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Abstract. Given a graph G, a set D ⊂ V (G) is a dominating set of G if every vertex
not in D is adjacent to at least one vertex of D. The domination number γ(G) is the
minimum cardinality of a dominating set of G.

If moreover, every vertex not in D is adjacent to exactly one vertex of D, then
D is called a perfect dominating set of G. The perfect domination number γ11(G)
is the minimum cardinality of a perfect dominating set of G. In general, for every
integer k ≥ 1, a dominating set D is called a k-quasiperfect dominating set if every
vertex not in D is adjacent to at most k vertices of D. The k-quasiperfect domination
number γ1k(G) is the minimum cardinality of a k-quasiperfect dominating set of G.
These parameters are related in the following general way (Δ the maximum degree
of G and by n the number of vertices): γ(G) = γ

1Δ
(G) ≤ · · · ≤ γ12(G) ≤ γ11(G) ≤ n.

In this work we study the perfect domination number, with the help of this de-
creasing chain of domination parameters, in the following graph families: graphs with
extremal maximum degree, that is, graphs with Δ ≥ n − 3 or Δ = 3, and also in
cographs, claw-free graphs and trees. We also study the behavior of these parameters
under some usual product operations.
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1 Introduction

All the graphs considered are finite, undirected, simple, and connected. Given
a graph G = (V,E), the open neighborhood of a vertex v ∈ V is N(v) =
{u ∈ V |uv ∈ E} and the closed neighborhood is N [v] = N(v) ∪ {v}. The
degree deg(v) of a vertex v ∈ V (G) is the number of neighbors of v, i.e.,
deg(v) = |N(v)|. The maximum degree of G, denoted by Δ(G), is the largest
degree among all vertices of G. For undefined basic concepts we refer the
reader to introductory graph theoretical literature, e.g., [3].

� Research supported by projects MTM2012-30951/FEDER, MTM2011-28800-C02-01,
ESF EUROCORES programme EUROGIGA-ComPoSe IP04-MICINN, Gen. Cat. DGR
2009SGR1040, Gen. Cat. DGR 2009SGR1387, Junta de Andalućıa FQM305.
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Given a graph G, a set D ⊆ V (G) is a dominating set of G if every vertex
v not in D is adjacent to at least one vertex of D, i.e., if N(v) ∩D 	= ∅. The
domination number γ(G) is the minimum cardinality of a dominating set of
G. A dominating set of cardinality γ(G) is called a γ-code[5].

If moreover, every vertex not in D is adjacent to exactly one vertex of D,
then D is called a perfect dominating set of G [1,7]. The perfect domination
number γ11(G) is the minimum cardinality of a perfect dominating set of G.
A dominating set of cardinality γ11(G) is called a γ11-code. This definition can
be generalized in the following way.

Definition 1 ([4]). For k ≥ 1, we define a dominating subset S ⊆ V in a
graph G = (V,E) to be a k-quasiperfect dominating set if every vertex not in
D is adjacent to at most k vertices of D.

Definition 2 ([4]). For k ≥ 1, The k-quasiperfect domination number
γ
1k
(G) is the minimum cardinality of a k-quasiperfect dominating set of G. A

dominating set of cardinality γ
1k
(G) is called a γ

1k
-code.

Certainly, 1-quasiperfect dominating sets and Δ-quasiperfect dominating
sets are precisely the perfect dominating sets and dominating sets, respec-
tively. There is an obvious relationship among these domination paramenters.
If G is a graph of order n and maximum degree Δ, then

γ(G) = γ
1Δ

(G) ≤ . . . γ12(G) ≤ γ11(G) ≤ n

In this work we study this decreasing chain of domination parameters.
We present our main contributions when restricting ourselves to the following
graph families:

• Graphs with maximum degree Δ ≥ n− 3 or Δ = 3.
• Cographs.
• Claw-free graphs.
• Trees.

We also study the behavior of these parameters under product operations.

2 Results

Theorem 1 ([4]). If G is a graph of order n that satisfies some of the fol-
lowing conditions, then γ(G) = γ12(G):

• Δ(G) ≥ n− 3.
• Δ(G) ≤ 2.
• G is a P4-free graph (cograph).
• G is a K1,3-free graph (claw-free graph).
• Every vertex of G is either a support vertex or has degree at most 2.
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As a result of Theorem above, in graphs that satisfy some of its conditions
the chain of quasiperfect domination parameters is shorter that in the general
case: γ(G) = γ12(G) ≤ γ11(G) ≤ n, and it is interesting to consider what
happen with the parameter γ11. We have obtained the following results.

2.1 Graphs with maximum degree Δ(G) ≥ n− 3

In this case we have obtained realization results for the parameter γ11, that
show that it can achieve all values in the interval between 2 and n, with a
small number of exceptions.

Theorem 2. Let k, n be integers such that n ≥ 4, 2 ≤ k ≤ n and (n, k) 	∈
{(5, 5), (5, 4), (4, 4), (4, 3)}. Then, there exists a graph G = (V,E) of order n
such that Δ(G) = n− 2 and γ11(G) = k.

Theorem 3. Let k, n be positive integers such that n ≥ 8 and 2 ≤ k ≤ n.
Then, there exists a graph G of order n such that Δ(G) = n− 3 that satisfies
γ11(G) = k.

2.2 Graphs with small maximum degree

The family of connected graphs with maximum degree Δ = 2 contains just
paths and cycles, and in both cases parameter γ11 is completely determined:
γ11(Pn) = �n3 � and γ11(Cn) = �2n3 � − n3 �. So we focus on graphs with maxi-
mum degree Δ = 3 and we have obtained the following result that provide an
upper bound for γ11.

Theorem 4. If Δ(G) = 3 and G is other than the bull graph, then γ11(G) ≤
n− 3. Note also that the bull graph H has 5 vertices and γ11(H) = 3 = n− 2

2.3 Cographs

In the family of P4-free graphs, we have calculated the exact values of γ11,
depending on the value of de domination parameter γ.

Theorem 5. Let G be a cograph of order n. Then:

• If γ(G) = 2, then γ11(G) ∈ {2, n}.
• Cographs such that γ(G) = γ11(G) = 2 are completely characterized.
• If γ(G) ≥ 3, then γ11(G) = n.
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2.4 Claw-free graphs

In this family of graphs, we have also studied the values of γ11 in relation-
ship with the values of γ. But in contrast with the case above, the family of
cographs, in this occasion a wider range of values can be achieved.

Theorem 6. Let h, k, n be integers such that 2 ≤ h ≤ k < n and h + k ≤ n.
Then, there exists a claw-free graph G of order n such that γ(G) = h and
γ11(G) = k.

Proposition 1. Let n be an integer such that n ≥ 6. Then,

• there exists a claw-free graph G of order n and such that γ(G) = 2 and
γ11(G) = n− 1,

• there exists a claw-free graph G of order n and such that γ(G) = 2 and
γ11(G) = n.

Proposition 2. Let h, n be integers such that n ≥ 7, 2 ≤ h ≤ n−13 �. Then,
there exists a claw-free graph G of order n such that γ(G) = h and γ11(G) = n.

3 Trees

The following result about trees is known.

Theorem 7 ([2]).
Let T be a tree of order n ≥ 3 with k leaves. Then,

• Every [1, 1]-set contains all its strong support vertices.
• γ11(T ) ≤ n

2 .
• γ11(T ) =

n
2 if and only if T = T ′ �K1, for some tree T ′.

• γ11(T ) ≤ n− k.
• γ11(T ) = n − k if and only if T contains a [1, 1]-code D such that V \ D

induces a coclique.

So we focus our attention on the relationship between γ and γ11. We have
obtained a complete result in the particular case of caterpillars and a general
inequality between both parameters that is satisfied for any tree.

Proposition 3. Let T be a caterpillar. Then

γ(T ) = γ12(T ) ≤ γ11(T ) < 2γ(T )

Proposition 4. Let {h, k, n} be integers with 1 ≤ h ≤ k ≤ n
2 and h < 2k.

Then there exists a caterpillar T of order n such that γ12(T ) = h, γ11(T ) = k.

Theorem 8. For every tree T , γ(T ) ≤ γ11(T ) ≤ 2γ(T ) − 1. Moreover, both
bounds are tight.
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4 Product graphs

Finally we present some results on the behavior of the quasiperfect domination
parameters with standard product operations.

We begin with the cartesian product [6] of two connected graphs G and
H, denoted by G�H, which is the graph with the vertex set V (G) × V (H)
in which vertices (g, h) and (g′, h′) are adjacent whenever gg′ ∈ E(G) and
h = h′ ∈ E(H) or g = g′ ∈ E(G) and hh′ ∈ E(H). The following result is
known.

Proposition 5 ([4]). For every grid graph G = Ph�Pk, γ13(G) = γ(G).

We have obtained a general upper bound for this product-type operation.

Theorem 9. Let G and H be two graphs and let r be an integer. Then,
γ1r(G�H) ≤ min{γ1r(G)|V (H)|, |V (G)|γ1r(H)}. Moreover, this bound is
tight.

On the other hand, the strong product [6] of graphs two connected G and
H, denoted by G � H, is the graph such that V (G � H) = (V (G) × V (H)
and E(G �H) = E(G ×H) ∪ E(G�H). In this case, the following result is
proved.

Proposition 6. Let G be a graph and let k be an integer such that γ
1k
(G) =

|V (G)|. Then, γ
1k
(G�H) = |V (G�H)|, for any graph H.

Finally we have calculated exact values of parameters γ11 and γ12 for strong
product of paths, cycles and complete graphs.

Proposition 7. γ11(Pr � Ps) = γ(Pr � Ps) = γ(Pr) · γ(Ps)

Proposition 8.

• γ12(Cr � Cs) = γ(Cr � Cs) = γ(Cr)γ(Cs) = � r3�� s3�.
• γ11(Cr � Cs) = γ(Cr � Cs), if r = 3a and s = 3b.
• γ11(Cr � Cs) = rs = n, if r 	= 3a or s 	= 3b.

Proposition 9. γ11(Kr � Ps) = γ(Kr � Ps) = � s3�
Proposition 10.

• γ12(Kr � Cs) = γ(Kr � Cs) = γ(Cs) = � s3�.
• γ11(Kr � Cs) = γ(Kr � Cs), if s = 3a.
• γ11(Kr � Cs) = rs = n, if s 	= 3a.

Proposition 11.

• γ12(Cr � Ps) = γ(Cr � Ps) = γ(Cr)γ(Ps) = � r3�� s3�.
• γ11(Cr � Ps) = γ(Cr � Ps), if r = 3a.
• γ11(Cr � Ps) = rs = n, if r 	= 3a.
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