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Abstract. Simple games cover voting systems in which a single alter-
native, such as a bill or an amendment, is pitted against the status quo.
A simple game or a yes-no voting system is a set of rules that specifies
exactly which collections of “yea” votes yield passage of the issue at
hand. Each of these collections of “yea” voters forms a winning coali-
tion. We are interested in performing a complexity analysis on problems
defined on such families of games. This analysis as usual depends on the
game representation used as input. We consider four natural explicit
representations: winning, losing, minimal winning, and maximal losing.
We first analyze the complexity of testing whether a game is simple and
testing whether a game is weighted. We show that, for the four types of
representations, both problems can be solved in polynomial time. Fi-
nally, we provide results on the complexity of testing whether a simple
game or a weighted game is of a special type. We analyze strongness,
properness, weightedness, homogeneousness, decisiveness and majori-
tyness, which are desirable properties to be fulfilled for a simple game.
Finally, we consider the possibility of representing a game in a more
succinct and natural way and show that the corresponding recognition
problem is hard.
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1. Introduction1

Simple game theory is a very dynamic and expanding field. Taylor and2

Zwicker [22] pointed out that “few structures arise in more contexts and lend3

themselves to more diverse interpretations than do simple games”. Indeed, sim-4

ple games cover voting systems in which a single alternative, such as a bill or an5

amendment, is pitted against the status quo. In these systems, each voter responds6

with a vote of “yea” or “nay”. A simple game or a yes-no voting system is a set7

of rules that specifies exactly which collections of “yea” votes yield passage of the8

issue at hand. Each of these collections of “yea” voters forms a winning coalition.9

Democratic societies and international organizations use a wide variety of com-10

plex rules to reach decisions. Examples, where it is not always easy to under-11

stand the consequences of the way voting is done, include the Electoral College to12

elect the President of the United States, the United Nations Security Council, the13

governance structure of the World Bank, the International Monetary Fund, the14

European Union Council of Ministers, the national governments of many coun-15

tries, the councils in several counties, and the system to elect the major in cities16

or villages of many countries. Another source of examples comes from economic17

enterprises whose owners are shareholders of the society and divide profits or losses18

proportionally to the numbers of stocks they posses, but make decisions by vot-19

ing according to a pre-defined rule (i.e., an absolute majority rule or a qualified20

majority rule).21

There are several alternative ways to introduce a simple game; the most natural22

is by giving the list of winning coalitions in which case the complementary set is23

the set of losing coalitions and the simple game is fully described. A considerable24

reduction in terms of use of space in introducing a simple game can be obtained25

by considering only the list of minimal winning coalitions, i.e. winning coalitions26

which are minimal by the inclusion operation. Coalitions containing minimal win-27

ning coalitions are also winning. Analogously, one may present a simple game by28

using either the set of losing coalitions or the set of maximal losing coalitions.29

We are interested in performing a complexity analysis of problems on simple30

games, in the case that the number of players is large, as pointed out in [5],31

“from a computational point of view, the key issues relating to coalitional games32

are, first, how such games should be represented (since the obvious representation33

is exponentially large in the number of players); and second, the extent to which34

cooperative solution concepts can be efficiently computed”. We undertake here this35

task and to the best of our knowledge this is the first paper that addresses such a36

study.37

Previous results have focused on problems where the input is a subclass of the38

class of simple games, the so called weighted games. A way to describe a weighted39

game is to assign a (positive) real number weight to each voter, and declare a40

coalition to be winning precisely when its total weight meets or exceeds some pre-41

determined quota. Not every simple game is weighted but every simple game can be42

decomposed as an intersection of some weighted games. Work with the complexity43



ON THE COMPLEXITY OF PROBLEMS ON SIMPLE GAMES 297

Table 1. Complexity of changing the representation form of a simple game.

Input → (N, W ) (N, L) (N, W m) (N, LM )
Output ↓
(N, W ) – EXP EXP EXP
(N, L) EXP – EXP EXP

(N, W m) P P – EXP

(N, LM ) P P EXP –

Table 2. Our results on the complexity of problems on simple games.

Input → (N, W ) (N, W m) (N, L) (N, LM ) (q; w)
IsSimple P P P P –
IsStrong P co-NPC P P co-NPC
IsProper P P P co-NPC co-NPC
IsWeighted P P P P –
IsHomogeneous P ? P ? ?
IsDecisive P ? P ? co-NPC
IsMajority P ? P ? co-NPC

of problems on weighted games dates back to [19], where Prasad and Kelly pro- 1

vide NP-completeness results on determining properties of weighted voting games. 2

For instance, they show that computing standard political power indices, such as 3

absolute Banzhaf, Banzhaf-Coleman and Shapley-Shubik, are all NP-hard prob- 4

lems. More recent work is related to the notion of dimension considered by Taylor 5

and Zwicker [21, 22]. The dimension of a simple game is the minimum number of 6

weighted games whose intersection coincides with the game. The computational 7

effort to weigh up the dimension of a simple game, given as the intersection of d 8

weighted games, was determined by Dĕıneko and Woeginger [2]: computing the di- 9

mension of a simple game is a NP-hard problem. More results on solution concepts 10

for weighted games can be found in [3, 5, 6, 14]. There also exist works related to 11

economics [4, 10]. 12

Our first objective is to fix some natural game representations. After doing so, as 13

usual, we analyze the complexity of transforming one representation into another 14

and the complexity of the problem of recognizing simple games. Our second aim 15

is to classify the complexity of testing whether a simple game is of a special type. 16

Apart from weighted games there are some other subclasses of simple games which 17

are very significant in the literature of voting systems. Strongness, properness, 18

decisiveness and homogeneity are, among others, desirable properties to be fulfilled 19

for a simple game. Our results are summarized in Tables 1 and 2. 20

Table 1 shows the complexity of passing from a given form to another one. 21

All explicit forms are represented by a pair (N, C) in which N = {1, . . . , n} for 22

some positive integer n, and C is the set of winning, minimal winning, losing or 23

maximal losing coalitions. Note that it is possible to pass from winning (or losing) 24

coalitions to minimal winning (or maximal losing) coalitions in polynomial time, 25
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but the other swaps require exponential time. On the other hand, given a game in1

a specific form, Table 2 shows the complexity on determining whether it is simple,2

strong, proper, weighted, homogeneous, decisive or majority. Here (q; w) denotes3

an integer representation of a weighted game where q is the quota and w are the4

weights. Observe that there are some problems that still remain open.5

Finally, we refer the reader to Papadimitriou [17] for the definitions of the6

complexity classes P, NP, co-NP, and their subclasses of complete problems NPC7

and co-NPC, and the counting class #P.8

2. Recognizing simple games9

We start stating some basic definitions on simple games (we refer the interested10

reader to [22] for a thorough presentation).11

Simple games can be viewed as models of voting systems in which a single12

alternative, such as a bill or an amendment, is pitted against the status quo.13

Definition 2.1. A simple game Γ is a pair (N, W ) in which N = {1, . . . , n}14

for some positive integer n, and W is a collection of subsets of N that satisfies15

N ∈ W , ∅ /∈ W , and the monotonicity property: S ∈ W and S ⊆ R ⊆ N implies16

R ∈ W .17

Any set of voters is called a coalition, the set N is called the grand coalition,18

and the empty set ∅ is called the null coalition. Members of N are called players19

or voters, and the subsets of N that are in W are called winning coalitions. The20

intuition here is that a set S is a winning coalition iff the bill or amendment passes21

when the players in S are precisely the ones who vote for it. A subset of N that is22

not in W is called a losing coalition. The collection of losing coalitions is denoted by23

L. The set of minimal winning coalitions (maximal losing coalitions) is denoted24

by Wm (LM ), where a minimal winning coalition (a maximal losing coalition)25

is a winning (losing) coalition all of whose proper subsets (supersets) are losing26

(winning). Because of monotonicity, any simple game is completely determined by27

its set of minimal winning coalitions. A voter i is null if i /∈ S for all S ∈ Wm.28

From a computational point of view a simple game can be given under different29

representations. In this paper we essentially consider the following options:30

• Explicit or extensive winning form: the game is given as (N, W ) by providing a31

listing of the collection of subsets W .32

• Explicit or extensive minimal winning form: the game is given as (N, Wm) by33

providing a listing of the family Wm. Observe that this form requires less34

space than the explicit winning form whenever W �= {N}.35

When we consider descriptions of a game in terms of winning coalitions in this36

paper, we also consider the corresponding representations for losing coalitions,37

replacing minimal by maximal. Thus, in addition we also consider the explicit or38

extensive losing, and explicit or extensive maximal losing forms.39

We analyze first the computational complexity of obtaining a representation of40

a game in a given form when a representation in another form is given.41
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Theorem 2.2. Given a simple game: 1

(i) passing from the explicit winning (losing) form to the explicit minimal win- 2

ning and maximal losing (maximal losing and minimal winning) form can be 3

done in polynomial time; 4

(ii) passing from the explicit minimal winning (maximal losing) form to the ex- 5

plicit winning (losing) form requires exponential time; 6

(iii) passing from the explicit minimal winning (maximal losing) form to the ex- 7

plicit maximal losing (minimal winning) form requires exponential time; 8

(iv) passing from the explicit minimal winning (maximal losing) form to the ex- 9

plicit losing (winning) form requires exponential time; 10

(v) passing from the explicit winning (losing) form to the explicit losing (winning) 11

form requires exponential time. 12

This theorem gives us all the results presented in Table 1. The polynomial time 13

results are obtained from simple properties of monotonic sets. For the exponential 14

time transformations we provide examples in which the size of the representation 15

increases exponentially. The transformations are similar to the ones used to show 16

that computing a CNF
5 from a given DNF

6 requires exponential time. The dif- 17

ference relies in that now instead of transforming the same formula we have to get 18

a different maximal normal form for a formula and its negation. 19

Before proving Theorem 2.2 in detail, we introduce some notations and defini- 20

tions together with some preliminary technical results. 21

Given a family of subsets C of a set N , C denotes the closure of C under ⊆, 22

and C the closure of C under ⊇. 23

Definition 2.3. A subset C of a set N is closed under ⊆ (⊇) if C = C (C). 24

The following lemma is proved in [17]. 25

Lemma 2.4. Given a family of subsets C of a set N , we can check whether it is 26

closed under ⊆ or ⊇ in polynomial time. 27

Lemma 2.5. Given a family of subsets C of a set N , the families C
m

and CM
28

can be obtained in polynomial time. 29

Proof. Observe that, for any set S in C we have to check whether there is a subset 30

(superset) of S that forms part of C, and keep those S that do not have this 31

property. Therefore, the complete computation can be done in polynomial time on 32

the input length of C. � 33

Now we define the minimal and maximal subset families. 34

5A Boolean formula is in Conjunctive Normal Form (CNF) iff it is a conjunction of disjuntion
of literals.

6A Boolean formula is in Disjunctive Normal Form (DNF) iff it is a standardization (or
normalization) of a logical formula which is a disjuntion of conjunction of literals.
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Definition 2.6. Given a family of subsets C of a set N , we say that it is minimal1

if C = C
m

.2

Definition 2.7. Given a family of subsets C of a set N , we say that it is maximal3

if C = CM .4

As a consequence of Lemma 2.5 we have the following corollary.5

Corollary 2.8. Given a family of subsets C of a set N , we can check whether it6

is maximal or minimal in polynomial time.7

The proof of Theorem 2.2 is split into five lemmas. We start with our first result8

for simple games given in explicit winning or losing form.9

Lemma 2.9. Given a simple game Γ in explicit winning (or losing) form, the10

representation of Γ in explicit minimal winning or maximal losing (maximal losing11

or minimal winning) form can be obtained in polynomial time.12

Proof. Given a simple game Γ = (N, W ), consider the set13

R =
n⋃

i=1

W−i14

where W−i = {S \ {i} : i ∈ S ∈ W}. Observe that all the sets in R\W are losing15

coalitions, R\W ⊆ L. We claim that (R\W )M = LM . We are going to prove that16

in two steps:17

• (R\W )M ⊆ LM : now suppose that T ∈ (R\W )M and that T /∈ LM . Conse-18

quently, we have that T ∈ L and that T ∪ {i} ∈ W for some i ∈ N . We also19

have that T ⊂ U for some U ∈ L. Due to the monotonicity we conclude that20

U ∪ {i} ∈ W . This means that U ∈ R\W which contradicts that T is maximal21

in R\W ;22

• LM ⊆ (R\W )M : we will show this inclusion in two steps:23

(i) LM ⊆ R\W : if T ∈ LM then T ∪ {i} ∈ W for any i /∈ T . Thus T can be24

obtained from a winning coalition (T ∪{i}) from removing an element (i).25

This means that T ∈ R\W since T is a losing coalition;26

(ii) maximal elements in a set will also be maximal in any subset they appear27

in. From LM ⊆ R\W ⊆ L we conclude that LM ⊆ (R\W )M .28

For the cost of the algorithm, observe that, given (N, W ), the set R has cardinality29

at most |N |·|W |, and thus R can be obtained in polynomial time. Using Lemma 2.5,30

from W and R\W , we can compute Wm and LM in polynomial time.31

Analogously, when the game is given by the family of losing coalitions a sym-32

metric argument provides the proof for explicit maximal losing or minimal winning33

form. �34

Now we focus on simple games given in explicit minimal winning or explicit35

maximal losing form.36
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Lemma 2.10. Given a simple game Γ in explicit minimal winning (maximal los- 1

ing) form, computing the representation of Γ in explicit winning (losing) form 2

requires exponential time. 3

Proof. The following two examples show that the size of the computed family can 4

be exponential in the size of the given one. Therefore, any algorithm that solves 5

the problem requires exponential time. 6

Consider N = {1, . . . , n}, then: 7

(i) the simple game defined by Wm =
⋃n

i=1{{i}} has W = {T ⊆ N : T �= ∅}. 8

Therefore, |Wm| = n and |W | = 2n − 1; 9

(ii) the simple game defined by LM = {T ⊆ N : |T | = n − 1} has L = {T ⊂ N}. 10

Therefore, |LM | = n and |L| = 2n − 1. � 11

Lemma 2.11. Given a simple game Γ in explicit minimal winning (maximal los- 12

ing) form, computing the representation of Γ in explicit maximal losing (minimal 13

winning) form requires exponential time. 14

Proof. In a similar way as we did in the previous Lemma, we show two examples 15

where size of the computed family can be exponential in the size of the given one. 16

Consider N = {1, . . . , 2n} and coalitions Si = {2i − 1, 2i}, for all i = 1, . . . , n. 17

Then, 18

(i) the simple game defined by Wm =
⋃n

i=1{Si} has

LM = {T ⊆ N : |T ∩ Si| = 1, for all i = 1, . . . , n}.

Therefore, |Wm| = n and |LM | = 2n; 19

(ii) the simple game defined by

Wm = {T ⊆ N : |T ∩ Si| = 1, for all i = 1, . . . , n}

has LM =
⋃n

i=1{N \ Si}. Therefore, |Wm| = 2n and |LM | = n. � 20

As a consequence of Lemmas 2.9 and 2.11 we have Corollary 2.12. 21

Corollary 2.12. Given a simple game Γ in explicit minimal winning (maximal 22

losing) form, computing the representation of Γ in explicit losing (winning) form 23

requires exponential time. 24

The remaining cases of Theorem 2.2 are again computationally hard. 25

Lemma 2.13. Given a simple game Γ in explicit winning (losing) form, comput- 26

ing the representation of Γ in explicit losing (winning) form requires exponential 27

time. 28

Proof. We present two examples where the size of the computed family is expo- 29

nential in the size of the given one. Let (N, W ) be the game, where W = {N}, then 30

|W | = 1 and |L| = 2|N | − 1. Similarly, let (N, W ) be the game, where L = {∅}, 31

then |W | = 2|N | − 1 and |L| = 1. � 32
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Lemmas (2.9)–(2.13) make up Theorem 2.2.1

The next step is to analyze the computational complexity of the following recog-2

nition problems:3

Name: IsSimpleE4

Input: (N, C).5

Question: Is (N, C) a correct explicit representation of a simple game?6

7

We have in total four different problems depending on the input description:8

winning, minimal winning, losing and maximal losing. However, the recognition9

problem becomes polynomial time solvable in all these cases.10

Theorem 2.14. The IsSimpleE problem belongs to P for any explicit form F:11

winning, minimal winning, losing, or maximal losing.12

Proof. The proof follows from the fact that given a family of subsets C of a set13

N , the families of minimal or maximal sets of its closure can be obtained in poly-14

nomial time. It is a direct consequence of Lemmas 2.4 and 2.5 and Corollary 2.8,15

stating that whether the family is monotonic7 or minimal/maximal can be tested16

in polynomial time. �17

Observe that, as the recognition problem can be solved in polynomial time, we18

can use any of the proposed representations in further complexity analysis.19

3. Problems on simple games20

In this section we consider a set of decision problems related to properties that21

define some special types of simple games (again we refer the reader to [22]). In22

general we will state a property P for simple games and consider the associated23

decision problem which has the form:24

Name: IsP25

Input: A simple game Γ .26

Question: Does Γ satisfy property P?27

28

Further considerations on the complexity of such problems will be stated in29

terms of the input representation.30

3.1. Recognizing strong and proper games31

Now we study the complexity of determining if a given simple game (in explicit32

form) is strong, weak, proper or improper.33

Definition 3.1. A simple game (N, W ) is strong if S /∈ W implies N \ S ∈ W . A34

simple game that is not strong is called weak.35

7We say that a family of sets is monotonic iff it satisfies the monotonicity property.
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Intuitively speaking, if a game is weak it has too few winning coalitions, because 1

adding sufficiently many winning coalitions would make the game strong. Note that 2

the addition of winning coalitions can never destroy strongness. 3

Definition 3.2. A simple game (N, W ) is proper if S ∈ W implies N \ S /∈ W . 4

A simple game that is not proper is called improper. 5

An improper game has too many winning coalitions, in the sense that deleting 6

sufficiently many winning coalitions would make the game proper. Note that the 7

deletion of winning coalitions can never destroy properness. 8

When a game is both proper and strong, a coalition wins iff its complement 9

loses. Therefore, in this case we have |W | = |L| = 2n−1. 10

A related concept to the properness and strongness is the dualityness. 11

Definition 3.3. Given a simple game (N, W ), its dual game is (N, W ∗), where 12

S ∈ W ∗ if and only if N \ S /∈ W . 13

That is, winning coalitions in the dual game are just the “blocking” coalitions 14

in the original game. Thus, (N, W ) is proper iff (N, W ∗) is strong, and (N, W ) is 15

strong iff (N, W ∗) is proper. 16

Theorem 3.4. The IsStrong problem, when the input game is given in explicit 17

losing or maximal losing form, and the IsProper problem, when the game is given 18

in explicit winning or minimal winning form, can be solved in polynomial time. 19

Proof. To prove this result we provide an adequate formalization of the strong 20

and proper properties in terms of simple properties of the set of minimal win- 21

ning or maximal losing coalitions respectively. Those properties can be checked in 22

polynomial time when the games are given in the specified forms. 23

First observe that, given a family of subsets F , we can check, for any set in 24

F , whether its complement is not in F in polynomial time. Therefore, taking into 25

account the definitions, we have that the IsStrong problem, when the input is 26

given in explicit losing form, and the IsProper problem, when the input is given 27

in explicit winning form, are polynomial time solvable. 28

Thus, taking into account that: 29

• a simple game is weak iff 30

∃S ⊆ N : S ∈ L ∧ N \ S ∈ L 31

which is equivalent to 32

∃S ⊆ N : ∃L1, L2 ∈ LM : S ⊆ L1 ∧ N \ S ⊆ L2. 33

The last assertion is equivalent to the fact that there are two maximal losing 34

coalitions L1 and L2 such that L1 ∪ L2 = N ; 35
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• a simple game is improper iff1

∃S ⊆ N : S ∈ W ∧ N \ S ∈ W2

which is equivalent to3

∃S ⊆ N : ∃W1, W2 ∈ Wm : W1 ⊆ S ∧ W2 ⊆ N \ S.4

This last assertion is equivalent to the fact that there are two minimal winning5

coalitions W1 and W2 such that W1 ∩ W2 = ∅.6

Observe that, given a family of subsets F , checking whether any one of the two7

conditions hold can be done in polynomial time. Thus, the theorem holds also8

when the set of maximal losing (or minimal winning) coalitions is given. �9

As a consequence of Theorems 2.2 and 3.4 we have:10

Corollary 3.5. The IsStrong problem, when the input game is given in explicit11

winning form, and the IsProper problem, when the game is given in explicit12

losing form, can be solved in polynomial time.13

Our next result states the complexity of the IsStrong problem when the game14

is given in the remaining form.15

Theorem 3.6. The IsStrong problem is co-NP-complete when the input game16

is given in explicit minimal winning form.17

Proof. The membership proof follows from an adequate formalization. To prove18

hardness we consider the set splitting problem in which we are asked whether it19

is possible to partition N into two subsets P and N\P such that no subset in20

a given collection C is entirely contained in either P or N\P . It is known that21

this problem is NP-complete [9]. We provide a polynomial time reduction from22

set splitting to the IsWeak problem. In other words we have to decide whether23

P ⊆ N exists such that24

∀S ∈ C : S �⊆ P ∧ S �⊆ N \ P. (3.1)

We transform a set splitting instance (N, C) into the simple game in explicit min-25

imal winning form (N, Cm). This transformation can be computed in polynomial26

time according to Lemma 2.5. We will now show that (N, C) has a set splitting iff27

(N, Cm) is a weak game:28

• now assume that P ⊆ N satisfying (3.1) exists. This means that P and N\P29

are losing coalitions in the game (N, Cm);30

• let P and N\P be losing coalitions in the game (N, Cm). As a consequence we31

have that S �⊆ P and S �⊆ N\P for any S ∈ Cm. This implies that S �⊆ P and32

S �⊆ N\P holds for any S ∈ C since any set in C contains a set in Cm. �33

Finally we prove a similar complexity result for the remaining version of the34

IsProper problem.35
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Theorem 3.7. The IsProper problem is co-NP-complete when the input game 1

is given in extensive maximal losing form. 2

Proof. The hardness of the IsProper problem is obtained by using duality and 3

providing a polynomial time reduction from the IsStrong problem. 4

From Definition 3.2, a game is improper if and only if there exists a coalition 5

S ⊆ N such that neither S nor N \ S is contained in a member of LM . For a 6

given coalition S we can easily perform this check in polynomial time. Therefore 7

the problem IsImproper belongs to NP, and the problem IsProper belongs to 8

co-NP. 9

To complete the proof we provide a reduction from the IsStrong problem for
games given in extensive minimal winning form. First observe that, if a family C
of subsets of N is minimal then the family {N \ L : L ∈ C} is maximal. Given
a game Γ = (N, Wm), in minimal winning form, let us consider its dual game
Γ ′ = (N, {N \ L : L ∈ Wm}) given in maximal losing form. Of course Γ ′ can be
obtained from Γ in polynomial time. Thus Γ is weak iff

∃S ⊆ N : S ∈ L(Γ ) ∧ N \ S ∈ L(Γ )

which is equivalent to

∃S ⊆ N : N \ S ∈ W (Γ ′) ∧ S ∈ W (Γ ′)

iff Γ ′ is improper. 10

Thus, the IsProper problem belongs to co-NP and it is co-NP-hard – in other 11

words it is co-NP-complete. � 12

3.2. Recognizing weighted games 13

In this subsection we study the complexity of determining if a given simple 14

game (in explicit form) is weighted, trade robust or invariant trade robust. 15

Definition 3.8. A simple game (N, W ) is weighted if there exist a “quota” q ∈ R 16

and a “weight function” w : N → R such that each coalition S is winning exactly 17

when the sum of weights of S meets or exceeds q. 18

Weighted games are probably the most important kind of simple games. 19

Any specific example of a weight function w and quota q is said to realize G 20

as a weighted game. A particular realization of a weighted game is denoted 21

(q; w1, . . . , wn), or briefly (q; w). By w(S) we denote
∑

i∈S wi. 22

Observe also that, from the monotonicity property, it is obvious that a simple 23

game (N, W ) is weighted iff there exist a “quota” q ∈ R and a “weight function” 24

w : N → R such that 25

w(S) ≥ q ∀ S ∈ Wm
26

w(S) < q ∀ S ∈ LM . 2728
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Theorem 3.9. The IsWeighted problem can be solved in polynomial time when1

the input game is given in explicit winning, losing, minimal winning and maximal2

losing forms.3

Proof. A simple polynomial time reduction from the IsWeighted problem to4

the Linear Programming problem, which is known to be solvable in polynomial5

time [12, 13], gives the result for the cases of explicit winning and explicit losing6

forms.7

Taking into account Lemma 2.5, in both cases we can obtain Wm and LM in8

polynomial time. Once this is done we can write, again in polynomial time, the9

following Linear Programming instance Π :10

min q

subject to w(S) ≥ q if S ∈ Wm

w(S) < q if S ∈ LM

0 ≤ wi for all 1 ≤ i ≤ n∑
i wi = 1

0 ≤ q.

11

The game (N, W ) is weighted iff Π has a solution and the proposed construction12

is a polynomial time reduction.13

For the minimal winning form we provide a reduction to the threshold function14

problem for monotonic DNF formulas which is known to be polynomial time15

solvable [11,18]. For the maximal losing form we make use of duality and provide16

a reduction to the problem when the input is described in minimal winning form.17

Given (N, Wm) we are going to prove that we can decide in polynomial time
whether the simple game is weighted. For C ⊆ N we let xC ∈ {0, 1}n denote the
vector with the i’th coordinate equal to 1 if and only if i ∈ C. In polynomial time
we transform Wm into the Boolean function ΦW m given by the DNF formula:

ΦW m(x) =
∨

S∈W m

(∧i∈Sxi).

By construction we have the following:18

ΦW m(xC) = 1 ⇔ C is winning in the game given by (N, Wm) (3.2)

Note that ΦW m is a threshold function if and only if the game given by (N, Wm)19

is weighted:20

• only if (⇒): assume that ΦW m is a threshold function. Let w ∈ R
n be the

weights and q ∈ R the threshold value. Thus we have that

ΦW m(xC) = 1 ⇔ 〈w, xC〉 ≥ q

where 〈·, ·〉 denotes the usual inner product. By using (3.2) we conclude that21

the game given by (N, Wm) is weighted;22
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• if (⇐): now assume that the game given by (N, Wm) is weighted and that
(q; w) is a realization of such game. In this case we have the following:

C is winning in the game given by (N, Wm) ⇔ 〈w, xC〉 ≥ q.

Again we use (3.2) and conclude that ΦW m is a threshold function. 1

The Boolean function ΦW m is monotonic (i.e. positive) so according to the 2

papers [11, 18] (pp. 211 and 59, respectively) we can in polynomial time decide 3

whether ΦW m is a threshold function. Consequently, we can also decide in poly- 4

nomial time whether the game given by (N, Wm) is weighted. 5

On the other hand, we can prove a similar result given (N, LM ) just taking into 6

account that a game Γ is weighted iff its dual game Γ ′ is weighted. Then, we can 7

use the technique from the proof of Theorem 3.7. � 8

It is important to remark that it is known that “a simple game is weighted 9

iff it is trade robust iff it is invariant-trade robust” [5, 7, 22]. Thus, according to 10

Theorem 3.9, checking whether a simple game is trade robust or invariant-trade 11

robust can be done in polynomial time. 12

Corollary 3.10. The IsTradeRobust and the IsInvariantTradeRobust 13

problem can be solved in polynomial time when the input game is given in explicit 14

winning, minimal winning, losing or maximal losing form. 15

3.3. Recognizing homogeneous, decisive and majority games 16

In this section we define the homogeneous, decisive and majority games and, 17

afterwards, we analyze the complexity of the IsHomogeneous, IsDecisive and 18

IsMajority problems. 19

Definition 3.11. A weighted game (N, W ) is homogeneous if there exists a real- 20

ization (q; w) such that q = w(S) for all S ∈ Wm. 21

That is, a weighted game is homogeneous iff the sum of the weights of any 22

minimal winning coalition is equal to the quota. 23

Theorem 3.12. The IsHomogeneous problem can be solved in polynomial time 24

when the input game is given in explicit winning or losing form. 25

Proof. The polynomial time reduction from the IsHomogeneous problem to the 26

Linear Programming problem, is done in the same way as in the proof of Theo- 27

rem 3.9, but considering the instance Π ′ obtained by replacing w(S) ≥ q, in the 28

first set of inequalities of Π , by w(S) = q. It is immediate to see that (N, W ) 29

is homogeneous iff Π ′ has a solution. This modification provides the proof of 30

Theorem 3.12. � 31

Now we introduce the remaining subclasses of simple games. 32
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Definition 3.13. A simple game is decisive (or self–dual, or constant sum) if it1

is proper and strong. A simple game is indecisive if it is not decisive.2

Note that the decisiveness is related to the dualityness. As stated earlier in this3

paper, (N, W ) is proper iff (N, W ∗) is strong, and (N, W ) is strong iff (N, W ∗)4

is proper. As a consequence, we have that a simple game (N, W ) is decisive iff5

W = W ∗. On the other hand, W is closed under ⊆ or ⊇ iff W ∗ is closed under ⊆6

or ⊇, respectively.7

In the seminal work on game theory by Von Neumann and Morgenstern [23]8

only decisive simple games were considered. Nowadays, many governmental insti-9

tutions make their decisions through voting rules that are in fact decisive games.10

If abstention is not allowed (see [8] for voting games with abstention) ties are not11

possible in decisive games.12

Another interesting subfamily of simple games are the so-called majority games:13

Definition 3.14. A simple game is a majority game if it is weighted and decisive.14

Observe that, although a simple game can fail to be proper and fail to be strong,15

this cannot happen with weighted games (the proof appears in [22]).16

Proposition 3.15. Any weighted game is either proper or strong.17

From Proposition 3.15, it follows that there are three kinds of weighted games:18

proper but not strong, strong but not proper, and both strong and proper.19

Finally, we use Theorem 3.4, Corollary 3.5 and Theorem 3.9 and obtain the20

following result:21

Theorem 3.16. The IsMajority and the IsDecisive problems can be solved in22

polynomial time when the input game is given in explicit winning or losing form.23

4. Problems on weighted games24

In this section we consider weighted games which are described by an integer25

realization (q; w). Observe that it is well-known that any weighted game admits an26

integer realization (see for instance [1]), that is, a weight function with nonnegative27

integer values, and a positive integer as quota. Integer realizations naturally arise;28

just consider the seats distributed among political parties in any voting system.29

In consequence we assume an integer realization as representation of a weighted30

game. We analyze the complexity of problems of the type:31

Name: IsP32

Input: An integer realization (q; w) of a weighted game Γ .33

Question: Does Γ satisfy P?34

35

We are interested in problems associated with the properties of being strong,36

proper, homogeneous, and majority8. Observe that for weighted games majority37

and decisive are just the same property, so we consider only the majority games.38

8Note that the definition of majority weighted games given in [2] is equivalent to our definition
of weighted games.
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From now on some of the proofs are based on reductions from the NP-complete 1

problem Partition [9], which is defined as: 2

Name: Partition 3

Input: n integer values, x1, . . . , xn. 4

Question: Is there S ⊆ {1, . . . , n} for which
∑

i∈S xi =
∑

i/∈S xi. 5

6

Observe that, for any instance of the Partition problem in which the sum of 7

the n input numbers is odd, the answer must be no. 8

Theorem 4.1. The IsStrong, IsProper and IsMajority (here, equivalent to 9

IsDecisive) problems, when the input is described by an integer realization of a 10

weighted game (q; w), are co-NP-complete. 11

Proof. From the definitions of strong, proper and majority games, it is straight- 12

forward to show that the three problems belong to co-NP. 13

Observe that the weighted game with integer representation (2; 1, 1, 1) is proper 14

and strong, and thus decisive. 15

We transform an instance x = (x1, . . . , xn) of the Partition problem into a 16

realization of a weighted game according to the following schema 17

f(x) =

{
(q(x); x) when x1 + · · · + xn is even,
(2; 1, 1, 1) otherwise.

18

The function f can be computed in polynomial time provided q can, and we will 19

use a different q for each problem. 20

Nevertheless, independently of q, when x1 + · · ·+ xn is odd, x is a no input for 21

partition, but f(x) is a yes instance of IsStrong, IsProper, and IsMajority, 22

and thus a no instance of the complementary problems. 23

Therefore, we have to take care only of the case in which x1 + · · ·+ xn is even. 24

Assume that this is the case and let s = (x1 + · · ·+xn)/2 and N = {1, . . . , n}. We 25

now provide the proof that f reduces Partition to the respective complementary 26

problem. 27

(a) IsStrong problem 28

For the case of strong games, taking q(x) = s + 1, we have: 29

• if there is a S ⊂ N such that
∑

i∈S xi = s, then
∑

i/∈S xi = s, thus both S and 30

N\S are losing coalitions and f(x) is weak; 31

• now assume that S and N\S are both losing coalitions in f(x). If
∑

i∈S xi < s 32

then
∑

i/∈S xi ≥ s+1, which contradicts that N\S is losing. Thus we have that 33∑
i∈S xi =

∑
i�∈S xi = s, and there exists a partition of x. 34

Therefore, f is a polytime reduction from Partition to IsWeak. 35
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(b) IsProper problem1

For the case of proper games we take q(x) = s. Then, if there is a S ⊂ N such2

that
∑

i∈S xi = s, then
∑

i/∈S xi = s, thus both S and N\S are winning coalitions3

and f(x) is improper. When f(x) is improper4

∃S ⊆ N :
∑
i∈S

xi ≥ s ∧
∑
i/∈S

xi ≥ s,5

and thus
∑

i∈S xi = s. Thus, we have a polytime reduction from Partition to6

IsImproper.7

(c) IsMajority problem8

For the case of majority games we take again q(x) = s. Observe that f(x)9

cannot be weak, as in such a case there must be some S ⊆ N for which,10 ∑
i∈S

xi < s ∧
∑
i/∈S

xi < s,11

contradicting the fact that s = (x1 + · · · + xn)/2. Therefore, the game is not12

majority iff it is improper, and the claim follows. �13

Before finishing this section we introduce the following related problem:14

Name: IsHomogeneousRealization15

Input: An integer realization (q; w) of a weighted game Γ .16

Question: Is (q; w) a homogeneous realization?17

18

Given the weights w, Rosenmüller [20] solves the problem of computing all q19

such that (q; w) is a homogeneous realization. Although in [20] the analysis on the20

complexity is omitted, it is easy to check that the dynamic programming algorithm21

given in Section 3 of [20] runs in polynomial time. Thus, given an integer realization22

(q; w) it can be checked whether it is a homogeneous realization in polynomial time.23

Theorem 4.2. The IsHomogeneousRealization problem can be solved in24

polynomial time.25

Note that, given an integer realization (q; w) of a weighted game, we cannot26

yet check whether this game is homogeneous, only whether a given realization is27

a homogeneous one. We want to remark that the previous result does not imply28

that the IsHomogeneous problem belongs to NP. Consider the problem29

Name: IsAnotherRealization30

Input: Two integer realizations (q; w) and (q′; w′).31

Question: Is (q′; w′) another realization of the game (q, w)?32

33

In [6] it is shown that the IsAnotherRealization problem is co-NP-complete:34

it is easy to see that (x1, . . . , xn) is a no instance of Partition if and only if35

(s + 1; x) is another realization of (s; x).36
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5. Succinct representations 1

We finish the analysis of simple games introducing a natural succinct repre- 2

sentation of families of sets by means of Boolean formulas. A Boolean formula Φ 3

on n variables provides a compact description of a family of subsets C of a set 4

N with n elements in the following way: we associate to each truth assignment 5

x = (x1, . . . , xn) the set Ax = {i | xi = 1}. Therefore Φ describes the family 6

of subsets {Ax | Φ(x) = 1} in a compact way. In consequence we consider the 7

following succinct representations 8

• Succinct winning form: the game is given by (N, Φ) where Φ is a Boolean formula 9

on |N | variables providing a compact description of the sets in W . 10

• Succinct minimal winning form: the game is given by (N, Φ) but now Φ describes 11

the family Wm. Observe again that this form might require less space than the 12

previous one whenever W �= {N}. 13

In addition we consider the succinct losing and maximal losing forms. Our first 14

objective again is to analyze the complexity of the recognition problem. 15

Name: IsSimpleS 16

Input: (N, Φ). 17

Question: Is (N, Φ) a correct succinct representation of a simple game? 18

19

As it happened with IsSimpleE problem, we have in total four different prob- 20

lems depending on the input description: winning, minimal winning, losing and 21

maximal losing. 22

Unfortunately, we can show that the recognition problem is hard in all the 23

proposed succinct forms thus forbidding a posterior use of such representations. 24

Theorem 5.1. The IsSimpleS problem belongs to co-NP-complete for any suc- 25

cinct form F : winning, minimal winning, losing, or maximal losing. 26

Proof. Observe that, from the Definition 2.1 of the monotonicity property, a set 27

W (L) is not monotonic iff there are two sets S1 and S2 such that S1 ⊆ S2 but 28

S1 ∈ W and S2 /∈ W (S1 /∈ L and S2 ∈ L). When the game is given in succinct 29

winning or losing form, these tests can be done by guessing two truth assignments 30

x1 and x2 and checking that x1 < x2, ΦW (x1) = 1 and ΦW (x2) = 0 (ΦL(x1) = 0 31

and ΦL(x2) = 1). Both properties can be checked in polynomial time once S1 and 32

S2 are given. Thus the problems belong to co-NP. 33

In the case that Φ represents Wm(LM ) we have to check that the represented 34

set is minimal (maximal). Observe that Φ does not represent a minimal (maximal) 35

set if there are α, β ∈ {0, 1}n with α < β such that Φ(β) = 1 and Φ(α) = 1. 36

Therefore, all the problems of recognizing succinct forms belong to co-NP. 37

A Boolean formula is monotonic if for any pair of truth assignments x, y, such 38

that x ≤ y in canonical order (i.e., xi ≤ yi for all i), we have that Φ(x) ≤ Φ(y) 39

(assuming that false < true). The latter problem (i.e., to know whether a Boolean 40
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formula is monotonic or not) is co-NP-complete (even for DNF formulas) [15].1

Consider the following reduction: given a Boolean formula Φ on n variables we2

construct Φ′ on n + 2 variables as follows3

Φ′(αβx) =

⎧⎪⎨
⎪⎩

1 α = β = 1
0 α = β = 0
Φ(x) α �= β.

4

Now we have that Φ is monotonic iff Φ′ is monotonic. Furthermore we have that5

Φ′ is monotonic iff (N, Φ′) is a simple game in the explicit winning form since6

Φ′(1n) = 1 and Φ′(0n) = 0. This shows that IsSimpleS for the explicit winning7

form is co-NP-complete. Observe that (N, ΦL) is an explicit loosing representation8

of a simple game iff (N,¬ΦL) is an explicit winning representation of a simple9

game. Then the IsSimpleS for the explicit loosing form is co-NP-complete.10

Recall now that the sat problem asks whether a given Boolean formula has11

a satisfying assignment. sat is a well known NP-complete problem. Consider the12

following reduction: given a Boolean formula φ on n variables we construct Φ for13

minimal winning forms on n + 2 variables as follows14

Φ(αβx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if α = β = 1 and x = 1n

0, if α = β = 1 and x �= 1n

φ(x), if α �= β

0, if α = β = 0.

15

We have that φ does not have satisfying assignment iff Φ describes a non empty16

minimal winning set. Similarly for maximal losing forms, now we should consider17

Φ(αβx) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if α = β = 1
φ(x), if α �= β

0, if α = β = 0 and x �= 0n

1, if α = β = 0 and x = 0n.

18

Thus the minimal winning and the maximal losing problems are co-NP-hard. �19

6. Conclusions and open problems20

We have analyzed different representations for simple games: explicit and suc-21

cinct representations. All explicit forms that we have considered are represented22

by a pair (N, C) in which N = {1, . . . , n} for some positive integer n, and C is the23

set of winning, minimal winning, losing or maximal losing coalitions.24

For the four proposed explicit representations of a simple game, we have stud-25

ied the complexity of deciding whether the given game is strong, proper, weighted,26

homogeneous, decisive or majority. In the same vein, given a weighted game de-27

scribed by an integer representation (q; w), we have also considered the complexity28

of deciding whether the game is strong, proper, homogeneous or majority.29
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As this is the first time in which problems on simple games are analyzed there 1

are still many interesting open question as there are many other interesting prop- 2

erties on simple games. With respect to the unclassified problems on Table 2 we 3

conjecture the following: 4

Conjecture 6.1. The IsDecisive problem is co-NP-complete when the input 5

game is given in explicit minimal winning or maximal losing form. 6

Conjecture 6.2. The IsMajority problem is co-NP-complete when the input 7

game is given in explicit minimal winning or maximal losing form. 8

We would also like to remark that our study can be enlarged by considering 9

new explicit forms to present a simple game. For example, blocking coalitions and 10

minimal blocking coalitions provide an alternative way to fully describe a sim- 11

ple game. Precisely, a blocking coalition wins whenever its complementary loses. 12

From the point of view of succinct representations, there are other proposals for 13

representing a simple game, which make use of Boolean functions or weighted rep- 14

resentations. For example the multilinear extension of a simple game [16], succinct 15

representations [15], or the intersection of a collection of weighted games [2]. It will 16

be of interest to perform a similar complexity analysis on such representations. 17

Interestingly enough, we have shown in Theorem 3.9 that we can decide in 18

polynomial time whether a simple game is weighted. This result opens the possi- 19

bility of analyzing the complexity of problems on weighted games described in an 20

explicit form. In particular, as weighted games are games with dimension 1, our 21

results imply that we can decide in polynomial time whether a simple game has 22

dimension 1. Recall that the results in [2] show that computing the dimension of a 23

simple game is NP-hard. The latter result is obtained when the game is described 24

as the intersection of some weighted games. It will be of interest to determine 25

whether the dimension of a simple game given in explicit form can be computed in 26

polynomial time. The same questions can also be formulated for other parameters 27

and solution concepts on simple games. 28
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