepping activated, see Figures 14(top) and 13(a).
However, the number of substeps at each Gauss point is very low, compared
with the previous example. On the other hand, with 50 l.i., substepping is
activated only in the region of the domain where the local problems are more
demanding. Finally, note that with 100 l.i. there are only a few Gauss points
with substepping activated at the end of the test, and they require only two
substeps.

The convergence results for several load levels and for the four problems (with
10, 20, 50 and 100 l.i.) are depicted in Figure 15. Quadratic convergence is
attained at all load levels and in the four problems. As in the previous exam-
ple, the number of iterations per load increment decreases as the number of
load increments increases. It is noticeable that the last load increments of the
problem solved with 10 l.i., which correspond to a relative vertical displace-
ment of 9% and 10%, require up to 13 and 18 iterations respectively. Thus,
although convergence is achieved, this load discretization is too coarse. On
the other hand, the problem solved with 100 l.i. converges in four iterations
at most during all the analysis.

The computational cost (relative CPU time) of the four load discretizations
is shown in Table 2. The solutions with 10, 20 and 50 l.i. have a similar
computational cost. If only 10 or 20 l.i. are used, substepping is activated in a
large part of the domain, see Figures 13(a) and 14, and more global iterations
per increment are needed. If 50 l.i. are used, on the other hand, substepping is
restricted to a smaller zone and less iterations per increment are required. This
is why the total computational cost is similar in the three cases. It must be
remarked, however, that the computational cost is halved with respect to the
solution with 100 l.i., where almost no substepping is performed. In conclusion,
the substepping scheme with consistent tangent matrix is computationally
efficient.
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Figure 15. Triaxial test problem. Convergence results for different values of the
relative vertical displacement

Load increments 10 20 50 100

Relative CPU time 119% 100% 120% 215%
Table 2
Triaxial test problem. Relationship between number of global load increments and
relative CPU time

5 Conclusions

A general expression of the consistent tangent matrix for substepping schemes
has been presented. The consistent tangent moduli are computed via recursive
linearization of the nonlinear constitutive equations within each substep. In
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each substep, any single-step scheme may be used. The expression for the gen-
eralized midpoint rule (which includes backward and forward Euler schemes as
particular cases) has been derived. A simple and compact formula is obtained,
with a structure very similar to the case with no substepping.

An adaptive substepping scheme based on the backward Euler rule has been
chosen for illustrative purposes. Substepping is activated only at the Gauss
points where the local problem requires more than a prescribed number of
iterations. With this strategy, the most restrictive Gauss points no longer
control the load increment of the global problem. This allows a large reduction
of the number of load increments of the global problem, which typically implies
a large reduction of the computational cost.

These aspects have been illustrated with the Rounded Hyperbolic Mohr-
Coulomb model. The substepping scheme ensures local-level quadratic conver-
gence over all the domain even for large load increments. The corresponding
consistent tangent matrix presented in this paper ensures quadratic conver-
gence at the global level. The combination of both techniques lead to a large
reduction of computational cost.

Moreover, if needed, the derivatives required for the evaluation of the con-
sistent tangent moduli can be approximated via numerical differentiation.
With numerical differentiation, quadratic convergence is also attained, both at
the local and the global levels. This has been illustrated with the MRS-Lade
model.

From a practical viewpoint, it has been shown that the combination of consis-
tent tangent matrices, substepping and numerical differentiation lead to the
efficient and simple solving of complex nonlinear inelasticity problems.
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A Consistent tangent moduli for substepping with the generalized
midpoint rule

In section 3, each substep is integrated with the backward Euler rule. Here,
the generalized midpoint rule [11], which includes the forward and backward
Euler rules as particular cases, is considered. The expression of the consistent
tangent moduli is obtained with the same ideas and notation of section 3.

The nonlinear problem corresponding to a generic substep k integrated with
the generalized midpoint integration rule is

f̂( n+ k
mσσσ, n+ k

mκκκ, λk,
n+ k−1

m σσσ, n+ k−1
m κκκ, λk−1) =


Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1

01,nσ 01,nκ 0







n+ k−1
m σσσ

n+ k−1
m κκκ

λk−1


 +




E

0nκ,1

0


∆εεεk (A.1)

with f̂ defined as

f̂ =




n+ k
mσσσ + λkE

n+ k−1+θ
m m

n+ k
mκκκ − λk

n+ k−1+θ
m h

F ( n+ k
mσσσ, n+ k

mκκκ)


 (A.2)

and

n+ k−1+θ
m m = m( n+ k−1+θ

m σσσ, n+ k−1+θ
m κκκ)

n+ k−1+θ
m h = h( n+ k−1+θ

m σσσ, n+ k−1+θ
m κκκ)

n+ k−1+θ
m σσσ = (1− θ) n+ k−1

m σσσ + θ n+ k
mσσσ

n+ k−1+θ
m κκκ = (1− θ) n+ k−1

m κκκ + θ n+ k
mκκκ .

(A.3)

In equations (A.2) and (A.3), θ can range from θ = 0 (forward Euler rule) to
θ = 1 (backward Euler rule). The variable λk−1 has been included in both sides
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of equation (A.1) in order to simplify the following deduction of the consistent
tangent moduli.

Note that for θ = 1 the backward Euler scheme is recovered, and equations
(A.1) and (A.2) coincide with equations (8) and (9) respectively.

Both sides of equation (A.1) are linearized with respect to ∆εεε,

∂ f̂

∂( n+ k
mσσσ, n+ k

mκκκ, λk)

d( n+ k
mσσσ, n+ k

mκκκ, λk)

d∆εεε
+

∂ f̂

∂( n+ k−1
m σσσ, n+ k−1

m κκκ, λk−1)

d( n+ k−1
m σσσ, n+ k−1

m κκκ, λk−1)

d∆εεε
=


 Inσ+nκ 0nσ+nκ,1

01,nσ+nκ 0


 d( n+ k−1

m σσσ, n+ k−1
m κκκ, λk−1)

d∆εεε
+ αk




E

0nκ,nσ

01,nσ


 . (A.4)

The derivatives of f̂ can be expressed as

∂ f̂

∂( n+ k
mσσσ, n+ k

mκκκ, λk)
= n+ k

mJθ =




θλkE
∂m
∂σσσ

θλkE
∂m
∂κκκ

Em

−θλk
∂h
∂σσσ

−θλk
∂h
∂κκκ

−h
01,nσ 01,nκ 0




t= n+ k−1+θ
m t

+




Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1

nT ξξξT 0
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

t= n+ k
m t

(A.5)

and

∂ f̂

∂( n+ k−1
m σσσ, n+ k−1

m κκκ, λk−1)
=



(1− θ)λkE

∂m
∂σσσ

(1− θ)λkE
∂m
∂κκκ

0nσ,1

−(1− θ)λk
∂h
∂σσσ

−(1− θ)λk
∂h
∂κκκ

0nκ,1

01,nσ 01,nκ 0




t= n+ k−1+θ
m t

. (A.6)

Assuming that det( n+ k
mJθ) 	= 0 and after some arrangements, equation (A.4)
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is rewritten as

d( n+ k
mσσσ, n+ k

mκκκ, λk)

d∆εεε
=

(
n+ k

mJθ

)−1


αk PE+ n+ k

mGθ
d( n+ k−1

m σσσ, n+ k−1
m κκκ, λk−1)

d∆εεε


 (A.7)

with

n+ k
mGθ =



(
Inσ − (1− θ)λkE

∂m
∂σσσ

)
−(1− θ)λkE
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∂κκκ

0nσ,1
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∂σσσ
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0nκ,1

01,nσ 01,nκ 0




t= n+ k−1+θ
m t

. (A.8)

The first substep is linearized into

d( n+ 1
mσσσ, n+ 1

mκκκ, λ1)

d∆εεε
= α1

(
n+ 1

mJθ

)−1
PE . (A.9)

Finally, following the same process of section 3, the consistent tangent moduli
are obtained. The final expression is

d n+1σσσ

d∆εεε
= PT


 m∑

i=1


αi

i∏
j=m

n+ j
mAθ





PE , (A.10)

where, ∀k ∈ {1, . . . , m − 1},

n+ k
mAθ = n+ k+1

m Gθ

(
n+ k

mJθ

)−1
(A.11)

and, for k = m,
n+1Aθ =

(
n+1Jθ

)−1
. (A.12)

For the particular case of θ = 1 (backward Euler scheme) equation (A.10)
reduces to equation (18).

A.1 Consistent tangent moduli for substepping with the forward Euler method

In general, numerical inversion of the Jacobian matrices is required to compute
the consistent tangent moduli, see equations (A.11) and (A.12). However, for
the particular case of θ = 0 (forward Euler method), a closed-form expression
of the inverse of the Jacobian can be derived, so numerical inversion is not
needed.
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The Jacobian is

n+ k
mJ0 =




Inσ 0nσ,nκ E n+ k−1
m m

0nκ,nσ Inκ − n+ k−1
m h

n+ k
mnT n+ k

mξξξT 0


 , (A.13)

and its inverse is

(
n+ k

mJ0

)−1
=




(
Inσ − aEmnT

)
−aEmξξξT aEm

ahnT
(
Inκ + ahξξξT

)
−ah

anT aξξξT −a


 (A.14)

where n and ξξξ are referred to time n+ k
m t, m and h to n+ k−1

m t, and with

a =
1

nTEm− ξξξTh
. (A.15)

Equations (A.14) and (A.15) can be obtained using Sherman and Morrison’s
lemma [20]. Note that these equations only involve matrix products.

B Computationally efficient expression of the consistent tangent
moduli for substepping with the backward Euler method

The expression of the consistent tangent moduli obtained in section 3, equa-
tion (18), can be rearranged to render it computationally more efficient. In
the following, an equivalent expression that involves smaller matrices is pre-
sented. In the new expression, moreover, the computation of the inverse of the
Jacobians is simplified.

First, the equivalence




Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1

01,nσ 01,nκ 0


 =




Inσ 0nσ,nκ

0nκ,nσ Inκ

01,nσ 01,nκ





 Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1


 (B.1)
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is employed in order to rewrite equation (13) into

d( n+ k
mσσσ, n+ k

mκκκ, λk)

d∆εεε
=

(
n+ k

mJ
)−1




Inσ 0nσ,nκ

0nκ,nσ Inκ

01,nσ 01,nκ








 Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1


 d( n+ k−1

m σσσ, n+ k−1
m κκκ, λk−1)

d∆εεε
+ αk


 E

0nκ,nσ





 . (B.2)

Then, equation (B.2) is pre-multiplied by


 Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1


 (B.3)

in order to get

d( n+ k
mσσσ, n+ k

mκκκ)

d∆εεε
= n+ k

mAc


d( n+ k−1

m σσσ, n+ k−1
m κκκ)

d∆εεε
+ αk PcE


 (B.4)

where

Pc =


 Inσ

0nκ,nσ


 ,

n+ k
mAc =


 Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1


 (

n+ k
mJ

)−1




Inσ 0nσ,nκ

0nκ,nσ Inκ

01,nσ 01,nκ


 ,

(B.5)

and use is made of the relation

 Inσ 0nσ,nκ 0nσ,1

0nκ,nσ Inκ 0nκ,1


 d( n+ k

mσσσ, n+ k
mκκκ, λk)

d∆εεε
=

d( n+ k
mσσσ, n+ k

mκκκ)

d∆εεε
. (B.6)

Finally, following the same process of section 3, the consistent tangent moduli
are obtained. The final expression is

d n+1σσσ

d∆εεε
= Pc

T


 m∑

i=1


αi

i∏
j=m

n+ j
mAc





PcE . (B.7)

Equation (B.7) has the same structure of equation (18). However, the matrices
involved here are smaller. In fact, the consistent tangent moduli are computed
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with the following expression:

d n+1σσσ

d∆εεε
= Pc

T n+1Ac

(
αmPc +

n+m−1
m Ac

(
αm−1Pc + · · ·

· · ·
(
α2Pc + α1

n+ 1
mAcPc

)
· · ·

))
︸ ︷︷ ︸

m−1

E , (B.8)

which is equivalent to equation (B.7). As suggested by equation (B.8), the
consistent tangent moduli are computed recursively during time-integration:

when the substep j is integrated, the matrix n+ j
mAc is computed and the

corresponding part of the consistent tangent moduli is calculated. The process
is always the same, except for the first and the last substeps.

Moreover, because of the special structure of the Jacobian, the matrices n+ j
mAc

are computed inverting only the leading principal minor of order nσ+nκ of the
Jacobian. This result can be obtained using Sherman and Morrison’s lemma
[20].
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