
  

  

Abstract— This paper proposes a fault detection methodology 
for incipient faults that combines different residual generation 
methods (observers and l-step ahead predictors) with different 
convergence velocity to the real output trying to benefit from 
the advantages offered by each one. The integration is based on 
generating a timed automaton, which combines the information 
extracted from each method in order to provide the best fault 
detection performance regarding incipient faults. The proposed 
methodology has as a main objective to detect as early as 
possible anomalies or incipient faults in system components. 
Nowadays, for many systems, early warnings contribute to 
increase system reliability, prevent major component failures 
and planning the necessary repair actions for several weeks 
(predictive maintenance). The application of this methodology 
will be illustrated in a case study based on a part of the 
Barcelona water network. 

I. INTRODUCTION 

Component degradation can be characterised as an 
incipient fault. Faults and degradations in the components of 
the dynamic systems could manifest as a deviation of the 
system behaviour from the normal one required for operation. 
The fault detection of the incipient faults is more difficult 
than the case of abrupt faults because they evolve very slowly 
and their effects can be confused with noise and uncertainty. 
For this reason most of the methodologies used for detecting 
as early as possible anomalies due to incipient faults in 
components are based on the estimation of features (or 
condition indicators) from sensor data that are characteristic 
of the abnormal behaviour either in open-loop [1] [2] or in 
closed-loop [3]. Another problem of the incipient faults is that 
they can evolve very slowly (over a period of months or even 
years). This implies that to detect indicator drifts, long time 
periods must be used for evaluation. In real applications, this 
involves storing a lot of data if slow changes in the monitored 
system must be detected.  To solve this problem, in [3], a 
hierarchical structure is proposed, with high-level indices 
based on the temporal and/or spatial combination of low-level 
indices, which include low-level information. The objective 
of these high-level indices is to compress the information. 

Fault detection of incipient faults is still an open issue 
because of the difficulty associated with. In particular, one the 
main difficulties comes from the fact than some methods 
based on a closed-loop prediction as observers or Moving 
Average (MA) parity equations tend to track the system even 
when there is a fault. This problem has been studied in [4] 
where it has been shown that even in the case of abrupt faults 
the output prediction provided by observers (or MA parity 
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equations) tends to track the faulty system in case of output 
sensor faults.  

The way to avoid this problem is by playing with the 
observer dynamics or by enlarging the prediction horizon 
using l-step ahead predictors [5]. However, this can introduce 
the drawback that the fault detection is delayed or even some 
faults are not properly detected. Thus, there is a trade-off 
between the velocity of convergence of the model prediction 
to the real output and the fault detection performance.  

This paper proposes a fault detection methodology for 
incipient faults that combines different residual generation 
methods (observers and l-step ahead predictors) with different 
convergence velocity to the real output trying to benefit from 
the advantages offered by each one. The integration is based 
on generating a timed automaton, which combines the 
information extracted from each method in order to provide 
the best fault detection performance regarding incipient faults.  

The proposed methodology has as a main objective to 
detect as early as possible anomalies or incipient faults of the 
components of a large scale system (LSS). Nowadays, for 
many systems, early warnings contribute to increase system 
reliability, preventing major component failures and planning 
the necessary repair actions for several weeks (predictive 
maintenance). The application of this methodology will be 
illustrated on a case study based on a part of the Barcelona 
water network. 

The structure of the paper is as follows: Section 2 presents 
the problem statement. Section 3 introduces the residual 
generation approaches considered to be used for incipient 
fault detection. Section 4 proposes how to integrate the 
different residual generation approaches in order to obtain the 
best performance regarding incipient fault detection. Section 
5 presents the proposed case study and the results of 
application of the proposed methodology. Conclusions are 
provided in Section 6. 

II. PROBLEM STATEMENT AND PROPOSED FDI 
ARCHITECTURE IMPLEMENTATION  

A. Incipient faults 

Fault detection and isolation (FDI) aims to carefully 
identify which fault can be hypothesized to be the cause of 
anomalous system behaviour. This problem has been studied 
from many points of view, using different techniques, and by 
many researchers, applying different schools of thought, 
theories and assumptions.  An overview of techniques in this 
area is given in a series of review papers ([6]-[8]). A historical 
review of these techniques has been published recently in [9]. 

The diagnostic process aims to identify which fault can be 
hypothesized to be the cause of monitored events. A fault 
must be understood as an unexpected change in a component 
or the system behaviour. In the literature, most of works have 
proposed fault diagnosis schemes for abrupt faults, which are 
modelled as instantaneous changes in system behaviour at a 
point in time. However, degradations in system components 
are often modelled as incipient faults, which are slow drifts in 
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system parameter values over time. In fact, the problem of 
diagnosis incipient faults is related with the problem of 
prognosis. For example, in [10], classical FDI techniques are 
proposed for incipient fault combined with a set of 
degradation models for incipient fault evolution prognosis. 

One of the main problems associated with incipient faults 
is that the symptoms associated with are not detected at the 
same time instant since residual dynamics (and system 
degradation) require some time to evolve. Moreover, because 
the effect of incipient faults at the beginning is not that 
important, probably residuals will not be sensitive enough to 
be affected by the fault or to avoid tracking the faulty 
behavior. This can even be harder if several incipient faults 
appear at the same time.  

B. Architecture implementation for FDI of incipient faults 

This paper proposes a FDI methodology for incipient 
faults that at the same time allows continuing to address the 
case of abrupt faults. 

The proposed FDI architecture is based on two modules as 
suggested in most model-based approaches. The first module 
is fault detection, implemented with a set of fault detection 
tests based on generating residuals using analytical 
redundancy relations (ARRs), which allows deciding whether 
a fault has occurred, and its apparition time instant. The 
second module is fault isolation, which is typically achieved 
through algorithms that determine a possible faulty 
component(s). Here, the implementation of this architecture, 
initially proposed by [11] for abrupt faults, will be extended 
to the incipient fault case. In the implementation proposed in 
[11], a timed discrete-event approach is introduced that 
improves the interface between fault detection and isolation 
considering the activation degree and the occurrence time 
instant of the diagnostic signals using a combination of 
several theoretical fault signature matrices that store the 
relationship  knowledge between diagnosis signals and faults. 
The fault isolation module is implemented using a timed 
discrete-event approach that recognizes the occurrence of a 
fault by identifying a unique sequence of observable events 
(fault signals). The states and transitions that characterize 
such a system can directly be inferred from the relation 
between fault signals and faults. 

III.  RESIDUAL GENERATION FOR INCIPIENT FAULT 

DETECTION   

A. Fault detection background 

In general, the FDI procedure checks at every time the 
consistency between the observed and the normal system 
behavior using a set of analytical redundancy relations 
(ARRs), which relate the values for measured variables 
according to a model of normal operation (fault-free) from the 
monitored system. These ARRs can be derived with structural 
approaches, using algorithms as the proposed in [12][13]or 
[14], among others.  

Given a model with a set of output observed variables,ky , 

and the set of inputs, ku , consistency tests can be derived 
from an ARR by generating a computational residual in the 
following way: 

( ), 0,i i k kr y u= Ψ =                              (1) 

where iΨ  is called the residual ARR expression. The set of 
ARRs can be represented as 

     ( ){ }, 0, 1, , ,i i k k rr y u i n= = Ψ = = LR              (2) 

where rn is the number of ARRs obtained after applying the 
structural analysis. 

Let F be the set of faults that must be monitored,  

Definition 3.1. Detectable fault. A f ∈F is detectable if 
its occurrence can be observed, or at least one of the residuals 
in the residual set (2) satisfies 0ir ≠ . 

Using the set of computable ARR residuals (1), the fault 
detection module must check at each time instant whether or 
not they are consistent with the observations. Under ideal 
conditions, residuals are zero in the absence of faults and non-
zero when a fault is present. However, modeling errors, 
disturbances and noise, in complex engineering systems are 
inevitable, and hence it appears the necessity of applying 
robust fault detection algorithms.   

In the literature, there are different approaches to solve the 
problem of modeling errors, disturbances and noise. For 
example, statistical decision methods can be used when 
unknown dynamics and measurement noise are stochastically 
modeled [15]. Others works assume that disturbances/model 
errors and measurement noise are bounded and their effect is 
propagated to the residuals using, for example, interval 
methods [16]. Taking into account bounded uncertainties, the 
residuals (1) can be rewritten as follows:  

( )kkkii uyr δ,,Ψ= ,                            (3) 

with: k Dδ ∈ , where D is the interval box 

{ }nD δδ δ δ δ= ∈ ≤ ≤R , that includes all uncertainties (i.e. 

disturbances/model errors and measurement noise). Then, 
fault detection is formulated as checking the consistency of 
(3) using a set-membership approach [17]. 

Definition 3.2 Consistency checking.  Given the residuals 
described by (3) and a sequence of measured inputs ku and 

outputs ky  of the real system at time k, they are consistent 

with measurements and uncertainty bounds if there exist a set 
of sequences k Dδ ∈ which satisfies ir 0= . 

Thus, according to Definition (3.2), a residual consistency 
is equivalent to check if 0 ∈ [��] where [��]  is the interval 
that bounds the effect of uncertainty in residual (3). 

Definition 3.3. Fault detection. Given a sequence of 
observed inputs ku and outputs ky  of the real system, a fault 

is said to be detected at time k if there does not exist a set of 
uncertainty sequences  to which the set of ARRs is 

consistent.    

According to Definition (3.3) a fault is detected when 

0 ir∉   . The information provided by the consistency checking 

is stored as fault signal ( )kiφ : 

D∈kδ
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  if  r
φ

 ∈   =  ∉   
.                        (4) 

B. Residual computation approaches 

From computation point of view, residuals (3) are generated 
as ˆ( ) ( ) ( , )r k y k y k δ= − , that is, by means of the difference 
between measured system outputs and estimated values 
ˆ rny∈ℜ  obtained from rewriting residuals (3) as parity 

equations 
( ) ( )ˆ( , ) ( 1) ( )y k y k B u kδ δ δ= − + + ∆            (5) 

or state observers [4] 

( ) ( ) ( )
( )

ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )

ˆ ˆ( , ) ( )

x k A x k B u k L y k y k

y k x k

δ δ
δ δ
+ = + + −

= + ∆
       (6) 

where r rn nA ×∈ℜ is the state matrix rn pB ×∈ℜ  is the input 

matrix, rn∆ ∈ℜ is the noise uncertainty gain matrix and 
r rn nL ×∈ℜ  is the observed gain to be designed to guarantee 

stability for .k Dδ ∈   Notice than when L=A, (5) and (6) are 
equivalent (see [4] for more details) 

Abrupt faults correspond to changes that occur at time 
scales much faster than the nominal dynamics of the system. 
In order to detect this type of faults, fast dynamic residuals (as 
(5) and (6)) are required. Although these faults are relatively 
easy to detect because of the sudden large change they induce 
in the values of some variables. On the other hand, incipient 
faults require residuals with a slowly evolution over time in 
order to detect slow performance degradations or undesirable 
drifts.  The detection of these slow changes can be achieved 
following the idea proposed in signal processing ([18]) where 
most of the methods for trend extraction involves 
approximating the signals with piecewise polynomial 
segments using for example fixed-width window approach or 
sliding windows.  Thus, for example, parity equations can be 
evaluated in a time window on length m leading to a m-step 
ahead predictor  

( ) ( ) ( )ˆ( | ) ( ) ( )p py k k m A y k m B u kδ δ δ− = − + + ∆ ,       (7) 

where ( )pA δ  and ( )pB δ are the m-step ahead predictor 

matrices obtained considering output measurement at time 
( )y k m−   and inputs in the time window

[ ]( ) ( ) ( 1) ( )
T

u k u k u k u k m= − −L . 

An alternative to evaluating analytical model over a time 
windows is to consider filtered residuals as follows  

( )( ) ( ) 1 ( 1)
k

i
i i i i

k m

fr k r fr k
mα

τ α τ
= −

= + − −∑  ,          (8) 

where fr is the smoothed residual,τ is a weighting scalar 
between the residual averages computed along the horizon of 
size m and the actual smoothed residual. 

Both (7) and (8) allows to treat the temporal information 
regarding the fault effect in an aggregate way and leading to 
define a new set of residuals as follows 

[ ]( ) ( ) ( )mR k r k m r k= ϒ − L ,                  (9) 

where km is a multiple of the considered time window and ϒ
is a feature extraction function (such as mean, min, max).  

IV.  PROPOSED METHODOLOGY  

A.  Consistency check based on a bank of residuals 

With the aim of providing a methodology that is able to 
deal with incipient and abrupt faults, a bank of residuals 
including observers and parity equations with sliding 
windows (or filters) is proposed (see Fig. 1). Each bank of 
residual generators, identified as MRi, can use different 
sampling time in order to take into account different fault 
time evolutions.   

In addition, each residual is evaluated against the fault 
detection test presented in (4) producing a fault signal, φ. This 
evaluation is performed in the block diagram identified as fs.  
Then, the fault signals are analysed in an integrated way as 
follows. 

B. Fault detection module 

The integrated analysis of the different signals is done via 
a timed automaton [19]. A timed automaton, denoted by tG , 
is a six-tuple 

( )0, , , , ,tG Q q= Σ C T I� ,                 (10) 

where Q is the finite set of discrete states; 0q  is the set of 
initial states; Σ  is the finite set of events (alphabet);  C  is the 

finite set of clocks, c1, …,cn, with ( ) ,ic t t+ +∈ ∈R R ; I is a 
mapping that labels each state q Q∈  with some clock 

constraint in ( )Φ C ; and 2 2Q Φ⊆ × Σ× × ×C C
T L , is the set 

of switches. A transition is defined by , ', , ,q q σ δ λ=T , 

where , 'q q Q∈ are origin and destinationT , σ ∈Σ is the 

event of T , δ ⊂ Φ
C

is called guard of T , and λ ⊂ C is 

called reset of T . A guard (or an invariant) is satisfied when 
all its clock constraints are evaluated to true, otherwise it is 
unsatisfied. The automaton used for fault detection has three 
states: initial mode (M0), alarm mode (M1) and faulty mode 
(M2). The events are associated at each time instant with a 
logical combination of iφ . Timed transition is a clock 
constraint used to specify the amount of time that may be 
spent in a state location; each one is determined using the 
model structure and the type of faults to be isolated. 

 
Figure 1. Proposed methodology. 

 



  

Following the definition given by [20], a clock constraint is a 
formula “ ~h k ”, whereh is a clock, { },~ , ,∈ < > ≤ ≥ and

k ∈ N . Let ΦC
be the set of clock constraints using clocks of 

C . The proposed time automaton tG  that implements the 
fault detection modules is presented in Fig. 2. Each node 
represents the system state, and each arrow linking q  to 'q

and labelled by , ,σ δ λ  represents a transition 

, ', , ,q q σ δ λ . An empty ,δ λ  is denoted by −. Initially, the 

Gt is in M0 and at any time it can execute the event σ1. The 
execution of σ1 is simultaneous with the reset of h  and leads 
to M1, in which the event σ2 is enabled when  h > h0 and the 
event σ3 is enabled when h ≤ h0. The execution of σ3 resets h  
and leads to M0. The execution of σ4 from M2 leads to M0 
and resets h. 

The logical conditions associated with σ1, σ2, σ3 and σ4 
are: 

• 1 1σ = if ( ) ( )( )1& 1 0i ik kφ φ∃ = − =  for any i 

• 3 1σ = if ( ) 0i k iφ = ∀  

• 2 1σ = if ( ) 1i k jφ∃ − = for all [ ]0, lj h=  and any i 

• 4 1σ =  when fault is repaired or diagnosed and 
accommodated. 

In previous logical conditions, h0  and hl are parameters to be 
decided by the designer in order to increase the robustness of 
the fault detection module and to get an acceptable 
performance. 

Notice than with these conditions a fault mode (M2) is 
activated when one of the fault signals is active at least hl time 
instants.  The transition from M2 to M0 can be considered as 
well by the designer in case that some fault tolerance 
mechanism is available or an incipient fault is detected 
allowing the automaton to be ready to detect new faults. In 
this way, multiple sequential faults can be detected. Once M2 
is reached, fault isolation task is initiated. However, this paper 
does not detail this task being part of a future research. 

V. CASE STUDY  

A. Description of transport network 

The Barcelona water network supplies water to 
approximately 3 million of consumers, distributed in 23 
municipalities in a 424 km2 area and it is monitored through a 
SCADA with a sampling period of 1 hour. The complete 
transport network has been modeled using: 63 storage tanks, 3 
surface sources and 7 underground sources, 79 pumps, 50 
valves, 18 nodes and 88 demands [21]. The case study used to 
illustrate the methodology proposed in this paper is based on 
a part of this network. It includes 6 tanks and 5 actuators, 
being the observed variables the pump flows, the tanks levels 

and the demands.  

The dynamic model of a water network is built by means of 
mass balances relating the stored volume (in m3) in tanks, x, 
with the manipulated tank inflows and outflows  

, ,( 1) ( ) ( ( ) ( ))i i in i out j
i j

x k x k t q k q k+ = + ∆ −∑ ∑        (11),  

where qin,i(k) and qout,j(k) correspond to the i-th tank inflow 
and the j-th tank outflow, respectively,  in m3/s.  

The case study model has 28 equations. The set of 

unknown variables is { }, ,, , ,i in i out i ix q q d=X while the set of 

known variables is { },i ju y=O  for i=1,..,5 and j=1,..,15, 

where di is the demand, uj and yj denote the measured input 
and output variables. The computational residuals have been 
obtained applying the algorithm proposed in [22].  The set of 
faults considered are located in actuators, fPi, flow 
transducers, fFi, level transducers, fLi, and demand transducers 
fdi, for i=1,…,5. Each fault only affects a set of residuals as it 
can be seen from the Fault Signature Matrix (FSM) 
corresponding to the set of considered residuals and faults 
(Fig. 3). 

The main aim of this case study is to show that the 
approach proposed in this paper is able to detect incipient 
faults in actuators and sensors. 

B. Detection results 

The bank of residuals used is presented in Table I. Notice 
that residuals present different temporal behaviour regarding 
the different fault scenarios.   

 
Figure 2. Time automaton implementation of the fault detection module. 

 

 
Figure 3. Theoretical FSM using binary and sign information. 

 
TABLE I.  BANK OF RESIDUALS PROPOSED 

Identifier Detection strategy 
PEm Parity equation model with a sample time of 1h (5) 
Lom Luenberger Observed Model with L= 0.2 and a sample time 

of 1h (6) 
WPEm Windowed time parity equation with m=24 h (7)  
SPEm Smoothed parity equation model with  m=24,  τ = 0.05 and 

ϒ  equal to min/max feature extraction, equations (5), (8) 
and (9). 

SWPEm Smoothed windowed time parity equation with  m=24, τ = 

0.05 and ϒ equal to min/max feature extraction, equations 
(7), (8) and (9) 

 



  

    Figure 4 shows the residual r7 (computed using PEm and 
LOm) and signal fault evolution, φ7, when an abrupt fault in 
pump, P2, has occurred, fP2. The fault occurs at time 24 and 
all the residuals described in Table I have been evaluated. In 
this example, only noise uncertainty has been taking into 
account and the consistency test (8) is computed as follows 

( ) ( )
( )

ˆ0 ( ) ( ) ( )

ˆ1 ( ) ( ) ( )
i i

i
i i

  if  r k y k y k
k

   if  r k y k y k

δ
φ

δ
 = − ∈ ∆=  = − ∉ ∆

        (12). 

 All the fault signals  φ2, φ3, φ4, φ7 computed are non-zero 
after the fault occurrence time are in agreement with the fault 
signature shown in Fig. 4. Table II shows fault detection 
delay (td) of all models considered (Table I), where fault 
detection delay is defined as the difference between the time 
of detection of a fault and the time of the fault occurrence. 
Notice that the detection times provided by PEm, LOm  and 
WPEm ranges between 1 to 3, but neither of fault signals are 
activated simultaneously, and φ7 computed by PEm is not 
persistent. Models SPEm and SWPEm (that consider a 
sampling time of 24 h) provide a detection times that is 
between 0 or 1 day, depending on the fault occurrence time. 

 Figure 5 shows residuals r7, r8 and fault signal φ7, φ8   
evolution resulting from applying PEm, LOm and WPEm 
when an abrupt fault in sensor L2 (tank level sensor, fL2) is 
occurred at time 29 h. In this scenario, all the fault signals are 
activated during a time interval, named as persistent 
indication time (∆td). This limited persistence time indication 
occurs in case of fault in sensors [4]. Notice from Table III 
that PEm and WPEm have the lower and greater ∆td, 
respectively.  

 Figures 6 and 7 show residuals r2, r3, r4, r7 and the 
evolution of fault signals  φ2, φ3, φ4, φ7 resulting from 
evaluating each one of the five residuals using the fault 
detection test (12) when an incipient fault in pump P2 (fP2) 
has occurred at time instant 35 h. In case of SPEm and 
SWEPm, the minimum and maximum values extracted are 
drawn in red and blue, respectively. In this scenario, the 
residuals more affected by noisy measurements lead non-
persistent fault indicators and their fault detection time has 
been indicated in brackets in Table IV. The effect of 
incipient faults become visible only after the magnitude of 
fault is increased above a certain threshold limit. This can 
cause some hazardous effects in the system. 

Table V summarises the activation delay of the timed 
automaton modes, M1 and M2, for each one of the presented 
scenarios. In this study, the automaton has been designed as 
described in Section 4 and with h0=2 and hl=2. 

In case of an abrupt fault, the combination of the residuals 
PEm, LOm  and WPEm allows to increase the persistence of 
the fault indicators and to reduce the detection time. Notice 
that when M2 is activated the fault could be isolated checking 
the FSM (Figure 4).  In the cases in which the detected fault is 
identified as non-critical, it could be compensated applying 
fault tolerant control techniques. Moreover, an automaton at 
mode M0 for detecting the remaining faults could be 
synthetized. 

On the other hand, in case of incipient faults, the fault 
sensitivity of a given residual structure depends on the 
inherent noise of the measured variables used. If the measured 
variables have a high noise index, the resulting residual will 
provide non-persistent fault indications that could lead to 
isolability problems in the isolation phase. This can be 

 
Figure 4. Evolution of r7 and φ7 with a) PEm and b)LOm. 

 
TABLE II.  FAULT DETECTION DELAY IN CASE OF AN ABRUPT FP2 

fs 
PEm 
td (h) 

LOm td 
(h) 

WPEm td 
(h) 

SPEm 
td (days) 

SWPEm  
td (days) 

φ2 2 2 3 [0, 1] [0,1] 

φ3 1 1 1 [0,1] [0,1] 

φ4 1 1 1 [0,1] [0,1] 

φ7 2 npa 3 2 [0,1] [0,1] 

a. np = non persistent. 

 
Figure 5. Evolution of r7, φ7, r8 and φ8 using PEm, LOm and WPEm. 

 
TABLE III.  FAULT DETECTION DELAY AND FAULT PERSISTENCE INDICATION 

TIME IN CASE OF AN ABRUPT SENSOR FAULT FL2 

fs 
PEm LOm WPEm 

td ∆td td ∆td td ∆td 
φ7 1 1 1 12 1 25 

φ8 1 1 1 12 1 25 

 

 
Figure 6. r2 and r3 evolution 



  

noticed in the case of residuals PEm, LOm and WPEm. The 
problem of persistence could be solved by using residuals 
SPEm and SWPEm that act as filters, since by evaluating the 
information coming from them is easier to predict their 
evolution. These models also have the advantage that they 
allow tracking the system evolution with less data than the 
residuals that operate at an hourly basis. Combining the 
information coming from those residuals in the right way, it is 
possible to characterize whether an incipient fault is present 
and reset the automata to mode M0 to continue monitoring 
the system to detect new faults.  

VI.  CONCLUSIONS 

This paper has proposed a fault detection methodology for 
incipient faults that combines different residual generation 
methods (observers, l-step ahead predictors and re-sampled 
models) with different convergence velocities to the real 
output trying to benefit from the advantages offered by each 
scheme. The integration is based on generating a timed 
automaton which combines the information extracted from 
each method in order to provide the best fault detection 
performance regarding incipient faults. The proposed 
methodology has as a main objective to detect as early as 
possible anomalies or incipient faults in system components. 
The fault detection performance has been illustrated in a 
Barcelona water network case stu. As further work, the 
integration of the proposed fault detection methodology for 
incipient faults with the fault isolation proposed in [11] will 
be studied allowing not only the diagnosis but also the 
prognosis.  
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Figure 7. r4 and r7 evolution 

 
TABLE IV.  FAULT DETECTION DELAY 

fs 
PEm 
td (h) 

LOm  
td (h) 

WPEm  
td (h) 

SPEm 
td (days) 

SWPEm  
td (days) 

φ2 (900 np) (905 np) (66 np) 
1192 

31 (32 np) 45 

φ3 221 103 102 21 10 

φ4 44 24 102 26 11 

φ7 (77 np) (1129 np) 
2233 

(1 np) 
1020 

40 26 

 
TABLE V. M2 AND M3 ACTIVATION DELAY  

 Scenario 1 Scenario 2 Scenario 3 
M2_activation 1 1 24 
M3_activation 3 3 25 

 


