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Abstract

LFA-1 is a leukocyte specific b2 integrin that plays a major role in regulating adhesion and migration of different immune
cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor
during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular
conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of
lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle
tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid
chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an
increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric
ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the
presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the
importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as
adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of
the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in
solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to
maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.
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Introduction

Leukocyte specific integrins are a subfamily of heterodimeric a/

b transmembrane receptors involved in adhesion and migration of

white blood cells. These receptors allow leukocytes to act upon the

detection of potential threats to the body by enabling rapid

anchoring of leukocytes to the inner wall of blood vessels. This

process is followed by leukocyte migration from the bloodstream to

the site of inflammation. In a subsequent step of the immunolog-

ical cascade, leukocytes stably adhere to other immune cells to

communicate the detected threat [1–4]. Lymphocyte Function-

associated Antigen-1 (LFA-1) is a member of the leukocyte specific

integrin family, and belongs to the subgroup of b2 integrins. This

receptor has been found on the membrane of multiple types of

leukocytes [5], including lymphocytes, monocytes, and dendritic

cells. The main binding partner of LFA-1 is Intercellular Adhesion

Molecule-1 (ICAM-1), which is highly expressed on activated

endothelial cells and Antigen Presenting Cells (APCs) such as

dendritic cells [6,7]. LFA-1 facilitates rolling, arrest and transen-

dothelial migration during the extravasation of monocytes and

lymphocytes by binding to ICAM-1 on the endothelial cells [8,9].

The interaction between LFA-1 and ICAM-1 also plays a role in

the formation of the immunological synapse between lymphocytes

and APCs [10]. To successfully accomplish these different types of

adhesion in distinct cell types, tight regulation of LFA-1 activity is

crucial.

For a long time, affinity [11–13] as well as avidity [14,15] have

been recognized as important factors regulating LFA-1 activity.

Affinity refers to the adhesion capacity of a single receptor to its

ligand in solution, and it is determined by the molecular
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conformation of the receptor [11]. High resolution TEM data has

shown that LFA-1 can be found in at least three different

conformational states [11]: bent down with a low affinity for the

ligand, transiently extended with an intermediate affinity for the

ligand, and fully extended with a high affinity for the ligand [12].

Avidity, on the other hand, refers to the binding strength of a

multitude of receptors together that effectively contribute to

adhesion [14]. Affinity of the single molecules defines part of this

binding, but the extra component in avidity is determined by the

spatial organization of the receptors. Indeed, we have previously

shown on resting monocytes that organization of LFA-1 in

nanoclusters [15] and in hotspot regions together with lipid rafts

[16] contributes to avidity. More recently, we have also shown that

lateral diffusion of the receptor across the membrane is crucial in

the regulation of LFA-1 activity [17]. Using single molecule

approaches, we demonstrated that LFA-1 is primarily mobile on

resting monocytes with a small sub-population of stationary

nanoclusters [17]. Using conformation-dependent antibodies we

identified the small stationary LFA-1 sub-population as consisting

of extended activated molecules, while the mobile population is

mostly bent down and inactive. Importantly, we found that this

small subset of stationary activated LFA-1 molecules (accounting

for only 5% of the total LFA-1 population) is sufficient to initiate

sites for adhesion, being reinforced by the contribution of mobile

low-affinity nanoclusters [17].

During differentiation of monocytes into dendritic cells, LFA-1-

mediated binding to ICAM-1 is lost while expression levels of the

receptor remain constant [15,18]. Activating mature DCs (mDCs)

with chemokine CCL21 increases the population of extended

LFA-1 molecules and also restores LFA-1 adhesive properties [18].

CCL21, also known as SLC, is a chemokine that regulates the

homing of lymphocytes and dendritic cells from distant sites to

lymphoid tissues [19–21] via binding to its receptor CCR7

[22,23]. It has been shown in lymphocytes that soluble CCL21

triggers the high-affinity conformation of LFA-1 [24] and induces

binding of LFA-1 to its ligand ICAM-1 [25]. This functional data

on LFA-1 activation by chemokines suggest a dramatic change in

the modulation of receptor activity in the process of cell

differentiation and chemokine activation, i.e. from a loss to a

chemokine-induced transient regain of LFA-1 binding capacity.

Considering that LFA-1 conformation state and lateral diffusion

on the cell membrane are highly coupled [17,26], it is conceivable

that potential changes on the mobility of the receptor on mDCs

after CCL21 stimulation might contribute together with affinity to

the regain of LFA-1 functionality. Yet, dynamic studies of LFA-1

mobility on resting and chemokine activated mDCs supporting the

functional changes in adhesion and ligand binding [18,25] are

lacking so far. Moreover, how modulation of LFA-1 function

during differentiation is achieved and how CCL21 cooperates to

regulate LFA-1 activity on mDCs remains unknown. Here we

have performed systematic single particle tracking studies to

directly report on the lateral mobility of LFA-1 on both monocytes

and mDCs. We show that LFA-1 exhibits higher mobility on

resting mDCs compared to monocytes. CCL21 stimulation of the

high affinity state of LFA-1 on mDCs led to a significant reduction

of LFA-1 lateral mobility and an increase on the fraction of

stationary receptors, with overall diffusion profiles that closely

resemble those obtained on resting monocytes. Addition of soluble

monomeric ICAM-1 in the presence of CCL21 did not alter the

diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates

in the presence of CCL21 further reduced LFA-1 mobility. We

finally shed new light on how Talin1, a cytoplasmic protein known

to contribute to integrin function regulation and activation [24,27–

31] by binding the b2 subunit of LFA-1 to the actin cytoskeleton

[32,33], could be involved in b2 integrin activation. Our data

shows that Talin1 plays a different role in basal LFA-1 regulation

on monocytes and mDCs. Overall, our results underscore two

main features associated to LFA-1 activation and function. First,

lateral mobility of the receptor is directly correlated with its

activation state, with LFA-1 priming resulting in restricted lateral

diffusion. Second, chemokines are required but not sufficient to

maintain the high affinity state of the receptor, which is stabilized

by multi-ligand binding.

Materials and Methods

Cell Culture
Mature dendritic cells (mDC) were derived, as reported

previously [34], from peripheral blood samples. Buffy coats from

healthy donors were obtained from Banc de Sang I Teixits upon

written informed consent. In brief, peripheral blood mononuclear

cells (PBMCs) were allowed to adhere to a plastic surface for 2 h at

37uC. Unbound PBMCs were washed away, and the remaining

adherent monocytes were cultured for 5 days in a 37uC, 95%

humidity, 5% CO2 incubator in the presence of IL-4 (300 U/ml)

and GM-CSF (450 U/ml) (both from Miltenyi Biotec, Madrid,

Spain) in X-VIVO 15 (BioWhittaker, Lonza Belgium) medium

supplemented with 2% AB human serum (Sigma-Aldrich, Spain).

After 5 days, DCs were matured for 48 hours using a cocktail of

IL-1b, IL-6 (both at 1000 IU/ml), TNF-a (500 IU/ml) (all 3 from

CellGenix, Freiburg, Germany) and Prostaglandin E2 (PGE2,

10 mg/ml; Dinoprostona, Pfizer). mDCs were harvested and

brought to the proper concentration for subsequent experiments.

Monocytes in solution were positively selected from PBMCs

using anti-CD14 magnetic microbeads (Miltenyi Biotec, Madrid,

Spain).

Flow Cytometry
For flow cytometry analysis, mDCs were labeled with primary

antibody anti-CCR7 (R&D systems), followed by secondary

staining with PE-labelled goat-anti-mouse (from BD Pharmingen),

both for 30 min at 4uC and a concentration of 5 mg/ml.

Appropriate isotype control IgG1 (from BD Pharmingen), was

included. Flow cytometry was performed using FACSCanto II.

Sample Preparation for Single Dye Tracking (SDT)
Monocytes and mDCs were prepared to track individual LFA-1

molecules on the membrane. Chambered cover glasses (8 wells,

Nunc Lab-Tek II) were incubated with Poly-L-Lysine (10 mg/ml,

Sigma-Aldrich) for 30 min. Fresh cells were diluted up to a

concentration of 56105 per ml in RPMI, and attached to the

bottom of the cover glasses by incubation for 30 min. Unbound

cells were washed away, and the sample was blocked for 15 min

with 2% of HS in RPMI at 37uC. LFA-1 was then labeled by

incubation with TS2/4-Atto647N conjugates in a concentration of

0.01 mg/mL for 3.5 min to allow for single dye tracking

experiments, i.e., at sub-labeling conditions. Afterwards, the

sample was washed thoroughly and 350 ml of RPMI per well

was used as imaging medium. All incubation steps were done at

37uC and washing in between steps was done with RPMI without

supplements. During the experiments where mDCs were activat-

ed, 50 ml CCL21 (final concentration in experiments 1 mg/ml;

Recombinant Human CCL21/6Ckine, R&D systems) was added

during the measurements and mobility was measured before and

up to 10 min after addition at one-minute intervals. Experiments

is which mDCs and monocytes were stimulated with ICAM-1

were designed similarly, using either 1 mg ICAM-1 monomers in

50 ml RPMI (Recombinant Human, R&D systems) (a concentra-
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tion known to saturate high affinity LFA-1 on lymphocytes [35]),

or 50 ml ICAM-1 nano-aggregates (100 mg/ml ICAM-1 incubated

for 30 min at 37uC with 100 mg/ml polyclonal anti-ICAM-1

(Santa Cruz) [16]) with a final experimental concentration of

20 mg/ml. In combination experiments, 50 ml RPMI containing a

cocktail of ICAM-1 and CCL21 was added to the samples.

Single Dye Tracking
Freshly prepared samples were placed on the microscope setup,

and movies of typically 300 frames with a frame rate of 10 Hz

were recorded. We used a home build setup arranged around an

inverted microscope (IX70, Olympus) with a 1.45 NA oil

immersion objective (PLAPON 6060TIRFM, Olympus). Samples

were illuminated using a 633 nm HeNe laser (circularly polarized

light, 1.4 kW/cm2) in oblique illumination mode to excite the

samples slightly above the glass-cell interface, minimizing in this

way any potential artifacts associated with the proximity of the cell

membrane to the glass substrate. The fluorescence emission of the

ATTO-647N was separated from the excitation light using a

dichroic mirror (Semrock, FF500/646-Di01). A 660 nm long pass

filter (Semrock, BLP01-635R-25) then selectively allowed the

fluorescent emitted light to be detected by an EMCCD

(Hamamatsu) camera. Temperature was maintained at 37uC with

5% CO2 by a custom made incubator built around the microscope

stage. In experiments where cells were stimulated with CCL21

and/or ICAM-1, movies of 30 s were recorded before, and at one-

minute intervals after stimulation up to 10 minutes.

Single Trajectory Analysis
Analysis was done as previously described [17]. In brief, two-

dimensional trajectories in the plane of focus were reconstructed

based on a colloidal particle-tracking algorithm translated to

MatLab. For each individual trajectory longer than 13 frames, a

mean square displacement (MSD) curve was generated and the

diffusion coefficient was calculated using a linear fitting through

the second to the fourth point (D2–4). A semi-logarithmic

histogram was generated containing the short-time lag (D2–4)

diffusion coefficients from multiple trajectories in different cells.

Since the mobility was rather slow and the cells were extensively

stretched, typically around 150 trajectories were recovered per

cell. The cut-off value to define the mobile population was

calculated by generating a similar histogram on fixed cells, and

defining the diffusion coefficient for which 95% of the fixed

population had a lower or equal D value. In our experimental

conditions, the cut-off value was D#0.001 mm2/s.

We then generated an overall mean square displacement plot of

the total mobile population up to a time lag of 2 seconds. A linear

fitting through the first 4 points was used to define the average

diffusion coefficient of the mobile LFA-1 population. In addition,

we also used Cumulative Probability Distribution (CPD) analysis

as described earlier by us [17] to separate the mobile LFA-1

population into 2 different subpopulations or fractions: slow and

fast. The percentage of each fraction within the total mobile

population was estimated, and the diffusion coefficient of each

fraction was calculated as described above. Individual data points

are the mean value of all trajectories measured per each cell.

Sample Preparation for ICAM-1 Binding Assay
FluoroDishes (35 mm, World Precision Instruments) were

incubated with Poly-L-Lysine (10 mg/ml, Sigma-Aldrich) for

30 min. Fresh cells were diluted up to a concentration of 16106

per ml in RPMI, and attached to the bottom of the cover glasses

by incubation for 30 min. For the last 2 minutes, cells were

incubated with either ICAM-1 dimers (20 mg/ml ICAM-1

incubated for 30 min at 37uC with 20 mg/ml monoclonal anti-

ICAM-1 (BD Pharmingen)), ICAM-1 dimers plus CCL21 (1 mg/

ml), ICAM-1 nano-aggregates (20 mg/ml ICAM-1 incubated for

30 min at 37uC with 20 mg/ml polyclonal anti-ICAM-1 (Santa

Cruz)), or ICAM-1 nano-aggregates plus CCL21 (1 mg/ml).

Immediately after these 2 minutes, samples were fixed using 2%

paraformaldehyde (PFA) for 15 min at RT. Then, cells were

blocked for 1 h at RT with 3% BSA 2% HS and 20 mM glycine

in PBS, followed by primary labeling for 30 min at RT with 5 mg/

ml of either, in the case of the dimers, goat-anti-mouse-

ATTO647N or, in the case of the nano-aggregates, goat-anti-

rabbit-AF647 (Invitrogen). Finally all samples were fixed again

with 2% PFA.

Imaging ICAM-1 Binding
Imaging was performed using a confocal microscope (TCS SP5,

Leica Microsystems). Images were taken with a 1.4 NA oil

immersion objective (HCX PL APO CS 63.0x, Leica), a 5126512

pixel format and a scanning speed of 400 Hz. Both dimers labeled

with ATTO647N and aggregates labeled with AF647 were excited

with the 633 nm line at 35% of the HeNe laser power and

detected between 645 nm and 715 nm. Images of individual cells

were taken with a line accumulation of 3 times and a frame

average of 14 times.

Sample Preparation for Talin Localization Assay
Polydimethylsiloxane (PDMS) elastomer stamps were fabricated

by curing for 1–2 hours by 80uC Sylgard 184 (Dow Corning) in a

10:1 weight proportion (base: crosslinker), on a silanized silicon

patterned master (patterns of 2.562.5 mm) generated in photore-

sist using standard photolithography techniques. The cured

PDMS was peeled off the master and cut into 161 cm squares.

PDMS stamps were sonicated in ethanol for 10 min, rinsed with

milliQ water and blow dried with nitrogen gas. Stamps were

coated with 5 mg/ml of either mouse IgG1 (Sigma Aldrich), TS2/

4 (Biolegend) or 50 mg/ml F(ab)2 goat-anti-human (Jackson

Immunoresearch), and free Atto647N dye to visualize the location

of the positive areas. After 45 min of incubation, stamps were

rinsed with milliQ water, blown dry with nitrogen gas, and

stamped into clean (sonicated for 10 min. in 1:1 ethanol: miliQ)

and hydrophilic (10 min exposure to UV/Ozone Bioforce

nanosciences) glass coverslips (Menzel- Glaser Ø30 mm #1). A

circle with a DAKO pen was drawn to keep all subsequently used

solutions on the coverslip. After stamping, the negative areas on

the glass surface were blocked for 30 min. at 37uC with 3% bovine

serum albumin (BSA) in PBS to minimize unspecific binding. The

F(ab)2 goat-anti-human samples were subsequently incubated for 1

hour at 37u with 5 mg/ml ICAM-1. After washing with PBS, cells

were added in a concentration of 16106 per ml and were allowed

to adhere to the substrate for 30 min at 37uC. Part of the samples

were activated for the last 2 minutes with CCL21 (1mg/ml)

Afterwards, cells (monocytes or mDCs) were rapidly fixed with 2%

paraformaldehyde (PFA) for 15 min at RT, and permeabilized for

10 min RT with 0.05% Saponin (Sigma-Aldrich) in PBS with

10 mM glycine to allow intracellular labeling. After blocking for

20 min at RT with PBS 1% BSA, cells were labeled with 9 mg/ml

antiTalin-ATTO488 conjugates for 40 min at RT. Finally,

samples were fixed again and stored at 4uC until measurement.

Imaging Localization of Talin and LFA-1
Imaging was performed using a confocal microscope (TCS SP5,

Leica Microsystems). Images were taken with a 1.4 NA oil

immersion objective (HCX PL APO CS 63.0x, Leica), a 5126512

pixel format and a scanning speed of 400 Hz. AntiTalin-Atto488
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was excited with the 488 nm line, at 25% of the argon laser power

and detected between 500 nm and 570 nm. Atto647N (positive

squares) was excited with the 633 nm line at 4% of the HeNe laser

power and detected between 645 nm and 715 nm. Images of

individual cells were taken with a line accumulation of 3 times and

a frame average of 12 times, focusing on the contact area between

cell and substrate.

Analysis Localization of Talin to LFA-1
We used the fluorescent images of Talin (green) and positively

patterned areas (red) to quantify the degree of localization of Talin

to LFA-1. We first selected the cell area in both channels, and

created from the red channel a mask of the pattern (positive = 1,

negative = 0). We applied this mask to the green channel, and

calculated the average intensity per area of the green Talin signal

in each positive square. To define the degree of enhancement in

each positive area, this local average was divided by the average

green intensity per area of the entire negative part of the mask

covering the cell. To avoid artifacts, we excluded the negative

region just around (up to 10 pixels away) a positive region.

Statistical Analysis
All analyses were performed using GraphPad Prism 6. Results

are shown as the mean 6 SEM. To determine statistical

differences between the mean of two data sets (Figure 1), the

(un)paired two-tailed Student T-test was used. To determine

statistical differences between the mean of 3 or more data sets, the

One-way ANOVA was used, followed by the Tukey’s multiple

comparison test (Figures 2, 3 A–E, 4F and 4H). In the case of non-

Gaussian distributed data sets (Figure 4E and 4G), statistical

differences were calculated using the Kruskal-Wallis test, followed

by Dunn’s multiple comparison test. Significance is represented

using: ns (P.0.05); * (P,0.05); ** (P,0.001) and *** (P,0.0001).

Results

LFA-1 Mobility Increases During Differentiation of
Monocytes into mDCs

We have previously shown on resting monocytes that lateral

diffusion of LFA-1 across the membrane correlates with activation,

with low-affinity LFA-1 being primarily mobile and high-affinity

LFA-1 being immobile and anchored to the cytoskeleton [17,36].

Moreover, we also showed that LFA-1 becomes inactive upon

differentiation of monocytes into dendritic cells [15,18]. Based on

these results, we hypothesized that differences in LFA-1 activity

between monocytes and mDCs might be also reflected in the

lateral mobility of the receptor. We therefore recorded the

diffusive behavior of LFA-1 on both cell types using previously

established single particle tracking approaches [17]. We labeled

LFA-1 under sub-labeling conditions using the conformation-

independent antibody TS2/4 attached to the fluorophore

ATTO647N on both primary monocytes and mDCs. We then

recorded the mobility of individual diffusing fluorophores using a

single molecule set-up working under oblique illumination, and

subsequently reconstructed trajectories of the diffusing molecules.

Whereas some molecules were highly mobile, other molecules

showed much slower diffusion or were even stationary (Figure 1A,

Movie S1). Individual trajectories were analyzed by generating

mean square displacement (MSD) plots to obtain the diffusion

coefficient (D) at short time lags. Histograms of the D values of all

recovered trajectories on both cell types were created, displaying

the full distribution of the diffusive behavior of LFA-1 (Figure 1B).

A clear shift of the entire histogram towards higher D values is

observed on mDCs compared to monocytes indicating an overall

increase in lateral mobility of LFA-1 on mDCs. This increase on

mobility was also accompanied by a modest but reproducible

reduction on the stationary LFA-1 population (defined for values

below 0.001 mm2/s) from 15% on monocytes to 10% on mDCs

(Figure 1B, C).

To further enquire on the diffusive behavior of LFA-1 at longer

observation times, we applied cumulative probability distribution

(CPD) analysis [37]. This approach allowed us to separate the

entire mobile LFA-1 population into two different fractions,

namely a slow diffusing fraction and a fast diffusing fraction. We

then calculated the percentage of molecules belonging to each

fraction (stationary, slow or fast) (Figure 1C) and their respective

average diffusion coefficients D (Figure 1D). Overall, mDCs

exhibit a larger fraction of fast diffusing LFA-1 molecules at the

expense of a smaller fraction of slow diffusing and stationary ones,

compared to monocytes. Furthermore, the average diffusion

coefficients of both the slow and the fast diffusing fractions of

LFA-1 are considerably higher on mDCs than on monocytes.

Altogether, these results show that the mobility of LFA-1 increases

during differentiation of monocytes into mDCs and further

suggests that the loss of ligand binding capacity of LFA-1 on

mDCs might be correlated with its increased lateral mobility.

Chemokine-induced LFA-1 Reactivation on mDCs
Restricts LFA-1 Lateral Mobility

It is well established that chemokines trigger inside-out signaling

events [38,39] that lead to rapid LFA-1 activation and ICAM-1

mediated adhesion of lymphocytes [25] and mDCs [18]. We thus

sought to investigate whether chemokine stimulation alters the

diffusion profile of LFA-1 on mDCs. To this end, we reactivated

LFA-1 on mDCs using CCL21 [18,24,25], a chemokine that

regulates the homing of lymphocytes and dendritic cells from

distant sites to lymphoid tissues [19,20], and compared the

diffusive behavior of the receptor before and after CCL21

activation. As CCL21 acts via binding to CCR7 [22,23], we first

confirmed the high expression level of this receptor on mDCs

(Figure S1). Furthermore, because the activating effect of CCL21

on LFA-1 appears to be very rapid and transient within a few

minutes [25], we carefully adjusted our single particle tracking

experiments to measure LFA-1 mobility on mDCs 2 minutes after

activation with CCL21, a time point at which the highest increase

in LFA-1 dependent cell adhesion has been observed [25]. CCL21

stimulation significantly decreased LFA-1 mobility and increased

the stationary population (Figure 2A) as compared to resting

mDCs. Remarkably, the overall diffusion profile of chemokine-

triggered re-activated LFA-1 on mDCs fully overlaps with that

obtained on resting monocytes (Figure 2A). Indeed, a more

detailed analysis shows that the slow and fast fractions (Figure 2B)

as well as the diffusion coefficients thereof (Figure 2C) and

stationary fractions (Figure 2D) between activated LFA-1 on

mDCs and LFA-1 on resting monocytes entirely coincide.

To enquire whether the changes in LFA-1 mobility upon

CCL21 activation are as transient as the activation of the receptor,

we performed similar experiments at different time points after

activation. The change in the percentages between stationary, slow

and fast diffusing LFA-1 fractions (Figure 2E) as well as the change

in average diffusion coefficients of the different fractions (Figure 2F)

are indeed most prominent 2 minutes after activation. To fully

verify that these results are indeed a consequence of CCL21

stimulation and not arising from experimental variations, we

performed similar diffusion studies of LFA-1 at 1-minute intervals

on mDCs without CCL21 stimulation (Figure S2 and S3). These

controls, in which no significant differences are observed between
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indicated time points, confirm that the changes observed on mDC

after CCL21 stimulation are real and maximal after 2 minutes.

After 4 minutes, changes due to CCL21 treatment are

undetectable, indicating that the entire activation process is

extremely transient. These results thus indicate that the activation

state (i.e., ligand binding capacity) and mobility of LFA-1 are

tightly and temporally correlated. Indeed, it appears that the loss

of LFA-1 mediated cell adhesion during monocyte differentiation

into mDCs correlates with an increased mobility of the receptor

across the membrane. Transiently restoring LFA-1 adhesion

function by conformational activation results in an equally

transient decrease of mobility. In apparent contrast to our results,

Constantin et al. have suggested that chemokine stimulation should

trigger rapid integrin lateral mobility, which together with

immediate triggering of the high-affinity state would cooperate

in mediating rapid lymphocyte arrest under physiological condi-

tions [25]. The apparent discrepancies between these findings and

ours are discussed below.

Binding of ICAM-1 Nano-aggregates, but not Monomeric
ICAM-1, Magnifies Chemokine-induced Activation of LFA-
1

Whether chemokines alone are sufficient to induce the high

affinity state of LFA-1, or whether ligand binding is also necessary

to fully bring the receptor in a stable high affinity conformation is

not entirely clear. While some models suggest that chemokines

alone induce the high affinity form of the integrin independent of

ligand binding [25], others propose that chemokines trigger an

extended form of low-to-intermediate affinity that is followed by a

transition to a high affinity state upon interaction with the ligand

[24]. More recently, it has been shown that affinity of LFA-1 for

soluble monomeric ICAM-1 is only slightly increased upon LFA-1

priming by chemokines [40]. To shed some light into this

controversy we performed single particle tracking experiments of

LFA-1 in the presence of soluble monomeric ICAM-1, on resting

and CCL21-stimulated mDCs. In addition, we also recorded the

mobility of LFA-1 in the presence the ICAM-1 nano-aggregates

(see Methods) to test the role of single vs. multi-ligand binding on

the diffusion profile of the receptor.

We first measured the mobility of LFA-1 on resting, non-

stimulated mDCs before and after adding soluble ICAM-1

monomers or nano-aggregates. Since LFA-1 on mDCs is mostly

inactive and unable to bind the ligand, no changes in mobility are

expected. Indeed, the diffusion profiles of LFA-1, i.e., stationary

fraction and mobility (Figures 3A, B) before and after addition of

ICAM-1 remained unchanged, confirming that neither soluble

ICAM-1 monomers, nor nano-aggregates, significantly affect the

mobility of LFA-1 on resting mDCs. These results also indicate

that soluble ligands on their own (either monomeric or clustered)

are not sufficient to trigger integrin activation.

We then measured LFA-1 mobility 2 minutes after adding

together CCL21 and ICAM-1 to mDCs. Interestingly, addition of

monomeric ICAM-1 did not affect LFA-1 lateral diffusion, while

Figure 1. Mobility of LFA-1 on monocytes and mDCs. (A) Representative frame from a recorded movie on a mDC to which SDT was applied
(see Movie S1). Representative examples of stationary, slow and fast trajectories are displayed. (B) Overlay semi-log histogram of LFA-1 diffusion on
both monocytes (dashed black lines) and mDCs (grey bars). (C) Percentage of stationary, slow and fast diffusing LFA-1 molecules on monocytes and
mDCs, as extracted from the cumulative probability distribution analysis (see Methods). (D) Diffusion coefficient of the total mobile population, and
slow and fast diffusing fractions of LFA-1 on monocytes and mDCs. 25 monocytes divided over 6 independent samples (4587 trajectories) and 117
mDCs from 5 different donors, divided over 117 independent samples (26756 trajectories) were imaged. Means 6 SEM are depicted. The Student T-
test was used to determine significant differences between means. The resulting P values are indicated as follows: *P,0.05; ***P,0.0001.
doi:10.1371/journal.pone.0099589.g001
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ICAM-1 nano-aggregates magnified the effect that CCL21 has on

LFA-1 mobility (Figures 3B, D). Indeed, the LFA-1 stationary

fraction increased significantly upon addition of ICAM-1 nano-

aggregates in the presence of CCL21 (Figure 3C), while the

diffusion coefficient of the fast fraction drops considerably

(Figure 3D). Consistent with these results, confocal imaging of

fluorescently labeled ICAM-1 (red) and the quantification of this

fluorescent signal confirms that only the addition of ICAM-1

nano-aggregates in combination with CCL21 activation leads to

significant ligand binding (Figure 3 E–I). The average baseline

fluorescent signal per cell in resting and CCL21 activated cells

with ICAM-1 monomers (which became dimers due to fluorescent

antibody labeling) as well as in resting cells with ICAM-1 nano-

aggregates is similar, while the signal is significantly higher in

CCL21 activated cells with ICAM-1 aggregates (Figure 3E and

Figures 3G–I). Counting the fluorescent spots confirms the

increased binding of ICAM-1 nano-aggregates after CCL21

activation (Figure 3F and Figures 3H–I). Together, these data

show once more the tight correlation between LFA-1 activation

state and lateral mobility on the cell membrane, and importantly

demonstrate that single/dimeric ligand binding in solution is not

sufficient to stabilize the CCL21-triggered high affinity state of

LFA-1 on mDCs, requiring for that receptor clustering via binding

of multiple ligands.

Figure 2. Mobility of LFA-1 on mDCs after activation with CCL21. (A) Overlay histograms of LFA-1 diffusion on monocytes (4578 trajectories),
resting mDCs (26756 trajectories) and CCL21 activated mDCs (4213 trajectories). (B) Percentage of total mobile LFA-1 population (normalized to
100%) displaying slow and fast diffusion on monocytes, mDCs and 2 min CCL21 activated mDCs. (C) Diffusion coefficient of the total mobile
population, and slow and fast diffusing fractions of LFA-1 on monocytes, mDCs and 2 min CCL21 activated mDCs. (D) Stationary fraction of LFA-1 on
monocytes, mDCs and CCL21 activated mDCs, displayed as the difference from the total stationary fraction on mDCs, which serve here as the default.
Data from A–D on CCL21 activated mDCs is based on 22 cells in independent experiments from 3 different donors. (E) Percentage of the stationary,
slow and fast diffusing LFA-1 molecules at different time points after CCL21 activation. (F) D values for the total mobile, and slow and fast fractions of
LFA-1 at different time points after CCL21 activation. Data from E and F is based on 11 cells, 11 independent samples and around 2000 trajectories
per time point. A–F Means 6 SEM are depicted. The One-way ANOVA followed by the Tukey multiple comparison test were used to determine
significant differences between means. The resulting P values are indicated as follows: ns (P.0.05); * (P,0.05) and *** (P,0.0001).
doi:10.1371/journal.pone.0099589.g002
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Figure 3. Mobility of LFA-1 on resting and CCL21-activated mDCs after soluble monomeric and nano-clustered ICAM-1. (A,B) ICAM-1
(either monomeric: ICAMm, or as nano-aggregates: ICAMagg) was added to resting mDCs and mobility was measured before, and between 1 and
5 min after addition. (A) Stationary fraction of LFA-1 molecules on resting mDCs and mDCs + either monomeric ICAM-1 or ICAM-1 nano-aggregates,
displayed as the difference with respect to the total stationary fraction on resting mDCs, which serve here as the default. (B) Diffusion coefficient of
the total mobile population, and slow and fast diffusing fractions of LFA-1 on resting mDCs and after addition of either monomeric ICAM-1 or ICAM-1
nano-aggregates. 30 cells divided over 2 independent experiments (3393 trajectories) were imaged for the ICAMm condition and 10 cells (684
trajectories) for ICAMagg. (C, D) ICAM-1 (either monomeric or nano-aggregates) was added together with CCL21 to mDCs and mobility was
measured before, and 2 minutes after addition. (C) Stationary fraction of LFA-1 molecules on resting mDCs (serving as reference control), CCL21
activated mDCs and CCL21 activated mDCs + either monomeric ICAM-1 or ICAM-1 nano-aggregates, displayed as the difference with respect to the
total stationary fraction on resting mDCs. (D) Diffusion coefficient of the total mobile population, and slow and fast diffusing fractions of LFA-1 on
resting mDCs, CCL21 activated mDCs and after simultaneous addition of CCL21 and either monomeric ICAM-1 or ICAM-1 nano-aggregates. 16 cells
(8423 trajectories) from 2 different donors divided over 5 independent samples (ICAMm) and 7 cells (314 trajectories) from 2 different donors divided
over 7 independent samples (ICAMagg) were imaged. (E) Quantification of fluorescent ICAM-1 dimers (monomers bound together due to antibody
labelling) and nano-aggregates binding in resting and CCL21 activated mDCs, normalized to the area quantified and to the background signal
outside of the cell. For this, regions of the cell in between the obvious fluorescent ICAM-1 aggregates were selected, the fluorescent intensity was
measured using ImageJ, and used to compare the baseline fluorescent signal across all 4 conditions. 20 cells per condition were imaged. (A–E) Means
6 SEM are depicted. The One-way ANOVA followed by the Tukey multiple comparison test were used to determine significant differences between
means. The resulting P values are indicated as follows: ns (P.0.05); * (P,0.05), ** (P,0.001) and *** (P,0.0001). (F) Quantification of bound ICAM-1
nano-aggregates to resting and CCL21 activated mDCs. After applying a threshold of 25% of the fluorescent signal, all visible fluorescent spots per
cell were counted. 20 cells per donor and 3 different donors were imaged. Each data point represents the mean value for 1 donor. Means 6 SEM and
individual data points are depicted, and dotted lines connecting datapoint of the same experiment indicate that not just in average, but in each
individual experiment using a different donor, an increase of ICAM-1 nano-aggregate binding is observed after CCL21 activation. The paired two-
tailed Student T-test was used to determine significant differences between means. (G–I) Representative examples of confocal images of ICAM-1
binding to mDCs: (G) dimeric ICAM-1 to resting cells, (H) nano-aggregates of ICAM-1 to resting cells and (I) nano-aggregates to CCL21 activated cells.
Arrows in H and I point to the binding of individual ICAM-1 nano-aggregates to LFA-1.
doi:10.1371/journal.pone.0099589.g003
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Talin1 is Involved in Basal LFA-1 Regulation on Resting
mDCs but not on Monocytes

A major intracellular player known to contribute to integrin

function regulation and activation is Talin1 [24,27–30]. Talin1 is a

cytoplasmic protein that mediates the link between LFA-1 and the

cytoskeleton by binding the b2 subunit of LFA-1 to actin [32,33].

Since we here observed major changes in the fraction of

stationary, cytoskeleton bound LFA-1 molecules between mono-

Figure 4. Localization of Talin1 to LFA-1 on monocytes and mDCs. (A, B) Representative images of (A) a monocyte seeded on a TS2/4
pattern, (B) a resting mDC on irrelevant IgG1 pattern, (C) a resting mDC seeded on a TS2/4 pattern and (D) a CCL21 activated mDC seeded on a
ICAM-1 pattern. Green corresponds to Talin1 and red to the location of IgG1, TS2/4 or ICAM-1 positive squares. Cells are delineated by white lines. (E)
Quantification of the degree of Talin1 enhancement to the positive areas in monocytes in different conditions (see Methods). Mean enhancement
factor is displayed in red per condition. (F) Percentage of positive squares per experiment (n = 3, each a different donor) that showed significantly
enhanced Talin1 signal per condition in monocytes. An enhancement factor of $1.5 was considered significantly enhanced, since 95% of the control
sample (monocytes on IgG1) showed an enhancement factor below this value. (G) Quantification of the degree of Talin1 enhancement to the
positive areas in mDCs in different conditions (see Methods). Mean enhancement factor is displayed in red per condition. (H) Percentage of positive
squares per experiment (n = 3, each a different donor) that showed significantly enhanced Talin1 signal per condition in mDCs. Around 60 cells of 3
different donors were analyzed per condition. Monocytes contained 10 positive areas on average per cell, while mDCs contained around 50 positive
areas. Means 6 SEM are depicted. The Kruskal-Wallis test, followed by Dunn’s multiple comparison test was used to determine significant differences
between means in E and G. The One-way ANOVA followed by the Tukey’s multiple comparison test were used to determine significant differences
between means in F and H. The resulting P values are indicated as follows: ns (P.0.05); * (P,0.05) and *** (P,0.0001).
doi:10.1371/journal.pone.0099589.g004
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cytes and mDCs, and between mDCs before and after CCL21

activation and ligand binding, we next sought to investigate the

involvement of Talin1 in this difference. We used microcontact

printing to create square patterns of either TS2/4 binding Abs

against LFA-1 or ligand ICAM-1 on glass coverslips following an

established procedure [41]. As a control, we also used square

patterns of mouse IgG1 isotype control antibodies not specific for

LFA-1. We then seeded the cells on the patterned surfaces. TS2/4

or ICAM-1 on the glass binds to LFA-1 on the cell membrane and

diffusion of the receptor results in accumulation of LFA-1 to the

patterned regions. Talin1 was fluorescently labeled, and the

accumulation of the fluorescent signal to the LFA-1 rich areas was

quantified (Figure 4). In resting as well as CCL21 stimulated

monocytes, a rather diffused distribution of Talin1 was observed

(Figure 4A), independently on whether monocytes were seeded on

a pattern of IgG1, TS2/4 or ICAM-1 (Figure 4E,F). This indicates

that, in our experimental conditions, Talin1 in monocytes does not

preferentially localize to LFA-1, neither in resting state nor upon

ligand binding.

In marked contrast, Talin1 preferentially localized to LFA-1

rich regions on mDCs, even without activation of LFA-1 by

chemokine or ligand binding (Figure 4C–D, G, H). Notice

however that we already observe a basal level of Talin1

accumulation (non-pattern related) close to the substrate that is

aspecific for LFA-1 (Figure 4B). This patchy Talin1 accumulation

might correspond to the formation of podosomes by mDCs [42],

an adhesive structure in which b1 and b3 integrins as well as

Talin1 are involved [43].

In resting mDCs where LFA-1 is specifically recruited to the

TS2/4 positive squares (Figure 4C), Talin1 accumulation to the

patterns was significantly higher than to control IgG1 patterns

(Figure 4G, H). Priming of LFA-1 captured by TS2/4 using

CCL21 does not significantly increase Talin-1 accumulation

beyond that observed in the resting state (Figure 4G, H). These

results thus show a basal association of LFA-1 with Talin1 already

on resting mDCs, which is not affected by transient chemokine

activation of LFA-1.

In resting mDCs seeded on patterns of ICAM-1, a basal Talin1

recruitment similar to that on TS2/4 is observed (Figure 4G, H).

Since ICAM-1 is also a ligand for the aMb2 integrin involved in

podosomes [43], we cannot exclude that the Talin1 recruitment

we observed is only partially LFA-1 specific, especially considering

that LFA-1 on resting mDCs does not bind ICAM-1 very

efficiently [15,18,25]. On the other hand, the combination of both

CCL21 priming and ligand binding highly increases Talin-1

accumulation to the patterns (Figure 4D, G) up to a level where

around 50% of the patterns shows significant enrichment of Talin1

(Figure 4H). This increase is fully LFA-1 specific, since CCL21

does not activate other b2 integrins. These results thus show that

the interaction of Talin1 with LFA-1 is highly increased upon

binding of chemokine primed LFA-1 to ICAM-1, indicating

subsequent anchoring to the cytoskeleton as a result of ligand

binding.

Discussion

We have previously shown that during in vitro differentiation of

monocytes towards immature and mature DCs, LFA-1 remains

expressed at similar levels, but that only monocytes express a

subpopulation of primed and functional LFA-1 [15,18]. Further-

more, one of us recently showed an important role for CCL21 in

the regulation of DC adhesive behavior by modulating LFA-19s

conformation activation state [18]. Although lateral mobility of the

receptor is known to contribute to avidity regulation impacting on

LFA-1 adhesive properties [17], dynamic studies of LFA-1 on

resting and activated mDCs have been lacking so far. In here we

addressed the differential mobility of LFA-1 on mDCs and

compared it to that observed on monocytes. By dynamically

tracing individual LFA-1 molecules on both cell types we now

show that LFA-1 diffusion is significantly faster on mDCs

compared to monocytes. Reactivating LFA-1 on mDCs with

chemokine CCL21 transiently slows down the diffusion of LFA-1

and increases the fraction of stationary molecules. Remarkably,

after 2 minutes of CCL21 stimulation, the diffusion profiles of

LFA-1 on mDCs and monocytes become remarkably similar.

Since a similar transient reactivation of LFA-1 by CCL21 has been

observed at the functional level, namely the binding of the receptor

to its ligand ICAM-1 and the contribution to cell adhesion [25],

our results establish a strong link between LFA-1 function and its

lateral mobility on the cell membrane.

Our results are in full agreement with other recently observed

correlations between reduced mobility and high activity of LFA-1.

Indeed, Cairo et al demonstrated that the mobility of LFA-1 bound

to multivalent ICAM-1 ligands is highly reduced [26]. Moreover,

Rossier et al showed that the average diffusion coefficient of

integrins inside focal adhesions (FAs) is significantly lower

compared to the average coefficient outside FAs, where integrins

do not actively contribute to adhesion [30]. Finally, we recently

showed that upon activation of LFA-1 on monocytes (by Ca2+

removal, Mn2+ or activating antibodies) lateral diffusion becomes

highly impaired [17]. Altogether, these results demonstrate that

integrin immobilization correlates with integrin activation. In

contrast, Constantin et al observed that transient stimulation of

LFA-1 by CCL21 led to the active, high affinity conformation of

the receptor, and the formation of micrometer size LFA-1 clusters.

Based on these data the authors postulated that CCL21-induced

activation of the receptor should be accompanied by a rapid

increase in lateral mobility so that microclusters are quickly

formed [25]. Our results however reflect a higher level of

complexity on LFA-1 function regulation. In fact our data support

a model by which activation of LFA-1 on mDCs by CCL21 results

in a small subset of ‘‘instantaneously’’ immobilized molecules as a

direct result of CCL21 binding to its receptor CCR7, with the

large majority of the remaining LFA-1 molecules still diffusing

across the membrane. This small fraction of stationary molecules

would serve as anchoring points for other diffusing molecules to

become arrested and/or reduce their diffusion, thereby facilitating

clustering. These clusters support the creation of stable adhesion

spots necessary for cell adhesion. This scenario is able to explain

the microclustering observed by Constantin et al, and provides a

rationale as to why the effect of CCL21 is not instantaneous but

takes about two minutes to be fully reached. On monocytes on the

contrary, we previously demonstrated the presence of a subpop-

ulation of primed, stationary LFA-1 nanoclusters on resting cells,

with mobile nanoclusters continuously contributing to cell

adhesion [17,36]. The strong and dynamic interplay between

nanoclustering and mobility might constitute thus a primary

mechanism that differentially regulates LFA-1 activation.

We furthermore investigated the effect of CCL21 in the

presence of the LFA-1 ligand ICAM-1. Based on conformational

data, it has been proposed that binding of LFA-1 to ICAM-1

induces and/or stabilizes its high-affinity conformation [44,45], a

process termed ligand-induced activation. In our experimental

conditions this high-affinity conformation has been transiently

induced by CCL21. We found that soluble monomeric ICAM-1

(in combination with CCL21 stimulation) is not sufficient to

further activate LFA-1 or to stably bind to the receptor. Nano-

aggregates of ICAM-1 on the other hand significantly magnify the
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effect that CCL21 has on LFA-1 mobility and readily bind to LFA-

1. We therefore postulate that ligand induced activation of LFA-1

as reported in literature is actually caused by LFA-1 clustering

promoted by the proximity of multiple ICAM-1 molecules, i.e., a

consequence of avidity. This is in agreement with both the notion

that ligand affinity of LFA-1 is barely increased by chemokine

activation [40], and studies showing that multivalent soluble

ICAM-1 or fixed ICAM-1 substrates at high densities readily lead

to strong immobilization of the receptor and LFA-1 mediated cell

adhesion [26,41].

More recently, it has been postulated that after ICAM-1

binding, postligand binding events must occur in order to fully

bring LFA-1 in the high affinity state [40]. Since monomeric

soluble ligands appear to barely trigger the high affinity of LFA-1

while fixed ligands do, it has been hypothesized that traction forces

resulting from the translational motion of the integrin with respect

to its bound, fixed ligand might contribute to further extend the b2

subunit of the integrin leading to the stabilization of its high

affinity state, i.e. post ligand binding effects. [40]. However, this

hypothesis is difficult to conciliate with abundant recent evidence,

including the results shown in here that demonstrate that ready-to-

bind-integrins are stationary on the cell membrane. With no actual

mobility between the ligand and the receptor, the existence of

traction forces is hard to explain. In the presence of shear forces

however, the force that is needed to reinforce ligand binding does

not come from receptor mobility but from external factors [46,47],

and post-ligand binding events can therefore occur.

One of the major intracellular players known to contribute to

LFA-1 function regulation is Talin1. Knock-down and mutation of

Talin1 has been shown to cause loss of ligand binding capacity of

several b1 and b3 integrins [29,48], leading to a model explaining

integrin activation as an event triggered by structural separation of

the a and the b subunits due to Talin1 binding to the b-leg thereby

inhibiting interaction with the a-leg [28]. In here we show that

activation of LFA-1 by chemokine CCL21 does not increase

Talin1 association to the integrin, unless ligand binding stabilizes

this transient activation. This suggests that Talin1 recruitment to

LFA-1 is a result of integrin activation rather than a trigger

thereof.

We further show preliminary evidence indicating that Talin1

might also play a different and more complex role in the regulation

of b2 integrins like LFA-1. We find that Talin1 already colocalizes

with LFA-1 on mDCs in the resting state prior to integrin

activation. This indicates that Talin1 in b2 integrins is not only

involved in maintaining LFA-1 in the active state, but also

somehow in regulating resting, inactive LFA-1. Others have also

observed association of Talin1 to LFA-1 on resting cells. Sampath

et al showed that b2-integrins on resting neutrophils, which belong

together with DCs to the group of antigen presenting cells in which

LFA-1 is inactive in resting state, co-immunoprecipitates with

Talin1 (225 kDa) [49]. Upon activation, b2 co-immunoprecipi-

tates with a smaller talin1 (190 kDa) that corresponds to the head

domain. In addition, Kim et al showed that transfecting K562 cells

with the Talin1 head domain increases LFA-1 affinity and ligand

binding [44]. Although in our experiments we could not

discriminate between the full Talin1 or its head domain, it is

clear that Talin1 does not exclusively associate to LFA-1 upon

activation, but could instead provide the receptor with the

possibility of becoming activated by additional factors such as

chemokines.

In summary, our results highlight the importance of lateral

mobility of LFA-1 across the membrane on the regulation of

integrin activation and its function as adhesion receptor. We

further demonstrate that chemokines alone are not sufficient to

trigger the high affinity state of the integrin based on the strict

definition that affinity refers to the adhesion capacity of a single

receptor to its ligand in solution. Instead, our results are consistent

with the notion that ligand induced activation of LFA-1 is a

consequence of avidity. Finally, we provide preliminary evidence

for an additional subtler role of Talin1 in regulating LFA-1

activation state, namely by being the agent on which activators

such as chemokines can react to, rather than being the activating

agent itself. We thus identified LFA-1 mobility, ligand binding and

Talin1 recruitment as important players in the tight regulation of

the homing of DCs from distant sites to the lymphatic tissues by

chemokine CCL21.

Supporting Information

Figure S1 Expression level of CCL21 receptor CCR7 on
the membrane of mDCs. Isotype specific control and CCR7

signal are displayed, as well as the MFI of the CCR7 signal.

Histogram is a representative out of 4 experiments.

(TIF)

Figure S2 Control experiment 4 minutes CCL21: per-
centage. Control experiments showing the percentage of the

stationary, slow and fast diffusing LFA-1 on mDCs without

CCL21 stimulation, at different time points. 6 cells (around 1000

trajectories) were measured per time point. Means 6 SEM are

depicted. The One-way ANOVA followed by the Tukey multiple

comparison test were used to determine significant differences

between means. The resulting P values are indicated as follows: ns

(P.0.05); * (P,0.05) and *** (P,0.0001).

(TIF)

Figure S3 Control experiment 4 minutes CCL21: D.
Control experiments showing the D values for the total mobile,

and slow and fast fractions of LFA-1 on mDCs without CCL21

stimulation, at different time points. 6 cells (around 1000

trajectories) were measured per time point. Means 6 SEM are

depicted. The One-way ANOVA followed by the Tukey multiple

comparison test were used to determine significant differences

between means. The resulting P values are indicated as follows: ns

(P.0.05); * (P,0.05) and *** (P,0.0001).

(TIF)

Movie S1 Single LFA-1 mobility on mDCs. Representative

movie of TS2/4-ATTO647N labeled LFA-1 on a mDC to which

SDT was applied. Individual fluorescent spots correspond to

diffusive or stationary LFA-1 molecules. The background at the

centre of the movie corresponds to the nucleus. Image area:

39633 mm2 Frame rate: 10 Hz. Length of movie: 200 frames.

(AVI)
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